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Abstract: 

The Eda pathway (Eda, Edar, Edaradd) plays an important role in tooth 
development, determining tooth number, crown shape and enamel 
formation. Here we show that the Eda pathway also plays a key role in root 
development. Edar (the receptor) is expressed in Hertwig’s Epithelial Root 
sheath (HERS) during root development with mutant mice showing a high 
incidence of taurodontism: large pulp chambers lacking or showing delayed 
bifurcation or trifurcation of the roots. The mouse upper second molars in 
the Eda pathway mutants show the highest incidence of taurodontism, this 

enhanced susceptibility being matched in human patients with mutations in 
EDA-A1. These taurodont teeth form due to defects in the direction of 
extension of the HERS from the crown, associated with a more extensive 
area of proliferation of the neighbouring root mesenchyme. In those teeth 
where the angle at which the HERS extends from the crown is very wide 
and therefore more vertical, the mutant HERS fail to reach each other in 
the normal furcation region and a taurodont tooth is created. The 
phenotype is variable, however, with milder changes in angle and 
proliferation leading to normal or delayed furcation. This is the first 
analysis of the role of Eda in the root, showing a direct role for this 
pathway during postnatal mouse development, and suggests that changes 

in proliferation and angle of HERS may underlie taurodontism in a range of 
syndromes. 
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Abstract: 

 

The Eda pathway (Eda, Edar, Edaradd) plays an important role in tooth 

development, determining tooth number, crown shape and enamel 

formation. Here we show that the Eda pathway also plays a key role in 

root development. Edar (the receptor) is expressed in Hertwig’s 

Epithelial Root sheath (HERS) during root development with mutant 

mice showing a high incidence of taurodontism: large pulp chambers 

lacking or showing delayed bifurcation or trifurcation of the roots. The 

mouse upper second molars in the Eda pathway mutants show the highest 

incidence of taurodontism, this enhanced susceptibility being matched in 

human patients with mutations in EDA-A1. These taurodont teeth form 

due to defects in the direction of extension of the HERS from the crown, 

associated with a more extensive area of proliferation of the neighbouring 

root mesenchyme. In those teeth where the angle at which the HERS 

extends from the crown is very wide and therefore more vertical, the 

mutant HERS fail to reach each other in the normal furcation region and a 

taurodont tooth is created. The phenotype is variable, however, with 

milder changes in angle and proliferation leading to normal or delayed 

furcation. This is the first analysis of the role of Eda in the root, showing 

a direct role for this pathway during postnatal mouse development, and 

suggests that changes in proliferation and angle of HERS may underlie 

taurodontism in a range of syndromes. 
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Introduction: 

 

The root of a tooth is essential for anchoring the tooth germ in place. 

Defects in root size and shape can lead to problems with attachment, and 

impact on the rest of the periodontium, therefore an understanding of root 

development is essential. While crown development has been fairly 

intensely studied, far less research has focused on root development. 

From mouse knockout studies a number of signalling pathways and 

transcription factors have been indicated as being essential for normal 

root development, such as Shh, Wnt, Bmp, Tgfb and Nfic (Li et al., 2017). 

These pathways are involved in complex signalling between the 

epithelium of the root, known as Hertwig’s Epithelial Root Sheath 

(HERS), and the overlying pre-odontoblast neural crest derived 

mesenchyme. Loss of Smad4 (acting downstream of Tgfb signalling) in 

the HERS leads to a failure in all root development (Huang et al., 2010), 

while loss of Smad4 in the mesenchyme alone leads to shorter roots (Gao 

et al., 2009). Smad4 appears to act upstream of Shh, as altering Sonic 

signalling can alleviate some of the defects in the Smad4 knockout 

(Huang et al., 2010), with Shh switching on Nfic in the root mesenchyme 

and acting in a negative feedback loop (Huang et al., 2010; Liu et al., 

2015). 

  

HERS is formed as an extension of the cervical loops at the late bell stage 

of development. The sheath is formed of two layers, at the junction 

between the outer and inner dental epithelium. In the mouse this process 

starts at postnatal day four, with extension of this double-layered 

structure (Lungova et al., 2011). The HERS then extend downwards to 

create the roots, stimulating differentiation of the surrounding dental 

papilla mesenchyme to differentiate as odontoblasts and secrete the 
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dentin of the root. In single rooted teeth the HERS extend downwards in 

a sheet, however to generate multiple roots the HERS must change 

direction and extend horizontally to create furcations. The creation of 

these epithelial diaphragms has been proposed to be controlled by 

proliferation of the adjacent mesenchyme, with higher proliferation 

pushing the HERS to extend more vertically, while lower proliferation 

allows the HERS to bend inwards to divide the roots (Sohn et al., 2014). 

In keeping with this find, altered proliferation in the presumptive 

bifurcation regions have been identified in mouse mutants with root 

defects (Kim et al., 2015).  

 

The Eda pathway has not been investigated in any detail during root 

development. The pathway consists of the ligand Ectodysplasin (Eda), 

the receptor (Edar), a Tumour necrosis factor (TNF) family member, and 

intracellular adapter protein (Edaradd). Eda is cleaved to form a soluble 

ligand that can then bind to Edar, recruits Edaradd, and ultimately 

stimulates signalling through NfKappa B (Courtney et al., 2005). During 

early development Eda is expressed in the forming dental placodes, with 

smaller placodes forming in Eda mutants (known as Tabby mutants) 

(Pispa et al., 1999). Intriguingly these mice can also have supernumerary 

teeth formed from revitalisation of diastema tooth buds so both 

hypodontia and hyperdontia can be features in the mouse (Prochazka et 

al., 2010)(Charles et al., 2009b). At the cap stage the Eda pathway plays 

a crucial role in molar crown formation with pathway mutants having 

molars with a reduced number of flattened cusps (Gruneberg, 1966; Pispa 

et al., 1999; Tucker et al., 2000). This has been shown to be due to 

defects in the primary enamel knot at the cap stage of development 

(Ohazama et al., 2004; Pispa et al., 1999; Tucker et al., 2000). At the cap 

stage Eda is expressed in the dental epithelium close to the oral 
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epithelium, while Edar and Edaradd are expressed in the enamel knot 

(Headon et al., 2001; Laurikkala et al., 2001; Tucker et al., 2000).  

 

Defects in all three components of the Eda pathway in patients leads to 

Hypohidotic ectodermal dysplasia (HED), which is characterised by 

defects in many ectodermally derived organs: skin, hair, sebaceous 

glands, sweat glands, and teeth (Headon et al., 2001; Kere et al., 1996; 

Monreal et al., 1999). HED is more common in males as Eda is located 

on the X chromosome, so that hemizygous males display the full 

phenotype. Heterozygous females with mutations in Eda have much 

milder symptoms with increased incidence of tooth agenesis (Lexner et 

al., 2007). Similar to the mouse mutants, patients display hypodontia 

(multiple missing teeth), smaller teeth, and have reduced numbers of 

cusps, producing peg shaped teeth (Crawford et al., 1991). In addition 

patients with XL-HED have root defects, including taurodontism, 

suggesting that the Eda pathway also has an important role during root 

development (Lexner et al., 2007). Taurodont teeth have roots that fail to 

bifurcate or bifurcate very late during root formation, with the result that 

the pulp chamber is very large at the expense of the roots. In the Eda 

mutant mouse (Tabby), variations in root pattern have also been 

observed, with high variation in number of roots, and possible cusp 

fusions, which are not always correlated with the size of the tooth crown 

(Charles et al., 2009a; Gruneberg, 1966). 

A direct role for the Eda pathway in root development was suggested by 

the fact that Edar was identified, in a screen comparing molars and 

incisors in the rat, as a possible root-determining gene, along with other 

important root genes such as Nfic (Xing et al., 2007). We therefore 

decided to follow these leads and investigate root development in Eda 
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and Edar mutant mice, and compare our findings to patients with 

mutations in EDA-A1 (X-linked Hypohidrotic ectodermal dysplasia). 

 

Methods: 

 

Patient scans: 

DPT of 20 anonymised patients with confirmed EDA-A1 mutations were 

obtained from the hypodontia clinic at Guy’s Hospital London. Of the 20, 

data of only 15 patients (aged 6-16 years) were used; the rest being 

excluded as the roots of the permanent molars had not developed yet. 

Data was provided anonymised with only age and sex provided. The 

project was registered with the Research and Development (R&D) 

department at Guy’s and St Thomas’s Hospital Trust.  

 

Mice: 

Eda and Edar mutants were mated as previously described at the Roslin 

Institute (Wells et al., 2010) and in the Czech republic (Peterkova et al., 

2005). Pups and adult mice were culled using schedule one methods as 

approved by the Home office, UK. Use of animals in this project 

conforms with the ARRIVE guidelines.  

MicroCT: 

Mice were scanned using a GE Locus SP microCT scanner and a Scanco 

microCT 50 scanner. Classification of teeth based on extent of 

taurodontism was determined using both 2D planes and 3D 

reconstructions of individual teeth, generated using Microview software. 

 

Histology, In situ Hybridisation and immunofluorescence: 
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Wax sections were used for analysis of gene expression, protein 

expression, histology (see supplementary methods). 

 

Results: 

 

Edar is expressed in HERS 

 

Although the Eda pathway has been followed during tooth development 

in a number of prenatal stages, postnatal expression in the root has not 

been investigated. Our first step, therefore, was to assess where (if any) 

Eda signalling was occurring in the postnatal tooth. As Eda as a soluble 

ligand we concentrated on the expression of the receptor Edar, which has 

a very restricted expression pattern in the enamel knot of the tooth at the 

cap stage (Fig. 1A,C). Edar expression, both mRNA and protein, was 

found to be restricted to the bilayered HERS during root development, 

overlapping with expression of the epithelial marker E-Cadherin (Fig. 

1B,D,E). The restriction of expression to the epithelium agrees with 

expression of Edar in other ectodermal organs and suggests a direct role 

for this pathway in root formation. Expression levels were similar in all 

molar teeth. 

 

Taurodontism and delayed bifurcation of roots in Eda pathway mutants 

 

Having shown that Edar is expressed in the roots we investigated the root 

defect in both Eda (Tabby) and Edar (Downless) mutants using microCT 

to produce 3D images of the molar teeth. In the mouse the first and 

second lower molars (M1 and M2) have two roots while the upper M1 

and M2 have three roots, similar to the situation observed in humans. As 
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has been previously reported Eda mutants had diverse root defects, 

including reduced number of roots, and in a few rare cases, increased 

number of roots. Both Eda and Edar mutants (2 weeks and older) 

displayed a high incidence of taurodontism, with single roots and large 

pulp chambers, or delay in bifurcation, with additional variation in the 

length of the final root (Fig. 2A-D and data not shown). In the literature 

several classifications for the degree of taurodontism in humans have 

been described, all with problems associated with how to accurately 

measure the extent of the delay in bifurcation (Jafarzadeh et al., 2008). 

Here we used a simple system whereby we divided taurodont teeth into 

those with no bifurcation (known clinically as hypertaurodont, single or 

pyramidal depending on the shape of the root) and delayed bifurcation 

(known clinically as meso- or hypo- taurodontism depending on the 

position of the bifurcation) (N = 17 Edar-/- mice analysed, total of 34 

M1s and 34 M2s). From our analysis the incidence of taurodontism was 

found to be highest in the upper jaw, compared to the lower jaw, with the 

second molars (M2) being more susceptible than the first molars (M1) 

(Table 1). In total 24.2% of upper M2s showed delayed bifurcation, with 

another 53% showing no bifurcation. This was in comparison to the 

lower M2s that showed only a 6% incidence of delayed bifurcation and a 

3% incidence of single rooted teeth. Very few of the Edar -/- lower M1s 

showed a taurodont phenotype, however, the Eda mutants showed a 

higher incidence of taurodontism in the lower jaw (data not shown), 

agreeing with previous studies that have demonstrated subtle differences 

between the these two mutants (Charles et al., 2009b). At earlier stages 

(postnatal day 9), when the roots are still growing, microCT of Eda 

mutants revealed early defects in the formation of the roots, with some 

mutant teeth having an oval apical end when compared to the figure of 8 

pattern in wildtype lower molars (Fig. 2E-H). 
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Conserved susceptibility of upper molars in human patients 

 

Having established that the incidence of taurodontism in Eda pathway 

mutants was very dependent on tooth type and position we decided to 

investigate whether similar susceptibilities were also observed in human 

patients with mutations in EDA-A1. As has been previously described 

patients with XL-HED (and therefore EDA-A1 mutations) have been 

shown to have a high incidence of taurodontism (Crawford et al., 1991; 

Lexner et al., 2007). No difference in incidence of taurodontism was 

referred to between upper and lower teeth. Digitalized DPT (Dental 

panoramic tomography) scans of 15 EDA-A1 mutant patients were 

collected from Guy’s Hospital (Fig. 2I,J, K). Use of such scans has 

previously been shown to be a reliable method of detecting taurodontism 

in patients (Tulensalo et al., 1989). The molars of both upper and lower 

jaws were examined and the prevalence of taurodontism was calculated. 

As with the mice we divided the teeth into those that showed 

hypertaurodontism, single or pyramidal roots, and those that showed 

delayed bifurcation (both meso- and hypo- taurodont). Overall the Eda 

patients had a high incidence of taurodontisms (Table 1). Similar to the 

mouse, the upper molars had a higher incidence of hypertaurodont, single 

and pyramidal roots (54%) and delayed bifurcation (43%) compared to 

the lower molars, 20.5% and 4.5% respectively. Second molars also had a 

higher incidence of root defects than first molars in the lower jaw, 

although in the upper jaw the incidence of defects was similar in M1 and 

M2. In general, therefore, the pattern of incidence was conserved across 

our mouse mutants and human patients.  

 

HERS morphology is disrupted in Eda pathway mutant mice 
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Having established that root defects are a common feature of Eda 

pathway mutants, and patients, we aimed to investigate the underlying 

mechanism behind the defect. For this Eda mice were chosen due to their 

slightly higher incidence of taurodontism when compared to Edar 

mutants, with analysis focused on the lower first molar, to allow a direct 

comparison of root development in mutants with both taurodont and 

bifurcated phenotypes. The simpler root pattern of the lower molars also 

allowed for a clear selection of bifurcating and non-bifurcating regions in 

frontal sections, not possible in the trifurcating upper molars. As the 

phenotype was already evident by microCT at P9 (Fig. 2E-H) we turned 

to P7, when little root dentin has been laid down. In sections it was clear 

that all the mutant teeth were narrower than the WTs (Fig. 3A,B 

compared to C-F), agreeing with the smaller overall size of Eda teeth 

(Charles et al., 2009a). In WTs, the buccal and lingual HERS in the 

centre of the tooth almost contacted each other at this stage (Fig. 3A), 

while they remained far apart and were shorter on either side of the 

furcation region (Fig. 3B) (N = 3/3).  In comparison the Eda mutants had 

a highly variable phentotype, with some mutants displaying shorter 

HERS and a large distance between the two sides of HERS throughout 

the tooth (Fig. 3C,D, I) (N = 5/8). In contrast, in some mutant molars the 

HERS almost made contact in the middle, in a similar manner to WTs (N 

= 3/8) (Fig. 3E,F,I). The morphology of the HERS was investigated using 

Keratin 14, which showed a morphologically normal looking bilayered 

structure in all the mutants (Fig. 3G,H).  

 

Altered direction of HERS and proliferation in Eda mutants 

The mutant teeth appeared more elongated with alterations in the 

direction that the HERS extended from the crown (Fig. 3). We therefore 
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analysed the angle of extension in the bifurcation region (Fig. 4A) and 

found the mutants had significantly wider angles with the HERS 

extending more vertically (Fig. 4A). Fitting with the variable incidence of 

taurodontism, those mutant teeth where the HERS had managed to almost 

reach the midline at the bifurcation region had smaller angles that were 

not significantly different from the WTs (Fig. 4A). In contrast, the Eda 

mutants with distantly spaced HERS had much larger and therefore more 

vertical HERS (Fig. 4A). In Nfic mutants, root furcation defects have 

been linked to changes in proliferation of the mesenchyme adjacent to the 

HERS (Kim et al., 2015), and differential proliferation has been 

suggested to influence the direction of HERS in wildtype roots (Sohn et 

al., 2014). We therefore investigated proliferation in our Eda mutants 

compared to WTs at P7 (N = 8 Eda mutant teeth, 3 WT teeth), counting 

in three regions associated with the HERS (Fig. 4B). In all three 

mesenchymal zones counted, a larger percentage of proliferating cells 

were observed in those mutants which failed to form a bifurcating region 

(Fig. 4B). In contrast, the mutants that had managed to make a bifurcation 

had close to WT levels of proliferation (Fig. 4B). This suggests that the 

difference in proliferation may drive the HERS phenotype. The epithelial 

HERS themselves had high levels of proliferation, matching that of the 

WT, although appeared shorter in the centre of the tooth. 

As the Edar pathway is active in the HERS (Fig. 1) this change in 

mesenchymal proliferation suggests that the HERS signal back to the 

mesenchyme to control proliferation levels, and thereby the direction of 

root development. We therefore analysed expression of Shh, a key 

signalling factor expressed in the HERS which is known to signal to the 

mesenchyme (Khan et al., 2007). Shh has also been shown to act 

downstream of the Eda pathway in the skin and salivary glands (Pummila 

et al., 2007; Wells et al., 2010; Wells et al., 2011). Shh was expressed in 
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the HERS and in the pre-ameloblasts in the WT and a very similar pattern 

was observed in the Eda mutant teeth at P7, although levels in the pre-

ameloblasts were potentially reduced (Fig. 4C). There was no clear 

difference between those teeth with a taurodont or normal bifurcation 

however, suggesting that this reduction does not drive the phenotype. 

  

Discussion: 

 

Here we show for the first time that a component of the Eda 

pathway, Edar, is expressed during root development with a very specific 

expression in the developing HERS. Loss of Eda or Edar leads to a 

taurodont phenotype, with the upper second molars being the most 

sensitive to loss of this pathway. Fitting with the variable phenotype in 

adults, during root development Eda mutant molars could be divided into 

those with normal proliferation, HERS angle and formation of a 

bifurcation, and those where proliferation was increased in the 

mesenchyme and the HERS extended in a more vertical direction. 

Changes in proliferation therefore appear to drive the phenotype, 

agreeing with the hypothesis that uniform high proliferation throughout 

the root mesenchyme leads to a lack of furcation (Kim et al., 2015). It 

would be interesting therefore to assess whether uniform proliferation, 

underlies taurodontism in other syndromes and mutant mice. 

As Edar was expressed in the HERS, this suggests another 

signalling factor produced by the HERS was altered in the absence of 

active Eda signalling. One candidate linked to the Eda pathway in other 

organs was Shh, however no clear change in Shh in the HERS was 

observed, although there might be subtle differences in levels of 

expression. Another candidate could be a member of the Wnt signalling 

pathway, as Axin2, a target of Wnt signalling, is highly expressed in the 
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mesenchyme adjacent to the HERS (Lohi et al., 2010), and loss and 

activation of the Wnt pathway leads to root defects (Bae et al., 2013; Kim 

et al., 2013). A taurodont phenotype is observed in patients and mice with 

mutations in Wnt10a, and loss of Wnt10a leads to defects in cusp pattern 

and hypodontia, mirroring many aspects of the Eda pathway mutant 

phenotype (Yang et al., 2015). In keeping with this, Wnt10a has been 

predicted to be a direct target of NfKappa B signalling (Krappmann et al., 

2004).  

Our comparison between the ratio of taurodontism in human and 

mutant mice revealed that there is a close similarity in the distribution of 

taurodontism in both samples.  In both the prevalence of taurodontism 

was higher in the upper teeth compared to the lower teeth. This result is 

consistent with the findings that many tooth anomalies, such as 

taurodontism, hypodontia, and dens invagination, are more common in 

the upper jaws compare to the lower jaws (MacDonald-Jankowski and Li, 

1993; Shokri et al., 2014). These differences in susceptibility may be 

influenced by the larger number of roots that form in the upper molars in 

both mice and humans compared to lower molars, involving a more 

complex pattern of folding of the epithelium. These more complex 

folding patterns may be more vulnerable to changes in signalling 

molecules and subtle changes in proliferation. Taurodontism in general, 

rather than just in HED patients, is also more prevalent in second molars 

compared to first molars (MacDonald-Jankowski and Li, 1993). As the 

number of roots is the same in the first and second molars the pattern of 

furcation cannot explain this difference in prevalence however the time 

difference between the development of first and second molars may 

impact on the incidence of the root defect, with later developing teeth 

being more susceptible.  
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In conclusion we have shown that the Eda pathway has a direct 

role in root development, influencing proliferation and the angle of HERS 

and therefore the ability to form furcations. This pathway can therefore 

be added to the other signalling pathways (Shh, Wnt, Tgfb,BMP) whose 

role in root development is just starting to be elucidated (Li et al., 2017). 
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Figure legends: 

 

Figure 1:Edar is expressed in HERS during root development. 

 

(A,B) In situ hybridisation for Edar, positive stain in blue. (A) E 

(Embryonic day) 15.5 late cap stage tooth. Expression of Edar is 

observed in the dental epithelium, in the enamel knot (arrow) and 

spreading out across the inner dental epithelium, particularly on the 

lingual side of the tooth. (B) At P (postnatal day) 9 Edar is expressed in 

the HERS (arrowed) at the apical end of the tooth. (C,D) 

Immunofluoresence for Edar. Signal in red, nuclei labelled by DAPI 

(blue). (C) High power view of the primary enamel knot (arrow) at E15.0. 

(D) High power of HERS (arrows) at P9, at the base of the developing 

tooth. (E) Serial section to (D) showing immunofluorescence for E-

Cadherin, a marker of epithelium overlapping with Edar in the HERS. 

Scale in A, B: 200µm. C: 100µm. D: 50µm (same scale in E). 

 

 

Figure 2: Eda mouse mutants and patients with EDA-A1 mutations have a 

taurodont phenotype 

 

(A, C, E-H) MicroCT 3D reconstructions of Eda mutant molar mice 

teeth. (B,D) Trichrome strained histology sections through adult erupted 

second molar. (A-D) 6 month old adult teeth. (E-H) P9 teeth. (A,B, E, F) 

Wild type teeth. (C,D,G,H) Eda mutant molars. (A,B) WT upper molar 

with three roots (arrowed), 2 root visible in section (B). (C,D) Taurodont 

upper molar in Eda mutant with a single root and large pulp cavity. (E,F) 

WT lower molar forming two roots with a figure of 8 shape on the apical 

view (F). Arrows point to forming furcations. (G.H) Eda lower molar 
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with an oval shape on the apical view (H) showing no signs of forming a 

furcation.  

(I) Digitalized DPT (Dental panoramic tomography) x-ray of a 10 year 

old with X-linked Hypohidrotic ectodermal dysplasia caused by a 

mutation in EDA-A1 with a variable expression of the taurodont 

phenotype in addition to loss of multiple teeth. (J) High power of molar 

tooth highlighted by arrow in I displaying a taurodont phenotype. (K) 

Neighbouring tooth with bifurcated root. 

 

Figure 3 

HERS extension defects in Eda mutant mice at P7 

(A-F) Trichrome stained frontal sections in the centre of the tooth 

(Bifurcation region) (A,C,E) and outside of the normal furcation region 

(B,D,F). (A,B) WT. (C-F) Eda mutants.  * = point where HERS have 

almost met in the mutant. (G,H) Keratin 14 expression in the bifurcation 

region in WT (G) and Mutant (H) HERS. Arrows indicate gap between 

HERS. (I) Graph showing Eda mutants can be divided into two groups 

dependent on the distance between the HERS at the centre of the tooth. 

Scale bar in A = 200 microns. Same scale in B-F. 

Scale bar in H = 100 microns. Same scale in G. 

* = P<0.05, ** = P< 0.01 

 

Figure 4 

Proliferation and angle defects in Eda mutant mice 

(A) Angle defects in Eda mutant mice at P7. Histology figures showing 

how angle of extension was measured with an example WT and Eda 

mutant. Graph showing statistically significant changes in angle only for 

those mutants with defects in formation of a bifurcation when compared 

to WT. 
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Scale bar in A = 100 microns. 

(B) Proliferation measured by PCNA in Eda mutant mice at P7. Three 

boxes (1,2,3) were used to measure the numbers of proliferating cells to 

be compared with all cells in the area. Sections showing proliferation 

(brown) in an example WT and Eda mutant. Graphs showing the 

difference in percentage proliferating cells in the three regions shown in 

the above images. Only mutants with a defect in bifurcation showed a 

significant difference in proliferation compared to WTs. 

Scale bar in B = 200 microns. 

(C) Shh immunofluorescence. Confocal images with "fire luts" where 

blue is lowest intensity and white the highest. The expression of Shh in 

the HERS themselves appears similar between WT and Eda mutant 

molars.  

Scale bar in C = 100 microns. 

* = P<0.05, ** = P< 0.01. 
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Table 1: Incidence of root defects in patients with mutations in EDA-A1 

and in Edar mutant mice. 

 

 Upper molars Lower molars 

 M1 M2 Total M1 M2 Total 

 

MICE 

 

  

Delay 

bifurcation % 

4.55 24.2 14.4 1.5 6.1 3.8 

Hypertaurodont 

& single root 

9.1 53 31.1 0 3 1.5 

 

PATIENTS 

 

  

Delay 

bifurcation % 

44.8 37.5 43 0 18.2 4.5 

Hypertaurodont, 

single root, 

pyramidal 

51.7 62.5 54.1 16.7 36.7 20.5 
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Supplementary methods: 

Samples: 

Postnatal heads were divided into upper and lower jaws, fixed in 

4% paraformaldehyde and decalcified using EDTA, time depending on 

age of the specimen. Embryonic heads were fixed whole and did not 

require a decalcification step. After decalcification/fixation samples were 

dehydrated through an ethanol series before embedding in paraffin via 

histoclear. For histology a trichrome stain was used involving alcian blue, 

sirrus red and haematoxylin. 

 

In situ hybridization: 

For in situ hybridization, sections were rehydrated, refixed in PFA 

4% for 20min, permeabilized in 10ug/ml Proteinase K for 8 minutes, 

acetylated in triethanolamine (T58300 Sigma-Aldrich) plus acetic 

anhydride (100022M BDH) for 10 minutes and dehydrated again prior to 

the addition of anti-sense probe. The Edar probe was used at 1ug/ml and 

added in hybridization buffer (50% formamide, 20mM Tris/DEPC pH 

7.5, 300mM NaCl/DEPC, 5mM EDTA/DEPC, 1x Denhardt’s solution, 

10% dextran sulphate, 0.5mg/ml tRNA) and incubated at 60ºC O.N. 

Samples were washed in 50%formamide-2x SSC, 2xSSC and 0.2xSSC 

each one twice for 30min at 60ºC. Sections were washed in TN buffer 

(100mM Tris pH 7.5, 150mM NaCl) and blocked in TN buffer with 10% 

fetal bovine serum (F90665, Sigma) plus 1% BBR (Boehringer, 1096176) 

for 1 hour-RT and incubated with 1:1000 anti-DIG Alkaline Phosphatase 

antibody (Boehringer, 1093274) overnight at 4 ºC in blocking solution. 

Samples were washed in TN buffer for 1 hour and incubated in NTMT 
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(100 mM Tris-HCl pH 9.5, 50 mM MgCl2, 100 mM NaCl, 0.1% Tween 

20) twice for 10 minutes. The colour reaction was developed with BM 

purple (11 442 074 001, Roche). Slides were then dehydrated and 

coverslipped using depex. Images were taken on a Nikon light 

microscope. 

 

Immunofluorescence: 

For immunofluorescence, sections were rehydrated and treated 

with Tris-EDTA pH9 for 30 minutes at 90°C for antigen retrieval. 

Endogenous peroxidase was quenched with 3% hydrogen peroxide for 

30min. Sections were blocked in TN buffer plus 0.5% BBR, 10% Serum, 

1% BSA and 0.05% Tween 20 for 1h at RT. Anti-Edar (Santa Cruz, sc-

15289) or Anti-Shh (Santa Cruz,sc-9024)  were added at 1:200 in 

blocking solution ON at 4°C. After washing in PBS 0.05% Tween 20, a 

biotinilated secondary antibody (E0432, Dako) was added at 1:300 for 

2hr at RT. followed by SA-HRP at 1/150 and 1/150 TSA Fluorophore 

(Cy3). Slides were mounted with Fluoroshield
TM
 DAPI (ab104139, 

Abcam). For Ecad (Abcam, ab76319) and K14 (Abcam, ab7800) 

detection, a secondary Alexa-488 was used. Slides were imaged on a 

confocal microscope. Shh images used “fire luts” to indicate intensity 

where blue is the lowest and white the highest.  

 

Proliferation: 

Detection of proliferative cell nuclear antigen (PCNA) was 

achieved using anti-PCNA-Biotin (Abcam, ab113270) at 1/400 followed 

by SA-HRP at 1/250. The signal was developed using Vector DAB 

staining kit (SK-4100). Slides were weakly counterstained with 
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Haematoxylin before dehydration and coverslipping. Images were taken 

on a Nikon light microscope. 

 

Measurements and statistics: 

 For consistency all tooth measurements were made of the HERS on 

the buccal side of the tooth. Tooth angle measurements were made as 

illustrated in Figure 4A. Measurements were made by a researcher blind 

to the genotype of the tooth with no knowledge of HERS development to 

ensure unbiased recording. Proliferating cells were counted in different 

regions adjacent to the HERS as depicted in Fig4B and compared to total 

number of cells to give a percentage proliferation. Unpaired T-tests were 

performed with one tail and unequal variance for comparing the distance 

between the HERS (Fig3I), or two tails and unequal variance for the rest 

of the statistical analysis. Unequal variance was used due to the large 

variation between mutant molars compared to very small variation 

between controls. 

 

microCT: 

Specimens were immobilized using cotton gauze and scanned to 

produce 14µm voxel size volumes, using an X-ray tube voltage of 80kVp 

and a tube current of 80µA. An aluminum filter (0.05mm) was used to 

adjust the energy distribution of the X-ray source. To ensure scan 

consistency, a calibration phantom of known geometry (a dense cylinder) 

was positioned within the field of acquisition for each scan. Test 

reconstructions on this object were carried out to determine 

the optimum conditions for reconstruction, ensuring consistency in image 
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quality, and minimising blurring. 
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Table 1: Incidence of root defects in patients with mutations in EDA-A1 

and in Edar mutant mice. 

 

 Upper molars Lower molars 

 M1 M2 Total M1 M2 Total 

 

MICE 

 

  

Delay 

bifurcation % 

4.55 24.2 14.4 1.5 6.1 3.8 

Hypertaurodont 

& single root 

9.1 53 31.1 0 3 1.5 

 

PATIENTS 

 

  

Delay 

bifurcation % 

44.8 37.5 43 0 18.2 4.5 

Hypertaurodont, 

single root, 

pyramidal 

51.7 62.5 54.1 16.7 36.7 20.5 
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The ARRIVE Guidelines Checklist 
Animal Research: Reporting In Vivo Experiments 
Carol Kilkenny1, William J Browne2, Innes C Cuthill3, Michael Emerson4 and Douglas G Altman5 
1The National Centre for the Replacement, Refinement and Reduction of Animals in Research, London, UK, 2School of Veterinary 
Science, University of Bristol, Bristol, UK, 3School of Biological Sciences, University of Bristol, Bristol, UK, 4National Heart and Lung 
Institute, Imperial College London, UK, 5Centre for Statistics in Medicine, University of Oxford, Oxford, UK. 

 

 ITEM RECOMMENDATION Section/ 
Paragraph 

Title 1 Provide as accurate and concise a description of the content of the article 
as possible. 

      

Abstract 2 Provide an accurate summary of the background, research objectives, 
including details of the species or strain of animal used, key methods, 
principal findings and conclusions of the study. 

      

INTRODUCTION  

Background 3 a. Include sufficient scientific background (including relevant references to 
previous work) to understand the motivation and context for the study, 
and explain the experimental approach and rationale. 

b. Explain how and why the animal species and model being used can 
address the scientific objectives and, where appropriate, the study’s 
relevance to human biology. 

      

Objectives 4 Clearly describe the primary and any secondary objectives of the study, or 
specific hypotheses being tested. 

      

METHODS  

Ethical statement 5 Indicate the nature of the ethical review permissions, relevant licences (e.g. 
Animal [Scientific Procedures] Act 1986), and national or institutional 
guidelines for the care and use of animals, that cover the research. 

      

Study design 6 For each experiment, give brief details of the study design including: 

a. The number of experimental and control groups. 

b. Any steps taken to minimise the effects of subjective bias when 
allocating animals to treatment (e.g. randomisation procedure) and when 
assessing results (e.g. if done, describe who was blinded and when). 

c. The experimental unit (e.g. a single animal, group or cage of animals). 

A time-line diagram or flow chart can be useful to illustrate how complex 
study designs were carried out. 

      

Experimental 
procedures 

7 For each experiment and each experimental group, including controls, 
provide precise details of all procedures carried out. For example: 

a. How (e.g. drug formulation and dose, site and route of administration, 
anaesthesia and analgesia used [including monitoring], surgical 
procedure, method of euthanasia). Provide details of any specialist 
equipment used, including supplier(s). 

b. When (e.g. time of day). 

c. Where (e.g. home cage, laboratory, water maze). 

d. Why (e.g. rationale for choice of specific anaesthetic, route of 
administration, drug dose used). 

      

Experimental 
animals 

8 a. Provide details of the animals used, including species, strain, sex, 
developmental stage (e.g. mean or median age plus age range) and 
weight (e.g. mean or median weight plus weight range). 

b. Provide further relevant information such as the source of animals, 
international strain nomenclature, genetic modification status (e.g. 
knock-out or transgenic), genotype, health/immune status, drug or test 
naïve, previous procedures, etc. 

      

 
The ARRIVE guidelines. Originally published in PLoS Biology, June 20101
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Housing and 
husbandry 

9 Provide details of: 

a. Housing (type of facility e.g. specific pathogen free [SPF]; type of cage or 
housing; bedding material; number of cage companions; tank shape and 
material etc. for fish). 

b. Husbandry conditions (e.g. breeding programme, light/dark cycle, 
temperature, quality of water etc for fish, type of food, access to food 
and water, environmental enrichment). 

c. Welfare-related assessments and interventions that were carried out 
prior to, during, or after the experiment. 

      

Sample size 10 a. Specify the total number of animals used in each experiment, and the 
number of animals in each experimental group.  

b. Explain how the number of animals was arrived at. Provide details of any 
sample size calculation used. 

c. Indicate the number of independent replications of each experiment, if 
relevant. 

      

Allocating 
animals to 
experimental 
groups 

11 a. Give full details of how animals were allocated to experimental groups, 
including randomisation or matching if done. 

b. Describe the order in which the animals in the different experimental 
groups were treated and assessed. 

      

Experimental 
outcomes 

12 Clearly define the primary and secondary experimental outcomes assessed 
(e.g. cell death, molecular markers, behavioural changes). 

      

Statistical 
methods 

13 a. Provide details of the statistical methods used for each analysis. 

b. Specify the unit of analysis for each dataset (e.g. single animal, group of 
animals, single neuron). 

c. Describe any methods used to assess whether the data met the 
assumptions of the statistical approach. 

      

RESULTS  

Baseline data 14 For each experimental group, report relevant characteristics and health 
status of animals (e.g. weight, microbiological status, and drug or test naïve) 
prior to treatment or testing. (This information can often be tabulated). 

      

Numbers 
analysed 

15 a. Report the number of animals in each group included in each analysis. 
Report absolute numbers (e.g. 10/20, not 50%2). 

b. If any animals or data were not included in the analysis, explain why. 

      

Outcomes and 
estimation 

16 Report the results for each analysis carried out, with a measure of precision 
(e.g. standard error or confidence interval). 

      

Adverse events 17 a. Give details of all important adverse events in each experimental group. 

b. Describe any modifications to the experimental protocols made to 
reduce adverse events. 

      

DISCUSSION  

Interpretation/ 
scientific 
implications 

18 a. Interpret the results, taking into account the study objectives and 
hypotheses, current theory and other relevant studies in the literature. 

b. Comment on the study limitations including any potential sources of bias, 
any limitations of the animal model, and the imprecision associated with 
the results2. 

c. Describe any implications of your experimental methods or findings for 
the replacement, refinement or reduction (the 3Rs) of the use of animals 
in research. 

      

Generalisability/ 
translation 

19 Comment on whether, and how, the findings of this study are likely to 
translate to other species or systems, including any relevance to human 
biology. 

      

Funding 20 List all funding sources (including grant number) and the role of the 
funder(s) in the study. 
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