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CONVERGENCE AND QUALITATIVE PROPERTIES OF MODIFIED
EXPLICIT SCHEMES FOR BSDES WITH POLYNOMIAL GROWTH

BY ARNAUD LIONNET∗,1, GONCALO DOS REIS†,2 AND LUKASZ SZPRUCH†

INRIA Paris—Ecole Nationale des Ponts et Chaussées∗ and
University of Edinburgh†

The theory of Forward–Backward Stochastic Differential Equations
(FBSDEs) paves a way to probabilistic numerical methods for nonlinear
parabolic PDEs. The majority of the results on the numerical methods for
FBSDEs relies on the global Lipschitz assumption, which is not satisfied
for a number of important cases such as the Fisher–KPP or the FitzHugh–
Nagumo equations. Furthermore, it has been shown in [Ann. Appl. Probab.
25 (2015) 2563–2625] that for BSDEs with monotone drivers having polyno-
mial growth in the primary variable y, only the (sufficiently) implicit schemes
converge. But these require an additional computational effort compared to
explicit schemes.

This article develops a general framework that allows the analysis, in a
systematic fashion, of the integrability properties, convergence and qualita-
tive properties (e.g., comparison theorem) for whole families of modified
explicit schemes. The framework yields the convergence of some modified
explicit scheme with the same rate as implicit schemes and with the compu-
tational cost of the standard explicit scheme.

To illustrate our theory, we present several classes of easily implementable
modified explicit schemes that can computationally outperform the implicit
one and preserve the qualitative properties of the solution to the BSDE. These
classes fit into our developed framework and are tested in computational ex-
periments.

1. Introduction. Since the initial papers of Zhang [22] and Bouchard and
Touzi [2], an important literature has developed concerning the methods for ap-
proximating numerically the solution to a nonlinear backward stochastic differen-
tial equation (BSDE thereafter). The importance of BSDEs with nonlinear drivers
is due to their frequent use in stochastic control problems, and to their deep con-
nection with parabolic partial differential equations (PDEs), which are used to de-
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scribe many biological and physical phenomena as well as the solution to many
decision problems. Indeed, the solution v to the PDE(

∂tv + 1

2

(
σσ ∗) · vxx + b · vx + f (·, v, vxσ )

)
(t, x) = 0 with v(T , x) = g(x),

is given by solving, for (s, x) ∈ [0, T ] × R
d , for t ∈ [t, T ], the forward-backward

SDE,

X
s,x
t = x +

∫ t

s
b
(
r,Xs,x

r

)
dr +

∫ t

s
σ
(
r,Xs,x

r

)
dWr,(1.1)

Y
s,x
t = g

(
X

s,x
T

)+ ∫ T

t
f
(
r, Y s,x

r ,Zs,x
r

)
dr −

∫ T

t
Zt,x

r dWr,(1.2)

and setting v(s, x) = Y s,x
s (see, e.g., [11]). In solving (1.2), one seeks a pair of

processes S = (Y,Z), adapted to the filtration F of the Brownian motion W . The
data of the BSDE are the FT -measurable random variable ξ = g(X

s,x
T ), called

terminal condition, and the function f , generally referred to as driver and which
will depend only on time, Y and Z for the simplicity of exposition.

Consider a discretization of the time interval [0, T ] by a regular subdivision πN :
0 = t0 < t1 < · · · < tN = T , where ti = ih for all i ∈ {0, . . . ,N} and h = T/N . To
construct a numerical methods for BSDEs, one typically begins by discretizing the
time dynamics for Y over [ti , ti+1] as

YN
i = Ei

[
YN

i+1 + (1 − θ)f
(
ti , Y

N
i+1,Z

N
i

)
h
]+ θf

(
ti , Y

N
i ,ZN

i

)
h,(1.3)

where Ei is E[·|Fti ] and the approximation ZN
i is suitably computed. When the pa-

rameter θ = 0, this is the explicit scheme while θ = 1 is the implicit scheme,3 both
dubbed BTZ schemes in [5]. Such a time-discretization scheme is first initialized
by setting YN

N to be a numerical approximation ξN of the terminal condition ξ and
then applied in a backward recursive fashion, producing a family (YN

i ,ZN
i )i=0,...,N

approximating the solution (Yt ,Zt )t∈[0,T ] of the BSDE.
There has been a significant progress in the analysis of variants of scheme (1.3)

or the ways to approximation the conditional expectations Ei , although the vast
majority of works impose a restrictive Lipschitz condition on driver f in both its
Y and Z variables (see [1, 4, 10, 12] and references therein).

However, in many cases of interest, the driver is not Lipschitz but instead has
superlinear growth in one of its variables. For instance, for PDEs of reaction-
diffusion type such as the Allen–Cahn equation, the FitzHugh–Nagumo equations,
the Fisher–KPP equation or the standard nonlinear heat and Schrödinger equation
(see [13, 20] and references), the function f is a polynomial in Y . Meanwhile,

3Numerical schemes most often compute first ZN
i explicitly from the input YN

i+1, and then use this

to compute YN
i . In this paper, all mentions of implicit and explicit scheme in the context of BSDEs

refer the to Y -component.
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in stochastic control problems, the driver typically has quadratic growth in the Z

variable.
Chassagneux and Richou obtained in [8] the convergence of an implicit scheme

in the case where the terminal condition ξ is bounded and the driver f has
quadratic growth in Z. In [19], we studied the case where the terminal condition
has all moments, the driver has polynomial growth in Y and satisfies a so-called
monotonicity condition (also known as one-sided Lipschitz condition). The mono-
tonicity condition is a structure property which states, in the scalar case, that for
all y, y′ in the domain R and for all z,(

f (y, z) − f
(
y′, z
))(

y′ − y
)≤ My

∣∣y′ − y
∣∣2,(1.4)

where My ∈R. For instance, the driver f (y, z) = y − y3 typical of the FitzHugh–
Nagumo equation is one-sided Lipschitz over the domain R with My = 1.

As explained in [19], the explicit scheme described in (1.3) can explode. This
is due to the superlinear growth of the driver f and the unboundedness of the ter-
minal condition ξ . As a remedy, [19] proposed to use the implicit scheme, which
was shown to converge, or an explicit scheme with a truncated numerical terminal
condition T N(ξN), where the truncation function T N fades to the identity when
the number N of time-steps goes to +∞. However, the implicit scheme requires
an extra computational effort to solve the nonlinear equation (1.3) defining YN

i

when θ = 1. And for the explicit scheme with the truncated terminal conditions,
severe restrictions on the size of the time-step had to be imposed, and the tun-
ing/performance of the algorithm depends on knowledge of f , in particular on
its growth. The purpose of this paper is to obtain converging explicit schemes by
working instead on the dynamics of the scheme itself, replacing the driver f by a
modified driver f h, with no time-step restriction. In addition, we can obtain some
numerical schemes of black-box type, where no a priori knowledge on the structure
of the driver is required.

Explosion problems of naïve explicit schemes were already stressed in [16] in
the context of the numerical methods for stochastic differential equations (SDEs
thereafter). A significant body of works considered various modifications to the
explicit schemes for SDEs, dubbed “tamed schemes,” to recover integrability and
convergence in the non-Lipschitz setting; see [6, 14–18, 21]. In the context of
BSDEs, very particular instances of modified drivers were already used by [8] to
deal with the quadratic growth in Z, and in [19] to deal with the dependence of the
driver of (1.2) in the solution X to the SDE (1.1). But this was only used as an ad
hoc tool to handle a particular issue.

This motivates us to study systematically the family of modified explicit
schemes where the BSDE driver f is replaced by a “tamed” driver f h. Provided
the modified driver f h is appropriately “tamed,” the explosion of the scheme is
prevented. One then expects that such a modified scheme will converge to the
continuous-time solution provided f h → f . In addition, if this convergence can
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happen fast enough, the usual convergence rate of the implicit schemes can be re-
covered. Our approach in this work is to identify the essential properties of these
modified drivers f h which guarantee the convergence of the corresponding mod-
ified explicit scheme for BSDEs. As a consequence, we show at once the conver-
gence of a whole range of modified explicit BSDE schemes.

In a certain sense, this question is reminiscent of the stability with respect to the
driver for solutions of continuous-time BSDEs. Given the fixed set of times [0, T ],
let us denote by Sf the solution to the BSDE with driver f and by Sf ε

the solu-
tion for the driver f ε , such that f ε converges to f in some sense (uniformly on
compact, typically). The stability theorem, valid for monotone drivers as well as
for Lipschitz drivers, states that Sf ε

converges to Sf , in the appropriate norm, and
gives an upper bound on the distance. Here, for the set of times πN (which “con-

verges to [0, T ]” as N → +∞), let us denote by SN,f h = (Y
N,f h

i ,Z
N,f h

i )i=0...N

the output of the modified explicit scheme with drivers f h, and by SN,f the output
of the standard (BTZ) explicit scheme, with driver f . One may then be tempted
to say that, as f h converges to f when h = T/N → 0, SN,f h

should be close to
SN,f for large N . However, the BTZ explicit scheme SN,f , in general, does not
converge to Sf when f is not Lipschitz, while in this paper it is proved that SN,f h

converges to Sf . Therefore, convergence of SN,f h
to SN,f cannot hold (at least not

uniformly over πN : for fixed πN and f ε → f , one should have SN,f ε → SN,f ).
We depict the situation on Figure 1 where by (!) we marked the convergence results
that, in general, do not hold in the non-Lipschitz setting.

One could nonetheless say that the BSDE solution Sf with driver f and the
BSDE solution Sf h

with driver f h must be close by the stability result for con-
tinuous time BSDEs. This depicted on the Figure 1 by the arrow (b). Then, if
f h is Lipschitz for each N (albeit with Lipschitz and growth constants which
explode when h → 0), the standard estimate for the convergence of the explicit
BTZ scheme with Lipschitz drivers should allow to bound the distance between
Sf h

and SN,f h
. This depicted on the Figure 1 by the arrow (a). However, this

strategy will not work since the upper bound in that estimate involves (the expo-
nential of) a constant that grows with the regularity and growth constants of f h.

SN,f h
SN,f

Sf h
Sf

(a)

(!)

(b)

(!)

FIG. 1. Schematic diagram of key findings of this paper. Double arrow marks the conclusion of
Theorem 2.4. (!) marks convergence that in general does not hold.
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One must therefore carefully analyze the modified explicit schemes and work with
modifications f h that, on one hand, allow to tame the superlinear growth and, on
the other hand, preserve certain structural properties of f such as the monotonic-
ity condition. In addition, we manage to show our convergence SN,f h → Sf for
modified drivers f h that are not necessarily Lipschitz, but only almost-Lipschitz
and of linear growth [cf. the assumptions (TRegY) and (TGrowth) below, when
R(regY) �= 0].

Taming the driver does not merely allow to recover the convergence of the ex-
plicit scheme for BSDEs in the regime h → 0. It also makes it more robust and
qualitatively more satisfying for finite h. An important qualitative property is the
comparison theorem, which plays a major role in the study of continuous-time BS-
DEs. In the context of numerical schemes for BSDEs with driver that is quadratic
in Z, this property was obtained in [8] and used to prove the convergence of their
scheme. In this paper, we show in the case of drivers with superlinear growth in
Y , that a comparison theorem holds for suitably modified explicit schemes. This
qualitative property is of interest for its own sake, but also allows to deduce that
the scheme remains in some domain D of the space when the continuous-time so-
lution does. This is important if the monotonicity condition for f is only satisfied
on D, as is the case for instance for the Fisher–KPP equation where the driver is
f (y, z) = y − y2. Here, the monotonicity condition for f is satisfied on the do-
main D = [0,+∞[, and the solution stays positive. To the best of our knowledge,
this is the first result on a comparison theorem for explicit schemes for BSDEs,
even for a driver f that is Lipschitz in both its Y and Z variables.

The paper is organized as follows. In Section 2, we state the assumptions un-
der which we work, the numerical schemes considered and our main results. We
give in Section 2.4 several examples of driver modifications that fit our assump-
tions. In Section 2.5, we study the discrete comparison and the preservation of
positivity (of the explicit schemes); and Section 2.6 illustrates with some numeri-
cal examples of tamed drivers the results we obtained.

Sections 3 and 4 are concerned with proving the convergence of the scheme.
Specifically, in Section 3, we show how taming the driver prevents the scheme
from exploding, deriving almost-sure local and then global bounds, which lead to
moment estimates. In Section 4, we then prove that the scheme converges. For
this, we first prove that the scheme is almost L2-stable over one time-step, which
allows to control the propagation of errors. We then analyze the discretization error
created at each time-step, and show that their sum converges with rate at least 1/2.

The paper closes with two appendices. Appendix A provides proofs regarding
our main results, while Appendix B provides proofs for the examples studied in
Section 2.4.

2. Assumptions, schemes and main results. Notation. Fix T > 0. We work
on a canonical Wiener space (�,F,P) carrying a d-dimensional Wiener pro-
cess W = (W 1, . . . ,Wd) restricted to the time interval [0, T ]. We denote by
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F = (Ft )t∈[0,T ] its natural filtration enlarged in the usual way by the P-zero sets
and by E and E[·|Ft ] = Et [·] the usual expectation and conditional expectation
operator respectively.

We denote by 〈·, ·〉 and |·| the canonical inner product and Euclidean norm on
R

d , and by x∗ the transposed of x ∈ R
d when seen as a R

d×1 matrix (column-
vector). Id denotes the d-dimensional identity matrix. Lp = Lp(FT ,Rd) is the
space of R

d -valued FT -measurable random variables X with norm ‖X‖Lp =
E[|X|p]1/p < ∞. Sp is the space of d-dimensional F -adapted processes Y sat-
isfying ‖Y‖Sp = E[supt∈[0,T ] |Yt |p]1/p < ∞. Hp is the space of d-dimensional

F -adapted processes Z satisfying ‖Z‖Hp = E[(∫ T
0 |Zs |2 ds)p/2]1/p < ∞.

2.1. Assumptions on the continuous-time dynamics. We make the following
running assumptions.

The SDE and the terminal condition. We assume that the functions b : [0, T ] ×
R

d → R
d , σ : [0, T ] × R

d → R
d×d in (1.1) are 1/2-Hölder continuous in their

time variable, Lipschitz continuous and of linear growth in their spatial variables.
The terminal condition g : Rd → R

n is a Lipschitz function. The terminal condi-
tion ξ := g(XT ) ∈ Lp for p ≥ 1.

The driver of the BSDE. We work with drivers f : [0, T ] × R
n × R

n×d → R
n

having polynomial growth in y and satisfying the so-called monotonicity condition
(also known as one-sided Lipschitz condition), while being Lipschitz functions
of z. Specifically, our drivers f satisfy the growth, monotonicity and regularity
conditions stated below. We choose not to include the possibility of a Lipschitz
dependence of f on the variable x. It is seen in [19] that this can easily be dealt
with. For clarity of our results, we exclude it here.

(Growth) There exist m ∈ N
∗ and Kt,Ky,Kz ≥ 0 such that, for all (t, y, z) ∈

[0, T ] ×R
n ×R

n×d , ∣∣f (t, y, z)
∣∣≤ Kt + Ky |y|m + Kz|z|.

That is, f has polynomial growth in y of degree m and linear growth in z.
(Mon) There exist a constant My ∈ R such that for all t, y, y′, z,〈

y′ − y,f
(
t, y′, z

)− f (t, y, z)
〉≤ My

∣∣y′ − y
∣∣2.

That is, f is monotone (“decreasing”) in the variable y. The monotonicity constant
My can be, but is not necessarily, strictly negative.

(Reg) There exist constants Lt,Lz ≥ 0 such that for all t, t ′, y, z′,∣∣f (t ′, y, z′)− f (t, y, z)
∣∣≤ Lt

∣∣t ′ − t
∣∣ 12 + Lz

∣∣z′ − z
∣∣.

That is, f is 1
2 -Hölder in time and Lipschitz in z.

In a number of places, we need to know about the regularity of f in the variable
y [notice that (Mon) does not even imply continuity]. We assume that f satisfies
the following.
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(RegY) There exists a constant Ly ≥ 0 such that for all t, y, y ′, z,∣∣f (t, y′, z
)− f (t, y, z)

∣∣≤ Ly

(
1 + ∣∣y′∣∣m−1 + |y|m−1)∣∣y′ − y

∣∣.
That is, f is locally Lipschitz in y with local Lipschitz constant growing polyno-
mially with degree m − 1.

We are primarily interested in drivers f that are polynomials in y, and for these
we see that (RegY) is clearly satisfied indeed. Finally, we introduce the following
monotone growth assumption.

(MonGr) There exist constants M̄t , M̄z ≥ 0 and M̄y ∈ R such that for all t, y, z,〈
y,f (t, y, z)

〉≤ M̄t + M̄y |y|2 + M̄z|z|2.

REMARK 2.1. (MonGr) is a direct consequence of (Mon) and (Growth) and
M̄z (as well as M̄t ) can be chosen arbitrarily small, as proved below. We single
out this property because it controls the growth of the driver and therefore the
integrability of the solution Y . When running the scheme with a tamed driver f h,
we only need assumptions similar to (Growth) and (MonGr) to guarantee moment
bounds for the scheme, and thereby nonexplosion.

Let f satisfies (Mon) and (Growth). For all t, y, z and for any α > 0, we have〈
y,f (t, y, z)

〉= 〈y − 0, f (t, y, z) − f (t,0, z)
〉+ 〈y,f (t,0, z)

〉
≤ My |y − 0|2 + |y|(Kt + Kz|z|)≤ (My + α)|y|2 + K2

t

2α
+ K2

z

2α
|z|2.

Hence, we can take M̄t = K2
t

2α
and M̄z = K2

z

2α
|z|2 arbitrarily small, while taking

M̄y = My + α. We also note that by combining (Mon) and (Reg) we obtain the
general estimate〈

y′ − y,f
(
t, y′, z′)− f (t, y, z)

〉= 〈y′ − y,f
(
t, y′, z′)− f

(
t, y, z′)〉

+ 〈y′ − y,f
(
t, y, z′)− f (t, y, z)

〉
≤ (My + α)

∣∣y′ − y
∣∣2 + L2

z

4α

∣∣z′ − z
∣∣2.

Results from BSDE theory. The assumptions (Growth), (Mon), (Reg) and
(RegY) are a more detailed version of assumptions (HY0) and (HY0loc) in [19],
Section 2.2, and they imply the fundamental BSDE results of Sections 2 and 3 of
[19]. Essentially, those results are the existence and uniqueness of the solution,
a priori bound estimates and the path-regularity theorem. We recall them in Ap-
pendix A.1. Throughout we denote by (Yt ,Zt )t∈[0,T ] the unique solution to (1.2),
which we aim at approximating numerically.
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2.2. Time-discretization: Dynamics and assumptions. We discretize the time-
interval [0, T ] using a partition π : 0 = t0 < t1 < · · · < tN−1 < tN = T with N

intervals. The modulus of the partition is |π | = maxi=0,...,N−1 hi+1 where hi+1 =
ti+1 − ti . While our results would hold for more general partitions, we restrict
ourselves to regular partitions for notational simplicity. Consequently, given the
number N of time-intervals, we work with the partition πN where ti = ih, h =
T/N ∈ (0, T ] being the modulus of the partition.

We wish to focus on the numerical approximation of the backward SDE (1.2).
So we do not discuss the numerical approximation of the forward SDE (1.1) and
that of the terminal condition. We work with the following assumption regarding
the numerical approximation ξN of the terminal condition ξ = g(XT ).

(AξN ) For any p ≥ 2, ξN ∈ Lp(FT ). There exists a constant c (independent
of N ) such that

ERRh(ξ) := E
[∣∣ξ − ξN

∣∣2] 1
2 ≤ ch

1
2 .

Given the assumptions made on b, σ and g, one can use the standard Euler scheme
for SDEs to produce an approximation XN = (XN

i )i=0,...,N of X and set ξN =
g(XN

N ). This ξN satisfies (AξN ).

2.2.1. The modified explicit schemes. For i ∈ {0, . . . ,N − 1}, we denote the
Brownian increments by 
Wti+1 := Wti+1 − Wti . We also take a family of R

d -
valued random variables (Hi+1)i=0,...,N−1 which approximate 
Wti+1/h and sat-
isfy the following assumption:

(AH) 1. For any i = 0, . . . ,N −1, Hi+1 is independent from Fi and satisfies
Ei[Hi+1] = 0 (Hi+1 is a martingale increment).

2. For any i = 0, . . . ,N − 1, Ei[(Hi+1h)(Hi+1h)∗] = �hId , where 1
2 ≤ � ≤ 1.

As a consequence, Ei[|Hi+1h|2] = �dh.
3. There exists a constant C ≥ 0 (independent of N ) such that

max
i=0,...,N−1

E

[∣∣∣∣
Wti+1

h
− Hi+1

∣∣∣∣2]≤ C.

In works on numerical methods for BSDEs, Hi+1 is often defined as 
Wti+1/h (in
which case � = 1). However, as will be seen in Section 2.5, in order to have an
explicit scheme which is numerically stable (i.e., reproduces qualitative properties
of the continuous-time BSDE, such as the positivity of the solution), the Hi+1 are
required to be bounded. One way to do this is to truncate the Brownian increment

Wti+1 to 
Wh

ti+1
, by projecting it on the centered ball of radius Rh, where Rh →

+∞ as h → 0. In that case, Hi+1 = 
Wh
ti+1

/h. Also, working with Hi+1 rather
than 
Wti+1/h also allows to include in the analysis tree-based methods such as
cubature [10].
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We work with the following scheme. It is initialized with YN = ξN (and
ZN = 0). Then, for i = N − 1 to 0, the output of one step of the scheme when
the input is Yi+1 is (Yi,Zi) = Si(Yi+1) defined by⎧⎨⎩ Yi = Ei

[
Yi+1 + f h(ti, Yi+1,Zi)h

]
,

Zi = Ei

[(
Yi+1 + (1 − θ ′)f h(ti, Yi+1,0)h

)
H ∗

i+1
]
,

(2.1)

where θ ′ ∈ [0,1] and the driver f h is a modification of f . The precise assumptions
on f h are described later. The global output of the scheme is the sequence of ran-
dom variables SN,f h = ((Yi,Zi))i=0,...,N−1 valued in R

n ×R
n×d . The superscript

N is omitted since the discrete subscript i ∈ {0, . . . ,N} already indicates that Yi

(say) refers to the numerical approximation, while Yti is simply the solution to the
continuous-time BSDE at time ti .

This (explicit) scheme corresponds to the case where the parameter θ = 0 in
(1.3), θ ′ being another parameter here. Most schemes for BSDEs proposed in the
literature choose θ ′ = 1. We show in this work that the scheme converges for any
θ ′ ∈ [0,1]. However, a reader familiar with the analysis of continuous-time BSDEs
will easily see in Sections 3 and 4 that having θ ′ = θ (so, θ ′ = 0) allows to ana-
lyze the scheme (2.1) by mimicking more closely the continuous-time analysis, as
suggested below.

Discrete-time martingale representation. While Yi is defined as a conditional
expectation in (2.1), it is useful to rewrite it using a martingale increment. Note
that such a representation was already used in [7, 8] and [3], although the way we
use it in the estimates of Sections 3 and 4 differs.

LEMMA 2.2. Given i ∈ {0, . . . ,N − 1}, consider a Fi+1-measurable R
n-

valued random variable Yi+1 as well as a Fi-measurable R
n×d -valued random

variable Zi , such that Yi+1 + f h(ti,Yi+1,Zi )h ∈ L1. Define Yi = Ei[Yi+1 +
f h(ti,Yi+1,Zi)h]. Then Yi can be written

Yi = Yi+1 + f h(ti,Yi+1,Zi )h − 
Mi+1,(2.2)

where Ei[
Mi+1] = 0. Moreover, there exists a unique pair (ζi,
Ni+1), with ζi a
Fi-measurable R

n×d -valued random variable and 
Ni+1 a martingale increment
orthogonal to Hi+1h, such that


Mi+1 = ζi�
−1Hi+1h + 
Ni+1.(2.3)

ζi is given by

ζi = Ei

[(
Yi+1 + f h(ti,Yi+1,Zi)h

)
H ∗

i+1
]
.(2.4)

The proof of this statement is relatively straightforward. For completeness, it is
is presented in Appendix A.2.
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Derivation of the scheme. Lemma 2.2 suggests that, if one has already chosen a
time-discretization for the process (Yt ) over [ti , ti+1] given by

Y̌i = Ei

[
Y̌i+1 + f h(ti, Y̌i+1, Ži)h

]
,(2.5)

where the input Y̌i+1 already approximates Yti+1 , and Ži is yet to-be-determined,
it is more natural to choose subsequently

Ži = Ei

[(
Y̌i+1 + f h(ti, Y̌i+1, Ži)h

)
H ∗

i+1
]

= Ei

[(
Y̌i+1 + (1 − θ ′)f h(ti, Y̌i+1, Ži)h

)
H ∗

i+1
]
,

(2.6)

with θ ′ = 0. Indeed, since “Ži = ζi ,” this means that (Y̌i, Ži) =: Ši(Y̌i+1) is defined
by

Y̌i = Y̌i+1 + f h(ti, Y̌i+1, Ži)h − (Ži�
−1Hi+1h + 
Ni+1

)
.

Due to the resemblance between the above equation and the continuous-time
BSDE, this scheme has the advantage that the analysis carried out in the later Sec-
tions 3 and 4 is more natural to the reader accustomed with the continuous-time
analysis. The above explains why it would be natural, and later convenient for the
analysis of the scheme, to take θ ′ = θ (hence θ ′ = 0). But due to the prevalence
and convenience of implementation of the choice θ ′ = 1, we study the scheme for
a general θ ′ ∈ [0,1], thus covering both cases.

However, in the scheme (2.5)–(2.6), Ži is defined implicitly (unless θ ′ = 1),
which leads to solving a nonlinear equation to compute Ži at each step of the
scheme. In theory, this could be dealt with, seeing as z 
→ f h(ti, Y̌i+1, z)h is Lips-
chitz and, therefore, a contraction for h small enough, so Ži could be approximated
by iteration. But this defeats the purpose of this work, as we aim at fully explicit
schemes. Also, we want to avoid imposing restrictions on the size of the time-
steps. So we replace f h(ti, Y̌i+1, Ži)h by f h(ti, Y̌i+1,0)h in our scheme (2.1).
Given the Lipschitz dependence of f in z, this creates an error that should not af-
fect the convergence rate of the scheme, which we aim to be 1

2 , like for the implicit
scheme.

To be able to take advantage of Lemma 2.2 and the natural character of
scheme (2.5)–(2.6) when analyzing scheme (2.1), we introduce the random vari-
able Di := Zi − ζi , where ζi is given by (2.4) with Yi+1 = Yi+1 and Zi = Zi .
This Di measures the difference between the theoretically-natural scheme and the
scheme used in practice. The proofs of Lemma 3.1 and Proposition 3.2 are written
in such a way that the interested reader can easily track the consequence of Di �= 0.
For the scheme (2.5)–(2.6), the analogue Ďi := Ži − ζ̌i , where ζ̌i is given by (2.4)
with Yi+1 = Y̌i+1 and Zi = Ži , is null.

2.2.2. Assumptions on the tamed driver and comments. We now introduce the
general assumptions on the tamed driver f h. They summarize the fact that we
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want f h to enjoy most of the properties of f , in particular to preserve as much as
possible the monotonicity of (Mon) and (MonGr), but with the polynomial growth
of f and its local Lipschitz constant tamed; see (Growth) and (RegY).

These abstract assumptions can be split in three categories. First, we have the
growth conditions (TGrowth) and (TMonGr) which ensure the nonexplosion of
the scheme. Second, the monotonicity and regularity conditions (TReg), (TRegY)
and (TMon) ensure the stability of the scheme. Finally, (TCvg) ensures the conver-
gence of the scheme. Recall that h ∈ (0, T ] and we are interested in doing h → 0.

Assumptions on the growth.

(TGrowth) There exist Kh
t , Kh

y and Kh
z ≥ 0 such that, for all (t, y, z) ∈

[0, T ] ×R
n ×R

n×d , ∣∣f h(t, y, z)
∣∣≤ Kh

t + Kh
y |y| + Kh

z |z|.
The constants Kh

t , Kh
y and Kh

z may depend on h but in such a way that

(Kh
t )2h, (Kh

y )2h and Kh
z are bounded in h, that is, Kh

t ,Kh
y = O(1/

√
h). Also,

|f h(t, y, z)| ≤ |f (t, y, z)|.
(TMonGr) There exist M̄h

t , M̄h
z ≥ 0 and M̄h

y ∈ R such that, for all (t, y, z) ∈
[0, T ] ×R

n ×R
n×d ,〈

y,f (t, y, z)
〉≤ M̄h

t + M̄h
y |y|2 + M̄h

z |z|2.
The constants may depend on h and satisfy suph{M̄h

t , M̄h
z , M̄h

y } < ∞.

Assumptions on the regularity.

(TReg) There exist Lh
t ,L

h
z ≥ 0 such that, for all t, t ′, y, z, z′,∣∣f h(t ′, y, z′)− f h(t, y, z)

∣∣≤ Lh
t

∣∣t ′ − t
∣∣ 12 + Lh

z

∣∣z′ − z
∣∣.

The constants may depend on h and satisfy suph{Lh
t ,L

h
z } < ∞.

(TRegY) There exist Lh
y ≥ 0 and a positive function R(regY) satisfying (TCvg)

(defined below; it ensure that R(regY) goes to 0) such that for all t, y, y′, z,∣∣f h(t, y′, z
)− f h(t, y, z)

∣∣≤ Lh
y

∣∣y′ − y
∣∣+R(regY)(t, y′, y, z

)
.

Lh
y may depend on h s.th. (Lh

y)
2h is bounded in h, that is, Lh

y = O(1/
√

h).

(TMon) There exists Mh
y ∈ R and a function R(mon) satisfying (TCvg) (de-

fined below; it ensure that R(mon) goes to 0) such that for all t, y, y′, z,〈
y′ − y,f h(t, y′, z

)− f h(t, y, z)
〉≤ Mh

y

∣∣y′ − y
∣∣2 +R(mon)(t, y′, y, z

)
.

Mh
y may depend on h, but in a bounded way s.th. suph{Mh

y } < ∞.
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Assumptions on the convergence. We need to ensure that f h → f as h → 0.
This is in some sense a consistency condition, ensuring that the output of the
scheme converges to the solution to the correct BSDE, and not a BSDE with a
different driver. We introduce for this Rh = f − f h. Also, we need the remainders
R(regY) and R(mon) to vanish sufficiently fast, so as not to prevent convergence
of the scheme. The following assumption guarantees that Rh, R(regY) and R(mon)

converge to zero. In its statement, R stands for both of the remainders R(regY) and
R(mon).

(TCvg) One of the following holds:

1. There exist constants C ≥ 0, p,q ≥ 1 and α ≥ 1/2 such that for any y ′, y, z∣∣Rh(t, y, z)
∣∣≤ C

(
1 + |y|q + |z|p)hα,

R
(
t, y′, y, z

)≤ C
(
1 + ∣∣y′∣∣q + |y|q + |z|p)hα.

2. There exist constants C ≥ 0, p,q ≥ 1, r0 > 0 and β > 0 such that, with
r(h) = r0h

−β , for any y′, y, z∣∣Rh(t, y, z)
∣∣≤ C

(
1 + |y|q + |z|q)1{|f (t,y,z)|>r(h)},

R
(
t, y′, y, z

)≤ C
(
1 + ∣∣y′∣∣q + |y|q + |z|p)1{|f (t,y′,z)|>r(h) or |f (t,y,z)|>r(h)}.

3. There exist constants C ≥ 0, p,q ≥ 1, r0 > 0 and γ > 0 such that, with
r(h) = r0h

−γ , for any y′, y, z∣∣Rh(t, y, z)
∣∣≤ C

(
1 + |y|q + |z|p)1{|y|>r(h)},

R
(
t, y′, y, z

)≤ C
(
1 + ∣∣y′∣∣q + |y|q + |z|p)1{|y′|>r(h) or |y|>r(h)}.

REMARK 2.3. The above (TCvg) implies that f h → f as h → 0 pointwise.
We would expect from the stability theorems for continuous-time BSDEs that the
solutions would converge if f h → f uniformly on compacts, which (TCvg) also
implies. However, in order to obtain convergence rates for the scheme, stronger
assumptions are needed.

2.3. Main result and outline of the proof. The path-regularity theorem (see
Theorem A.2) implies that the distance between the solution (Yt ,Zt )t∈[0,T ] and its
projection on the grid, (Yti ,Zti )i=0,...,N−1, is of order h1/2, where Zti is defined as

Zti = Ei

[
1

h

∫ ti+1

ti

Zu du

]
= Ei

[∫ ti+1

ti

Zu dWu


W ∗
ti+1

h

]

= Ei

[(
Yi+1 +

∫ ti+1

ti

f (u,Yu,Zu)du

)

W ∗

ti+1

h

]
.
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We measure the distance between the numerical approximation (Yi,Zi)i=0,...,N

and the solution of the BSDE with the following error criterion:

ERRN =
(

sup
i=0,...,N

E
[|Yti − Yi |2]+E

[
N−1∑
i=0

|Zti − Zi |2h
])1/2

.

Main result. Our principal result, which Sections 3 and 4 are devoted to prov-
ing, is that if the driver f is tamed is such a way that the assumption of the previous
subsection are satisfied, then the resulting scheme converges. Specifically, we de-
fine the rate μ as follows:

• If (TCvg).1 is satisfied, with q,p ≥ 1 and α > 0, then μ = α.
• If (TCvg).2 is satisfied, with q,p ≥ 1 and β > 0, then μ = βl

2 , for arbitrary
l ≥ 1. Since β > 0, we will take l such that μ ≥ 1.

• If (TCvg).3 is satisfied, with q,p ≥ 1 and γ > 0, then μ = γ l
2 , for arbitrary

l ≥ 1. Since γ > 0, we will take l such that μ ≥ 1.

THEOREM 2.4. Assume that f h satisfies (TGrowth), (TMonGr), (TReg),
(TRegY), (TMon) and (TCvg). Then the scheme (2.1) converges, that is,
ERRN → 0 as N → +∞.

More precisely, there exists a constant C (independent of N ) such that

ERR2
N ≤ Ch + Chμ.

Having μ > 0 guarantees convergence of the scheme. Having μ ≥ 1 guarantees
that taming the driver does not slow down the convergence and that the standard
convergence rate of the implicit scheme can be recovered.

Outline of the proof. We follow a standard strategy which consists in seeing
the error at time ti as resulting from the one-step time-discretization error—by
how much the BSDE and the scheme differ over one time-step when initialized
with the same input—and the propagation to time ti of the error already present at
time ti+1—the control of this latter error coming from the stability of the scheme.

To express this, we introduce the family of random variables (Ŷi, Ẑi)i=0,...,N−1
defined, for all i, by

Ŷi = Ei

[
Yti+1 + f h(ti, Yti+1, Ẑi)h

]
,(2.7)

Ẑi = Ei

[(
Yti+1 + (1 − θ ′)f h(ti, Yti+1,0)h

)
H ∗

i+1
]
.(2.8)

Otherwise said, (Ŷi , Ẑi) is the output of one step of the scheme (2.1) when the
input is Yti+1 , the value of the solution at the time ti+1. Then the above mentioned
decomposition of the error at time ti can be written as

Yti − Yi = Yti − Ŷi︸ ︷︷ ︸
one-step error

+ Ŷi − Yi︸ ︷︷ ︸
propagation of error
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and

Z̄ti − Zi = Z̄ti − Ẑi︸ ︷︷ ︸
one-step error

+ Ẑi − Zi︸ ︷︷ ︸
propagation of error

.

For the time-discretization errors, we define

τi(Y ) = E
[|Yti − Ŷi |2] and τi(Z) = E

[|Zti − Ẑi |2]h.

To study the propagation of errors, we introduce the following notion of stability.

DEFINITION 2.5. We say that the scheme (2.1) is almost-stable if there exist
constants c and C, independent of N , such that for all i ∈ {0, . . . ,N − 1}

E
[|Ŷi − Yi |2]+ 1

4
E
[|Ẑi − Zi |2]h ≤ (1 + ch)E

[|Yti+1 − Yi+1|2]+ Chμ+1.

The terms Chμ+1 are the stability imperfections.

From the fundamental lemma below, the global error is then controlled by three
terms. The first is the error made on approximating the terminal condition. The
second is the sum, essentially, of the one-step discretization errors,

∑N−1
i=0

τi (Y )
h

+
τi(Z). The third is the total contribution of the stability imperfections, and is of
order hμ.

LEMMA 2.6 (Fundamental lemma). Assume that the scheme (2.1) is almost-
stable. Then there exist a constant C ≥ 0 such that, for all N ≥ 1,

(ERRN)2 ≤ CE
[∣∣ξ − ξN

∣∣2]+ C

(
N−1∑
i=0

τi(Y )

h
+ τi(Z)

)
+ Chμ.

We place the proof in Appendix A.3. From (AξN ), the first term is known to
be of order h. So Theorem 2.4 will be proved if we can prove that the sum of
discretization errors if of order h and that the scheme is almost-stable.

REMARK 2.7 (On the almost-stability). If one could take C = 0 in the Def-
inition 2.5 of the almost-stability, then the scheme would be stable, in the usual
sense. This is the case for the standard explicit and implicit (BTZ) schemes for
BSDEs with Lipchitz drivers.

2.4. Examples of modified drivers, and truncated Brownian increments. We
show in Sections 3 and 4 how the set of general assumptions of Section 2.2.2
about the modified drivers f h ensure the convergence of the scheme. As we stated
in the Introduction, our aim was to isolate a set of properties that would guarantee
the convergence of the modified explicit scheme (2.1) for a large class of modified
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drivers f h, rather than just treating one particular case. To use this result, we then
have to show that various modifications of f result in drivers f h which fit in our
framework.

We present here several natural ways to modify the driver f to avoid explosion
of the scheme and obtain its convergence. We organize them in three categories,
based on how the driver is modified. We also point out that the multiplicative tam-
ing, outer taming and inner taming below correspond to (TCvg).1, (TCvg).2 and
(TCvg).3 (resp.) of assumption (TCvg) in Section 2.2.2.

2.4.1. Multiplicative taming. Consider a radius r(h) = r0h
−α , with r0 > 0 and

α > 0. So r(h) → +∞ as h → 0. We can tame the high values of f by multipli-
cating it by a damping factor,

f h(t, y, z) = χh(y)f (t, y, z) where χh(y) = 1

1 + F(y)r(h)−1 .

Several choices are possible for the function F . We only consider the four follow-
ing ones:

(a) F(y) = |f (0, y,0)|,
(b) F(y) = |f (0,y,0)−f (0,0,0)|

|y| 1{y �=0},
(c) F(y) = |y|m,
(d) F(y) = |y|m−1.

The choices (a) and (b) use only the outputs of f and require no detailed knowl-
edge of f (black-box taming), while the choices (c) and (d) use the input y and
require knowing the degree m of the polynomial growth. Also, as can be read-
ily seen, the choices (a) and (c) result in a bounded driver (in the variable y, for
fixed h) while (b) and (d) result in a driver with linear growth in y.

2.4.2. Outer taming. Consider a radius r(h) = r0h
−β , with r0 > 0 and β > 0.

The outer taming is given by

f h(t, y, z) = T h(f (t, y, z)
)
,

where T h is essentially a projection on the ball of Rn of center 0 and radius r(h).
Specifically, we can consider at least the following two choices:

(A) The projection (or truncation): T h(f ) = f

max(1,|f |r(h)−1)
= r(h)f

max(r(h),|f |) .

(B) A smoothed projection: T h(f ) = f

1+|f |r(h)−1 = r(h)f
r(h)+|f | .

One could also consider a projection on the ball of radius r(h)+1 that is smoothed
only at the transition region from identity to constant, so that it would remain
the identity on the ball of radius r(h) and be constant in any y-direction beyond
r(h) + 1.
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Notice some general properties of T h: |T h(f )| ≤ |f | and |T h(f )| ≤ r(h), for
all f ∈ R

n. The projection also satisfies T h(f ) = f when |f | ≤ r(h).
Notice that for both the case of the standard projection (A) and the case of

the particular smoothed projection (B), the taming can be written multiplicatively,
f h(t, y, z) = χh(t, y, z)f (t, y, z). Indeed, we have

T h(f ) = 1

max(1, |f |r(h)−1)
f and T h(f ) = 1

1 + |f |r(h)−1 f

in cases (A) and (B), respectively.
Case (A), the standard projection, can therefore be viewed as a generalization-

variation of the multiplicatively tamed driver, case (a), the generalization being
that we consider a damping factor χh(t, y, z) instead of just χh(y), the variation
being that we have to deal with max(1, x) instead of 1 + x. For case (B), it is
only a generalization of (a). If we consider a driver depending only on y, as we
do in all our examples, we see that the outer taming (B) was already treated as
the multiplicative taming (a). So let us ignore this case and focus only on the
standard projection (A), in this section. From now on, for the outer taming, T h is
the standard projection on the ball of radius r = r(h).

2.4.3. Inner taming. Another way to avoid values of f that are too high is to
limit the size of the inputs entered in f . Consider a radius r(h) = r0h

−γ , with
r0 > 0 and γ > 0. The inner taming is given by

f h(t, y, z) = f
(
t, T h(y), z

)
,

where T h is the projection on the ball of Rn of center 0 and radius r(h). Here,
again, as for the outer taming, one could consider a number of variations for the
“projection” T h. We will only study the example of the standard inner projection.
Recall the basic properties of T : |T (y)| ≤ r and |T (y)| ≤ |y| for all y, and T (y) =
y if |y| ≤ r .

2.4.4. The Brownian increment. We give an example of Hi+1 that satisfies

(HH).3. Namely, Hi+1 := TR(h)(
Wti+1 )

h
where TR is the projection (for the distance

induced by the infinity-norm |·|∞ on R
d ) on the ball of radius R centered at the

origin (for the norm |·|∞). Otherwise said, each coordinate of 
Wti+1 is capped
at R. Note already that the norm |·| appearing in the expectation (and indeed in all
the computations that were done so far) is the Euclidian norm |·|2.

2.5. Qualitative properties: Discrete comparison and positivity preservation.
In this section, we discuss, in the 1-dimensional case, the preservation of order
and (consequently) of positivity by the discretization scheme. As was pointed out
in [19], the standard explicit scheme may fail to preserve positivity. Here, we are
interested in determining conditions under which one can guarantee that the Yi

approximation remains positive when continuous-time solutions is positive. This
problem is of significant importance, qualitatively and for numerical stability. On
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the one hand, prices should be nonnegative as well as sizes of populations and
chemical quantities. On the other hand, the driver may be monotone only on D =
R+ and should one input Yi+1 not be a.s. positive, the scheme may explode. We
are aware of only two other works stating similar comparison results (see [9] and
[8]) but, even in the Lipschitz setting, they do not deal with explicit schemes. The
discussion on the explicit scheme is, to the best of our knowledge, new.

The analysis below is based on a linearization technique, as in [8]. We first show
a generic discrete comparison result and then positivity follows as a corollary. Es-
sentially due to technicalities arising by the explicit component in the scheme, the
comparison result is not as general as one might expect from the implicit scheme.
The several result below require at least the following assumption.

ASSUMPTION 2.8. Assume n = 1, that (TReg), (TRegY) holds with
R(regY) = 0 and

for θ ′ ∈ [0,1] sup
i=0,...,N−1

h
(
Lh

y + Lh
z |Hi+1| + (1 − θ ′)hLh

z |Hi+1|Lh
y

)
< 1.

Since we work in the one-dimensional setting, the above assumption is not a
drawback.

PROPOSITION 2.9 (Discrete comparison for the explicit scheme). Let As-
sumption 2.8 hold. For j ∈ {1,2} take the modified drivers f h,j and numerical
terminal conditions ξN,j , as well as the outputs (Y

j
i ,Z

j
i )i=0...N obtained through

scheme (2.1). Define, for 0 ≤ i ≤ N − 1,

βi+1 := f h,1(ti , Y
1
i+1,Z

1
i ) − f h,1(ti, Y

2
i+1,Z

1
i )

Y 1
i+1 − Y 2

i+1

1{Y 1
i+1−Y 2

i+1 �=0},(2.9)

β̂i+1 := f h,1(ti , Y
1
i+1,0) − f h,1(ti, Y

2
i+1,0)

Y 1
i+1 − Y 2

i+1

1{Y 1
i+1−Y 2

i+1 �=0} and(2.10)

γi+1 := f h,1(ti , Y
2
i+1,Z

1
i ) − f h,1(ti, Y

2
i+1,Z

2
i )

|Z1
i − Z2

i |2
(
Z1

i − Z2
i

)∗1{Z1
i −Z2

i �=0},(2.11)

and Bi+1 := 1 + hβi+1 + hγi+1(1 + (1 − θ ′)hβ̂i+1)H
∗
i+1.

Assume further that γi+1 is Fi-measurable for all i; and that either
(f h,1 − f h,2)(ti, Y

2
i+1,0) is Fi -measurable ∀i or θ ′ = 1 or ∀i γi+1 = 0. Then,

with the convention
∏l

j=k · = 1 for l < k,

Y 1
i − Y 2

i = Ei

[(
ξN,1 − ξN,2)N−1∏

j=i

Bj+1

+ h

N−1∑
j=i

(
f h,1 − f h,2)(tj , Y 2

j+1,Z
2
j

) j−1∏
k=i

Bk+1

]
.

(2.12)
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If ξN,1 − ξN,2 ≥ 0 and (f h,1 − f h,2)(ti , Y
2
i+1,Z

2
i ) ≥ 0 for all 0 ≤ i ≤ N − 1 then

Y 1
i ≥ Y 2

i for all 0 ≤ i ≤ N .

REMARK 2.10 (On the assumptions of the comparison theorem). Two of the
assumptions stand as nontrivial, and perhaps slightly opaque, namely that γi+1 is
Fi-measurable and the Fi-measurability of (f h,1 − f h,2)(ti, Y

2
i+1,0). The reason

for both is of technical nature and due to the presence of the Yi+1-term in the
scheme.

Concerning the first, it happens for instance when one is able to write
f (t, y, z) = f̃ (t, y)+ f̂ (t, z) ∀t, y, z or when the Y 2

i+1’s are deterministic. When f

does not depend on z then γi+1 = 0, this is a case of interest for reaction-diffusion
equations. When θ ′ �= 1, the restriction (f h,1 − f h,2)(Y 2

i+1,0) is Fi-measurable is
a real limitation to the comparison result, as in general Y 2

i+1 is not Fi-measurable.
However, one is often interested in comparing the scheme against a constant: this
will be case case when we prove a corollary on preservation of positivity.

Lastly, one may ask how realistic Assumption 2.8 is, in particular, which choices
of Hi+1 satisfy the assumption. The example in Section 2.4.4 satisfies the assump-
tion. The verification is omitted but follows the ideas presented in [8] (see also
Appendix B).

PROOF OF PROPOSITION 2.9. Let i ∈ {0, . . . ,N − 1}. Under assumptions
(TReg) and (TRegY) (with R(regY) = 0) the random variables γ , β and β̂ are
well defined and satisfy: |βi+1| ≤ Lh

y , |β̂i+1| ≤ Lh
y and |γi+1| ≤ Lz. Moreover,

βi+1, β̂i+1 and γi+1 are Fi+1-adapted.
Define δYi := Y 1

i −Y 2
i , δZi := Z1

i −Z2
i and δ̂f i+1 := (f h,1 −f h,2)(ti , Y

2
i+1,0).

Recalling (2.1), and the notation (2.9), (2.10) and (2.11), we can write

δZi = Ei

[(
δYi+1 + (1 − θ ′)[f h,1(ti , Y 1

i+1,0
)− f h,2(ti , Y 2

i+1,0
)]

h
)
H ∗

i+1
]

= Ei

[
δYi+1

(
1 + (1 − θ ′)hβ̂i+1

)
H ∗

i+1 + (1 − θ ′)hδ̂f i+1H
∗
i+1
]
.

For the δY component, we first linearize the driver terms then inject the above
expression for δZ. Namely, set δfi+1 := (f h,1 −f h,2)(ti , Y

2
i+1,Z

2
i ) and using δZi

from above yields

δYi = Ei

[
δYi+1(1 + hβi+1) + hγi+1δZi + hδfi+1

]= Ei[δYi+1Bi+1 + hδfi+1],
where we used the assumption that γi+1 is Fi-measurable and then that either θ ′ =
1 or γi+1 = 0 or δ̂f i+1 is Fi-measurable, so the last term vanishes due to the fact
that Ei[Hi+1] = 0. Furthermore, it is clear that without this second assumption, it
not possible to have a comparison result as it is not possible to control the sign of
Hi+1. Iterating the last inequality from i to N yields (2.12).

The comparison statement: from Assumption 2.8 it follows that all Bi terms
are positive, and hence the comparison statement follows provided δfi+1 ≥ 0 and
δYN ≥ 0. �
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REMARK 2.11. One may also want to consider instead of (2.1), a scheme us-
ing as input (Yi+1,Zi+1), for instance setting Yi = Ei[Yi+1 + f h

i (Yi+1,Zi+1)h].
However, due to the presence of Zi+1 in the scheme, one cannot guarantee a com-
parison result for this scheme.

As a corollary of the previous result, we have a preservation of positivity result.

COROLLARY 2.12 (Preservation of positivity). Let Assumption 2.8 hold. If
ξN ≥ 0 and for all 0 ≤ i ≤ N − 1 f h(ti,0,0) ≥ 0, then Yi ≥ 0 for any 1 ≤ i ≤ N ,
in other words the tamed explicit scheme (2.1) is positivity preserving.

Moreover, if ξN > 0 and f h(ti,0,0) ≥ 0 for any i ∈ {0, . . . ,N − 1} then Yi > 0
∀i.

PROOF. In Proposition 2.9, take (Y 2
i ,Z2

i )i=0...N = 0 and f h,2 = 0. Under
this setting, the random variables γi+1 defined in (2.11) are Fi-measurable, as
is δ̂f i+1 = f h,1(ti,0,0) − 0. The expression (2.12) then simplifies to

Y 1
i = Ei

[
Y 1

N

N−1∏
j=i

Bj+1 + h

N−1∑
j=i

f h,1(ti,0,0)

j−1∏
k=i

Bk+1

]
.

Under Assumption (2.8), the random variables Bi+1 are all positive and since ξN ≥
0 and f h(ti,0,0) ≥ 0 the statement follows. The case of the strict inequalities
follow trivially. �

2.6. Numerical simulations. In this section, we illustrate with numerical simu-
lations the study performed above regarding the convergence and qualitative prop-
erties of explicit schemes with tamed drivers.

Our analysis is concerned with the time-discretization. In practice, we also need
to approximate the conditional expectations in the scheme (2.1). We do so using
the method of regression on a family of function; see, for instance, [12]. Given a
uniform time-discretization grid with N time-steps, πN = (ti)i=0...N with ti = ih

and h = T/N , we therefore simulate a sample of M paths (which are an approxi-
mation) of the forward process X: (XN

m,i), for m = 1, . . . ,M and i = 0, . . . ,N . In
our examples, X will be an arithmetic Brownian motion and simulated exactly (not
using a numerical scheme for SDEs). We then use this sample for the regression,
at each time ti , on a family of K functions, which we take to be the first K Hermite
polynomials.

2.6.1. Observing the convergence of the schemes. We start by observing the
convergence of the schemes. We consider here the following FBSDE, with time-
horizon T = 1. The forward process X in (1.1) is an Brownian motion started at
x = 0, with drift b = 0 and diffusion coefficient σ = 1. The BSDE (1.2) has driver
f (t, y, z) = f (y) = −y3, which is monotone (decreasing) on R, and terminal con-
dition ξ = g(XT ) where g(x) = id(x) = x is unbounded.
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As explained above, we can consider many generic ways of obtaining a mod-
ified driver f h from f . Here, we consider an example of inner-taming, f h(y) =
f (T h(y)), an example of outer-taming f h(y) = T h(f (y)), and an example of
multiplicative taming f h(y) = χh(y)f (y). We take the functions T h to be projec-
tions on a ball centered in 0 with growing radius, and we take the taming factor
χh(y) of the form 1

1+F(y)R̃(h)−1 . An analysis of these examples and how they fit in

our framework is provided in Appendix B. Specifically, we compute approxima-
tions of the solutions using the following schemes:

1. (black) The implicit scheme.
2. (blue) A modified explicit scheme with driver f h tamed from inside by a

projection, f h(y) = f (T h(y)), where T h is the projection of the centered ball of
radius rh = r0h

−γ , with r0 = 1 and γ = 1
2(m−1)

, m = 3 being the degree of the
polynomial f (see Appendix B for the choice of γ ).

3. (green) A modified explicit scheme with driver f h tamed from outside by a
projection, f h(y) = T h(f (y)), where T h is the projection of the centered ball of
radius Rh = R0h

−β , with R0 = 1.5 and β = 1
2 .

4. (cyan) A modified explicit scheme with driver f h given by f h(y) =
f (y)

1+|y|m−1R̃−1
0 hα

, where R̃0 = 1 and α = 1
2 .

We point out the relation between the 2nd case and (TCvg).3; the 3rd case and
(TCvg).2; and the 4th case and (TCvg).1.

We generate a sequence of uniform partitions (πN)N of [0, T ] with mesh
h = T/N for N ∈ {2,4,8,16, . . . ,2048} (we simulate first the Brownian paths on
the finest partition, and then use these to compute the forward paths XN on all par-
tition). Since we do not know the exact solution to the FBSDE, we use as a proxy
the average Y proxy of the results returned by the schemes 1 and 2 for the finest time-

grid. We measure as error the distance dist(Y,Y ′) = maxi=0,...,N E[|Yi − Y ′
i |2]

1
2

between, on the one hand, the output YN = (YN
i )i=0,...,N of one of the schemes

(1 to 4) and, on the other hand, the proxy Y proxy for the solution.
On Figure 2, we plot first the error versus the number of time-steps (top picture)

and then the computation time versus the error (bottom picture), both in log-log
scales.

We observe that the modified explicit schemes 2 and 3 provide errors compara-
ble to the implicit scheme. However, as they are of explicit type, they benefit from
a lower computation time. Scheme 4 however does not perform as well. We took
α = 1

2 , as suggested by Appendix B so that the scheme fits in our framework. Then
Theorem 2.4 guarantees convergence but since μ = α < 1 the modified scheme 4
has a convergence rate lower than the usual rate. Essentially, what slows down the
multiplicative schemes with χh(y) of the form 1/(1 + F(y)R̃(h)−1) is that even
when F(y) [which can be |f (y)|, |y|m, |y|m−1, . . . ] is small, that is, F(y) ≤ R̃(h),
one does not have f h(y) = f (y). This creates an error compared to the true dy-
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FIG. 2. Errors computed for N ∈ {4,8,16, . . . ,2048}, with M = 100,000 and K = 10.

namics, which is not necessary [since f (y) is not big and does not need to be
modified], and that error vanishes but too slowly.

2.6.2. Numerical stability and preservation of positivity. We now look at the
qualitative behavior of the modified explicit schemes used above.
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FIG. 3. Computed with N = 10, M = 50,000 and K = 30.

We consider the following FBSDE, with T = 1. The forward component X

in (1.1) is a Brownian motion started at x = 0, with drift b = 0 and diffusion
coefficient σ = 1.25. The BSDE (1.2) has driver f (t, y, z) = f (y) = −y2, which
is monotone decreasing on the domain D = [0,+∞[, and terminal condition ξ =
g(XT ) where g(x) = x2 is positive.

The solution of the continuous-time BSDE remains positive (i.e., in the do-
main D) and we have proven in Section 2.5 that the modified explicit schemes
should reproduce this property, at least under certain sufficient conditions—
Assumption 2.8 reduces in our case to hLh

y < 1. Figure 3 shows the empirical

maximum and minimum of YN
i , as ti goes from T to 0.

We observe the desired preservation of positivity, and note that N is only equal
to 10. We also observe, when looking at the upper bounds, a regular decay on the
implicit scheme. This is due to the strict monotonicity of the driver f . The mod-
ified explicit schemes appear to preserve this qualitative behavior as well, though
in a limited way.

It must be stressed that such a numerical stability properties, the preserva-
tion of positivity and monotonicity, can fail due to an imperfect approxima-
tion of the conditional expectations. Our results in Section 2.5 hold only for the
time-discretization scheme and rely on the order-preserving property of the con-
ditional expectation operators. In practice, when we tried to approximate the con-
ditional expectations with K = 4 functions, we found that frequently (the numer-
ical method we used is a Monte-Carlo one) positivity was violated at some of
the grid-points. Due to the taming of the driver, explosion was prevented, but the
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qualitative behavior is not satisfactory if the conditional expectations are poorly
approximated.

3. Size estimates and nonexplosion of the schemes. In this section, we un-
dertake the size-analysis for the modified explicit scheme (2.1) and show that,
under our assumptions, it cannot explode. Specifically, we obtain bounds on the
p-moments of the scheme that are uniform in N . For this, we first carry out the
size-analysis for one step of the scheme. Thanks to the linear growth and the mono-
tone growth of the driver f h, we obtain an estimate which, unlike that for the ex-
plicit BTZ scheme (see [19]), can satisfactorily be iterated. This then leads to an
almost-sure and uniform-in-N global bound, which in turn leads to bounds on the
moments.

3.1. The one-step almost-sure estimate. The first results are useful estimates
about the size of the output of the scheme over a single time-step. For clarity of the
computations, we first prove the result for scheme (2.5)–(2.6) (which has D̂i = 0)
in Lemma 3.1 then extend it to the scheme (2.1) (for which Di = Zi − ζi �= 0) in
Lemma 3.2. We do this in order to show the differences in the estimations. Also,
the first result needs a smallness assumption on the step size h while the second,
due to the enhanced estimation, does not.

LEMMA 3.1. Assume that the driver f h satisfies (TGrowth) and (TMonGr)
with M̄h

z ≤ d
8 . Let h be such that h ≤ h0 := d

24(Kh
z )2 . Then there exist constants

c,C ≥ 0 such that, for any i ∈ {0, . . . ,N −1}, and for any random variable Yi+1 ∈
L2(Fi+1), with (Yi,Zi) the output of scheme (2.5)–(2.6) for the input Yi+1, one
has

|Yi |2 + 1

8
|Zi |2dh +Ei

[

N2

i+1
]≤ (1 + ch)Ei

[|Yi+1|2]+ Ch.

The constants c and C are uniform in N .

PROOF. By Lemma 2.2, we write

Yi = Yi+1 + f h(ti, Yi+1,Zi)h − 
Mi+1

= Yi+1 + f h(ti, Yi+1,Zi)h − ((Zi − Di)�
−1Hi+1h + 
Ni+1

)
.

Squaring Yi + 
Mi+1 = Yi+1 + f h(ti, Yi+1,Zi)h and taking Ei , we have

|Yi |2 +Ei

[|
Mi+1|2]= Ei

[|Yi+1|2]+Ei

[
2
〈
Yi+1, f

h(ti, Yi+1,Zi)
〉]
h

+Ei

[∣∣f h(ti, Yi+1,Zi)
∣∣2]h2.

Using (TMonGr) leads to

|Yi |2 +Ei

[|
Mi+1|2]≤ (1 + 2M̄h
y h
)
Ei

[|Yi+1|2]+ 2M̄h
t h + 2M̄h

z |Zi |2h
+Ei

[∣∣f h(ti, Yi+1,Zi)
∣∣2]h2.
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Due to the orthogonality of Hi+1h and 
Ni+1 and using a Young inequality, we
have

Ei

[|
Mi+1|2]= |ζi |2�−2
Ei

[|Hi+1h|2]+Ei

[|
Ni+1|2]
= |Zi − Di |2�−1dh +Ei

[|
Ni+1|2]
≥ 1

2
|Zi |2�−1dh − |Di |2�−1dh +Ei

[|
Ni+1|2].
So the estimate currently yields

|Yi |2 + 1

2
|Zi |2�−1dh − |Di |2�−1dh +Ei

[|
Ni+1|2]
≤ (1 + 2M̄h

y h
)
Ei

[|Yi+1|2]+ 2M̄h
t h + 2M̄h

z |Zi |2h
+Ei

[∣∣f h(ti, Yi+1,Zi)
∣∣2]h2,

hence, since 1 ≤ �−1 ≤ 2,

|Yi |2 +
(

1

2
− 2M̄h

z

d

)
|Zi |2dh +Ei

[|
Ni+1|2]
≤ (1 + 2M̄h

y h
)
Ei

[|Yi+1|2]+ 2M̄h
t h + 2|Di |2dh

+Ei

[∣∣f h(ti, Yi+1,Zi)
∣∣2]h2.

Now, using the growth of f h given by (TGrowth), we obtain that

Ei

[∣∣f h(ti, Yi+1,Zi)
∣∣2]h2 ≤ 3

(
Kh

t

)2
h2 + 3

(
Kh

y

)2
h2
Ei

[|Yi+1|2]+ 3
(
Kh

z

)2|Zi |2h2.

This immediately implies the core estimate:

|Yi |2 +
(

1

2
− 2M̄h

z

d

)
|Zi |2dh +Ei

[|
Ni+1|2]
≤ (1 + [2M̄h

y + 3
(
Kh

y

)2
h
]
h
)
Ei

[|Yi+1|2]+ (2M̄h
t + 3

(
Kh

t

)2
h
)
h

+ 2|Di |2dh + 3
(
Kh

z

)2|Zi |2h2.

(3.1)

Now, recall that (Yi,Zi) are produced by the scheme (2.6)–(2.6) with input Yi+1,
and we have therefore Di = 0 here. Also, from the assumptions we have

2M̄h
z

d
≤ 1

4
and 3

(Kh
z )2

d
h ≤ 1

8
.

This allows to pass the term in |Zi |2h2 on the RHS of the inequality to its LHS.
�

We now state the one-step estimate for (2.1), for which Di �= 0 a priori. We
emphasize the additional assumption (TReg), the absence of a smallness condition
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on h, and that our handling of the end of the proof is slightly different (even in the
case Di = 0).

PROPOSITION 3.2. Let the driver f h satisfy (TGrowth), (TMonGr) with
M̄h

z ≤ d
8 and (TReg). Then there exist c,C ≥ 0 such that, for any i ∈ {0, . . . ,

N − 1}, and for any random variable Yi+1 ∈ L2(Fi+1), with (Yi,Zi) the output
of scheme (2.1) for the input Yi+1, one has

|Yi |2 + 1

4
|Zi |2dh +Ei

[|
Ni+1|2]≤ (1 + ch)Ei

[|Yi+1|2]+ Ch.

The constants c and C are uniform in N .

PROOF. We resume from estimate (3.1) of the previous proof, before passing
the |Zi |2h2 to the LHS. We start by estimating |Di |2dh as a function of |Zi |2h2.

Following the definition of Zi in (2.1) and that of ζi in (2.4), we have

−Di = ζi − Zi

= Ei

[(
Yi+1 + f h(ti, Yi+1,Zi)h

)
H ∗

i+1
]

−Ei

[(
Yi+1 + (1 − θ ′)f h(ti, Yi+1,0)h

)
H ∗

i+1
]

= Ei

[(
f h(ti, Yi+1,Zi) − (1 − θ ′)f h(ti, Yi+1,0)

)
hH ∗

i+1
]
.

Using the Cauchy–Schwarz inequality,

|Di |2dh ≤ dhEi

[|Hi+1|2]×Ei

[∣∣(f h(ti, Yi+1,Zi) − (1 − θ ′)f h(ti, Yi+1,0)
)
h
∣∣2]

= �d2 ×Ei

[∣∣(f h(ti, Yi+1,Zi) − f h(ti, Yi+1,0)
)+ θ ′f h(ti, Yi+1,0)

∣∣2]h2

≤ 2d2(Lh
z

)2|Zi |2h2 + 2d2θ ′2
Ei

[∣∣f h(ti, Yi+1,0)
∣∣2]h2,

where we used the z-regularity of f h from (TReg), (a + b)2 ≤ 2a2 + 2b2 and
� ≤ 1.

Injecting this in (3.1), we obtain

|Yi |2 +
(

1

2
− 2M̄h

z

d

)
|Zi |2dh +Ei

[|
Ni+1|2]
≤ (1 + [2M̄h

y + 3
(
Kh

y

)2
h
]
h
)
Ei

[|Yi+1|2]+ (2M̄h
t + 3

(
Kh

t

)2
h
)
h

+ (3(Kh
z

)2 + 4d2(Lh
z

)2)|Zi |2h2 + 4d2θ ′2
Ei

[∣∣f h(ti, Yi+1,0)
∣∣2]h2.

Using again the growth assumption (TGrowth), we have

Ei

[∣∣f h(ti, Yi+1,0)
∣∣2]h2 ≤ 2

(
Kh

t

)2
h2 + 2

(
Kh

y

)2
h2
Ei

[|Yi+1|2].
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Hence, the previous estimate implies that

|Yi |2 +
(

1

2
− 2M̄h

z

d

)
|Zi |2dh +Ei

[|
Ni+1|2]
≤ (1 + [2M̄h

y + 3
(
Kh

y

)2
h + 8d2θ ′2(Kh

y

)2
h
]
h
)
Ei

[|Yi+1|2]
+ (2M̄h

t + 3
(
Kh

t

)2
h + 8d2θ ′2(Kh

t

)2
h
)
h + (3(Kh

z

)2 + 4d2(Lh
z

)2)|Zi |2h2.

At this stage, instead of assuming h small enough and passing the term in
|Zi |2h2 from the RHS to the LHS as in the previous proof, we estimate Zi di-
rectly from its explicit definition in (2.1). From the Cauchy–Schwarz inequality,
(AH), � ≤ 1 and (TGrowth),

|Zi |2h = ∣∣Ei

[(
Yi+1 + (1 − θ ′)f h(ti, Yi+1,0)h

)
H ∗

i+1
]∣∣2h

≤ 2dEi

[|Yi+1|2]+ 2d
(
1 − θ ′)2

Ei

[∣∣f h(ti, Yi+1,0)
∣∣2]h2

≤ (2d + 4d
(
1 − θ ′)2(Kh

y

)2
h2)

Ei

[|Yi+1|2]+ 4d
(
1 − θ ′)2(Kh

t

)2
h2.

Injecting this estimate into the previous one and rearranging the terms, we obtain

|Yi |2 +
(

1

2
− 2M̄h

z

d

)
|Zi |2dh +Ei

[|
Ni+1|2]≤ (1 + chh
)
Ei

[|Yi+1|2]+ Chh,

where ch and Ch are given by

ch := 2M̄h
y + 3

(
Kh

y

)2
h + 8d2θ ′2(Kh

y

)2
h

+ (3(Kh
z

)2 + 4d2(Lh
z

)2)(2d + 4d
(
1 − θ ′)2(Kh

y

)2
h2),

Ch := 2M̄h
t + 3

(
Kh

t

)2
h + 8d2θ ′2(Kh

t

)2
h

+ (3(Kh
z

)2 + 4d2(Lh
z

)2)4d
(
1 − θ ′)2(Kh

t

)2
h2.

Now, first, observe that since we have assumed
2M̄h

z

d
≤ 1

4 , the LHS simplifies.
Second, from the assumptions on the constants that are made in (TGrowth),
(TMonGr) and (TReg), and the fact that h ≤ T , there exist c and C such that
ch ≤ c and Ch ≤ C. �

REMARK 3.3 (On the constants ch and Ch). The constants ch and Ch defined
in the above proof depend on h in a bounded way.

First, since (Kh
t )2h and (Kh

y )2h are bounded, we see that (Kh
t )2h2 and (Kh

y )2h2

vanish as h → 0. So the last term in Ch and most of the last term in ch vanish.
Here, our handling of the estimates allows to conclude without restrictions on h,
at the price of having bigger constants. As h → 0, these bigger constant decrease
to, essentially, what they would have been if we had assumed h small and handled
the estimates as in Lemma 3.1.
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Second, we note that if θ ′ = θ = 0 and f does not depend on z (in which case
Kh

z = Lh
z = 0), then the scheme (2.1) coincides with the scheme (2.5)–(2.6) and

the constants ch and Ch are the same as those found in the previous lemma. As
will be clearer in the proof of the almost-stability of the scheme (Proposition 4.2),
using scheme (2.1) (not taking θ = 0 and replacing Zi by zero in the definition of
Zi) creates some errors that vanish at the same rate as the standard error, and only
make for bigger constants.

3.2. The global almost-sure estimate. The one-step size estimate of Proposi-
tion 3.2 can be readily iterated to yield an informative almost-sure bound on the
size of the Yi ’s, where (Yi,Zi)i=0,...,N−1 is the output from the iteration of scheme
(2.1) with terminal condition initialized to ξN .

PROPOSITION 3.4. Under (TGrowth), (TMonGr) and (TReg), for any i ∈
{0, . . . ,N − 1},

|Yi |2 +Ei

[
1

4

N−1∑
j=i

|Zj |2dh +
N−1∑
j=i

|
Nj+1|2
]

≤ ec(T −ti )Ei

[∣∣ξN
∣∣2]+ ec(T −ti )C(T − ti).

PROOF. This proof follows by directly iterating Proposition 3.2; see
Lemma A.3. �

3.3. Moment estimates. We now show that (Yi,Zi)i=0,...,N has p-moments
which are bounded uniformly in N . This is crucial in the next section to show that,
while the scheme might not be strictly stable, the stability imperfections are small
enough that the scheme is almost-stable.

PROPOSITION 3.5. Assume (AξN ), (TGrowth), (TMonGr) and (TReg). For
every p ≥ 1, there exists a constant C (independent on N ) such that

sup
i=0,...,N−1

E
[|Yi |2p]≤ C and E

[
N−1∑
i=0

(|Zi |2h)p
]

≤ C.

The proof of this result is somewhat similar to that in [19], Proposition 5.1. For
the convenience of the reader, we place it in Appendix A.4.

We have analogue results for (Ŷi, Ẑi)i=0,...,N−1 defined in (2.7)–(2.8).

PROPOSITION 3.6 (Integrability of Ẑi). Let (TGrowth) hold. Then, for any
p ≥ 1 there exists C ≥ 0 such that, for any N ≥ 1,

sup
i=0,...,N−1

E
[|Ŷi |2p]≤ C and sup

0≤i≤N−1
E
[|Ẑi |2p]≤ C.

Consequently, we also have the estimate E[∑N−1
i=0 (|Ẑi |2h)p] ≤ C.



MODIFIED EXPLICIT SCHEMES FOR BSDES WITH POLYNOMIAL GROWTH 2571

PROOF. We start by estimating Ẑi . Using the Cauchy–Schwarz inequality, 1−
θ ′ ≤ 1, the fact that Ei[|Hi+1|2] = �d

h
and (a + b)2 ≤ 2(a2 + b2),

|Ẑi | ≤ 2
1
2
(
Ei

[∣∣Yti+1 −Ei[Yti+1]
∣∣2]+Ei

[∣∣f h(ti, Yti+1,0)
∣∣2h2]) 1

2

(
�d

h

) 1
2
.

So for all p ≥ 2, since (a + b)q ≤ 2q−1(aq + bq),

|Ẑi |p ≤ 2p−1(
Ei

[∣∣Yti+1 −Ei[Yti+1]
∣∣2]p2 +Ei

[∣∣f h(ti, Yti+1,0)
∣∣2h2]p2 )(�d

h

)p
2
.

We now take the expectation,

E
[|Ẑi |p]≤ 2p−1(

E
[
Ei

[∣∣Yti+1 −Ei[Yti+1]
∣∣2]p2 ]

+E
[
Ei

[∣∣f h(ti, Yti+1,0)
∣∣2h2]p2 ])(�d

h

)p
2
.

Now, let us first observe that, using |f h| ≤ f , (Growth), Jensen’s inequality,
the tower property of expectations and using Theorem A.2, we have

E
[
Ei

[∣∣f h(ti, Yti+1,0)
∣∣2h2]p2 ]= 2p−1((Kt)

2 p
2 + (Ky)

2 p
2 E
[|Yti+1 |pm])hp ≤ Chp.

We now address the main difficulty, the term E[Ei[|Yti+1 − Ei[Yti+1]|2]
p
2 ]. Using

the dynamics of the BSDE over [ti , ti+1] we easily find the identity

Yti+1 −Ei[Yti+1] = Ei

[∫ ti+1

ti

f (u,Yu,Zu)du

]

−
∫ ti+1

ti

f (u,Yu,Zu)du +
∫ ti+1

ti

Zu dWu.

Taking the square, using (
∑n

i=1 ai)
2 ≤ n

∑n
i=1 a2

i and Jensen and/or Cauchy–
Schwarz inequalities we obtain∣∣Yti+1 −Ei[Yti+1]

∣∣2 ≤ 3Ei

[
h

∫ ti+1

ti

∣∣f (u,Yu,Zu)
∣∣2 du

]

+ 3h

∫ ti+1

ti

∣∣f (u,Yu,Zu)
∣∣2 du + 3

∣∣∣∣∫ ti+1

ti

Zu dWu

∣∣∣∣2.
We then take the conditional expectation, use the Itô isometry and (Growth) to
have

Ei

[∣∣Yti+1 −Ei[Yti+1]
∣∣2]≤ 6hEi

[∫ ti+1

ti

∣∣f (u,Yu,Zu)
∣∣2 du

]
+ 3dEi

[∫ ti+1

ti

|Zu|2 du

]

≤ 18(Kt )
2h2 + 18(Ky)

2hEi

[∫ ti+1

ti

|Yu|2m du

]

+ (18(Kz)
2h + 3d

)
Ei

[∫ ti+1

ti

|Zu|2 du

]
.
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Consequently, taking the power p
2 and using(

∑n
i=1 ai)

q ≤ nq−1∑n
i=1 a

q
i we have

Ei

[∣∣Yti+1 −Ei[Yti+1]
∣∣2]p2

≤ Chp + Ch
p
2 Ei

[∫ ti+1

ti

|Yu|2m du

]p
2 + CEi

[∫ ti+1

ti

|Zu|2 du

]p
2
.

Here, the constant C depends on p, the growth constants of f and uses h ≤ T . We
can then take the expectation, and further use the Jensen inequality (repeatedly) to
obtain

E
[
Ei

[∣∣Yti+1 −Ei[Yti+1]
∣∣2]p2 ]≤ Chp + CE

[(∫ ti+1

ti

|Zu|2 du

)p
2
]
.

Gathering the two estimates, we see that we have in the end

E
[|Ẑi |p]≤ C

(
Chp + CE

[(∫ ti+1

ti

|Zu|2 du

)p
2
]

+ Chp

)(
�d

h

)p
2

≤ Ch
p
2 + Ch−p

2 E

[(∫ ti+1

ti

|Zu|2 du

)p
2
]
.

We have now proven the pivotal estimate that will allow us to conclude. Using
[19], Theorem 3.4, equation (3.20), that is, |Zt | ≤ C(1 + |Xt |)dt ⊗ dP-a.s., to
better control the last integral term we obtain, in combination with Theorem A.1,
that

E
[|Ẑi |p]≤ Ch

p
2 + Ch−p

2 E

[(∫ ti+1

ti

(
1 + |Xu|2)du

)p
2
]

≤ C
(
h

p
2 + h−p

2 h
p
2

(
1 +E

[
sup

0≤u≤T

|Xu|p
]))

≤ C
(
h

p
2 + 1

)
Since h ≤ T there exists C, independent on h, such that sup0≤i≤N−1 E[|Ẑi |p] ≤ C.

The second estimate for (Ẑi)i can be obtained either directly from the above
pivotal estimate or from the latest estimate: since p ≥ 1,

E

[
N−1∑
i=0

(|Ẑi |2h)p
]

≤ sup
i=0,...,N−1

E
[|Ẑi |2p]T hp−1 ≤ C.

Following the arguments just used to prove the estimate for (Ẑi)i it is rather
straightforward to prove the remaining estimate for Ŷi , and hence we omit it. �

4. Convergence of the schemes. In this section, we prove that scheme (2.1)
converges to the solution of the BSDE, as claimed by Theorem 2.4. Following the
outline of proof described in Section 2.3, we prove that the scheme is almost-stable
and estimate the sum of the discretization errors.
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4.1. Stability estimate of the scheme. We consider one step of the scheme with
inputs Yti+1 and Yi+1, for which the outputs are respectively (Ŷi, Ẑi) and (Yi,Zi)

[recall (2.7)–(2.8) and (2.1)]. We denote by δx the difference x̂ − x for a generic
quantity x, x̂ being the counterpart of x when the input is Yti+1 . We consequently
have⎧⎨⎩ δYi = δYi+1 + {f h(ti, Yti+1, Ẑi) − f h(ti, Yi+1,Zi)

}
h − δ
Mi+1,

δZi = Ei

[(
δYi+1 + (1 − θ ′){f h(ti, Yti+1,0) − f h(ti, Yi+1,0)

})
H ∗

i+1
]
.

From Lemma 2.2, we recall that δ
Mi+1 has the decomposition δ
Mi+1 =
δζi�

−1Hi+1h + δ
Ni+1, and we have δζi = Ei[(δYi+1 + {f h(ti, Yti+1, Ẑi) −
f h(ti, Yi+1,Zi)}h)H ∗

i+1].
LEMMA 4.1. Under (TMon), (TReg) and (TRegY), there exist c,C ≥ 0 such

that, without any restriction on the time-step (aside from 0 < h ≤ T ), we have

|δYi |2 + 1

4
|δZi |2dh +Ei

[|δ
Ni+1|2]≤ (1 + ch)Ei

[|δYi+1|2]+ CIi ,

where

Ii = Ei

[
R(mon)(ti , Yti+1, Yi+1, Ẑi)

]
h

+Ei

[
R(regY)(ti , Yti+1, Yi+1, Ẑi)

2]h2 +Ei

[
R(regY)(ti , Yti+1, Yi+1,0)2]h2.

PROOF. The proof presented here works with the extra assumption that Lh
z >

0, while (TReg) assumes Lh
z ≥ 0. The case of Lh

z = 0 is easy to derive and does
not require the constant η below. Overall, the estimations here are very similar to
those for the one-step size estimate (see Proposition 3.2). To shorten the notation,
we set Ii = Aih + Bih

2 + B0
i h2 with Ai,Bi,B

0
i the 1st, 2nd and 3rd terms in the

sum defining Ii above. Squaring and taking conditional expectation, we have

|δYi |2 +Ei

[|δ
Mi+1|2]= Ei

[|δYi+1|2

+ 2
〈
δYi+1,

{
f h(ti, Yti+1, Ẑi) − f h(ti, Yi+1,Zi)

}
h
〉

+ ∣∣f h(ti, Yti+1, Ẑi) − f h(ti, Yi+1,Zi)
∣∣2h2].

As usual, we add-and-subtract f h(ti, Yi+1, Ẑi) and then make use of (TMon) and
(TReg) to estimate the 2nd term on the RHS with Young’s inequality with param-
eter η and obtain

|δYi |2 +Ei

[|δ
Mi+1|2]
≤ (1 + 2

(
Mh

y + η
)
h
)
Ei

[|δYi+1|2]+ Aih

+ (Lh
z )

2

2η
|δZi |2h +Ei

[∣∣f h(ti, Yti+1, Ẑi) − f h(ti, Yi+1,Zi)
∣∣2]h2.
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Due to the orthogonality of Hi+1h and δ
Ni+1 and using a Young inequality, we
have

Ei

[|δ
Mi+1|2]= |δζi |2�−2
Ei

[|Hi+1h|2]+Ei

[|δ
Ni+1|2]
= |δZi − δDi |2�−1dh +Ei

[|δ
Ni+1|2]
≥ 1

2
|δZi |2�−1dh − |δDi |2�−1dh +Ei

[|δ
Ni+1|2].
So, the inequality for |δYi |2 +Ei[|δ
Mi+1|2] becomes, since 1 ≤ �−1,

|δYi |2 +
(

1

2
− (Lh

z )
2

2ηd

)
|δZi |2dh +Ei

[|δ
Ni+1|2]
≤ (1 + 2

(
Mh

y + η
)
h
)
Ei

[|δYi+1|2]+ Aih

+ |δDi |2�−1dh +Ei

[∣∣f h(ti, Yti+1, Ẑi) − f h(ti, Yi+1,Zi)
∣∣2]h2.

We now focus on δDi :

−δDi = δζi − δZi

= Ei

[({
f h(ti, Yti+1, Ẑi) − f h(ti, Yi+1,Zi)

}
− (1 − θ ′){f h(ti, Yti+1,0) − f h(ti, Yi+1,0)

})
hH ∗

i+1
]
.

Hence, using the Cauchy–Schwarz inequality, Ei[|Hi+1|2] = �dh−1 and � ≤ 1,
we have

|δDi |2�−1dh ≤ �−1dhEi

[|Hi+1|2]×Ei

[∣∣(f h(ti, Yti+1, Ẑi) − f h(ti, Yi+1,Zi)
)

− (1 − θ ′)(f h(ti, Yti+1,0) − f h(ti, Yi+1,0)
)∣∣2]h2

≤ 2d2
Ei

[∣∣f h(ti, Yti+1, Ẑi) − f h(ti, Yi+1,Zi)
∣∣2]h2

+ 2d2(1 − θ ′)2
Ei

[∣∣f h(ti, Yti+1,0) − f h(ti, Yi+1,0)
∣∣2]h2.

Reinjecting this in the previous estimate leads to

|δYi |2 +
(

1

2
− (Lh

z )
2

2ηd

)
|δZi |2dh +Ei

[|δ
Ni+1|2]
≤ (1 + 2

(
Mh

y + η
)
h
)
Ei

[|δYi+1|2]+ Aih

+ (1 + 2d2)
Ei

[∣∣f h(ti, Yti+1, Ẑi) − f h(ti, Yi+1,Zi)
∣∣2]h2

+ 2d2(1 − θ ′)2
Ei

[∣∣f h(ti, Yti+1,0) − f h(ti, Yi+1,0)
∣∣2]h2.
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We now use (TRegY) and (TReg) to estimate∣∣f h(ti, Yti+1, Ẑi) − f h(ti, Yi+1,Zi)
∣∣2

≤ 4
(
Lh

y

)2|δYi+1|2 + 4R(regY)(ti , Yti+1, Yi+1, Ẑi)
2 + 2

(
Lh

z

)2|δZi |2,∣∣f h(ti, Yti+1,0) − f h(ti, Yi+1,0)
∣∣2

≤ 2
(
Lh

y

)2|δYi+1|2 + 2R(regY)(ti , Yti+1, Yi+1,0)2.

This leads to

|δYi |2 +
(

1

2
− (Lh

z )
2

2ηd

)
|δZi |2dh +Ei

[|δ
Ni+1|2]
≤ (1 + [2(Mh

y + η
)+ 4

(
1 + 2d2)(Lh

y

)2
h

+ 4d2(1 − θ ′)2(Lh
y

)2
h
]
h
)
Ei

[|δYi+1|2]
+ Aih + 4

(
1 + 2d2)Bih

2 + 4d2(1 − θ ′)2B0
i h2

+ 2
(
1 + 2d2)(Lh

z

)2
Ei

[|δZi |2h]h.

All that remains is to estimate the term with |δZi |2h on the RHS. We have, since
� ≤ 1,

|δZi |2h = Ei

[(
δYi+1 + (1 − θ ′){f h(ti, Yti+1,0) − f h(ti, Yi+1,0)

}
h
)
H ∗

i+1
]2

h

≤ h−1
Ei

[|Hi+1h|2]
×Ei

[∣∣δYi+1 + (1 − θ ′){f h(ti, Yti+1,0) − f h(ti, Yi+1,0)
}
h
∣∣2]

≤ 2d
(
1 + 2

(
1 − θ ′)2(Lh

y

)2
h2)

Ei

[
δY 2

i+1
]+ 4d

(
1 − θ ′)2B0

i h2.

Define the quantities

ch := 2
(
Mh

y + η
)+ 4

(
1 + 2d2)(Lh

y

)2
h + 4d2(1 − θ ′)2(Lh

y

)2
h

+ 4
(
1 + 2d2)(Lh

z

)2
d
(
1 + 2

(
1 − θ ′)2(Lh

y

)2
h2) and

Ch := 1 + 4
(
1 + 2d2)+ 4d

(
1 − θ ′)2[d + 2

(
1 + 2d2)(Lh

z

)2
h
]
.

Then, by plugging in the estimates for |δZi |2h and reorganizing the terms we have

|δYi |2 +
(

1

2
− (Lh

z )
2

2ηd

)
|δZi |2dh +Ei

[|δ
Ni+1|2]
≤ (1 + chh

)
Ei

[|δYi+1|2]+ Ch(Aih + Bih
2 + B0

i h2).
To complete the proof, first, we choose η = 2(Lh

z )2

d
. Second, we note that with this

choice of η, and the assumptions on the constants made in (TRegY), (TReg) and
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(TMon), there exist c,C ≥ 0 such that ch ≤ c and Ch ≤ C for all h > 0 (provided
h ≤ T ). �

Remark 3.3 applies to the constants ch and Ch. We can now prove that the
scheme is almost-stable. We recall that μ is defined in Section 2.3.

PROPOSITION 4.2. Under (AξN ), (TGrowth), (TMonGr), (TMon), (TReg)
and (TRegY), there exist c,C ≥ 0 such that for all N ≥ 1 we have

E
[|δYi |2]+ 1

4
E
[|δZi |2dh

]≤ (1 + ch)E
[|δYi+1|2]+ Chμ+1.

PROOF. The first and easy step is to take expectation in the estimate from
Lemma 4.1. One must then estimate the imperfection terms in the E[Ii]. We treat
each case separately and we recall that C is a constant whose value can change
from line to line.

Case 1. We assume for convenience that R(regY) and R(mon) satisfy (TCvg).1
with the same constants. In practice, for the multiplicative tamings (see Ap-
pendix B), we find q = 2m and p = 2 for R(regY), and q = 4m and p = 2
for R(mon). But q does not affect the rates. Alternatively, we could argue that
|y|q ≤ 1 + |y|2q so both cases fit with q = 4m. Let us start with R(regY).

Bih
2 = E

[∣∣R(regY)(ti , Yti+1, Yi+1, Ẑi)
∣∣2]h2

≤ CE
[(

1 + |Yti+1 |q + |Yi+1|q + |Ẑi |p)2]h2αh2

≤ C
(
1 +E

[|Yti+1 |2q]+E
[|Yi+1|2q]+E

[|Ẑi |2p])h2α+2 ≤ Ch2α+2.

Here, we have used moment bounds from Theorem A.2 and Propositions 3.5 and
3.6. The case of B0

i h2 is similar. Define consequently μ1 = −1+2α +2 = 2α +1.
Let us now handle R(mon).

Aih = E
[
R(mon)(ti , Yti+1, Yi+1, Ẑi)

]
h

≤ CE
[
1 + |Yti+1 |q + |Yi+1|q + |Ẑi |p]hαh

= C
(
1 +E

[|Yti+1 |q
]+E

[|Yi+1|q]+E
[|Ẑi |p])hα+1

≤ Chα+1.

Define consequently μ2 = −1 + α + 1 = α. The proof is completed by taking
μ = min(μ1,μ2) = α.

Case 2. We assume again that R(regY) and R(mon) satisfy (TCvg).2 with the
same constants. In practice, for the outer taming by projection, we find q = 2m

and p = 0 for R(regY), and q = 2m and p = 2 for R(mon). Let us start with R(regY).
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Using 1A∪B ≤ 1A + 1B and the Cauchy–Schwarz inequality,

E
[∣∣R(regY)(ti , Yti+1, Yi+1, Ẑi)

∣∣2]h2

≤ CE
[(

1 + |Yti+1 |q + |Yi+1|q + |Ẑi |p)2
× (1{|f (ti ,Yti+1 ,Ẑi )|>r(h)} + 1{|f (ti ,Yi ,Ẑi )|>r(h)})2]h2

≤ CE
[
1 + |Yti+1 |4q + |Yi+1|4q + |Ẑi |4p] 1

2

× (E[1{|f (ti ,Yti+1 ,Ẑi )|>r(h)}] +E[1{|f (ti ,Yi+1,Ẑi )|>r(h)}]
) 1

2 h2.

Now, we systematically use the moment bounds from Theorem A.2 and Proposi-
tions 3.5 and 3.6, as well as the Markov inequality with a power l ≥ 1 yet to be
determined, to have

E
[∣∣R(regY)(ti , Yti+1, Yi+1, Ẑi)

∣∣2]h2

≤ C
(
E
[∣∣f (ti, Yti+1, Ẑi)

∣∣l]+E
[∣∣f (ti, Yi+1, Ẑi)

∣∣l]) 1
2 r(h)−

l
2 h2

≤ C
(
1 +E

[|Yti+1 |lm
]+E

[|Yi+1|lm]+E
[|Ẑi |l]) 1

2 h
βl
2 h2 ≤ Ch

βl
2 +2.

Define μ1 = −1 + βl
2 + 2 = βl

2 + 1.
Let us now handle R(mon). We use the Cauchy–Schwarz inequality, the inequal-

ity (
∑n

i=1 ai)
k ≤ nk−1∑n

i=1 ak
i , the Markov inequality with a power l ≥ 1 yet to

be determined, and the moment bounds from Theorem A.2 and Propositions 3.5
and 3.6:

E
[∣∣R(mon)(ti , Yti+1, Yi+1, Ẑi)

∣∣]h
≤ CE

[
1 + |Yti+1 |2q + |Yi+1|2q + |Ẑi |2p] 1

2

×E[1{|f (ti ,Yti+1 ,Ẑi )|>r(h)} + 1{|f (ti ,Yi+1,Ẑi )|>r(h)}]
1
2 h

≤ C
(
E
[∣∣f (ti, Yti+1, Ẑi)

∣∣l]+E
[∣∣f (ti, Yi+1, Ẑi)

∣∣l]) 1
2 r(h)−

l
2 h.

Using (Growth), we therefore have

E
[∣∣R(mon)(ti , Yti+1, Yi+1, Ẑi)

∣∣]h
≤ C
(
1 +E

[|Yti+1 |lm
]+E

[|Yi+1|lm]+E
[|Ẑi |l]) 1

2 h
βl
2 +1

≤ Ch
βl
2 +1.

Define μ2 = −1+ βl
2 +1 = βl

2 . We have the desired result with μ = min(μ1,μ2) =
βl
2 . Note that since β > 0, by taking l big enough one can make the exponent of h
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be as big as wanted. Naturally, the constant C depends on the powers q , p and l

eventually chosen.
Case 3. We assume again that R(regY) and R(mon) satisfy (TCvg).3 with the

same constants. In practice, for the inner taming by projection, we find R(regY) =
0, and q = m and p = 0 for R(mon). Let us start with R(regY). Using 1A∪B ≤
1A + 1B and the Cauchy–Schwarz inequality,

E
[∣∣R(regY)(ti , Yti+1, Yi+1, Ẑi)

∣∣2]h2

≤ CE
[(

1 + |Yti+1 |q + |Yi+1|q + |Ẑi |p)2(1{|Yti+1 |>r(h)} + 1{|Yi |>r(h)})2]h2

≤ CE
[
1 + |Yti+1 |4q + |Yi+1|4q + |Ẑi |4p] 1

2

× (E[1{|Yti+1 |>r(h)}] +E[1{|Yi+1|>r(h)}]) 1
2 h2.

Now, we systematically use the moment bounds from Theorem A.2 and Proposi-
tions 3.5 and 3.6, as well as the Markov inequality with a power l ≥ 1 yet to be
determined, to have

E
[∣∣R(regY)(ti , Yti+1, Yi+1, Ẑi)

∣∣2]h2

≤ C
(
E
[|Yti+1 |l

]+E
[|Yi+1|l]) 1

2 r(h)−
l
2 h2 ≤ Ch

γ l
2 h2.

Define μ1 = −1 + γ l
2 + 2 = γ l

2 + 1.
Let us now handle R(mon). We use the Cauchy–Schwarz inequality, the inequal-

ity (
∑n

i=1 ai)
k ≤ nk−1∑n

i=1 ak
i , the Markov inequality with a power l ≥ 1 yet to

be determined and the moment bounds from Theorem A.2 and Propositions 3.5
and 3.6:

E
[
R(mon)(ti , Yti+1, Yi+1, Ẑi)

]
h

≤ CE
[(

1 + |Yti+1 |q + |Yi+1|q + |Ẑi |p)(1{|Yti+1 |>r(h)} + 1{|Yi+1|>r(h)})
]
h

≤ CE
[
1 + |Yti+1 |2q + |Yi+1|2q + |Ẑi |2p] 1

2E[1{|Yti+1 |>r(h)} + 1{|Yi+1|>r(h)}] 1
2 h

≤ C
(
E
[|Yti+1 |l

]+E
[|Yi+1|l]) 1

2 r(h)−
l
2 h

≤ Ch
γ l
2 +1.

Define μ2 = −1+ γ l
2 +1 = γ l

2 . We have the desired result with μ = min(μ1,μ2) =
γ l
2 . Note that since γ > 0, by taking l big enough one can make the exponent of h

be as big as wanted. Naturally, the constant C depends on the power l eventually
chosen. �



MODIFIED EXPLICIT SCHEMES FOR BSDES WITH POLYNOMIAL GROWTH 2579

4.2. Time-discretization errors. We now turn to the estimation of the lo-
cal errors, that is to say the error between the BSDE dynamics and the time-
discretization scheme (2.1) introduced over one time-step, and in particular their
total sum. As before, the assumptions of Section 2.1 are in force.

PROPOSITION 4.3. Assume (TReg), (TCvg) and (AH). There exists a con-
stant C ≥ 0 such that, for all N ≥ 1,

N−1∑
i=0

E
[|Zti − Ẑi |2]h ≤ Ch and

N−1∑
i=0

E
[|Yti − Ŷi |2]≤ Ch2.

The proof of this estimate is split in two parts. The first is the estimations for
the Z-component, while the second those for the Y -component.

PROOF OF THE ESTIMATE FOR THE Z-COMPONENT IN PROPOSITION 4.3.
First, recall that from the martingale increment property of Hi+1 we have

Ei

[∫ ti+1

ti

Zu dWuH
∗
i+1

]
= Ei

[(
Yti+1 +

∫ ti+1

ti

f (u,Yu,Zu)du

)
H ∗

i+1

]
.

We write

Zti − Ẑi = Ei

[∫ ti+1

ti

Zu dWu


W ∗
ti+1

h

]
−Ei

[∫ ti+1

ti

Zu dWuH
∗
i+1

]

+Ei

[(
Yti+1 +

∫ ti+1

ti

f (u,Yu,Zu)du

)
H ∗

i+1

]
−Ei

[(
Yti+1 + (1 − θ ′)f h(ti, Yti+1,0)h

)
H ∗

i+1
]
.

Regrouping the terms yields

Zti − Ẑi = Ei

[∫ ti+1

ti

Zu dWu

(

Wti+1

h
− Hi+1

)∗]

+Ei

[
θ ′
∫ ti+1

ti

f (u,Yu,Zu)duH ∗
i+1

]

+Ei

[(
1 − θ ′) ∫ ti+1

ti

f (u,Yu,Zu) − f h(ti, Yti+1,0)duH ∗
i+1

]
.

Further decomposing the last term leads finally to

Zti − Ẑi = Ei

[∫ ti+1

ti

Zu dWu

(

Wti+1

h
− Hi+1

)∗]

+Ei

[
θ ′
∫ ti+1

ti

f (u,Yu,Zu)duH ∗
i+1

]
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+ (1 − θ ′)
Ei

[∫ ti+1

ti

f (u,Yu,Zu) − f (u,Yti+1,Zu)duH ∗
i+1

]

+ (1 − θ ′)
Ei

[∫ ti+1

ti

f (u,Yti+1,Zu) − f (u,Yti+1,0)duH ∗
i+1

]

+ (1 − θ ′)
Ei

[∫ ti+1

ti

f (u,Yti+1,0) − f (ti, Yti+1,0)duH ∗
i+1

]

+ (1 − θ ′)
Ei

[∫ ti+1

ti

f (ti , Yti+1,0) − f h(ti, Yti+1,0)duH ∗
i+1

]
= EH + Eθ ′ + EPR:Y + EZ + Et + Etamed.f.

We now want to estimate (the expected square of) each of these terms E·.
Estimation of EH . Using the Cauchy–Schwarz inequality and the Itô isometry,

we have

|EH |2 ≤ dEi

[∫ ti+1

ti

|Zu|2 du

]
E

[∣∣∣∣
Wti+1

h
− Hi+1

∣∣∣∣2],
since 
Wti+1/h − Hi+1 is independent from Fi . Hence, taking expectations,

E
[|EH |2]≤ dE

[∫ ti+1

ti

|Zu|2 du

]
E

[∣∣∣∣
Wti+1

h
− Hi+1

∣∣∣∣2].
Estimation of Eθ ′ . Using the Cauchy–Schwarz inequality and (AH), then

Jentzen we have |Eθ ′ |2 ≤ θ ′2
Ei[h ∫ ti+1

ti
|f (u,Yu,Zu)|2 du]�d/h. Taking expecta-

tions, since � ≤ 1, yields E[|Eθ ′ |2] ≤ θ ′2dE[∫ ti+1
ti

|f (u,Yu,Zu)|2 du].
Estimation of EPR:Y. Using the Cauchy–Schwarz inequality and (AH) as above,

and then the Y -regularity (RegY),

|EPR:Y|2 ≤ (1 − θ ′)2
Ei

[
h

∫ ti+1

ti

∣∣f (u,Yu,Zu) − f (u,Yti+1,Zu)
∣∣2 du

]
�d

h

≤ (1 − θ ′)2�dL2
yEi

[∫ ti+1

ti

(
1 + |Yu|m−1 + |Yti+1 |m−1)2|Yu − Yti+1 |2 du

]
.

When taking the expectation we obtain, using the Cauchy–Schwarz inequality,
� ≤ 1, and that Y ∈ Sp for any p ≥ 2

E
[|EPR:Y|2]≤ 33/2(1 − θ ′)2dL2

y

(
1 + 2‖Y‖4(m−1)

S4(m−1)

) 1
2

×
∫ ti+1

ti

E
[|Yu − Yti+1 |4

] 1
2 du

≤ 33/2(1 − θ ′)2dL2
yCY h

(
REGY,4(h)

) 1
2 .

(4.1)

With the term REGY,4(h) following from the path-regularity Theorem A.2 and
from Theorem A.1, it holds that 1 + 2‖Y‖4(m−1)

S4(m−1) ≤ CY for some constant CY > 0.
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Estimation of EZ . Using the Cauchy–Schwarz inequality and (AH) as above,
and then the Z-regularity (Reg), and � ≤ 1,

|EZ|2 ≤ (1 − θ ′)2
Ei

[
h

∫ ti+1

ti

∣∣f (u,Yti+1,Zu) − f (u,Yti+1,0)
∣∣2 du

]
�d

h

≤ (1 − θ ′)2d�L2
zEi

[∫ ti+1

ti

|Zu|2 du

]

⇒ E
[|EZ|2]≤ (1 − θ ′)2dL2

zE

[∫ ti+1

ti

|Zu|2 du

]
.

Estimation of Et . Using the Cauchy–Schwarz inequality and (AH) as above, and
then the t-regularity (Reg), and � ≤ 1,∣∣E2

t

∣∣≤ (1 − θ ′)2
Ei

[
h

∫ ti+1

ti

∣∣f (u,Yti+1,0) − f (ti, Yti+1,0)
∣∣2 du

]
�d

h

≤ (1 − θ ′)2dLt

h2

2
≤ (1 − θ ′)2dLth

2.

Estimation of Etamed.f. Using the Cauchy–Schwarz inequality and (AH) as
above,

|Etamed.f|2 ≤ (1 − θ ′)2
Ei

[
h

∫ ti+1

ti

∣∣f (ti, Yti+1,0) − f h(ti, Yti+1,0)
∣∣2 du

]
�d

h

≤ (1 − θ ′)2�dhEi

[∣∣(f − f h)(Yti+1,0)
∣∣2].

Hence, in expectation, E[|Etamed.f|2] ≤ (1 − θ ′)2dhE[|(f − f h)(ti , Yti+1,0)|2].
Gathering the estimates. We finally obtain
N−1∑
i=0

E
[|Zti − Ẑi |2]h ≤ 6dhE

[∫ T

0
|Zu|2 du

]
max

i=0,...,N−1
E

[∣∣∣∣
Wti+1

h
− Hi+1

∣∣∣∣2]

+ 6θ ′2dhE

[∫ T

0

∣∣f (u,Yu,Zu)
∣∣2 du

]
+ 6 · 33/2(1 − θ ′)2dhL2

yCY

(
REGY,4(h)

) 1
2

+ 6
(
1 − θ ′)2dhL2

zE

[∫ T

0
|Zu|2 du

]
+ 6
(
1 − θ ′)2dLth

2

+ 6
(
1 − θ ′)2dh2

N−1∑
i=0

E
[∣∣(f − f h)(ti , Yti+1,0)

∣∣2].
Here, REGY,4(h) = sup|s−t |≤hE[|Ys − Yt |4]. From the path-regularity Theo-

rem A.2, there exists CPR such that REGY,4(h)
1
2 ≤ CPRh. Consequently, there
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exists a constant C (independent of N ) such that

N−1∑
i=0

E
[|Zti − Ẑi |2]h ≤ Ch max

i=0,...,N−1
E

[∣∣∣∣
Wti+1

h
− Hi+1

∣∣∣∣2]+ Cθ ′2h + CL2
yh

2

+ C
(
1 − θ ′)2L2

zh + C
(
1 − θ ′)2Lth

2

+ Ch2
N−1∑
i=0

E
[∣∣(f − f h)(ti , Yti+1,0)

∣∣2].
The result then follows from the (AH).3 and Lemma 4.4 below. �

LEMMA 4.4. Under (TCvg) there exists a constant C ≥ 0 such that, for all N ,

N−1∑
i=0

E
[∣∣(f − f h)(ti, Yti+1,0)

∣∣2]≤ C

and

N−1∑
i=0

E
[∣∣(f − f h)(ti, Yti+1,Zti )

∣∣2]≤ C.

We postpone the proof of the lemma above to Appendix A.5 and proceed with
the second part of the proof of Proposition 4.3.

PROOF OF THE ESTIMATE FOR THE Y -COMPONENT OF PROPOSITION 4.3.
We first decompose

Yti − Ŷi = Ei

[∫ ti+1

ti

f (u,Yu,Zu)du − f h(ti, Yti+1, Ẑi)h

]

= Ei

[∫ ti+1

ti

f (u,Yu,Zu) − f (u,Yti+1,Zu)du

]

+Ei

[∫ ti+1

ti

f (u,Yti+1,Zu) − f (u,Yti+1,Zti )du

]

+Ei

[∫ ti+1

ti

f (u,Yti+1,Zti ) − f (ti, Yti+1,Zti )du

]
+Ei

[
f (ti, Yti+1,Zti ) − f h(ti, Yti+1,Zti )

]
h

+Ei

[
f h(ti, Yti+1,Zti ) − f h(ti, Yti+1, Ẑi)

]
h

= EPR:Y + EPR:Z + Et + Etamed.f + Eτi (Z).

We now estimate (the expected square of) each of these terms.



MODIFIED EXPLICIT SCHEMES FOR BSDES WITH POLYNOMIAL GROWTH 2583

Estimation of EPR:Y. Using the Cauchy–Schwarz inequality and (RegY), we
have

|EPR:Y|2 ≤ hL2
yEi

[∫ ti+1

ti

(
1 + |Yu|m−1 + |Yti+1 |m−1)2|Yu − Yti+1 |2 du

]
⇒ E

[|EPR:Y|2]≤ hL2
y × CY h

(
REGY,4(h)

) 1
2 ,

where the last line follows by taking expectations and arguing as in (4.1).
Estimation of EPR:Z. Using Cauchy–Schwarz’s inequality and (Reg), we have

|EPR:Z|2 ≤ Ei

[
h

∫ ti+1

ti

∣∣f (u,Yti+1,Zu) − f (u,Yti+1,Zti )
∣∣2 du

]

≤ hL2
zEi

[∫ ti+1

ti

|Zu − Zti |2 du

]
.

Hence, taking expectations, we obtain E[|EPR:Z|2] ≤ hL2
zE[∫ ti+1

ti
|Zu − Zti |2 du].

Estimation of Et . Using Cauchy–Schwarz’s inequality and (Reg), we have

|Et |2 ≤ Ei

[
h

∫ ti+1

ti

∣∣f (u,Yti+1,Zti ) − f (ti, Yti+1,Zti )
∣∣2 du

]
≤ L2

t

h3

2
.

Estimation of Etamed.f. Taking squares, using Jensen and taking expectations
and using the Cauchy–Schwarz inequality, E[|Etamed.f|2] ≤ h2

E[|(f − f h) ×
(ti, Yti+1,Zti )|2].

Estimation of Eτi (Z). Taking the square, using the Cauchy–Schwarz inequality
and using the Z-regularity (TReg), we have

|Eτi (Z)|2 ≤ h2
Ei

[∣∣f h(ti, Yti+1,Zti ) − f h(ti, Yti+1, Ẑi)
∣∣2]

≤ h2(Lh
z

)2
Ei

[|Zti − Ẑi |2].
Hence, taking expectations, we obtain E[|Eτi (Z)|2] ≤ h2(Lh

z )
2
E[|Zti − Ẑi |2].

Gathering the estimates. We finally obtain

N−1∑
i=0

E
[|Yti − Ŷi |2]≤ 5 · 33/2h2L2

yCY

(
REGY,4(h)

) 1
2 · N

+ 5hL2
z · REGZ,2(h) + 5h3L2

t · N

+ 5h2
N−1∑
i=0

E
[∣∣(f − f h)(ti, Yti+1,Zti )

∣∣2]

+ 5h
(
Lh

z

)2 N−1∑
i=0

Ei

[|Zti − Ẑi |2]h.



2584 A. LIONNET, G. DOS REIS AND L. SZPRUCH

Here, we used again the notation set in the path-regularity Theorem A.2 for

REGY,4(h) and REGZ,2(h). From the said result, we have REGY,4(h)
1
2 ≤ Ch and

REGZ,2(h) ≤ Ch, and hence, using the estimates on the size of the solution (see
Theorem A.1) the first three terms on the RHS of the above estimate are bounded
above by some Ch2. The same goes for the fourth term by Lemma 4.4 and the first
part of the proof guarantees that the same goes for the last term. This completes
the proof of Proposition 4.3. �

4.3. Proof of convergence (Theorem 2.4). We have established with Proposi-
tion 4.2 that the scheme is almost-stable, with the rate μ introduced in Section 2.3.
By the fundamental Lemma 2.6, we therefore have the global error estimate

(ERRN)2 ≤ CE
[∣∣ξ − ξN

∣∣2]+ C

(
N−1∑
i=0

τi(Y )

h
+ τi(Z)

)
+ Chμ.

By assumption (AξN ), the first term is bounded above by Ch for some C. Propo-
sition 4.3 guarantees that the second term

∑N−1
i=0

τi (Y )
h

+ τi(Z) is also bounded
above by Ch. Therefore, we have proven (ERRN)2 ≤ Ch + Chμ, as claimed in
Theorem 2.4.

APPENDIX A: AUXILIARY RESULTS

A.1. Background results on monotone BSDE with polynomial growth.
The results stated in this section hold under the assumption listed in Section 2.1.
They can be found in [19], Sections 2 and 3, and are slightly adapted to suit the
framework in the main body of the present work.

THEOREM A.1 (Existence and uniqueness). The FBSDE (1.1)–(1.2) has a
unique solution (X,Y,Z) ∈ Sp × Sp ×Hp for any p ≥ 2. Moreover, it holds that

‖Y‖p
Sp + ‖Z‖p

Hp ≤ Cp

{∥∥g(XT )
∥∥p
Lp + ∥∥f (·,X·,0,0)

∥∥p
Hp

}
.

Take the uniform partition π = (ti)i=0,...,N of [0, T ] as defined in Section 2.2
and with mesh size |π | = h = T/N . Define the random variables (Zti )i=0,...,N−1
by

Zti := 1

h
Ei

[∫ ti+1

ti

Zu du

]
.

We have then the following result ([19], Theorem 3.5 and Corollary 3.6)

THEOREM A.2 (Integrability and path regularity). For any p ≥ 2, there exists
a positive constant C independent of h such that

sup
ti∈π

E
[|Yti |p

]≤ C and REGY,p(h) := sup
|s−t |≤h;t,s∈[0,T ]

E
[|Ys − Yt |p]≤ Ch

p
2 ,
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moreover, for the control component Z we have

N−1∑
i=0

E
[(|Zti |2h

)p
2
]≤ C and sup

ti∈π∩[0,T )

E
[|Zti |p

]≤ C

and the respective path regularity result

REGZ,2(h) := E

[
N−1∑
i=0

∫ ti+1

ti

|Zt − Zti |2 dt

]
≤ Ch.

A.2. Proof of Lemma 2.2 (discrete-time martingale representation).

PROOF OF LEMMA 2.2. Equation (2.2) clearly defines 
Mi+1 as being
Yi+1 +f h(Yi+1,Zi)h−Ei[Yi+1 +f h(Yi+1,Zi)h]. Conversely, defining 
Mi+1
clearly yields a martingale increment: Ei[
Mi+1] = 0. So we now want to prove
the existence and uniqueness of the decomposition (ζi,
Ni+1) of the martingale
increment 
Mi+1.

Uniqueness. Let (ζi,
Ni+1) be such a decomposition. That is, we have ζi a
Fi-measurable r.v. and 
Ni+1 a martingale increment orthogonal to Hi+1h (in
other words Ei[
Ni+1] = 0 and Ei[
Ni+1(Hi+1h)∗] = 0), satisfying the decom-
position (2.3). Multiplying the equation (2.3) by H ∗

i+1 on the right, taking condi-
tional expectation, using the orthogonality between H ∗

i+1 and 
Ni+1, and recall-
ing (AH).2 implies

Ei

[

Mi+1H

∗
i+1
]= Ei

[
ζi�

−1(Hi+1h)
(
H ∗

i+1
)]+Ei

[

Ni+1H

∗
i+1
]

= ζi�
−1h−1

Ei

[
(Hi+1h)(Hi+1h)∗

]+ 0 = ζi,

which yields the uniqueness of ζi . On the other hand, (2.3) directly implies

Ni+1 = 
Mi+1 − ζi�

−1Hi+1h, which yields the uniqueness of 
Ni+1.
Existence. Define ζi = Ei[
Mi+1H

∗
i+1] and 
Ni+1 = 
Mi+1 − ζi�

−1Hi+1h.
It is then obvious that we have 
Mi+1 = ζi�

−1Hi+1h + 
Ni+1, and that ζi is
Fi-measurable. It remains to check that 
Ni+1 is a martingale increment and that
it is orthogonal to Hi+1h. The first point follows easily from the fact that 
Mi+1
and Hi+1 are martingale increments and that ζi is Fi-measurable:

Ei[
Ni+1] = Ei

[

Mi+1 − ζi�

−1Hi+1h
]= Ei[
Mi+1] − ζi�

−1
Ei[Hi+1]h = 0.

The second point follows by computing, using the definition of ζi ,

Ei

[

Ni+1(Hi+1h)∗

]= Ei

[(

Mi+1 − ζi�

−1Hi+1h
)
(Hi+1h)∗

]
= Ei

[

Mi+1H

∗
i+1
]
h − ζi�

−1�hId

= Ei

[

Mi+1H

∗
i+1
]
h − ζih = 0.

Therefore, the pair (ζi,
Ni+1) so-defined is a solution, which proves existence.
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To conclude, we just rewrite

ζi = Ei

[

Mi+1H

∗
i+1
]

= Ei

[(
Yi+1 + f h(Yi+1,Zi)h −Ei

[
Yi+1 + f h(Yi+1,Zi)h

])
H ∗

i+1
]

= Ei

[(
Yi+1 + f h(Yi+1,Zi)h

)
H ∗

i+1
]
. �

A.3. Iteration and the fundamental lemma. We first state a particularly use-
ful “iteration lemma.”

LEMMA A.3. Let (ai), (bi), (ci), i ∈ {0, . . . ,N}, be sequences of positive
numbers. Assume that there exist constants c ≥ 0 and h > 0, such that, for all
i ∈ {0, . . . ,N − 1},

ai + bi ≤ (1 + ch)ai+1 + ci.(A.1)

Then, for all i,

ai +
N−1∑
j=i

bj ≤ ec(N−i)haN +
N−1∑
j=i

ec(j−i)hcj ≤ ec(N−i)haN + ec(N−1−i)h
N−1∑
j=i

cj .

PROOF. The first estimate is clearly true for i = N − 1 (even for i = N in
fact), since 1 + ch ≤ ech. Then, for any given i ≤ N − 2, if it is true for i + 1, by
multiplying both sides by ech we find that

echai+1 + ech
N−1∑

j=i+1

bj ≤ ec(N−i)haN +
N−1∑

j=i+1

ec(j−i)hcj .

Summing this inequality with (A.1) and noting that
∑N−1

j=i+1 bj ≤ ech∑N−1
j=i+1 bj

due to the positivity of the bj terms gives the first estimate for the given i. The
second follows from the fact that

∑N−1
j=i ec(j−i)hcj ≤ ec(N−1−i)h∑N−1

j=i cj since
the ci ’s are positive. �

We now prove the fundamental lemma.

PROOF OF LEMMA 2.6. We write

E
[|Yti − Yi |2]= E

[|Yti − Ŷi + Ŷi − Yi |2]
≤
(

1 + 1

h

)
E
[|Yti − Ŷi |2]+ (1 + h)E

[|Ŷi − Yi |2],
E
[|Zti − Zi |2]= E

[|Zti − Ẑi + Ẑi − Zi |2]≤ 2E
[|Zti − Ẑi |2]+ 2E

[|Ẑi − Zi |2].
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Since the scheme is almost-stable, we have

E
[|Yti − Yi |2]+ 1

8
E
[|Zti − Zi |2]h

≤
(

1 + 1

h

)
E
[|Yti − Ŷi |2]+ (1 + h)E

[|Ŷi − Yi |2]
+ 1

4
E
[|Zti − Ẑi |2]h + 1

4
E
[|Ẑi − Zi |2]h

≤ (1 + h)

(
E
[|Ŷi − Yi |2]+ 1

4
E
[|Ẑi − Zi |2]h)+

(
1 + 1

h

)
τi(Y ) + 1

4
τi(Z)

≤ (1 + ch)E
[|Yti+1 − Yi+1|2]+ C

(
τi(Y )

h
+ τi(Z)

)
+ Chμ+1,

where the constants c and C changed on the last line and we used h ≤ T . Applying
Lemma A.3 then gives, since ti = ih and h = T

N
,

E
[|Yti − Yi |2]+ 1

8

N−1∑
j=i

E
[|Ztj − Zj |2]h

≤ ec(T −ti )

(
E
[∣∣ξ − ξN

∣∣2]+ N−1∑
j=i

C

(
τi(Y )

h
+ τi(Z)

)
+

N−1∑
j=i

Chμ+1

)

≤ CE
[∣∣ξ − ξN

∣∣2]+ C

(
N−1∑
j=i

τi(Y )

h
+ τi(Z)

)
+ Chμ.

�

A.4. Proof of Proposition 3.5 (moment bounds for the scheme).

PROOF OF PROPOSITION 3.5. Taking the power p ≥ 1 in the estimate of
Proposition 3.4, using (a + b)p ≤ 2p−1(ap + bp), we have

|Yi |2p ≤ (ecT
Ei

[∣∣ξN
∣∣2]+ ecT CT

)p ≤ 2p−1epcT
Ei

[∣∣ξN
∣∣2]p + 2p−1epcT (CT )p.

Using the Jensen inequality and taking the expectation we therefore have

E
[|Yi |2p]≤ 2p−1epcT

E
[∣∣ξN
∣∣2p]+ 2p−1epcT (CT )p.

Given the moment assumption in (AξN ), this proves the first estimate. For the
second, we come back to the one-step estimate of Proposition 3.2, take the power
p ≥ 1, use ap + bp ≤ (a + b)p and use the Jensen inequality to write

|Yi |2p +
(

d

4

)p(|Zi |2h)p
≤ (ech

Ei

[|Yi+1|2]+ Ch
)p
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= epch
Ei

[|Yi+1|2]p +
p∑

k=1

(
p

k

)(
ech

Ei

[|Yi+1|2])p−k
(Ch)k

≤ epch
Ei

[|Yi+1|2p]+ p∑
k=1

(
p

k

)(
ech

Ei

[|Yi+1|2])p−k
(Ch)k.

Iterating this estimate (see Lemma A.3), we obtain(
d

4

)p

Ei

[
N−1∑
j=i

(|Zj |2h)p
]

≤ epc(N−i)h
Ei

[|YN |2p]
+

N−1∑
j=i

epc(j−i)h
Ei

[ p∑
k=1

(
p

k

)(
ech

Ej

[|Yj+1|2])p−k
(Ch)k

]

≤ epc(T −ti )Ei

[∣∣ξN
∣∣2p]

+ epc(N−1−i)h
N−1∑
j=i

p∑
k=1

(
p

k

)
ec(p−k)h

Ei

[
Ej

[|Yj+1|2]p−k]
(Ch)k.

One can then use the Hölder inequality and the Jensen inequality to further obtain(
d

4

)p

Ei

[
N−1∑
j=i

(|Zj |2h)p
]

≤ epc(T −ti )Ei

[∣∣ξN
∣∣2p]+ epc(T −ti )

N−1∑
j=i

p∑
k=1

(
p

k

)
Ei

[
Ej

[|Yj+1|2p]]p−k
p (Ch)k

= epc(T −ti )Ei

[∣∣ξN
∣∣2p]+ epc(T −ti )

p∑
k=1

(
p

k

)N−1∑
j=i

Ei

[|Yj+1|2p]p−k
p (Ch)k.

In particular, for i = 0, we obtain in the end(
d

4

)p

E

[
N−1∑
j=0

(|Zj |2h)p
]

≤ epcT
E
[∣∣ξN
∣∣2p]+ epcT

p∑
k=1

(
p

k

)(
sup

0≤j≤N−1
E
[|Yj+1|2p])p−k

p
Ckhk−1T ,

which, in view of the moment estimate just proved for (Yi), yields the desired
result. �
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A.5. Proof of Lemma 4.4 (vanishing effect of the tamed drivers).

PROOF OF LEMMA 4.4. We verify the claim of the lemma in each of the three
cases covered by our assumption (TCvg). We only prove the second estimate, as
it is clear from the proof how the first follows. Recall that Rh = f − f h, and that
C denotes a constant whose value may change from line to line.

Case 1. We use the inequality (
∑n

i=1 ai)
2 ≤ n

∑n
i=1 a2

i to write

E
[∣∣Rh(Yti+1,Zti )

∣∣2]≤ CE
[(

1 + |Yti+1 |q + |Zti |p
)2]

h2α ≤ Ch2α,

where we used the moment bounds from Theorem A.2. In turn, we have

N−1∑
i=0

E
[∣∣Rh(Yti+1,Zti )

∣∣2]≤ Ch2α−1 ≤ C,

since α ≥ 1
2 by assumption. This proves the desired result for Case 1.

Case 2. Using (
∑n

i=1 ai)
q ≤ C

∑n
i=1 a

q
i , the Cauchy–Schwarz inequality, the

Markov inequality with a power l ≥ 1 yet to be determined, and (Growth), we
have

E
[∣∣Rh(Yti+1,Zti )

∣∣2]≤ CE
[(

1 + |Yti+1 |2q + |Zti |2q)1{|f (Yti+1 ,Zti
)>r(h)|}

]
≤ CE

[
1 + |Yti+1 |4q + |Zti |4p] 1

2
(
E
[∣∣f (Yti+1,Zti )

∣∣l]r(h)−l) 1
2

≤ CE
[
1 + |Yti+1 |4q + |Zti |4q] 1

2E
[
1 + |Yti+1 |lm + |Zti |l

] 1
2 h

βl
2 .

We have then E[|Rh(Yti+1,Zti )|2] ≤ Ch
βl
2 by systematically using the moment

bounds from Theorem A.2. The desired result then follows since, given that β > 0,
we can take l = 2

β
, so that βl

2 ≥ 1.

Case 3. Using (
∑n

i=1 ai)
q ≤ C

∑n
i=1 a

q
i , the Cauchy–Schwarz inequality, and

the Markov inequality with a power l ≥ 1 yet to be determined, we have

E
[∣∣Rh(Yti+1,Zti )

∣∣2]≤ CE
[(

1 + |Yti+1 |2q + |Zti |2p)1{|Yti+1 |>r(h)}
]

≤ CE
[
1 + |Yti+1 |4q + |Zti |4p] 1

2E[1{|Yti+1 |>r(h)}] 1
2

≤ CE
[
1 + |Yti+1 |4q + |Zti |4p] 1

2E
[|Yti+1 |l

] 1
2 h

γ l
2 .

Using systematically the moment bounds from Theorem A.2, we then have

E
[∣∣Rh(Yti+1,Zti )

∣∣2]≤ Ch
γ l
2 .

The desired result then follows since, given that γ > 0, we can take l, so that
γ l
2 ≥ 1. �
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APPENDIX B: VERIFICATIONS FOR SOME STANDARD WAYS
TO TAME THE DRIVER

Some verifications can be found in the preprint version of this work: arXiv:
1607.06733. The material presented in Appendix B there was also subject to peer
review, but removed from the final version of this manuscript due to size con-
straints.

Acknowledgment. A. Lionnet gratefully acknowledges the hospitality of the
University of Edinburgh.
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