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i. Abstract 

 

AIMS: Movement screens purportedly identify compensatory kinematics that 

predispose athletes to injury (Kiesel et al., 2011). The efficacy of assessing select 

competencies and prescribing remedial training based on screen outcomes 

however remains equivocal. The Foundation Performance Matrix Screen© 

(FPMS) supposedly profiles injury risk, subsequently directing its independent 

motor control Dissociation Training (DT) (Mottram and Comerford, 2008). 

However, there appears to be no research evidencing that DT can improve FPMS 

score or reduce injury. Therefore this study aimed to investigate the dose-

response of DT on kinematic and kinetic measures of neuromuscular control in 

male elite academy footballers. 

METHOD: The dose-response to DT therefore remains to be established. With 

institutional ethics approval, elite U15/16 and U17/18 male academy footballers 

comprised group one (n = 6) (G1) and group two (n = 8) (G2) respectively. G1 

performed DT 1x week while G2 performed DT 3x week over eight weeks. 

Centre of pressure (CoP) total, anterior-posterior (X) and medial-lateral (Y) 

displacements (cm), sway velocity (cm∙s -1) and ellipse area (cm2) were recorded 

from participants’ non-dominant leg during a single leg stance test (SLST) and Y 

balance test™ (YBT). Force platform time to stabilisation (TTS), peak vertical 

ground reaction force (PVGRF) and loading rates were recorded from a 20cm 

bilateral drop jump landing (DJL). The FPMS and YBT were scored according to 

respective guidelines. All tests were performed barefoot. Cohen’s d effect size 

(ES) was calculated from differences in means. 
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RESULTS: Small ES for G1 (ES -0.180; 95% CI, −1.94 - 0.60) and G2 (ES 

−0.136; 95% CI, −0.12 - 1.62) FPMS scores were observed. Large ES for DJL 

loading rates (ES -1.89, 95% CI, 0.046 - 0.079) and YBT normalised anterior 

reach (ES 1.416, 95% CI, 66.30 - 73.29) were observed for G1 compared to G2 

where trivial (ES 0.072, 95% CI, 0.067 - 0.095) and moderate effects (ES 1.104, 

95% CI, 66.84 - 72.90) respectively, were observed. The magnitude of change 

for G1 was consistently greater for all DJL and YBT measures. Furthermore, 

SLST performance for G1 improved for all CoP measures whereas G2 decreased. 

CONCLUSION: The measures used to assess neuromuscular function indicate 

eight weeks DT had meaningful effects on neuromuscular control, however, the 

magnitude of effects were greater for G1 than G2. As SLST, YBT and DJL 

indicated greater effects and are all proposed to predict injury, they could be a 

suitable surrogate marker for assessing the effects of DT. These findings also 

suggest that a lower dose of DT is sufficient provided training is individualised. 
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The Dose-Response Effects of Dissociation Training on Measures of 

Neuromuscular Control during Performance Screening in Male Youth 

Footballers 

 

1.0 Introduction 

 

Understanding the physiological match demands and injury epidemiology of a 

sport is central to designing an effective training programme (Russell et al., 

2013, Di Salvo et al., 2007, Da Silva et al., 2007). While these parameters in elite 

adult footballers has been well documented (Bengtsson et al., 2013, Lundblad et 

al., 2013, Russell et al., 2013, Andrzejewski et al., 2012, Mendiguchia et al., 

2012, Ekstrand et al., 2011, Hagglund et al., 2009, Werner et al., 2009, Di Salvo 

et al., 2007, Bangsbo et al., 2006, Stolen et al., 2005, Edwards et al., 2003), few 

studies have analysed elite academy youth footballers across a range of age 

groups (defined for the purposes of this review of literature as players 

representing professional club’s academies, national or international centres of 

excellence, and international teams) (Deehan et al., 2007, Le Gall et al., 2007, Le 

Gall et al., 2006, Merron et al., 2006, Emery et al., 2005, Price et al., 2004, 

Kakavelakis et al., 2003, Volpi et al., 2003, Peterson et al., 2000). Elite adult 

players reportedly cover ~12km per game (Stolen et al., 2005) and perform up to 

250 high-intensity match actions (such as rapid accelerations and decelerations, 

short sprints, cutting and change of direction (COD), bursts of unilateral and 

bilateral jumping and landing, ball striking and tackling) every 4 to 6s, totalling 

1000 to 1400 per game (Di Salvo et al., 2007, Edwards et al., 2003, Young et al., 

2001). Players also reach and maintain high-intensity running thresholds for 
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ranges of 3m to 40m (Bangsbo et al., 1991), on average, every 70s (Stolen et al., 

2005). By comparison there is a greater discrepancy between average match 

distances covered and high-intensity match actions performed throughout elite 

academy age groups (Rebelo et al., 2014, Lago-Penas et al., 2011, Harley et al., 

2010). U12 and U18 have reportedly covered total match distances of 6.2km and 

9km respectively of which 9.2% comprised high-intensity match actions for both 

age groups (Lago-Penas et al., 2011). Whereas, U17 reportedly only covered 

5km to 7km but ~15% represented high-intensity match actions (Rebelo et al., 

2014). A corresponding trend between increased match exposure and absolute 

distance covered (r2 = 0.542, P = 0.001) has also been observed in older age 

groups (Harley et al., 2010). Such disparities have been attributed to increases in 

pitch size, match duration and match frequency in older age groups (Russell et 

al., 2013). Although, GPS running thresholds corrected to age-velocity 

characteristics (relative to m·min-1) have indicated no significant differences (P < 

0.05) between U12 to U16 for match distance covered at high- (30.4% [17.1% - 

42.6%]), very high- (11.9% [4.5% - 22.7%]) and maximal-intensity (3.6% [0.3% 

- 8.8%]) (Harley et al., 2010). These findings suggest that irrespective of pitch 

size and match duration elite academy footballers’ work-intensity profiles are 

comparable throughout all age groups. This is of particular importance as 

running, cutting and COD have consistently been reported as the predominant 

cause of injury in academy footballers (Cloke et al., 2012, Mendiguchia et al., 

2012, Hagglund et al., 2009, Price et al., 2004, Woods et al., 2004, Hawkins and 

Fuller, 1999).  
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Another compounding factor attributed to differences between age groups are the 

inherent variances in physical performance due to growth and maturational 

changes (Buchheit et al., 2010b). The rapid changes to youth players’ immature 

musculoskeletal system purportedly heighten their predisposition to overuse 

injuries (Mersmann et al., 2014). This has been proposed as a major factor why 

academy footballers have a higher non-contact vs. contact injury ratio and 

incidence of non-contact injuries compared to elite adult players (Mersmann et 

al., 2014, Johnson et al., 2009, Le Gall et al., 2007, Hawkins and Metheny, 

2001). Non-contact injury to the lower extremity also accounts for over 90% of 

the total incidence in elite academy football (Ekstrand et al., 2011, Hagglund et 

al., 2009, Price et al., 2004). While growth and maturational changes are 

commensurate with the onset of and circa-pubescent periods, the timing and rate 

that these changes occur varies greatly (Beunen and Malina, 2008). The present 

English Football Association’s (FA) long-term Elite Player Performance Plan 

(EPPP) however assumes that growth and maturation progress linearly with age 

groups. By failing to consider these factors the FA’s EPPP approach (to increase 

training and match intensity and frequency, pitch size and level of competition 

by age group) therefore possibly exacerbates injury incidence in academy players 

(Rumpf and Cronin, 2012). As the impact of injury in academy footballers’ can 

directly affect their physical development and skill acquisition, the possibility of 

future success may be lessened (Charness, 1985). A lack of empirical analysis on 

the physiological match demands and injury epidemiology in academy 

footballers however means it is inherently difficult to quantify specific motor 

tasks that can increase injury risk. This highlights the complexity of determining 



11 
 

non-contact injury risk factors as well as workloads for adaptation and recovery 

when designing injury prevention training programmes for academy players. 

 

A popular method of quantifying injury risk and programming subsequent 

remedial training is to employ a battery of kinematic competency assessments 

(Cook et al., 2006). A myriad of performance measures can be employed to 

assess an athlete’s performance level or athletic potential (Parchmann and 

McBride, 2011). Performance assessments however often only produce an 

outcome measure that is not sensitive enough to determine any compensatory 

kinematics (Chorba et al., 2010, Parchmann and McBride, 2011). Therefore, 

irrespective of the outcome measure’s relative score, poor motor patterns could 

be being reinforced potentially heightening an athlete’s predisposition to injury 

(Peate et al., 2007). Consequently, kinematic assessments of select physical 

competencies are commonly employed as predictors of injury (Kiesel et al., 

2011, Mottram and Comerford, 2008, Cook et al., 2006, Plisky et al., 2006). The 

validity of screening select physical competencies as predictors of injury 

however remains equivocal (Wingfield et al., 2004, Chalmers, 2002a). Likewise, 

empirical findings are inconsistent as to whether movement control and/or 

strength training prescribed in accordance with screen outcomes can enhance 

successive screen performance (McCall et al., 2014, Kiesel et al., 2011, Filipa et 

al., 2010, Kiesel et al., 2008, Cook et al., 2006, Plisky et al., 2006). As poor 

execution of select kinematic competencies is considered symptomatic of 

reduced motor control, movement control based remedial training is often 

preferentially focussed on ahead of traditional strength training (Hibbs et al., 

2008). This is based on a plethora of pathological evidence of injury indicating 
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impaired lumbo-pelvic hip complex (LPHC) function causes greater uncontrolled 

joint displacements (Verrelst et al., 2014, Wilkerson et al., 2012, Chuter and de 

Jonge, 2012, Willems et al., 2006, Willson et al., 2006, Willson et al., 2005, 

Niemuth et al., 2005, Leetun et al., 2004, Ireland et al., 2003). Furthermore, 

cognitive control has also been identified as a pathological factor of injury 

(Verrelst et al., 2014, Verrelst et al., 2013, Leetun et al., 2004, Ireland et al., 

2003, Fredericson et al., 2000, Bendjaballah et al., 1997). As movement control 

develops in a core-to-extremity and head-to-progression (Cook et al., 2006), this 

evidence advocates the implementation of movement control training in academy 

footballers could be desirable. A contemporary evidenced based Youth Physical 

Development model has advocated integrative neuromuscular training should 

always be present, in some capacity, to develop foundational motor skills in 

youth athletes (Lloyd et al., 2012b). The reinforcement of biomotor proficiency 

has also been proposed to maximise sport specific kinematic development and 

lower injury disposition in youth populations (Granacher et al., 2011, Myer et al., 

2011a, Myer et al., 2011b, Faigenbaum et al., 2009). Most integrative 

neuromuscular training protocols however are multifaceted. Although neural 

changes have been reported to occur as early as four weeks, the scope for 

adaptation in trained athletes is much smaller (Behm et al., 2002). Furthermore, 

the efficacy of independent movement control training on motor control in 

adolescent athletes remains equivocal (Wright et al., 2015, Filipa et al., 2010, 

Stanton et al., 2004). One such motor control training modality is dissociation 

training (DT) which is independent to and directed by the Foundation 

Performance Matrix Screen© (FPMS). Through correcting the FPMS identified 

uncontrolled movement, DT can purportedly accelerate identified assets 
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considered central to effective athletic performance and reduce injury risk 

(Mottram and Comerford, 2008, Comerford and Mottram, 2001b, Comerford and 

Mottram, 2001a). The concept of dissociated movement however has reportedly 

only been applied effectively in clinical settings during isolated muscle function 

(Tsao and Hodges, 2007, Jull et al., 2002, Sahrmann, 2002, Hides et al., 2001, 

O'sullivan, 2000, Hamilton and Richardson, 1998, Woolsey et al., 1988). The 

effectiveness of DT on lowering injury risk in an athletic youth environment 

therefore remains to be evidenced. Furthermore, owing to the FPMS novelty, 

there appears to be no studies that have investigated the efficacy of FPMS and its 

associated independent DT strategies. Therefore this study aimed to investigate: 

(1) the dose-response of eight weeks DT on FPMS performance; and (2) whether 

changes in FPMS are in line with other kinematic and objective kinetic measures 

of neuromuscular control in male elite academy footballers. 
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2.0 Literature Review 

 

2.1 Injury Epidemiology for Elite Youth Academy Football Players 

 

The immature musculoskeletal system of a youth footballer, notably circa-

pubescent, can heighten the risk of injury (Mersmann et al., 2014). Few 

longitudinal or large sample population studies however have investigated injury 

prevalence in elite academy footballers. To the author’s knowledge there is only 

one large scale investigation conducted in English elite academy footballers. As 

part of the FA’s medical injury audit Price et al., (2004) recorded 4773 players, 

aged 9 to 19 years, from 38 different English academies over two consecutive 

seasons (1999/2000 and 2000/2001). Price et al., (2004) reported 3805 injuries of 

which 50.4% and 48.7% occurred during competition and training respectively 

(with 0.9% accounting during no activity). An earlier investigation over three 

seasons (1994/95 - 1996/97) by Hawkins and Fuller (1999) however indicated 

competition accounted for 66% of youth players’ injury occurrence. 

Alternatively, Le Gall et al., (2006) reported an injury occurrence of 30.9% and 

69.1% for competition and training respectively for elite French youth players 

over 10 seasons (1993/94 - 2003/04). Despite longer study durations, the greater 

injury ratios between competition and training reported could be attributed to 

Hawkins and Fuller (1999) only investigating four English academies and Le 

Gall et al., (2006) a cohort of 66 players across three age groups each season 

(U14 = 24, U15 = 22 and U16 = 20). However, irrespective of injury ratios, high 

injury incidence per-1000 hours remain to be reported in elite academy 

footballers (Table 2.2 and Table 2.3). 
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Price et al., (2004) reported the most prevalent mechanisms of non-contact 

injuries during competition and training respectively were caused by running 

(16% and 23%), other non-contact (6% and 9%) and twisting/ turning (6% and 

8%). Correspondingly, Hawkins and Fuller (1999) also reported the primary 

mechanisms of non-contact injuries during competition and training as running 

(7% and 12%) and turning (3% and 19%). The remaining non-contact 

mechanisms reported comprised jumping, landing, and stretching or overuse, 

accounting for 8% and 9% (Price et al., 2004) and 12% and 8% (Hawkins and 

Fuller, 1999) of competition and training respectively. Alarmingly, the sum of 

non-contact injuries reported by Price et al., (2004) (36% and 49%) and Hawkins 

and Fuller (1999) (22% and 39%) for competition and training represent large 

percentages of the total (non-contact and contact combined) injuries reported. 

Hawkins and Fuller (1999) further calculated that mechanisms underpinning 

non-contact injuries accounted for 59% vs. 41% for contact injuries of the total 

reported. Comparably, Volpi et al., (2003) followed Milan’s professional 

academy players aged 9 to 19 years over four seasons, reporting non-contact and 

contact injuries accounted for 63.8% vs. 36.2% respectively. Emery et al., (2005) 

also reported a greater non-contact injury incidence of 53.85% vs. 46.15% for 

contact in U14, U16 and U18 elite Albertan academy league players. However, 

Emery et al., (2005) only analysed a single 13 week season which possibly 

explains the lower non-contact:contact injury ratio reported. By comparison, an 

investigation over three seasons in nine elite male adult European football teams 

indicated non-contact injuries only accounted for 26% vs. 73% for contact 

injuries (Hagglund et al., 2009). This evidence reinforces the premise that youth 

players are more susceptible to non-contact injury (Mersmann et al., 2014, Xu et 
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al., 2009, Gamble, 2008, Hawkins and Metheny, 2001). It should be noted 

however that non-contact injuries reported during competition (23%) and 

training (43%) by Hagglund et al., (2009) were comparable to Price et al., (2004) 

findings. 

 

Le Gall et al., (2006) and Emery et al., (2005) investigated injury risk according 

to age group. Le Gall et al., (2006) reported that U14 sustained significantly (P = 

0.04) more injuries per 1000-hours during training compared to U15 and U16. 

Furthermore, although there was no significant difference between groups (P = 

0.96) U14 had a greater injury rate than U15 and U16 players. However, U16 

sustained the greatest number of injuries per 1000-hours during competition. No 

significant difference (P > 0.05) was found for the severity of injuries in U14, 

U15 and U16. Similarly, Emery et al., (2005) also reported that U14 players in 

the top two Albertan elite divisions had a significantly (P = 0.04) greater relative 

risk of 2.45-injuries per 1000-hours. Furthermore, U14 had a greater injury rate 

per 1000-hours (7.88 [95% CI 4.51 - 12.77]) than U16 and U18. Likewise, U16 

(5.68 [95% CI 3.25 - 9.21]) compared to U18 (3.22 [95% CI 1.29 - 6.61]) had a 

greater injury rate as well as relative risk (U16 1.77 vs. U18 1.0 injuries per-1000 

hours) respectively. However, like Le Gall et al., (2006), no significant 

differences between age groups were observed. Emery et al., (2005) also found 

that the elite U14 were at significantly greater risk of injury than players in 

Division 2 (P = 0.003) and lower divisions (P = 0.0003). No significant 

differences were observed for the same in U16 and U18. 

 



17 
 

The impact of injury in academy footballers can directly effect a player’s 

physical development and skill acquisition, and therefore possibly future success 

(Charness, 1985). Price et al., (2004) classified injury severity by time missed 

(slight = 2 - 3 days; Minor = 4 - 7 days; Moderate = 1 - 4 weeks; Severe = >4 

weeks).  Of the injuries sustained during training and competition respectively, 

Price et al., (2004) found 25% and 24% were for minor, 46% and 48% for 

moderate as well as 18% and 20% for severe. These findings are commensurate 

with the findings of Hawkins and Fuller (1999), Le Gall et al., (2006), Hagglund 

et al., (2009) and Merron et al., (2006) (Table 2.1). Interestingly, although more 

injuries occurred during competition, Price et al., (2004) and Hawkins and Fuller 

(1999) representation of injury severity is proportionate to training. This suggests 

the mechanisms of injury during competition and training are similar, which may 

explain the prevalence of the location and nature of injuries reported in Table 2.2 

and Table 2.3. This cannot be ascertained for Le Gall et al., (2006), Hagglund et 

al., (2009) and Merron et al., (2006) as only a combined competition-training 

injury severity was reported. Nonetheless, minor and moderate severity injuries 

accounted for the majority of the total recorded by Price et al., (2004), Hawkins 

and Fuller (1999), Le Gall et al., (2006) and Merron et al., (2006). Although 

Hagglund et al., (2009) was an exception to this the author postulates this is 

likely because only 36 injuries were reported in a single age group. 
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Table 2.1: Injury Severity Prevalence in Elite Academy Players 

 

Price et al., 
(2004) 

Hawkins & Fuller 
(1999) 

Le Gall et al., 
(2006) 

Hagglund et 
al., (2009) 

Merron et 
al., (2006) 

Age Groups U9 - U19 NR U14, U15, U16 U17 U16 - U18 

Exposure TRN COMP TRN COMP T/C NS T/C NS T/C NS 

Injury Severity No. % No. % No. % No. % No. % No. % No. % 
Slight (2-3 Days) 183 10 180 8 6 11 18 17 357 31 26 72.2 

84 36 
Minor 4-7 Days) 459 25 466 24 23 40 29 29 337 29.3 1 2.8 

Moderate 1-4 Weeks) 842 46 912 48 22 39 47 43 344 29.9 5 13.9 88 37 
Severe (>4 Weeks) 330 18 393 20 6 11 15 14 114 9.9 4 11.1 64 27 

Percentage totals may be subject to rounding errors associated with independent components; TRN = Training; COMP = 

Competition; T/C NS = Injuries sustained during Training & Competition Not Specified 

 

Of the studies reported in Table 2.1, Table 2.2 and Table 2.3 only three reported 

time missed by a player per season and only one for games per injury. Price et 

al., (2004) found academy players missed on average 21.9 ± 33.63 days per 

season and 2.31 ± 3.66 games per injury. Hawkins and Fuller (1999) however 

reported that the average days missed per season were roughly one-week less for 

competition (15.2 days) and training (13.0 days), whereas Merron et al., (2006) 

reported roughly one-week more (28.7 days per season). This variance between 

studies however could be because smaller samples and/or longer study durations 

of three (Hawkins and Fuller, 1999) and four seasons (Merron et al., 2006) were 

used. Another consideration is that Merren et al., (2006) only followed one 

academy and reported a much greater percentage of severe injuries than the other 

comparative studies. Therefore, the greater average time missed due to injury 

could be a reflection of the clubs training and competition schedule as oppose to 

representative of all academy populations. 

 

Reported injuries to the lower limb account for 71% to 90% (Table 2.2) (Deehan 

et al., 2007, Le Gall et al., 2006, Merron et al., 2006, Emery et al., 2005, Price et 
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al., 2004, Volpi et al., 2003, Peterson et al., 2000, Hawkins and Fuller, 1999). 

The three most prevalent injury sites reported are the thigh, ankle and knee, with 

only Emery et al., (2005) reporting the groin and Volpi et al., (2003) the pelvis 

fractionally above thigh injuries (Table 2.2). Price et al., (2004) further classified 

that the hamstrings (34%) and quadriceps (25%) predominated the reported thigh 

injuries. Moreover, Price et al., (2004) reported muscular strains to the 

quadriceps (35%), hamstrings (33%) and hip adductors (20%) predominated 

recurring injuries. Correspondingly, Cloke et al., (2012) reported that the 

quadriceps (39.1%) sustained the greatest number of injuries, followed by the 

hamstrings (33.8%) and adductors (23.2%) (when investigating thigh muscle 

injuries in U9 to U16 from forty-one premier English clubs). However, Cloke et 

al., (2012) furthered that the hamstrings (40.8%) sustained a substantially greater 

number of severe injuries, followed by the quadriceps (34.3%) and the adductors 

(20.7%). Similarly, Le Gall et al., (2006) also reported that a high proportion of 

thigh injuries were to the hamstrings (25.4%) and quadriceps (26.8%), but added 

that strains affecting the groin (28.3%) was predominant. Interestingly, although 

not significantly different (P = 0.64), Le Gall et al., (2006) also found that U14 

were more susceptible than U15 and U16 to these prevalent injuries (72.1% vs. 

71.2% vs. 69.5%). U14 also evidenced a two-fold increased incidence of 

tendinopathies. This could be reflective of the timing of the growth spurt 

synonymous circa-14 years of age in males (Beunen and Malina, 2008).  

Similarly, Emery et al., (2005) found that U14 were at significantly (P = 0.01) 

greater relative risk of sustaining a slight or minor injury than U16 and U18. 

Likewise, U16 were at greater (P = 0.01) relative risk than U18 for sustaining 

minor injuries. These findings however are contradicted by Deehan et al., (2007) 
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who found the relative risk of injury for U14 was ~80%, whereas for U15 and 

U16 it was >90%, despite an injury incidence 0.6 per-1000 hours per player for 

all age groups. Likewise, Peterson et al., (2000) observed that injury incidence 

for U14 to U16 was lower than that for U16 to U18 high-level players (6.0 vs. 

6.6 per 1000-hours). 

 

Muscular strains, ligamentous sprains and muscular contusions predominated 

injury diagnosis ranging from 55% to 88% of the total injuries reported (Table 

2.3) (Deehan et al., 2007, Le Gall et al., 2006, Merron et al., 2006, Emery et al., 

2005, Price et al., 2004, Peterson et al., 2000, Hawkins and Fuller, 1999). Volpi 

et al., (2003) was the only exception reporting over a two-fold incidence of 

osteochondritis and fractures compared to muscular strains. Although, Volpi et 

al., (2003) investigated players circa-puberty who would have been more 

susceptible to growth disorders (Malina et al., 2004). Nonetheless, Hawkins and 

Fuller (1999) suggested the large incidence observed could be resultant of 

inadequate recovery from training and competition, and/or poorly designed 

strength and conditioning training. Price et al., (2004) reported ligament damage 

accounted for 28% of knee injuries of which 85% were to the medial collateral 

ligament (MCL). MCL injuries also accounted for 20% of recurring ligamentous 

sprains (Price et al., 2004). Consistently, Volpi et al., (2003) found the knee was 

the highest risk site (41%) and reported a considerably greater incidence of 

ligamentous sprains (Table 2.2 and Table 2.3). Moreover, Volpi et al., (2003) 

observed that 38% of knee injuries were caused by non-contact (24%) and 

overuse (14%). These findings correspond with Price et al., (2004) and Hawkins 

and Fuller (1999) findings that running as well as twisting/ turning are the 
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predominant mechanisms of non-contact injuries. Price et al., (2004) also 

reported that ligament damage accounted for 72% of all ankle injuries, with the 

anterior talofibular ligament (ATFL) representing 83% of all reported and 78% 

of recurring injuries. Similarly, Le Gall et al., (2006) reported that the majority of 

muscular strains were to the ankle (55.7%). These findings are also 

commensurate with other studies in table 2.2 that show the ankle, muscular 

strains and ligamentous sprains as a prevalent injury site and diagnosis 

respectively. However, unlike the aforementioned studies Peterson et al., (2000) 

recorded the nature of each injury to the prevalent lower extremity injury sites. 

Alarmingly, Peterson et al., (2000) reported that 50% for the groin, 19% for the 

thigh, 24% for the knee, 4% for the ankle and 41% for other lower leg sites was 

caused by overuse injuries. In addition, Peterson et al., (2000) reported that 90% 

for the groin, 54% for the thigh, 56% for the knee, 51% for the ankle and 57% 

for other lower leg sites accounted for non-contact injury. These findings are 

synonymous with the prevalent injury locations as well as the high-incidence of 

non-contact and recurring injuries reported by the aforementioned studies (Table 

2.2). As Peterson et al., (2000) was the only investigation to report the nature of 

injury for independent sites, the author therefore postulates that these findings are 

likely representative of elite academy players aged U14 to U18. Of the total 

injuries sustained by academy players Price et al., (2004) found that 54%, with 

Hawkins and Fuller (1999) reporting a significantly greater (P < 0.01) 52.3%, 

were to the dominant side. 
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2.2: The Impact of Growth and Maturation on Injury and Neuromuscular 

Control 

 

Le Gall et al., (2007) advocated that maturational status of players within 

chronological age groups should also be considered as an injury risk factor. As 

differences in biological maturity can effect physical performance (Buchheit et al., 

2010b) this can potentially create an unfair physical- and athletic-advantage during 

training and competition (Meylan et al., 2010, Malina et al., 2004). This could have 

implications for both contact and non-contact injuries (Malina et al., 2000). This may 

also, in part, explain why Cloke et al., (2012), Price et al., (2004), Malina et al., 

(2004), Volpi et al., (2003)  and Schmikli and Bol (1995) have all observed 

concomitant increases in injury incidence with age group, with a steeper rise from 

>14 years. For instance, male footballers aged 14 to 17 years with a tall stature of 

>165cm and weak grip-strength of <25kg had a greater prevalence of sustaining 

select musculoskeletal injuries (Backous et al., 1988). This relationship advocates 

somatic growth and maturational factors effecting strength development are 

precursors to injury. This study however should not be directly compared with the 

aforementioned as elite academy players were not used. Therefore the sample 

population are not likely to of had comparable training statuses.  

 

Le Gall et al., (2007) investigated U14 at the French centre of excellence over ten 

seasons as the mean chronological age of each group was synonymous with age of 

peak height velocity (APHV) (13.3 ± 0.3 years; range: 12.3 - 14.4 years). Based on 

biological age, maturational status was defined as early if older than 1.0 year, normal 

if within 1.0 year and late if younger than 1.0 year of chronological age. Although Le 
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Gall et al., (2007) found no significant differences (P < 0.05) between maturational 

groups for overall injury incidence, early and normal maturers had a higher 

incidence of moderate injuries than late maturers. Moreover, early maturers had a 

significantly higher incidence of severe injuries resulting in an >4 week absence 

from training and competition. This could be reflective of the greater rate of the 

growth spurt and maturational changes observed in early maturers which would 

intensify the risk of injury (Beunen and Malina, 2008, Gasser et al., 2001, Hägg and 

Taranger, 1991). The extent of non-contact and contact injuries however was not 

reported. In support, Johnson et al., (2009) followed 292 players aged 9 to 16 years 

from Manchester United’s academy over six seasons (2001-07) evidencing 

comparable findings to Le Gall et al., (2007). Johnson et al., (2009) analysis of 

covariance (ANCOVA) indicated no significant differences between maturational 

status and injury incidence after adjusting for competition and training exposure, 

stature and position played (F = 0.3, P = 0.73). Johnson et al., (2009) general log 

linear analysis did conclude however that maturational status, as well as competition 

and training exposure, explained 47% of the variance in injury incidence. Both 

investigations therefore advocate that players of differing maturational statuses can 

train and compete alongside one another. However, while Johnson et al., (2009) 

analysis confirms that maturational status and playing exposure is a risk factor, Le 

Gall et al., (2007) advocates that early and late maturers could be at a greater risk to 

certain mechanisms injury. 

 

The English FA implements a long-term Elite Player Performance Plan (EPPP) 

whereby training and match intensity and frequency, match duration, pitch size, and 

level of competition all increase with age group. However, the EPPP’s limited 



26 
 

assumption that growth and maturation progress linearly with chronological age fails 

to account for the associated intrinsic risk factors that heighten injury risk in youth 

footballers (Rumpf and Cronin, 2012). For instance, the immature musculoskeletal 

system undergoes architectural changes such as rapid increases in limb length and 

mass, subsequently creating greater moments of inertia (Hawkins and Metheny, 

2001, Jensen and Nassas, 1988). For example,  Hawkins and Methany (2001) found 

increases in limb mass and moment of inertia resulting from 4cm increased leg 

growth, in the absence of MTU hypertrophy, resulted in a 30% greater force 

requirement (of the thigh musculatures maximum pre growth spurt) to generate the 

same angular acceleration to kick a football. However, there is a delay in the 

structural development of musculo-tendon units (MTU) and ligaments creating a 

time lag whereby the tensile strength of connective tissue remains closer to their 

failure limits (Hawkins and Metheny, 2001). Most notably is the time delay in the 

growth of muscle length and cross-sectional area (Xu et al., 2009). This is important 

as mechanical and morphological changes to the MTU influence both athletic 

performance (Stafilidis and Arampatzis, 2007, Arampatzis et al., 2006) and injury 

predisposition (Couppé et al., 2013, Hansen et al., 2013, Arya and Kulig, 2010). For 

instance, the subsequent pre-load on the MTU increases, applying greater force 

through the tendons and apophyses (Mersmann et al., 2014). Consequently, this can 

lead to reduced flexibility and tissue stiffness around the joint, early onset of 

neuromuscular fatigue, and/or the manifestation of overuse and overload injuries 

such as patellar tendinopathies and apophysitis (as evidenced in Table 2.3) 

(Mersmann et al., 2014). As APHV is indicative of the onset of puberty, considered 

to occur between the ages of 13.8 and 14.2 years in males (Meylan et al., 2014, 

Philippaerts et al., 2006, Bayli and Hamilton, 2004), identifying APHV is critical for 
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programming the appropriate type and volume of training to enhance athletic 

potential and reduce the risk of injury. 

 

Just like the musculoskeletal system, neurophysiological adaptations occur 

analogously during maturation. For instance, pre- and circa-pubescent youths have 

evidenced more reactive (closed-loop) feedback neural pathways, subsequently 

reducing neuromuscular efficiency (Lloyd et al., 2011b, Lazaridis et al., 2010, Oliver 

and Smith, 2010, Grosset et al., 2007, Croce et al., 2004, Lambertz et al., 2003). This 

type of monosynaptic inhibition is considered to be a protective mechanism for the 

immature musculoskeletal system (Lazaridis et al., 2010, Croce et al., 2004, 

Lambertz et al., 2003). Whereas feed-forward (open-loop) neural pathways and the 

structural development of the MTU, has been evidenced to improve in post-

pubescent youths (Lloyd et al., 2011a). This advocates that natural alterations in 

neuromuscular function occur during maturation. Causations for the natural 

development of neural strategies during maturation have been attributed to faster 

muscle fibre twitch-times (Lin et al., 1997), increased intrafusal fibre development 

(Grosset et al., 2007) and decreased golgi tendon organ (GTO) size and number 

(Ovalie, 1987). All of which have a synchronous effect with the structural 

development of the immature musculoskeletal system (Gamble, 2008). For instance, 

maturity-related increases in androgen concentration levels would promote muscle 

fibre-type development and differentiation (Viru et al., 1999). Likewise, decreased 

GTO number and size are likely facilitated by an increase in MTU length and cross-

sectional area (Xu et al., 2009, Ovalie, 1987). In addition, it is well documented that 

muscle strength increases during maturation (O’Brien et al., 2010). Yet it has also 

been consistently reported that changes in muscle mass and increased joint torque 
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(through increased limb lengths) do not account fully for enhanced force production 

(De Ste Croix et al., 2003, De Ste Croix et al., 2001). This therefore suggests 

alterations in neural circuitry. 

 

Consideration of intrafusal fibres and GTO functions are of particular importance 

when selecting appropriate training modalities to enhance intermuscular coordination 

in adolescent athletes. This is because they operate in concert to maximise 

stabilisation and control across a joint by balancing the force output of opposing 

musculature (Zatsiorsky and Kraemer, 2006). Intrafusal fibres are specialised 

sensory afferent y-neurons, coiled around muscle spindles located in the body of 

skeletal muscle, which monitor the rate and extent of eccentric contractions 

(Chalmers, 2002b). These y-afferent neurons synapse with the muscle’s Ia-efferent 

neurons within the spinal cord to initiate a myotatic reflex response, potentiating the 

ensuing contraction (de Villarreal et al., 2009, Jamurtas et al., 2000). Acting as an 

injury safeguard, GTO are also specialised neurons located near the MTU junction 

that monitor the tension generated by the agonist (Chalmers, 2002b). When the MTU 

is overloaded, GTO trigger Ib-afferent interneurons that synapse with the muscle’s 

Ia-efferent neurons within the spinal cord (Moore, 2007). This inhibits the intrafusal 

fibres’ impulses from the agonist by means of a feedback pathway (Gabriel et al., 

2006). However, this inherent sensory feedback can limit the effectiveness to stiffen 

and stabilise a joint when tolerating high ground reaction forces (GRF) (Wilson and 

Flanagan, 2008) and joint shear forces (Lephart, 2000). Furthermore, injuries 

through poor agonist-antagonist muscle balance ratios have been reported (Jaric et 

al., 1995). This reciprocal inhibition therefore adheres to the premises that, firstly, 

skilled movements need to be pre-programmed (Verkhoshansky and Siff, 2009) and, 
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secondly, coordinated co-activation is controlled at a supra-spinal level through 

programmed sensory modulation of voluntary movement as opposed to reflex 

actions (Nielsen, 2004). This further highlights the importance of promoting feed-

forward processes as part of an integrative neuromuscular training programme in 

adolescent youths (Myer et al., 2013, Lloyd et al., 2012a, Lloyd and Oliver, 2012, 

Myer et al., 2011b, Ford et al., 2008). 

 

 

2.3 Kinetic Assessments of Neuromuscular Control 

 

The maintenance of posture and balance equilibrium is controlled by the central 

nervous system (CNS) through visual, vestibular and somatosensory inputs (Ruhe et 

al., 2010, Matsuda et al., 2008, Paillard et al., 2006, Vuillerme et al., 2005, Fransson 

et al., 2004, Balasubramaniam and Wing, 2002, Bringoux et al., 2000). By 

measuring plantar centre of pressure (CoP) injury prevalence and adaptations to 

specific physical training can be quantified (Abdul Razak et al., 2012). This is 

because plantar CoP measures are proportional to: ankle torque generated by body 

segment displacement (Balasubramaniam and Wing, 2002, Winter, 1995);  

proprioceptive and feed-forward neural pathways each initiating different muscle 

synergies dependent on whether a task is static or dynamic (Baratto et al., 2002, 

Gatev et al., 1999); and the regulation of joint stiffness by the mechanical properties 

of the surrounding musculature (Balasubramaniam and Wing, 2002, Baratto et al., 

2002). All contribute to the equilibrium of balance and maintenance of postural 

control. As the point of application of the global ground reaction force (GRF) vector 

around which the body sways, CoP can be quantitatively measured through anterior-
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posterior and medial-lateral sway displacement, sway velocity and sway ellipse area 

(Takacs et al., 2014, Ruhe et al., 2010, Matsuda et al., 2008, Mochizuki et al., 2006, 

Kitabayashi et al., 2003, Masani et al., 2003). Any oscillations of the body’s centre 

of mass (COM) outside of the CoP is often described as ‘postural sway’ (Mochizuki 

et al., 2006). Feed-forward and proprioceptive neural pathways purportedly modulate 

postural control and balance via anticipatory postural adjustments and compensatory 

postural adjustments  respectively (dos Santos et al., 2014). Both respond to changes 

in the state of the body signalled by the magnitude of the COM’s displacement and 

velocity (Masani et al., 2003). This velocity feedback is central to anticipatory 

postural adjustments owing to the inevitable electromechanical delay in neural 

activation from proprioceptive mechanisms (Voight et al., 1998).  

 

It is during perturbed movements that challenge postural control that pathological 

mechanisms are often signalled by increases in CoP sway displacement (Knapp et 

al., 2011, Ruhe et al., 2010, Ross et al., 2009, Santos and Aruin, 2009). This premise 

holds true for both static and dynamic movements when maintaining COM within 

the base of support (BOS) in healthy individuals. Furthermore, individuals with 

superior coordination during simultaneous upper and lower body displacement have 

indicated reduced COM displacement and CoP sway (Stapley et al., 1999). Basnett 

et al., (2013) however suggested that individuals with chronic ankle instability could 

also demonstrate decreased CoP sway displacement during dynamic movements, 

postulating impaired sensory function around the ankle would limit the magnitude of 

displacement achievable. Basnett et al., (2013) based this premise on a strong 

correlation between Y Balance Test™ (YBT) composite score of reach distances and 

ankle dorsi flexion range (r = .30, r2 = .09, P = 0.02). Conflictingly however, 
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Hubbard et al., (2007b) also investigated the YBT evidencing a positive bivariate 

correlation between increased CoP sway velocity and sway area (r = 0.69, P = 

0.001) for individuals with chronic ankle instability. In addition, Hubbard et al., 

(2007b) found correlations between hip extension strength and dorsi flexion peak 

torque (r = .43, P = 0.01) and hip abduction strength and CoP sway area (r = .49, P 

= 0.01). This is reinforced by the premises of dos Santos et al., (2014) and Kiers et 

al., (2012) that afferent pathways between the ankle and the LPHC are associated. 

Therefore all these considerations need to be accounted for when interpreting CoP 

measures. 

 

Barone et al., (2011) and Matsuda et al., (2008) compared dominant and non-

dominant kicking legs plantar CoP sway characteristics during a single leg stance 

test (SLST) in adult amateur footballers. Although not significantly different, both 

investigations evidenced decreased postural sway displacement (cm) and velocity 

(cm·s1) on the non-dominant leg. However, Barone et al., (2011) premised that this 

was likely attributable to superior sensory feedback through visual input. However, 

Matsuda et al., (2008) further found that compared to swimming, basketball and non-

athletes, footballers demonstrated significantly (P < 0.05) lower high-frequency 

anterior-posterior and medial-lateral sway displacement (cm) for both legs. Matsuda 

et al., (2008) postulated that irrespective of the SLST isometric nature, the greater 

size and mass of the torso over the narrowed BOS creates an inverted pendulum. 

Therefore, any oscillations outside of the BOS (which is also the CoP during 

unilateral stance) would result in fast accelerations of the COM. As reduced high-

frequency sway is indicative of anticipatory postural adjustments neural control 

(Matsuda et al., 2008) whereas low-frequency sway is indicative of visual inputs 
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(Barone et al., 2011), Matsuda et al., (2008) hypothesised that footballers 

demonstrated both superior anticipatory postural adjustments and compensatory 

postural adjustments pathways. Paillard et al., (2006) investigated adult national  and 

regional  level footballers who participated in football training every day and twice a 

week respectively. All participants had a minimum of 10.0 ± 3.0 years playing 

experience and had been free from injury for six months. Using the SLST on 

player’s non-dominant kicking leg, Paillard et al., (2006) found significant 

differences (P = 0.001) between groups for CoP ellipse area (cm2) (national: 30.1 ± 

10.8 cm2 vs. regional: 49.1 ± 25.3 cm2) (P = 0.01) and sway velocity (cm·s1) 

(national: 1.67 ± 0.5 cm·s1 vs. regional: 2.17 ± 0.5 cm·s1). These findings infer that, 

firstly, more elite players demonstrate superior motor control and, secondly, this is 

likely due to a dose-response to training. Using the same criterions, Pau et al., (2014) 

investigated 21 male elite academy footballers from two Italian professional teams 

that trained for a minimum of six hours per week (age 14.5 ± 0.2 years, stature 164.5 

± 5.6 cm, body mass 56.8 ± 6.8 kg). CoP variables for dominant and non-dominant 

kicking legs (tested on separate days) were measured using an RS Footscan pressure 

mat pre and post a repeated sprint ability (RSA) protocol. Designed by Buchheit et 

al., (2010a) to simulate match induced fatigue in adolescent male footballers the 

RSA comprised 6 x 2 15m shuttle sprints with 20s passive recovery. Pau et al., 

(2014) found significant (P < 0.05) increases for CoP ellipse area (cm2), maximum 

anterior-posterior displacements (cm) and sway velocities (cm·s1). Medial-lateral 

sway velocity (cm·s1) was the only exception when comparing baseline and fatigued 

values. No interaction however was found between the dominant and non-dominant 

kicking leg for rest and fatigued conditions. A fatigue-index from the RSA protocol 

and a fatigue/rest sway ratio was further calculated to investigate if a correlation 
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between the fatigue-index and sway-fatigue/rest-ratio existed. Pau et al., (2014) 

observed a significant positive Pearson’s correlations for CoP total displacement 

(cm) (r = 0.631, P = 0.01), anterior-posterior sway velocity (cm·s⁻1) (r = 0.577, P = 

0.01) and medial-lateral sway velocity (cm·s1) (r = 0.529, P = 0.014) but for the 

non-dominant leg only. This therefore suggests the non-dominant leg fatigues at 

greater rate during simulated match play and that postural sway increases with 

neuromuscular fatigue. As Matsuda et al., (2008) and Barone et al., (2011) only 

compared adult amateur footballers with other amateur athletes and non-athletes, it 

remains unknown how much the level of footballing ability selects for players with 

superior balance and postural control. While Paillard et al., (2006) findings advocate 

elite footballers demonstrate superior motor control to maintain balance, supported 

by Matsuda et al., (2008) inverted pendulum concept, Pau et al., (2014) show both 

dominant and non-dominant legs fatigue at a similar rate. 

 

Neuromuscular control measures derived from force plate data can also be employed 

to assess postural stability during the transition from a dynamic to a stationary state  

(Wikstrom et al., 2004). A common assessment is time to stabilisation (TTS) and 

associated peak vertical ground reaction forces (PVGRF) and loading rates during a 

landing from a jump or predetermined drop-height (Ebben et al., 2010). Traditionally 

TTS has been employed to progress plyometric exercise intensity as the stress placed 

on the MTC can be quantified by the objective ground contact time (GCT) and 

VGRF measures (Flanagan et al., 2008). However, TTS has also been used to 

investigate the effects of functional ankle instability (functional ankle instability) on 

balance (Ross et al., 2005) and comparing GRF attenuation between kicking and 

stance limbs (Ross et al., 2004). This is because anticipatory postural adjustments 
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modulate ankle extensor activation prior to stance phase which prevent the body 

from destabilising under high GRFs (dos Santos et al., 2014). However, chronic 

ankle instability can inhibit postural control because compensatory postural 

adjustments (indicative of proprioceptive pathways) affect afferent signals of the 

LPHC (dos Santos et al., 2014, Kiers et al., 2012). This was evidenced by Ross et al., 

(2005) who found a significant difference (P = 0.03) and a moderate effect (ES = 

0.4) between TTS for adults with functional ankle stability (1.98 ± 0.81s) and 

functional ankle instability (1.45 ± 0.30s). In support, Rowley and Richards (2015) 

found that peak VGRF (P = 0.001, cohen’s d ES = 0.80) and loading rates (P = 

0.001, cohen’s d ES = 0.81) significantly decreased with increases in plantar-flexion 

range of motion. This may explain in part why Ross et al., (2005) evidenced greater 

TTS in the functional ankle instability group. Similarly, Ross et al., (2004) compared 

TTS and PVGRF loading rates on 30 amateur adult footballers dominant and non-

dominant ball-striking legs using a unilateral 36cm drop-jump landing (DJL). 

Despite the premises that the stance/ non-dominant leg often exhibits superior motor 

control (Kellis and Katis, 2007, Kellis et al., 2001), no significant differences (P < 

0.05) were found between the dominant (TTS = 2.57 ± 1.02s, PVGRF loading rate = 

0.09 ± 0.01s) and non-dominant (TTS = 2.65 ± 1.00s, PVGRF loading rate 0.08 ± 

0.0s) legs. Ross et al., (2005) and Ross et al., (2004) findings however are limited as 

they only sampled VGRF at 180Hz and 400Hz respectively. Whereas a systematic 

review of literature by Niu et al., (2014) found that VGRF values were significantly 

less (P = 0.03) when sampled at <1000Hz than compared to at >1000Hz.  

 

Force plate data sampled at 1000Hz in male and female adolescent athletes has also 

been employed successfully to assess LPHC control and knee torque moments (Myer 
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et al., 2011a, Hewett et al., 2005, Myer et al., 2005, Hewett et al., 1999, Hewett et 

al., 1996). Furthermore, owing to its objectivity and relative ease to execute, TTS has 

been advocated as a more practical measure of neuromuscular function than 

contemporary kinaesthetic assessments (Wikstrom et al., 2004). This is because 

GRFs have been associated with lower extremity injury (Hreljac et al., 2000, Mizrahi 

and Susak, 1982) for which joint range of motion and angular velocity under a given 

force will govern the amount of energy dissipated when landing (Fong et al., 2011, 

Kulig et al., 2011, Yeow et al., 2009, Yu et al., 2006). For instance, Hewett et al., 

(2006) found that circa- and post-pubertal male and female high school athletes with 

greater LPHC control decreased VGRF and knee valgus torque during 31cm DJL. 

Increased VGRF have also been correlated with knee abduction moments (r = 0.88, 

P = 0.001) in high school athletes (Hewett et al., 2005). Similarly, Hewett et al., 

(2005) previously observed a 20% difference in VGRF between athletes with a 

history of ACL injury vs. no injury. Meta-analysis testing has also evidenced that 

greater loading rates were associated with individuals that had sustained lower 

extremity stress fractures (Zadpoor and Nikooyan, 2011). This evidence indicates 

PVGRF loading rates are a pathological risk factor of lower extremity injury. Oliver 

et al., (2008) findings highlight the importance of the DJL assessment for youth 

footballers. Oliver et al., (2008) investigated bilateral 20cm DJL pre and post a 42-

minute soccer-specific intermittent non-motorised treadmill fatiguing protocol 

(simulating the demands of one-half of match play) in amateur youth footballers 

aged 15.8 ± 0.4 years (stature 1.73 ± 0.06 m and body mass 59.8 ± 9.7 kg). While 

impact force (N) sampled at 1000Hz was the only significantly different (P < 0.05) 

GRF variable pre (2135 ± 369N) and post (2499 ± 422N) increases in PVGRF were 

still observed. This indicates why TTS has been advocated as an appropriate measure 
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in youth populations, notably during circa-pubescent periods (Barber-Westin et al., 

2005), where postural stability is central to establishing solid foundational strength 

and reducing the risk of injury (Wikstrom et al., 2009). 

 
 
 
2.4 Kinematic Assessments of Neuromuscular Control to Prescribe Training 

 

Kinematic competency assessments are used to evaluate whole-body dynamic 

stability, identify asymmetries and/or kinematic deficits, monitor rehabilitation 

progress, and to provide a baseline to prescribe individualised remedial training from 

(Overmoyer and Reiser, 2013, Kiesel et al., 2011, Parchmann and McBride, 2011, 

Chorba et al., 2010, Filipa et al., 2010, Hale et al., 2007, Plisky et al., 2006, Gribble 

et al., 2004, Olmsted et al., 2002). However, select physical competencies are 

principally employed to predict injury as field performance assessments often only 

produce an outcome measure that is not sensitive to compensatory kinematics 

(Chorba et al., 2010, Parchmann and McBride, 2011). Therefore, irrespective of the 

outcome measure’s relative score, poor motor patterns could be being reinforced 

potentially heightening injury risk (Peate et al., 2007). For instance, Mornieux et al., 

(2014) found under decreasing time constraints (850ms, 600ms and 500ms) lateral 

trunk flexion increased ~150ms prior to foot placement in adult amateur footballers 

performing pre-planned cutting manoeuvres. However, while increases in lateral 

trunk flexion facilitated task execution, a linear regression with increased knee 

abduction moment (r = 0.41, P = 0.009) was also evidenced (Mornieux et al., 2014). 

Unanticipated foot placement has been associated with high ankle and knee injury 

incidence (Verrelst et al., 2014, Wilkerson et al., 2012, Chuter and de Jonge, 2012, 
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Willems et al., 2006, Willson et al., 2006, Willson et al., 2005, Niemuth et al., 2005, 

Leetun et al., 2004, Ireland et al., 2003), which is also shown in table 2.2 as 

prevalent site of injury in academy footballers. While the validity of kinematic 

screening remains equivocal (Wingfield et al., 2004, Chalmers, 2002a), 

compensatory kinematics during select task execution are considered symptomatic of 

reduced motor control (Parchmann and McBride, 2011, Chorba et al., 2010, Mottram 

and Comerford, 2008, Peate et al., 2007, Cook et al., 2006). Hence why remedial 

based movement control training is often preferentially focused on ahead of 

traditional strength training (Hibbs et al., 2008). 

 

Conceptually, a controlled movement is defined as stabilisation of the LPHC 

musculature under perturbations in order to control the body’s COM displacement 

(Filipa et al., 2010, Mottram and Comerford, 2008, Zazulak et al., 2007, Hewett et 

al., 2006, Won and Hogan, 1995). As greater variability in COM displacement is 

associated with postural instability (van Emmerik and van Wegen, 2002, Blackburn 

et al., 2000), anticipatory postural adjustments and compensatory postural 

adjustments neural control can be predicted from the velocity feedback. However, 

the intensity, velocity and type of muscle contraction can all affect asymmetry and 

movement control (Overmoyer and Reiser, 2013). The majority of match actions 

such as running gait cycle, cutting and COD, ball dribbling and striking, tackling and 

bounding require unilateral stabilisation (Pau et al., 2014). During upright unilateral 

stance an individual’s BOS decreases resulting in a shift in the COM to realign the 

body’s weight over the BOS and CoP (Takacs et al., 2014). Foot placement of the 

stance leg therefore will govern the position of the CoP subsequently determining 

the direction that the COM can be accelerated in (Sadeghi et al., 2001, Patla et al., 
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1999, Beckman and Buchanan, 1995). Furthermore, during foot placement of the 

stance leg proprioceptive afferent signals at the ankle modulate postural adjustments 

at the LPHC in response to COM displacements (Friel et al., 2006, Bullock-Saxton 

et al., 1994). By the same action, the LPHC can modulate changes at the ankle (Friel 

et al., 2006, Bullock-Saxton et al., 1994). For instance, increased excursion distances 

on the YBT, simulating a single leg squat motor pattern, reportedly represents 

superior control, strength, balance and active range of motion at the ankle, knee and 

LPHC (Munro and Herrington, 2010, Hale et al., 2007, Plisky et al., 2006, Gribble et 

al., 2004, Olmsted et al., 2002, Earl and Hertel, 2001). Increased hip abduction 

significantly (P < 0.05) correlates with hip extension strength (r = .70), as well as 

both additionally correlating with increased posterior-medial excursions (r = .51) 

and posterior-lateral (r = .49) excursions respectively (Hubbard et al., 2007b). Hip 

abduction strength also positively correlates with CoP sway area (r = 0.49) 

advocating increased LPHC strength assists both dynamic and static motor control 

(Hubbard et al., 2007b). Furthermore, independent reach distances have been 

evidenced to identify individuals with chronic ankle instability (Plisky et al., 2009, 

Hubbard et al., 2007a). Hubbard et al., (2007b) furthered that individuals with 

chronic ankle instability indicated positive correlations between increased CoP sway 

area and sway velocity  (r = 0.69, P = 0.001) when performing the YBT. Plisky et 

al., (2009), Hubbard et al. (2007a) and Hubbard et al., (2007b) findings therefore 

reinforce the notion that LPHC weakness could be a pathological factor of chronic 

ankle instability and vice versa. Moreover, a three-fold increase in the risk of lower 

extremity injury was evidenced by Plisky et al., (2006) in 130 male high-school 

basketball players aged 14 to 18 years with a YBT composite score less than 94% of 

leg length. Asymmetrical anterior reach differences of >4cm between left and right 
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feet also indicated a two-and-half-fold increase in the likelihood of lower extremity 

injury.  

 

The efficacy of using kinematic assessments to predict injury risk, monitor training 

progress and to prescribe training from in youth population remains to be elucidated. 

Filipa et al., (2010) investigated female footballers (EXP: 15.4 ± 1.5 vs. CON: 14.7 ± 

0.8 years) participating in 16 sessions over eight weeks of Integrative Neuromuscular 

Control Training focussed on enhancing trunk stabilisation and lower extremity 

strength. The EXP Integrative Neuromuscular Control Training comprised stable and 

unstable training, proprioceptive landings, plyometrics, and traditional strength and 

power exercises. As the YBT was used as the pre and post assessment of motor 

control, Filipa et al., (2010) ensured that none of the exercises replicated YBT 

kinematics to reduce learning effects. The EXP YBT composite scores significantly 

improved on left (pre 96.9% ± 10.1% & post 103.4% ± 8.0%; P = 0.04) and right 

(pre 96.4% ± 11.7% & post 104.6% ± 6.1%; P = 0.03) legs. No significant changes 

however were observed for the CON left (pre 97.4% ± 7.2% & post 93.6% ± 5.0%; 

P = 0.09) or right (pre 95.7% ± 5.2% & post 94.4% ± 5.2%; P = 0.15) leg YBT 

composite score. Further analysis also indicated significant increases and large 

partial η2 ES for EXP right (P = 0.008, η2 ES 0.41) and left (P = 0.04, η2 ES 0.27) 

legs posterior-lateral, as well as posterior-medial reach distances for the left leg (P = 

0.03, η2 ES 0.3). Similarly, Wright et al., (2015) matched 22 adolescents by 

Functional Movement Screen™ (FMS) composite score. The EXP (13.0 ± 0.8 years) 

participated in 4 x 30-minute sessions over four weeks. Training focussed on quality 

of fundamental movement skills comprising exercises comparable to the FMS 

assessments which were all directed by the FMS’s advanced corrective exercise 
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manual (Cook, 2010). Whereas the CON (13.8 ± 0.8 years) only participated in 

generic multisport activities. Both groups had comparable exposure time to their 

respective training. However, within group changes were comparable with EXP and 

CON both indicating no smallest worthwhile change (= >0.2 ±SD) and only trivial 

effects (based on adjusted change scores, 90% confidence limits [CL]) for FMS 

composite score. These findings infer that the dose-response to short-term 

independent fundamental movement skills training was not sufficient to overcome 

the stimulus presented by competitive sports play. Another issue with screening in 

youth populations was evidenced by Lloyd et al., (2015). Previously, in adult 

athletes a correlation between low FMS-score and injury (r = .76, P = 0.02) as well 

as a score of >14 has been significantly (P = 0.04) associated with injury (Chorba et 

al., 2010). Investigating male academy footballers from UK professional clubs Lloyd 

et al., (2015) found that U16 were more mature than U13 and U11, as well as 

significantly (P < 0.05) outperformed them on the FMS (Table 2.3). However, when 

an ANCOVA was applied to maturation, no significant between group differences 

were observed indicating that maturational status influences screen outcome. This 

also indicates that Chorba et al., (2010) findings that a score >14 identifies high risk 

athletes should not be applied in youth populations. As the FMS tests inline lunge, 

active straight leg raise, and rotary stability are biomechanically comparable to the 

FPMS tests three, five, seven and nine (Table 2.5), the FPMS could also be affected 

by maturational status. However, due to the novelty of Lloyd et al., (2015) findings 

and the absence of any literature supporting the FPMS this can only be inferred. 
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Table 2.4: Lloyd et al., (2015) Participant Characteristics and Baseline Composite 

FMS Scores 

Age Group Chronological Age 
(Years) APHV (Years) Baseline FMS 

Composite Score 
U11 11.2 ± 0.5 - 2.78 ± 0.4  12.0 ± 1.5* 

U13 13.2 ± 0.2  - 1.44 ± 0.79  12.5 ± 3.0 * 

U16 15.6 ± 0.7  + 1.25 ± 0.41  16.0 ± 2.0 

* Denotes significant (P < 0.05) difference to U16 baseline FMS composite score before ANCOVA applied to 

maturational status 

 

 

2.4.1 The Foundation Performance Matrix Screen© 

 
 
The Foundation Performance Matrix Screen (FPMS) is a kinematic assessment that 

creates a performance profile determining performance assets and priority injury risk 

factors (Mottram and Comerford, 2008). This performance profile subsequently 

directs the prescription of the FPMS independent dissociation training (DT) 

strategies. Through correcting the FPMS identified uncontrolled movement, DT can 

purportedly accelerate identified assets considered central to effective athletic 

performance and reduce injury disposition (Mottram and Comerford, 2008). 

However, while this concept of dissociated movement has been applied effectively in 

clinical settings (Sahrmann, 2002, Hamilton and Richardson, 1998, Woolsey et al., 

1988), the effectiveness of DT on lowering injury predisposition and enhancing 

athletic performance remains to be evidenced. Furthermore, owing to the FPMS 

novelty, to the author’s knowledge there are no studies that have investigated the 

efficacy of FPMS and its associated DT strategies. 
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The FPMS assesses uncontrolled movement in frontal, sagittal and transverse planes 

permitting the detection of compensatory motor control synergies with regard to 

anatomical location and direction (Comerford, 2006). Comprising five low-threshold 

and five high-threshold tests the FPMS assesses slow-low and fast-high load motor 

control tasks to identify neural inhibition and weakness respectively (Table 2.5) 

(Mottram and Comerford, 2008). This is achieved by evaluating non-fatiguing 

alignment and coordination impairments through low-threshold testing, and 

dysfunction under fatiguing strength and speed during high-threshold tests (Mottram 

et al., 2014). All ten tests are multi-joint and assess specific kinetic chain 

dysfunctions at eight sites (upper neck, lower neck, upper back, shoulder blade, 

shoulder joint, low back/ pelvis, hip and lower leg) and in six directions (flexion, 

extension, rotation, side-bend, abduction and adduction). In addition, each test has 

six pass or fail questions regarding whether predetermined motor tasks can be 

controlled. Motor control dysfunction therefore can be attributed to specific sites, 

directions and loads (i.e., low- and high-threshold). This design purportedly allows 

practitioners to determine mechanical subgroups which may be the source of 

dysfunction more accurately, assisting the direction of subsequent movement control 

retraining strategies (Dankaerts et al., 2006, Sahrmann, 2002, Comerford and 

Mottram, 2001a). 
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Table 2.5: The Foundation Performance Matrix Screen Test Battery Order 

Low Threshold Tests 

 1. Double Knee Swing 
 2. Single Leg 1/4 Squat + Hip Turn 
 3. Bridge + Straight Leg Lift & Lower 
 4. Controlled Shoulder Internal Twist 
 5. Four Point (Position) - Reach Forward & Back 

High Threshold Tests 
 6. Supine (Position) - Single Straight Leg Heel Touch 
 7. Plank + Lateral Twist 
 8. One Arm Wall Push 
 9. Split Squat + Fast Feet Change 
 10. Lateral Stair Hop + Rotational Landing Control 

 

The FPMS is grounded on evidence that synergistic dominance compensates when 

chronic and/or recurring musculoskeletal pain is caused through uncontrolled 

movement (O'Sullivan et al., 2006, Hodges and Moseley, 2003, Sterling et al., 2001). 

As the synergist primarily mobilises the joint the pattern of neuromuscular 

recruitment changes (Sahrmann, 2002). Therefore, neural synergies synonymous 

with high-threshold tasks (i.e., athletic performance) are recruited habitually to 

execute low-threshold non-fatiguing tasks (i.e., postural control); a task whereby 

joint stabilisers should be predominant (Ngomo et al., 2015, Dankaerts et al., 2006, 

Moseley and Hodges, 2006, O'Sullivan et al., 2006, Falla et al., 2004, Hodges, 2003, 

Hodges and Moseley, 2003, Comerford and Mottram, 2001b, Sterling et al., 2001). 

For example, Ngomo et al., (2015) found individuals’ suffering from rotator cuff 

tendinopathy decreased infraspinatus excitability through cortico-spinal inhibition. 

SEMG RMS-amplitude values for the infraspinatus of the injured and uninjured 

shoulder were recorded preceding transcranial magnetic stimulation (TMS) pulses 

over the contralateral hemisphere to the shoulder tested. Ngomo et al., (2015) found 

significantly (P = 0.01) greater stimulation was required to induce an active motor 

threshold response in the infraspinatus of the injured shoulder. Furthermore, a 



44 
 

significant correlation (r = 0.45, P = 0.005) indicated concomitant increases 

between inter-hemispheric asymmetry of active motor threshold and the duration of 

chronic pain. Ngomo et al., (2015) concluded that chronic musculoskeletal pain 

suppresses infraspinatus excitability, advocating neuromuscular alterations occur at 

cortical-spinal level. The CNS changes observed by Ngomo et al., (2015) therefore 

advocate the implementation of motor control threshold testing and specific low-

level neuromuscular training (such as the FPMS and DT) to identify and correct 

compensatory muscle synergies and reduce pain. However, their efficacy of 

enhancing neuromuscular performance and reducing injury in an athletic 

performance setting remain to be elucidated. 

 

 

2.5: The Concept of Motor Control Re-Training 

 

Motor control is the process by which the neuromuscular system coordinates muscle 

actions and limb movements to execute a given motor skill (Zatsiorsky and Kraemer, 

2006). Within empirical literature this term is often used both interchangeably with 

and holistically to describe different training strategies such as movement control 

training (MCT), fundamental movement skills and Integrative Neuromuscular 

Control Training. However, the terminology used to describe specific motor control 

re-training strategies often cannot be operationally defined as they encompass the 

training of the same multiple physical factors in situ. For instance, Filipa et al., 

(2010) stated that the focus of Integrative Neuromuscular Control Training is to 

enhance stabilisation of the trunk and hip musculature and therefore control of the 

body’s COM. This is because deficits in LPHC muscle synergies decrease trunk 
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proprioception, subsequently increasing COM displacement and the potential for 

biomechanical deviations (i.e., uncontrolled movement) in the lower extremity 

(Filipa et al., 2010, Mottram and Comerford, 2008, Zazulak et al., 2007, Hewett et 

al., 2006, Won and Hogan, 1995). Whereas, Won and Hogan (1995) proposed the 

definition of a controlled movement, the focus of MCT and fundamental movement 

skills, is one that it is stabilised against perturbations. It is therefore foreseeable why 

Mottram et al., (2014), Mottram and Comerford (2008) and Comerford and Mottram 

(2001a) classification of DT is comparable with other authors universal 

characterisation of motor control training. 

 

Motor control develops in a core-to-extremity and head-to-toe progression (Cook et 

al., 2006) with pre-programmed integration of local, single- and multi-joint muscles 

activation resulting in proximal stability and distal mobility (Kibler et al., 2006). It is 

this proximal-to-distal patterning of force generation that creates moments that serve 

to protect distal joints (Borghuis et al., 2008). In support, deep segmental stabilising 

musculature activation has been evidenced to consistently precede limb movement 

by approximately 30ms to 100ms during dynamic whole body movements (Hodges 

and Richardson, 1997). It is the efficiency of this motor pattern to stabilise the LPHC 

that governs the production, transfer and control of force transmitted from the 

ground to the distal segments of the extremities (Hides et al., 2012, Kibler et al., 

2006, Konin et al., 2003, Devlin, 2000, Hodges and Richardson, 1997, Hodges and 

Richardson, 1996). While neural control at spinal reflex and brain stem levels are 

predominantly governed by proprioceptive pathways (Radebold et al., 2001), 

autonomous intermuscular control can become learnt through repeated exposure 

(Kibler et al., 2006). It is these pre-programmed CNS controlled motor skills that 
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permit anticipatory postural adjustments muscle activations, controlling the body’s 

COM displacement when perturbed by external forces (Kibler et al., 2006, Radebold 

et al., 2001). This was evidenced by Ebenbichler et al., (2001) and Kibler et al., 

(2006) who reported anticipatory postural adjustments increased proximal stability 

of LPHC allowing enhanced distal mobility as well as effective attenuation of GRF 

and loading of joints. Inhibition of LPHC stability through the onset of 

neuromuscular fatigue of abdominal muscles has also been directly associated with 

hamstring injuries (Devlin, 2000); the most prevalent non-contact injury in 

footballers. Thus, enhanced LPHC control has desirable implications for reducing 

predisposition to injury. Equally, enhanced LPHC motor control also has desirable 

implications for footballing performance as it aids the transfer of forces from the 

stance leg. Harrison (2006) and Barfield (1998) found concomitant increases in 

LPHC control and increased limb velocity in footballers’ ball-striking leg. Any 

potential increase in the non-standing leg’s angular velocity could reduce the muscle 

force required to overcome the inertia when executing football specific skills, as well 

as delay the onset of fatigue (Mersmann et al., 2014, Hawkins and Metheny, 2001). 

The potential greater impulse could also increase ball-striking velocity and therefore 

a player’s passing and shooting distance (Barfield et al., 2002), as well as force 

output during tackling (Strauss et al., 2012). Both have been identified as 

determining factors of successful skill execution respectively (Strauss et al., 2012, 

Orloff et al., 2008). 

 

While pathological evidence advocates impaired LPHC function causes the greatest 

uncontrolled joint displacements (Verrelst et al., 2014, Wilkerson et al., 2012, Chuter 

and de Jonge, 2012, Willems et al., 2006, Willson et al., 2006, Willson et al., 2005, 
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Niemuth et al., 2005, Leetun et al., 2004, Ireland et al., 2003), cognitive control of 

proximal mechanisms governing distal segment displacement has also been 

evidenced as a central pathological factor of injury (Verrelst et al., 2014, Leetun et 

al., 2004, Ireland et al., 2003, Bendjaballah et al., 1997, Fredericson et al., 2000, 

Verrelst et al., 2013). This evidence, as well as lower limb non-contact injury 

accounting for over 90% of the incidence in youth football (Ekstrand et al., 2011, 

Hagglund et al., 2009, Price et al., 2004), gives credence to the implementation of 

MCT and fundamental movement skills to enhance kinaesthetic awareness in youth 

players. Determining ‘correct’ motor patterns however is complex because 

instability, resulting in uncontrolled movement, increases co-contraction 

subsequently reducing force generating capacities (Anderson and Behm, 2005). Yet 

the ability to perform controlled movements cannot be achieved in the absence of 

coordinated synergist-antagonist intermuscular coordination stabilising the joint 

against perturbation and reducing displacement (Anderson and Behm, 2005, Lloyd, 

2001, Kearney and Hunter, 1990). Lloyd (2001) summarised that enhanced 

coordinated synergist-antagonist intermuscular coordination should result in 

decreased electromechanical delay between perturbation and the onset of the 

resisting forces. Comerford and Mottram (2001b) therefore postulate that the onset 

and pattern of motor unit activation is central to the maintenance of balance and the 

efficiency of dynamic movements as oppose to force generation alone. This notion is 

why motor control training strategies focussed on movement competency are often 

preferentially recruited ahead of traditional strength training protocols for remedial 

training (Hibbs et al., 2008). However, it should be noted that integrative Integrative 

Neuromuscular Control Training interventions comprising resistance and plyometric 

exercise, traditionally considered high-threshold and dynamically correspondent 
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(Verkhoshansky and Siff, 2009), have consistently evidenced enhanced LPHC 

control and ability to attenuate GRFs (Myer et al., 2011a, Hewett et al., 2005, Myer 

et al., 2005, Hewett et al., 1999, Hewett et al., 1996). Whereas the efficacy of 

independent motor control training set from kinematic screening to reduce injury risk 

remains equivocal. 

 

 

2.5.1: Dissociation Training 

 

DT purportedly accelerates the identified performance assets and priority injury risk 

factors that comprise the FPMS performance profile (Mottram and Comerford, 

2008). The respective differences between DT exercises for each have been outlined 

as: challenging movements that fast-track learnt skills with a low risk of injury; and 

low-threshold exercises that regain control of the site and, more distinctively, 

direction of the dysfunction (Mottram and Comerford, 2008). Comparable with other 

motor control strategies DT is aimed at enhancing neuromuscular coordination by 

integrating low- and high-threshold bodyweight exercises that challenge the kinetic 

chain’s global stabilisation and local mobilisation (Mottram and Comerford, 2008, 

Comerford and Mottram, 2001a, Comerford and Mottram, 2001b). Characteristically 

DT involves the conscious isometric activation of global and/or local stabilising 

musculature (dependent on exercise threshold) to hold the site of dysfunction in a 

neutral position, while concurrently producing movement through an active range of 

motion at another (i.e., cognitively dissociating between joint stabilisation and 

mobilisation) (Mottram and Comerford, 2008, Comerford and Mottram, 2001b). 

This concept of dissociated movement however has reportedly only been applied 
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effectively in clinical settings during isolated muscle function (Tsao and Hodges, 

2007, Jull et al., 2002, Sahrmann, 2002, Hides et al., 2001, O'sullivan, 2000, 

Hamilton and Richardson, 1998, Woolsey et al., 1988). Likewise, the studies 

highlighted by Mottram and Comerford (2008) that supposedly advocate that 

traditional strengthening (high-load and -velocity training) of the LPHC did not 

correct dysfunction or enhance motor control in the local stability system were tests 

of isolated muscle function only (Tsao and Hodges, 2007, Moseley and Hodges, 

2006, O'Sullivan et al., 1997). For instance, Tsao and Hodges (2007) compared RMS 

SEMG activation of the Transverses Abdominis, internal and external Oblique, 

Rectus Abdominis, Erector Spinae, and anterior and posterior Deltoid following 

isolated motor control and sit-up training protocols to determine which had the 

greatest adaptation on anticipatory postural adjustments. No significant differences 

were found (P = 0.74) with the exception of Transverses Abdominis which indicated 

earlier onset of activation post intervention (P = 0.001). However, no significant 

difference (P = 0.14) was observed between the two protocols suggesting similar 

musculature recruitment strategies. Moreover, Umphred et al., (2001) and Janda 

(1993) have previously postulated that the Transverses Abdominis role during 

dynamic-athletic movements is resisting extension eccentrically, as oppose isolated-

isometric or contracting concentrically during flexion. The effectiveness of DT on 

lowering injury predisposition and enhancing performance in an athletic 

environment therefore remains to be evidenced. 

 

Correcting the direction of uncontrolled movement, identified by the FPMS, is 

purportedly what makes DT as a retraining strategy distinctive. By controlling the 

direction of dysfunction Comerford and Mottram (2001a) postulated the mechanical 
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stress at the site of provocation can be attenuated. Comerford and Mottram (2001a) 

furthered that this also allows the identification of tonic and phasic muscles 

involved, assisting the subsequent prescription of exercise thresholds. This follows 

an earlier concept of relative stiffness being direction-dependent (Sahrmann, 2002, 

Janda, 1993, Sahrmann, 1992). Sahrmann (2002) stipulated that if a muscle is too 

weak to adequately contract concentrically or resist eccentric loading, synergistic 

dominance occurs resulting in excessive motion at the joint of dysfunction. 

Therefore such compensations during athletic performance would be re-enforcing 

poor motor patterns (Peate et al., 2007, Comerford and Mottram, 2001b). This 

concept gives credence to Hewett et al., (2006) proposal that neuromuscular deficits 

in adolescent athletes leading to injury are muscle strength, expression of force, 

and/or pattern of activation that result in increased joint loading. Despite this, 

Comerford and Mottram (2008), Mottram and Comerford (2001a) and Mottram and 

Comerford (2001b) state the focus of DT is to alter the pattern and onset of 

activation, adding that strength is not a focus. Confusingly, Mottram and Comerford 

(2001a) also stipulate that DT should not be performed to- or under-fatigue to avoid 

compensation. Yet repetition ranges of 15-20 with active-end range of motion held 

isometrically for up to three-seconds have been advocated when performing low-

threshold exercises (Comerford and Mottram, 2001a). Such repetition ranges and 

accumulative time-under-tension are commonly associated with training muscular 

endurance (Schoenfeld et al., 2015, Fry, 2004, Campos et al., 2002). Furthermore, 

this conflicts with Mottram and Comerford (2008) FPMS operational definitions of 

motor control and strength training (Table 2.6). 
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Table 2.6: Stabilisation retraining strategies: Operational differences between motor 

control and resistance-strength training as outlined by Mottram and Comerford 

(2008) 

MOTOR CONTROL STABILISATION STRENGTHENING 
 

Muscle Specific: Training can be biased for either a local 
stability muscle role or a global stability muscle role 
depending on the cuing and facilitation used 

 

Muscle Non-Specific: During high load resistance or 
endurance overload training to the point of fatigue all 
relevant synergists are significantly activated. There is 
co-contraction of the local stability muscle system, 
global stabiliser and global mobiliser muscle roles 

Recruitment Specific: Because all these exercises use low 
load or functional normal loads then slow motor units are 
predominantly recruited 

Recruitment Non-Specific: Again, because of overload, 
both slow and fast motor units are strongly recruited. 

CNS Modulated: Afferent Spindle input influences CNS 
processes and tonic motor output 

Adaptation to Load and Demand: Muscle Hypertrophy 
is a response to overload training 

 

Comerford and Mottram (2001a) postulate that while DT is not reflective of athletic 

multi-segmental dynamic kinematics, DT exercises are fundamental movements that 

everyone should be able to perform competently. This notion corresponds with 

Lloyd et al., (2012) Youth Physical Development model which advocates that the 

development of foundational movement should always be present in some capacity 

in any type of youth strength and conditioning programme, with circa-puberty 

highlighted as key phase (Deli et al., 2006). This is because the mastery of 

foundational biomotor control is considered central for the successful development 

of complex sport-specific motor skills (Lloyd and Oliver, 2012, Lloyd et al., 2012b, 

Oliver et al., 2011). Multiple studies however have reported that the repetition of 

specific athletic kinematics and/or use of a dominant limb leads to natural synergistic 

and hypertrophic asymmetric adaptations (Hides et al., 2012, Hides et al., 2008, 

Ranson et al., 2008, Engstrom et al., 2007, Hides et al., 2007, Lucki and Nicolay, 

2007, Kearns et al., 2001). For instance, Hides et al., (2012) and Kearns et al., (2001) 

reported different cross-sectional area and altered motor patterns for contralateral 

quadratus lumborum (QL) and ipsilateral psoas major muscles of professional 
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Australian Rules and junior English football players dominant legs. As both sports 

have comparable kinematic patterns these findings appear to support the premise of 

training dynamically corresponding movement for specific athletic motor control 

transfer (Verkhoshansky and Siff, 2009, Nielsen, 2004). This may also explain why 

Kellis et al., (2007) and Jackobsen et al., (2011) found that unilateral balance and 

postural control developed superiorly in trained youths and untrained adult 

footballers non-dominant stance legs. Furthermore, Danneels et al., (2001) reported 

that three weekly sessions over 10 weeks of low-threshold stabilisation DT failed to 

attenuate high-threshold dysfunction or multifidus atrophy. Whereas three weekly 

sessions over 10 weeks of combined low-threshold stabilisation DT and dynamic-

static resistance strength training significantly increased multifidus cross-sectional 

area and enhanced motor control. This therefore supports the implementation of a 

multi-faceted programme when preparing athletes for high-intensity training and 

competition. The majority of research on DT however has been in clinical 

populations. Thus, it remains to be elucidated whether an independent DT 

programme can provide a sufficient stimulus to alter the synergistic dominant motor 

patterns associated in elite academy footballers. Furthermore, the dose-response 

required to induce the desired neural adaptations. While neural adaptations have 

been reported as early as four weeks, often attributed to initial physiologic 

enhancements in trunk strength and balance (Behm et al., 2002), the scope for 

adaptation is much smaller in trained populations (Cosio-Lima et al., 2003). 

Therefore this study aimed to investigate: (1) the dose-response of eight weeks DT 

on FPMS performance; and (2) whether changes in FPMS are in line with other 

kinematic and objective kinetic measures of neuromuscular control in male elite 

academy footballers. 
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3.0 Method 

 

3.1 Participants 

 

Eighteen elite male academy footballers volunteered for this study. Participant’s 

characteristics are presented in table 3.1. One trial session was provided prior to the 

study to familiarise the participants with the testing equipment and the testing 

protocols. All participants had followed individualised DT programmes prior to the 

investigation. Participants were required to complete 80% of the total DT sessions, 

be available for pre and post testing, and be free from injury to be included for final 

analysis. Exclusion from the study was subject to these criterions. As a result of this 

stipulation four participants were removed from the study. Club consent was 

obtained and written informed consent was sought from each participant and 

participant’s parent/ guardian. A health questionnaire was employed to ensure 

participant welfare before testing commenced. All participants were free from injury 

and illness. This study was approved by the University of Gloucestershire’s 

institutional Research Ethics Sub-Committee. 

 

Table 3.1: Participant Characteristics 

Group Participants Chronological 
Age (Years) 

APHV 
(Years) 

Maturational 
Offset (Years) 

Body Mass 
(kg) Stature (cm) Leg Length 

(cm) 

G1 6 15.53 ± 0.47 15.31 ± 0.56 0.22 ± 0.54 65.55 ± 6.02 176.44 ± 4.06 90.17 ± 1.83 

G2 8 17.36 ± 0.39* 15.89 ± 0.39 1.47 ± 0.44* 71.73 ± 6.79 177.51 ± 6.02 88.74 ± 4.49 

*Denotes a significant difference between groups 
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3.2 Training Intervention & Study Design 

 

Participants were recruited from a professional football club academy representing 

the following chronological age groupings under (U) U15, U16, U17 and U18. All 

DT was prescribed by the football club’s sport science staff in accordance with the 

FPMS outcome. The identified high risk areas of injury by the FPMS for the U17 

and U18 however were predominantly the same causations for site and direction of 

dysfunction. Whereas, the high-risk injury areas identified for U15 and U16 were 

predominantly independent to the individual. As U17 and U18 performed DT three 

times per week and had comparable FPMS outcomes (subsequently directing 

comparable DT) they comprised G2 and performed a generic DT programme 

throughout the intervention. As U15 and U16 trained once per week and largely 

recorded independent FPMS outcomes they comprised G1 and continued with their 

individualised DT programmes. 

 

The DT sessions were split into low and high threshold (intensity) motor control 

exercises (stipulated by the FPMS). As low intensity exercises always preceded high 

intensity exercises no warm up was prescribed. The investigator considered the 

increments in exercise intensity of each training session provided appropriate levels 

of mobilisation and activation for the target musculature. In addition, the FPMS does 

not advocate the requirement for a warm up prior to DT. The investigator therefore 

wanted to ensure continuity for the participants from pre-season training. All of G1 

and G2 DT sessions were supervised by sport science staff, performed in the same 

building and at the same time in the morning prior to all technical training. Each DT 

session lasted 20 minutes. Subsequent training for G2 was not performed until 24 
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hours and 48 hours after the last completed session (Figure 3.1). DT volume and 

intensity was not changed during the intervention for G1 and G2. This was stipulated 

by the sport science staff in accordance with the participant’s FPMS outcome. All 

participants were instructed to continue participating in all academy football training 

and physical education. Match frequency and total game time for each participant 

during the intervention and the season was recorded (Table 4.1). 

 

Participants were tested pre and post the eight-week DT intervention. Testing was 

performed over consecutive days. The SLST, YBT and DJL were performed on 

testing day one. The FPMS was performed on testing day two. CoP measures were 

recorded for the non-dominant leg only. A schematic of G1 and G2 DT intervention 

and the study design is presented in figure 3.1. 
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Figure 3.1: A Schematic of the study design and groups DT frequency 
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3.3 Testing Procedures 

 

3.3.1 Anthropometric Measures 

 

Participant’s chronological age (years), date of birth (DD.MM.YYYY) and non-

dominant leg (determined by asking the participant their preferred foot when striking 

a football (Peters, 1988, Chapman et al., 1987)) were recorded. Body mass (kg) was 

recorded using electronic scales (Seca 813 digital flat scales, Seca UK, 

Birmingham), stature (cm) using a portable stadiometer (Seca 217 stadiometer, Seca 

UK, Birmingham) and leg length (cm), measured in a supine position from the 

anterior superior iliac spine (ASIS) to the centre of the ipsilateral medial malleolus, 

using a tape measure (Seca 201 ergonomic circumference measuring tape, Seca UK, 

Birmingham). Predicted APHV was calculated using Mirwald et al., (2002) 

maturational offset equation.  

 

Maturity offset = ((-9.376 + 0.0001882) * (Leg Length and Sitting Height Interaction) + (0.0022 * 
Age and Leg Length Interaction) + (0.005841 * Age and Sitting Height Interaction)) – ((0.002658 * 

Age and Body Mass Interaction) + (0.07693 * Body Mass by Height Ratio)) 

Age (Years), Leg Length (cm), Sitting Height (cm), Body Mass (kg) 

 

3.3.2 Centre of Pressure 

 

Transducers embedded in the Footscan pressure mat (High Speed 106.8cm x 41.8cm 

x 1.2cm Hi-End Footscan System, RSScan International, Olen, Belgium) recorded 

the anterior-posterior (Fy) and medial-lateral (Fx) plantar CoP displacements. For 

analysis plantar CoP measures were digitally normalised to participants’ body mass 

(kg) and foot size (inches) and mean±SD sway velocity (cm∙s -1) calculated by the 
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Footscan balance software (Footscan Balance Version 7, RSScan International, Olen, 

Belgium). The displacement of CoP was calculated using equation 3.1 and equation 

3.2. Plantar CoP measures were sampled at 15Hz for 60s for the SLST and 70Hz for 

the YBT. Sampling frequencies were limited by the Footscan balance software 

which predetermined the sampling frequency based on the input time to perform a 

task. 

 

Equation 3.1 (Lafond et al., 2004) 

CoPx = ((-My + Fx * Z0) / Fz) + X0 

Equation 3.2 (Lafond et al., 2004) 

CoPy = (( Mx + Fy * Z0) / Fz) + Y0 

 

3.3.3 Vertical Ground Reaction Forces 

 

VGRF were recorded using a 2-axis portable force platform (35cm x 35cm x 4.5 

Pasco Force Paltform PS-2141, Pasco Scientific, Foothills Blvd, USA). Raw data 

was processed digitally using SparkVue software (Pasco SparkVue Version 2.0.52, 

Pasco Scientific, Foothills Blvd, USA). Before each testing session the unloaded 

force platform was left to stabilise with ambient room temperature for a minimum of 

30 minutes to decrease potential electronic drift. VGRF data from the unloaded force 

platform was then sampled for 1s at 20Hz to record any transduced signals. A mean 

bias was calculated from these values (representing the mean shift of transduced 

signals) and removed from the experimental data to ensure that the force platform 

data had zero drift after amplification (Lafond et al., 2004). All force platform data 

was sampled at a frequency of 1000Hz. All recordings were manually triggered via 

the SparkVue software with the real-time data transmitted to the laptop computer via 
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a USB sensor connection (PasPort PS-2100A, Pasco Scientific, Foothills Blvd, 

USA). The investigator manually zeroed the force platform after each test. 

 

3.3.4 Single Leg Stance Test 

 

Participants stood barefoot unilaterally on their non-dominant leg aligned with a 

centre line and a toe marker to ensure consistent start positions on the pressure mat. 

The SLST was standardised by placing hands on hips, the non-standing leg was 

flexed to 90o (the femur parallel to the floor, tibia perpendicular to the floor and 

ankle dorsi-flexed) and the torso and head upright maintaining a neutral spine. A 

demonstration was provided by the investigator for each participant. This static 

stance was required to be held for 60s. Participants received verbal instruction during 

the SLST to re-adopt the stance in the event they did not maintain the start position. 

All trials were performed with eyes open. Participants received three practice trials 

and three experimental trials to minimise any learning effect. Two minutes rest 

intervals were given between experimental trials. Participants SLST experimental 

trials were scored as a pass or a fail by the investigator. This was determined by 

correct execution of the SLST and whether all instructed criteria had been met. 

Participant’s best SLST score from the three experimental trials was used for final 

analysis. CoP measures were recorded for each experimental trial. 

 

3.3.5 Y Balance Test 

 

The YBT protocol was adapted from Plisky et al., (2009) and Hertel et al., (2000). 

The YBT anterior, posterior-medial and posterior-lateral reaches were performed, in 
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that order, as one trial because CoP measures were recorded concurrently. Therefore, 

a composite score was equated from the greatest displacement of a single YBT trial, 

as oppose to a composite score of the greatest independent anterior, posterior-medial 

and posterior-lateral reach distances of separate YBT trials (as advocated by Plisky 

et al.,(2009) and Hertel et al., (2000)). Participants stood barefoot unilaterally on 

their non-dominant leg aligned with a centre line and a toe marker to ensure 

consistent start positions on the pressure mat. Participants were required to maintain 

the position of their stance foot throughout the test. Participants received six practice 

trials and three experimental trials to minimise any learning effect (Plisky et al., 

2006, Hertel et al., 2000). Two minutes rest intervals were given between 

experimental trials. The YBT was standardised by placing hands on hips. 

Maintaining the unilateral stance position participants’ reached with the non-

standing limb in an anterior, posterior-lateral and posterior-medial sequence (in 

relation to the standing foot). The YBT profile was marked out with tape on the 

pressure mat and the floor. The posterior-lateral and posterior-medial lines were 

positioned at a 90o angle to one another and at a 135o angle from the anterior line 

(Plisky et al., 2009). All lines were marked out from the centre point to 160cm in 

length. 

 

Participants received verbal instructions to: (1) reach with their non-standing leg ‘as 

far as they possibly could under control’, ensuring the movement and posture was 

maintained at all times; (2) touch the tape (marking out the YBT) lightly with the 

most distal part of their non-standing leg (toes of the foot); (3) ensure when they 

touched down with their toes they were not to bear any weight on the non-standing 

leg and that the pressure was to remain over the standing foot (base of support). A 

demonstration was provided by the investigator for each participant. The investigator 
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marked each point of contact during the YBT and then recorded each distance 

afterwards using a measuring tape. Participants YBT experimental trials were scored 

as a pass or a fail by the investigator. This was determined by correct execution of 

the YBT and whether all instructed criteria had been met. Each experimental trial 

that was scored as a pass was normalised to the participant’s leg length (cm) 

(Equation 3.3). This was to allow for comparisons with subsequent testing as reach 

distance is related to limb length (Plisky et al., 2009). A YBT normalised composite 

score comprising the sum of the anterior, posterior-lateral and posterior-medial 

normalised reach distances was calculated and expressed as a percentage of leg 

length (Equation 3.4). Participant’s best YBT normalised composite score was used 

for final analysis. CoP measures were recorded for each experimental trial. 

 

Equation 3.3 (Gribble and Hertel, 2003) 

Reach Distance Normalised to Leg Length = (Reach Distance / Leg Length ) * 100 

 

Equation 3.4 (Plisky et al., 2006) 

YBT Normalised Composite Score (% of Leg Length) = (Normalised ANT + PL + PM / 3 * 

Leg Length) * 100 

 
ANT = Normalised Anterior Distance; PL = Normalised Posterior-Lateral Distance; PM = 

Normalised Posterior-Medial Distance 
 

3.3.6 Depth Jump Landing 

 

Participants stood barefoot bilaterally either side of a centre line, shoulder width 

apart, with toes aligned with the leading edge of a 20cm plyometric box to ensure 

consistent start positions. DJL was standardised by placing hands on hips and the 
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drop from the plyometric box was always led with the non-dominant kicking leg. 

Participants received verbal instructions to: (1) ‘step off the plyometric box leading 

with their non-dominant kicking leg’; (2) land two-footed on the force plate and 

stabilise as quickly as possible; (3) ‘stick’ their landing position until told by the 

investigator to relax. The investigator ensured each landing was held for three 

seconds. A demonstration was provided by the investigator for each participant. 

Participants received three practice trials and three experimental trials to minimise 

any learning effect. Two minutes rest intervals were given between the experimental 

trials. In the event of incorrect execution during all trials participants received 

corrective instructions via verbal feedback from the investigator. Any experimental 

trial that failed to meet the instructed criteria was negated. VGRF measures were 

recorded for each experimental trial. Participant’s best TTS score from the three 

experimental trials was used for final analysis. TTS was determined by the time it 

took to dynamically stabilise VGRF (measured using a portable 2-axis force 

platform and SparkVue software) to within 5% of the participant’s body weight (N) 

(Equation 3.5). 

 

Equation 3.5: TTS 5% of Body Weight 

5% of Body Weight (N) = ((Body Mass * 9.80665) / 100) * 5 

 

3.3.7 Foundation Performance Matrix Screen 

 

The FPMS was employed by the football club to predict injury and performance and 

was conducted by the club’s sport science staff who had received certified training to 
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do so. All FPMS tests were performed barefoot. (See Appendix 1.0 for the full 

FPMS and scoring criteria). 

 

3.4 Statistical Analysis 

 

All values presented in the results are reported as mean±SD and Cohen’s d effect 

sizes (ES). Statistical analysis was performed using SPSS V.20 (IBM SPSS Statistics 

Version 20, IBM Company, UK). A one-way repeated measures ANOVA was used 

to test for significant group x time interactions and represented main effects. All 

post-hoc testing employed a bonferroni adjustment. In the event of a significant 

interaction a paired-samples t-test was run for each group. Independent samples t-test 

were run between groups for chronological age, APHV, maturational offset, body 

mass, stature, leg length, total game time and match frequency during the 

intervention and season to determine any significant difference (Table 3.1). Alpha 

was set at P = 0.05. Cohen’s d ES was calculated from differences in means with the 

magnitude of effect recorded using Cohen’s scale (Table 3.2) (Hopkins et al., 2009). 

Ninety-five percent confidence intervals (95% CI) were reported to represent the 

range of possible effect sizes. 

 

Table 3.2: Cohen’s scale for interpreting the magnitude of effect (Hopkins et al., 

2009) 

Effect Description Effect Size 

Trivial 0.0 

Small 0.2 

Moderate 0.6 

Large 1.2 

Very Large 2.0 

Nearly Perfect 4.0 

Perfect Infinite 
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4.0 Results 

 

4.1 Participant Characteristics 

 

No significant difference was found between G1 and G2 for body mass (P = 0.128), 

stature (P = 0.734), leg length (P = 0.509), APHV (P = 0.056), intervention game 

time (P = 0.879), intervention match frequency (P = 0.442), season game time (P = 

0.131), or season match frequency (P = 0.919) (Table 4.1). A significant difference 

was found between G1 and G2 for chronological age (P = 0.001) and maturational 

offset (P =0.001) (Table 3.1). 

 

Table 4.1: Group mean±SD for total game time and matches played 

 8-Week (In-Season) Intervention Season 2013/14 

Group Total Game Time 
(mins) 

Total Match 
Frequency 

Total Game Time 
(mins) 

Total Match 
Frequency 

G1 513.9 ± 225.4 7.3 ± 3.0 1797.9 ± 230.8 30.7 ± 6.0 

G2 568.1 ± 136.5 6.8 ± 1.9 2190.9 ± 525.7 29.8 ± 7.2 

 

 

4.2 Foundation Performance Matrix Measures 

 

A significant group x time interaction was evidenced for FPMS Score (P = 0.036). 

No significant difference however was found pre and post FPMS Score for G1 (P = 

0.235; ES = 0.180; 95% CI -1.94 - 0.60) or G2 (P = 0.80; ES = −0.136; 95% CI -

0.12 -1.62) with only small ES changes in both (Figure 4.1). This indicates that the 

dose-response to G1 individualised DT and G2 generic DT had no difference on 

FPMS score. 
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Figure 4.1: Group Mean±SD Foundation Performance Matrix Screen Scores Pre and 

Post Intervention 

 

 

4.3:  Depth Jump Landing 

 

Peak VGRF (P = 0.474), loading rate (P = 0.335) and TTS (P = 0.637) (Figure 4.2) 

measures indicated no significant group x time interaction effects. Meaningful ES 

changes were observed for G1 and G2 (Table 4.2). 

 

Table 4.2: DJL Measures 

 
G1  G2 

 
Pre Post ES 95% CI  Pre Post ES 95% CI 

Peak 
VGRF (N) 

2006.14 
± 346.6 

1797.57 
± 232.84 Moderate 0.706 1725.35 / 

2078.36  
1808.28 
± 281.28 

1782.51 
± 256.29 Trivial -0.096 1642.54 / 

1948.25 

Loading 
Rate (ms) 

73.17 ± 
9.83 

51.17 ± 
13.19 Large -1.89 0.046 / 

0.079  
79.13 ± 
25.28 

81.50 ± 
39.40 Trivial 0.072 0.067 / 

0.095 

TTS (ms) 
727.83 

± 
423.94 

446.5 ± 
99.56 Moderate -0.914 0.391 / 

0.786  
723.00 ± 
203.97 

529.25 ± 
217.68 Moderate -0.919 0.455 / 

0.797 
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Figure 4.2: Group Mean±SD Peak VGRF, Peak VGRF Loading Rates and TTS 

from DJL trials used for final analysis 

 

 

4.4: Y Balance Test 

 

No significant group x time interactions were found for G1 or G2 YBT CoP Total 

Displacement (P = 0.295), Sway Velocity (P = 0.235), CoP X Displacement (P = 

0.205), CoP Y Displacement (P = 0.112), or Ellipse Area (P = 0.981) (Table 4.3). 
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Table 4.3: Group Mean±SD YBT CoP Measures 

 G1  G2 

  Pre Post ES 95% 
CI 

 Pre Post ES 95% CI 

Total 
Displacement 

(cm) 

124.14 
± 13.26 

132.05 
± 19.87 Small 0.488 113.32/ 

142.87 

 
120.54 
± 16.43 

118.33 
± 18.69 Trivial -0.126 106.65 / 

132.23 

Sway Velocity 
(cm·s-1) 

8.76 ± 
0.91 

9.84 ± 
1.53 Moderate 0.858 8.30 / 

10.30 

 
9.19 ± 
1.50 

9.14 ± 
1.11 Trivial -0.034 8.30 / 

10.03 

X Displacement 
(cm) 

16.71 ± 
3.10 

17.71 ± 
2.16 Small 0.375 14.36 / 

20.09 

 
20.11 ± 

6.31 
16.74 ± 

2.91 Moderate -0.687 15.93 / 
20.92 

Y Displacement 
(cm) 

5.96 ± 
1.70 

5.08 ± 
0.63 Moderate -0.681 4.69 / 

6.35 

 
5.57 ± 
0.77 

6.36 ± 
1.40 Moderate 0.693 5.24 / 

6.68 

Elipse Area 
(cm2) 

45.33 ± 
57.92 

74.01 ± 
133.85 Small 0.278 -43.52 / 

162.86 

 111.09 
± 

111.96 

141.21 
± 

145.79 
Small 0.232 36.79 / 

215.52 

            

The YBT normalised composite score (P = 0.181) (Figure 4.3) indicated no 

significant group x time interaction effects, with only moderate and small ES 

observed for G1 and G2 respectively (Table 4.4). Despite YBT independent anterior 

(P = 0.908), posterior-lateral (P = 0.430) and posterior-medial (P = 0.106) reach 

directions indicating no significant group x time interaction effects, meaningful ES 

were observed for G1 and G2 (Table 4.4). 

Figure 4.3: Group Mean±SD YBT Normalised Composite Score 
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Table 4.4: Group Mean±SD YBT Normalised Composite and Independent Reach 

Distances 

 G1  G2 

  Pre Post ES 95% CI  Pre Post ES 95% CI 

Normalised 
Composite 

Score 

93.32 
± 7.39 

100.24 
± 6.47 Moderate 0.996 90.78 / 

102.78 

 
105.08 
± 7.65 

107.59 
± 5.52 Small 0.376 101.14 / 

111.53 

Normalised 
Anterior Reach 

67.22 
± 4.05 

72.37 ± 
3.17 Large 1.416 66.30 / 

73.29 

 
67.12 
± 5.20 

72.62 
± 4.75 Moderate 1.104 66.84 / 

72.90 

Normalised 
Posterior-

Lateral Reach 

91.10 
± 8.56 

99.09 ± 
7.50 Moderate 0.993 86.90 / 

103.30 

 105.65 
± 

12.47 

110.21 
± 6.91 Small 0.452 100.83 / 

115.03 

Normalised 
Posterior-

Medial Reach 

94.03 
± 9.78 

100.33 
± 4.85 Moderate 0.816 91.48 / 

102.88 

 
106.69 
± 7.42 

104.81 
± 5.92 Small -

0.280 
100.81 / 
110.69 

 

4.5: Single Leg Stance Test 

 
No significant group x time interactions were found for SLST CoP Total 

Displacement (P = 0.223), Sway Velocity (P = 0.132), CoP X Displacement (P = 

0.435), CoP Y Displacement (P = 0.286), or Ellipse Area (P = 0.454) (Table 4.5). 

No meaningful ES changes were observed for G1 or G2. 

 

Table 4.5: SLST CoP Measures 

 G1  G2 

  Pre Post ES   95% CI  Pre Post ES 95% CI 

Total 
Displacement 

(cm) 

201.55 
± 36.11 

185.76 
± 39.46  Small -0.417 165.65 / 

221.66 

 
162.86 
± 31.19 

171.07 
± 27.46  Small 0.280 142.71 / 

191.22 

Sway Velocity 
(cm·s-1) 

3.43 ± 
0.61 

3.16 ± 
0.67  Small -0.417 2.83 / 

3.76 

 
2.77 ± 
0.54 

2.98 ± 
0.39  Small 0.450 2.47 / 

3.28 

X Displacement 
(cm) 

5.76 ± 
1.47  

5.85 ± 
1.52  Trivial 0.061 2.69 / 

8.93 

 
5.62 ± 
1.33  

9.06 ± 
8.71  Small 0.552 4.64 / 

10.04 

Y Displacement 
(cm) 

4.31 ± 
0.98  

4.08 ± 
0.63  Small -0.277 2.38 / 

6.00 

 
3.71 ± 
0.45  

5.90 ± 
4.83 Moderate 0.640 3.24 / 

6.38 

Elipse Area 
(cm2) 

2.88 ± 
1.33  

2.25 ± 
1.07 Small -0.518  1.66 / 

3.47 

 
2.46 ± 
1.08  

2.31 ± 
0.87 Trivial -

0.152 
1.60 / 
3.17 
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5.0 Discussion 

 

5.1 Main Findings 

 
 
Irrespective of no significant changes, eight weeks DT had meaningful effects on 

neuromuscular control. The magnitudes of effects however were greater for G1 than 

G2. As SLST, YBT and DJL indicated greater effects than the FPMS and have all 

been proposed to predict injury, they could be a suitable surrogate marker for 

assessing the effects of DT. These findings also suggest that a lower dose of DT is 

sufficient for improving neuromuscular control provided training is individualised. 

 

 

5.2 The Effects of DT on Kinematic and Kinetic Assessments of Motor Control 

 

i. Foundation Performance Matrix Screen 

 

The findings of this research are novel as there is no empirical literature supporting 

the efficacy of the FPMS in an athletic environment and only limited research 

supporting DT. The small positive and negative effects on FPMS score for G1 and 

G2 respectively indicates that one individualised DT session per week is sufficient 

for improving FPMS performance. The observed eight week dose-response for G1 

and G2 also indicates that the stimulus presented to elicit a neural adaptation is 

lacking when prescribed generically, irrespective of a greater training frequency. 

This further advocates that the efficacy of remedial motor control DT strategies is 

specific to an individual’s needs. Comparably Danneels et al., (2001) found that 10 
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weeks generic DT targeting the multifidus muscle, performed three times weekly, 

failed to increase cross-sectional area in the absence of an additional higher-

threshold stimulus. Whereas training comprising DT as well as dynamic- and static-

strength resistance training significantly increased multifidus cross-sectional area. 

While DT focally presents a neural stimulus to remedy specific motor control 

dysfunctions, a degree of muscular hypertrophy might be expected following the 

reciprocal-activation of select musculature during cognitive dissociated movement 

(Mottram and Comerford, 2008, Mottram et al., 2005). Danneels et al., (2001) 

adhered to Mottram and Comerford (2001a) and Comerford and Mottram (2008) DT 

guidelines, prescribing 15 to 18 repetitions of recruitment specific exercises with five 

second isometrics at active end-range of motion. When considering the exercises 

specifically targeted the multifidus, the multifidus’s accumulative time-under-tension 

is comparable with other studies where hypertrophic adaptations have been observed 

(Schoenfeld et al., 2015, 2004, Campos et al., 2002). However, this can only be 

inferred as this study did not measure cross-sectional area. In addition, Mottram and 

Comerford (2001a) postulated the tonic activation of local stabilising musculature 

required to remedy dynamic postural control was circa 25% of maximum. Danneels 

et al., (2001) had specified that the tonic multifidus activation during the prescribed 

DT exercises was circa 30% of maximum activation. In support of this study, 

Danneels et al., (2001) findings reinforce that although identified sites of dysfunction 

may be the common amongst homogenous individuals, as evidenced by the FPMS 

for G2, the causation of motor control dysfunction is independent to the individual. 

This would be in agreement with Mottram and Comerford (2001a) notion that the 

efficacy of correcting motor control is dependent on challenging cognitive processes 

and afferent feedback. Individualised DT would therefore better facilitate this 
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elucidating G1 superior enhancement in motor control compared to G2. Danneels et 

al., (2001) did not use the FPMS to direct DT. This therefore supports Mottram and 

Comerford (2008) premise that the FPMS can identify both the site and direction of 

the dysfunction. Similarly, Wright et al., (2015) found trivial effects (13% beneficial/ 

82% trivial/ 5% harmful, 0.2 ± 1.2 90% CL) based on adjusted change scores and no 

smallest worthwhile effect (= >0.2 ±SD) in adolescents matched by FMS composite 

score following four weeks of either four 30 minute fundamental movement skills or 

generic multi-sport training per week. Like the FPMS and its associated DT, the 

fundamental movement skills training was directed according to FMS composite 

score and its associated independent advanced corrective exercise manual (Cook, 

2010). However, comparable to G2 evidence, Wright et al., (2015) findings infer that 

the dose-response to generic short-term independent motor control training had 

negligible effects on reducing injury or attenuating compensatory synergies. This is 

important because sport-specific kinematics can elicit synergistic dominant motor 

patterns and hypertrophic cross-sectional area adaptations (Hides et al., 2012, 

Jakobsen et al., 2011, Hides et al., 2008, Ranson et al., 2008, Engstrom et al., 2007, 

Hides et al., 2007, Lucki and Nicolay, 2007), as evidenced by Kearns et al., (2001) in 

English male elite academy footballers lower limb musculature. However, G1 results 

advocate that individualised DT prescribed according to an individual’s FPMS 

performance profile can attenuate potential footballing induced synergistic motor 

skills. 

 

This study and the aforementioned evidence advocate that the efficacy of motor 

control retraining strategies is dependent on individualisation. However, Tsao and 

Hodges (2007) isolated-DT and sit-up protocols, designed to immediately effect 
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postural control through enhanced anticipatory postural adjustments, decreased 

Transverses Abdominis onset of activation timing, and increased activation 

amplitude. Despite focussing on low-threshold tonic activation of specific muscles 

enhancing local stabilisation, the DT evidenced no significant difference with the 

higher-threshold sit-up protocol (which would have involved the high-threshold 

phasic recruitment of local as well as global stabilising and mobilising musculature), 

comparable to Wright et al., (2015). In addition, there was no change in the 

remaining six SEMG sites, or any indication of anticipatory postural adjustments 

adaptations for either protocol. Although no change in anticipatory postural 

adjustments was found, the Transverses Abdominis earlier onset of activation and 

greater amplitude indicates a desirable adaptation. This is because the Transverses 

Abdominis is considered central to regulating the transfer of force through the 

kinetic chain (Kibler et al., 2006, Hodges and Moseley, 2003, Hodges and 

Richardson, 1997, Hodges and Richardson, 1996). However, Tsao and Hodges 

(2007) investigated a population with no training history. As non-athletes who were 

injury free they would have not likely developed any chronic dominant or 

compensatory synergistic motor patterns from sport-specific kinematics (Ngomo et 

al., 2015, Hides et al., 2012, Jakobsen et al., 2011, Hides et al., 2008, Ranson et al., 

2008, Engstrom et al., 2007, Hides et al., 2007, Lucki and Nicolay, 2007, Hodges 

and Moseley, 2003, Sterling et al., 2001, O'sullivan, 2000). The scope for any acute 

or chronic alteration in motor output therefore would have been much greater than 

that of the trained academy footballers in G1 and G2 of this study (Behm et al., 

2002). Likewise, because of the Transverses Abdominis dynamic function changes 

in activation onset and amplitude are expected during both tonic and phasic 

recruitment (Kibler et al., 2006, Sahrmann, 2002, Comerford and Mottram, 2001a, 
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Umphred et al., 2001, Janda, 1993). For instance, although DT retrains the local 

stability system through tonic, low-threshold isolated muscle activation (Mottram 

and Comerford, 2008, Comerford and Mottram, 2001a), the synergistic co-activation 

of global stabilising musculature through phasic, high-threshold activation is 

inevitable during dynamic movement (Kibler et al., 2006, Sahrmann, 2002, 

Comerford and Mottram, 2001a, Umphred et al., 2001, Janda, 1993). However, as 

Tsao and Hodges (2007) found no changes other than for the Transverses Abdominis 

this reinforces the findings of this study that only individualised DT can elicit 

chronic motor output adaptations. G1 evidence also infers that while DT can enhance 

motor control, the efficacy of individualised DT dose-response is dependent on 

FPMS direction. Caution should be exercised though when using the FPMS to direct 

DT to lower the risk of injury in elite academy footballers because the FPMS 

comprised three upper body assessments (Table 2.5). As 90% of reported non-

contact injuries are to the lower extremity in elite academy footballers (Ekstrand et 

al., 2011, Hagglund et al., 2009, Price et al., 2004) (Table 2.2) the suitability of using 

the FPMS as an injury screen must be questioned. 

 

 

ii. Depth Jump Landing 

 

G1 evidenced superior whole-body stabilisation and a greater ability to attenuate 

PVGRF during DJL, which indicates greater transfer of GRFs through the kinetic 

chain, symptomatic of enhanced LPHC stabilisation (Kibler et al., 2006, Hodges and 

Moseley, 2003, Hodges and Richardson, 1997, Hodges and Richardson, 1996). 

Although G1 and G2 both decreased DJL PVGRF, G1 indicated a greater magnitude 
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of change. Moreover, while G1 and G2 TTS performance improved by the same 

magnitude, a large effect was found for the reduction in G1 PVGRF loading rate 

whereas G2 increased. As the demand placed on the musculoskeletal structures to 

attenuate force increases synchronously with PVGRF loading rates (Flanagan et al., 

2008), increased TTS and PVGRF loading rates have been evidenced to increase the 

risk of non-contact injury (Fong et al., 2011, Kulig et al., 2011, Zadpoor and 

Nikooyan, 2011, Yeow et al., 2009, Oliver et al., 2008, Yu et al., 2006, Hewett et al., 

2005, Hreljac et al., 2000). The large disparity between G1 and G2 DJL performance 

therefore reinforces the dose-response impact of individualised DT. Furthermore, 

when compared with empirical literature investigating DJL, this study’s evidence 

infers that individualised DT does reduce the risk of injury. For instance, Hewett et 

al., (2006) found that circa- and post-pubertal male athletes with greater LPHC 

motor control evidenced decreased VGRF and knee valgus torque during 31cm 

bilateral DJL. In an earlier study Hewett et al., (2005) had also evidenced that greater 

knee abduction moments correlated with increased PVGRF (r = 0.88, P = 0.001). 

Hewett et al., (2006) and Hewett et al., (2005) findings therefore advocate that the 

DT intervention in this study enhanced LPHC stabilisation. Furthermore, although 

G1 and G2 reduced TTS and PVGRF, the DJL assessment identified that only G1 

decreased PVGRF loading rate. 

 

 G1 and G2 evidenced capability to attenuate PVGRF following DT would also 

reduce the work-load placed on the MTU, delaying the onset of neuromuscular 

fatigue. This would therefore reduce the potential manifestation of overuse injuries 

(Mersmann et al., 2014, Couppé et al., 2013, Hansen et al., 2013, Arya and Kulig, 

2010, Stafilidis and Arampatzis, 2007, Arampatzis et al., 2006). This is highlighted 
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by Oliver et al., (2008) investigation into 20cm bilateral DJL performance following 

a 42 minute intermittent fatiguing protocol simulating one half of match play. Using 

the same drop height and players of comparable chronological age (15.8 ± 0.4 years) 

and physical characteristics to G1 (body mass 59.8 ± 9.7 kg, stature 1.73 ± 0.06m) 

Oliver et al., (2008) found that PVGRF increased (pre 1862 ± 429N vs. post 1889 ± 

429N) and impact GRF significantly (P < 0.05) (pre 2135 ± 369N vs. post 2499 ± 

422N) post simulated match play. Oliver et al., (2008), Hewett et al., (2006) and 

Hewett et al., (2005) evidence, as well as G1 and G2 findings all advocate that the 

DJL could be a valuable surrogate monitoring measure of DT. In addition, the DJL 

offers immediate kinematic and objective kinetic feedback (Wikstrom et al., 2004) 

and has been previously evidenced as an appropriate measure in youth populations 

(Oliver et al., 2008, Hewett et al., 2006, Barber-Westin et al., 2005). Furthermore, 

using the DJL as a surrogate DT monitoring measure has practical applications for 

elite academy footballers. This is because an individual’s normative DJL data could 

be used to measure their pre training and/or competition neuromuscular fatigue 

status owing it the relationship with motor output (Cormie et al., 2011, Allen et al., 

2008, Millet and Lepers, 2004, Gandevia, 2001). It does remain to be elucidated 

whether the absence of the FPMS performance profile to direct individualised DT 

prescription would affect the efficacy of DT to reduce injury risk. Nonetheless, G1 

evidence does indicate that the DJL assessments immediate kinematic and kinetic 

feedback could be an effective high-threshold surrogate monitoring measure of DT. 
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iii. Y Balance Test 

 

Increased excursion distances on the YBT represent superior motor control, strength, 

stabilisation and active range of motion at the ankle, knee and LPHC (Munro and 

Herrington, 2010, Hale et al., 2007, Hertel et al., 2006, Plisky et al., 2006, Gribble et 

al., 2004, Olmsted et al., 2002, Earl and Hertel, 2001). Like the DJL performance, 

G1 indicated consistently greater positive magnitudes of change for all YBT 

measures, with G2 indicating a decrease in performance for posterior-medial reach 

distance. Potential adaptations in motor control are further reflected by the YBT CoP 

measures. For instance, while the greater total and X displacements for G1 are 

expected because of their enhanced YBT performance, the concomitant increase in 

sway velocity infers that G1 enhanced motor control is symptomatic of 

compensatory postural adjustments rather than anticipatory postural adjustments 

adaptations (dos Santos et al., 2014, Takacs et al., 2014, Knapp et al., 2011, Ruhe et 

al., 2010, Ross et al., 2009, Voight et al., 1998). This is indicated by the magnitude 

of the COM’s displacement and velocity feedback (Masani et al., 2003). As greater 

YBT excursion distances indicate enhanced LPHC stabilisation, and therefore motor 

control (Filipa et al., 2010, Munro and Herrington, 2010, Plisky et al., 2009, Hale et 

al., 2007, Plisky et al., 2006, Gribble et al., 2004, Olmsted et al., 2002, Earl and 

Hertel, 2001), the concomitant increase in sway velocity is likely associated with the 

electromechanical delay in activation synonymous with compensatory postural 

adjustments pathways (dos Santos et al., 2014, Masani et al., 2003, Voight et al., 

1998). Conversely, while sway velocity decreased for G2 during the YBT this is 

likely attributable to the negative effects for total and X displacements respectively, 



76 
 

symptomatic of reduced motor control. However, this can only be inferred as 

electromechanical delay was not recorded and therefore remains to be elucidated. 

 

Impaired afferent function at the ankle has previously been evidenced to limit CoP 

sway displacement and therefore sway velocity (dos Santos et al., 2014, Basnett et 

al., 2013, Kiers et al., 2012). In particular, reciprocal afferent pathways between the 

ankle and the LPHC have been evidenced to aid COM stabilisation (dos Santos et 

al., 2014, Kiers et al., 2012), which is central to enhanced motor control (Filipa et al., 

2010, Mottram and Comerford, 2008, Zazulak et al., 2007, Hewett et al., 2006, Won 

and Hogan, 1995). Although G2 YBT normalised composite score improved post 

intervention, the greater magnitude of change for G1 infers that the dose-response to 

individualised DT had a greater effect on afferent sensory function. This notion is 

supported by the compensatory postural adjustments velocity feedback and enhanced 

LPHC stabilisation observed for G1. The reciprocal afferent synergies of the ankle 

and LPHC may also elucidate the decrease in G2 posterior-medial reach distance. 

For instance, Hubbard et al., (2007a) found that chronic ankle instability 

significantly correlated with decreased posterior-medial (r = .84, P = 0.001) and 

anterior (r = .65, P = 0.001) reach distances, accounting for 71% and 42% of the 

variance for decreased reach distance. This suggests that chronic ankle instability 

and/or impaired afferent function could have been a contributing factor as to why G2 

YBT normalised composite performance only marginally improved (Table 4.4). This 

can however only be surmised. Likewise, Hubbard et al., (2007b) found increased 

hip abduction significantly (P < 0.05) correlated with increased hip extension 

strength (r = .70), accounting for 26% of the variance, and increased posterior-

medial excursion distance (r = .51), accounting for 49% of the variance. As balanced 
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synergist-antagonist intermuscular coordination stabilises joints against perturbation, 

force generation (i.e., the expression of strength) is also enhanced as the 

electromechanical delay of resisting forces decreases eliciting earlier onset and 

activation pattern (Anderson and Behm, 2005, Behm et al., 2002, Lloyd, 2001, 

Kearney and Hunter, 1990). DT has been purported to enhance motor activation 

onset and pattern of recruitment (Mottram and Comerford, 2008, Comerford, 2006, 

Comerford and Mottram, 2001a, Comerford and Mottram, 2001b, Danneels et al., 

2001). Both are central to maintaining postural control during dynamic movements 

and force generation (Anderson and Behm, 2005, Behm et al., 2002). The potential 

causes for G2 reduced YBT performance however can only be surmised from 

comparable investigations. Nonetheless, this study does indicate that the dose-

response to, and the efficacy of the generic DT intervention to enhance motor control 

and reduce the risk of injury was inferior compared to G1 individualised DT. 

 

This finding is supported by Plisky et al., (2006). Using 130 male high-school 

basketball players of comparable age (14 to 18 years) to the academy footballers in 

this study, Plisky et al., (2006) used the YBT to predict lower extremity injury. 

When normalised to leg length Plisky et al., (2006) found that individuals with a 

YBT composite score of less than 94% of leg length increased the risk of lower 

extremity injury three-fold. Figure 4.3 shows that G1 pre DT intervention YBT 

normalised composite score of 93.32 ± 7.39% means they were three-times more 

likely than G2 (who had a pre intervention YBT normalised composite score of 

105.08 ± 7.65%) of sustaining a lower extremity injury. This was compounded by 

the fact that players comprising G1 and G2 were already at high risk of sustaining a 

lower extremity injury as they account for over 90% of reported non-contact injuries 
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in elite academy football (Ekstrand et al., 2011, Hagglund et al., 2009, Price et al., 

2004). However, the observed magnitude of positive effects for G1 was consistently 

greater than G2 for YBT normalised composite score and independent reach 

distances. Interestingly, based on Plisky et al., (2006) evidence G1 dose-response to 

individualised DT reduced their risk of lower extremity injury by three-fold. 

However, when compared with Filipa et al., (2010) investigation into adolescent 

female footballers (aged EXP: 15.4 ± 1.5 years) YBT performance post an eight 

week multifaceted Integrative Neuromuscular Control Training intervention 

performed twice-weekly, their dose-response was superior to G1 individualised and 

G2 generic DT. This was despite both studies motor control training focussing on 

enhancing trunk stabilisation and lower extremity strength expression over eight 

weeks. Unlike G1 and G2 DT, Filipa et al., (2010) Integrative Neuromuscular 

Control Training comprised high- and low-threshold stable and unstable 

proprioceptive, plyometric, and strength and power resistance training exercises. In 

addition, unlike G1 and G2, post YBT normalised composite score increased 

significantly on the left (pre 96.9% ± 10.1% & post 103.4% ± 8.0%; P = 0.04) and 

right (pre 96.4% ± 11.7% & post 104.6% ± 6.1%; P = 0.03) legs. Posterior-lateral 

reach distance on the right (P = 0.008, η2 ES 0.41) and left (P = 0.04, η2 ES 0.27) 

leg, as well as posterior-medial reach distance on the left leg (P = 0.03, η2 ES 0.3) 

also increased significantly and evidenced large ES (partial η2). By comparison, 

Table 4.4 shows that G1 and G2 ES for YBT normalised composite score and 

posterior-lateral excursions were only moderate (ES = 0.996 & ES = 0.993) and 

small (ES = 0.376 & ES = 0.452) respectively. While G1 ES for posterior-medial 

excursion was still only moderate (ES = 0.816), G2 had a small negative effect (ES = 

-0.280). This indicates that multifaceted programmes comprising exercises can 
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enhance motor control and LPHC stabilisation. Furthermore, Filipa et al., (2010)  

findings reinforce that G2 generic DT was ineffective. Especially owing to the 

smaller magnitudes of change observed for G2 YBT performance despite having a 

greater training frequency over the same intervention period of eight weeks. 

However, DT only comprised specific low-threshold exercises focussed on tonic 

activation. When considering the dose-response to G1 individualised DT resulted in 

moderate to large effects on YBT performance from only one DT session per week, 

this suggests that individualised DT could be even more effective when prescribed 

within a multifaceted programme. Caution should be exercised however when 

directly comparing the efficacy of respective training modalities as Filipa et al., 

(2010) investigated female amateur footballers. Females have been reported to 

demonstrate different recruitment synergies to males (Hewett et al., 2006). In 

addition, the scope for any adaptation in motor control would have arguably been 

greater in amateurs than elite academy footballers (Behm et al., 2002). 

 

 

iv. Single Leg Stance Test 

 

All the CoP measures indicated that G1 SLST performance improved whereas G2 

SLST performance decreased post their respective eight weeks DT. The only 

exceptions to this were G1 greater X displacement (cm) and G2 decreased ellipse 

area (cm2), although both only indicated trivial effects (Table 4.5). In addition, 

although G2 only indicated small and moderate effects for X and Y displacement’s 

their post testing standard deviation increased circa eight- and ten-fold respectively. 

This infers a heterogeneous dose-response to the generic DT. When considering 
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Matsuda et al., (2008) inverted pendulum theory during unilateral stance, the small 

magnitude of change for G2 increased sway velocity is further symptomatic of a 

reduced response to generic DT. This is because the greater mass of the torso over 

the narrowed BOS would result in faster accelerations of the COM in the absence of 

enhanced anticipatory postural adjustments and compensatory postural adjustments 

motor control (dos Santos et al., 2014, Barone et al., 2011, Matsuda et al., 2008). 

While this study did not investigate electromechanical delay (during select muscle 

synergies to determine anticipatory feed-forward and compensatory feedback 

postural adjustment pathways), Matsuda et al., (2008) theory advocates the small 

effect for G1 decreased sway velocity is symptomatic of enhanced motor control, as 

oppose to G2. Furthermore, plantar CoP measures are proportional to ankle torque 

generated by the body’s COM displacement. Thus, plantar CoP measures 

purportedly reflect the effectiveness of the ankle and LPHC reciprocal synergies to 

regulate static balance through joint stiffness during the SLST (Abdul Razak et al., 

2012, Balasubramaniam and Wing, 2002, Baratto et al., 2002, Gatev et al., 1999, 

Winter, 1995). . This is significant as compared to their amateur counterparts and 

other athletes, elite academy and senior footballers have evidenced superior motor 

control during unilateral stance (Pau et al., 2014, Barone et al., 2011, Matsuda et al., 

2008, Paillard et al., 2006, 2004). Furthermore, elite academy and senior players 

have evidenced lower X and Y sway displacement on the non-dominant/ stance leg 

compared to the dominant kicking leg (Pau et al., 2014, Barone et al., 2011, Matsuda 

et al., 2008, Paillard et al., 2006, 2004). This is purportedly because of the increased 

afferent workload due to the greater postural control required to execute the complex 

motor skill of kicking a football from a unilateral stance (Kellis and Katis, 2007, 

Kellis et al., 2001). The scope for any adaptation in motor control therefore would 
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invariably be expected to be less in elite academy footballers. As this study only 

investigated the non-dominant/ stance leg this further illustrates the magnitude of G1 

dose-response to one session of individualised DT per week compared to G2 three 

sessions of generic DT. Table 4.5 also indicates that G1 and G2 sway velocity during 

the SLST was greater than both the adult regional (2.17 ± 0.46 cm·s1) and national 

(1.67 ± 0.47 cm·s1) footballers investigated by Paillard et al., (2006). As national 

players trained every day vs. regional players training twice a week, national players 

would be expected to have a greater dose-response and therefore enhanced motor 

control, evidenced by the lower sway velocity. The opposite however was found for 

this study. Despite G2 training three-times per week compared to G1 one (technical 

football training and DT), G1 evidenced superior motor control adaptations over 

eight weeks. However, the origins of the national players enhanced motor control 

remains to be elucidated as Paillard et al., (2006) only specified training frequency 

rather than what a training day comprised. Therefore, it is unknown whether motor 

control enhanced through exposure to football training/ competition and/ or physical 

competency based training modalities. There are inherent differences between 

adolescents and adults neurological pathways, as well as between circa- and post-

pubescents (Lazaridis et al., 2010, Oliver and Smith, 2010, Lambertz et al., 2003). 

These factors therefore require consideration when comparing the results of this 

study. 

 

The findings of Pau et al., (2014) investigation into male elite academy footballers 

(age 14.5 ± 0.2 years, stature 164.5 ± 5.6 cm, body mass 56.8 ± 6.8 kg) has the 

greatest implications when compared with this study. This is because to the authors 

knowledge Pau et al., (2014) investigation is the only study to have conducted a 
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SLST congruently with plantar CoP measures in elite male academy footballers. Pau 

et al., (2014) used an RS Footscan pressure mat to record CoP measures from a 

SLST pre and post Buchheit et al., (2010a) specific adolescent footballers RSA 

protocol simulating match fatigue. Pau et al., (2014) found CoP ellipse area (cm2) 

maximum total (63.7 ± 15.9 vs. 72.1 ± 18.2 cm), anterior-posterior (3.5 ± 1.4 vs. 4.2 

± 1.9 cm) and medial-lateral (2.2 ± 7.2 vs. 2.9 ± 0.9 cm) displacements, and sway 

velocities (cm·s1) all significantly (P < 0.05) increased (medial-lateral sway 

velocity (cm·s1) also increased compared to baseline values but not significantly). 

However unlike Barone et al., (2011), Matsuda et al., (2008) and Paillard et al., 

(2006), Pau et al., (2014) found no interaction between the dominant and non-

dominant kicking leg pre or post. This could possibly be a reflection of player’s 

technical ability as invariably they would be expected to execute football-specific 

motor skills with both feet, as well as been exposed to supervised physical training at 

elite academy level (Barone et al., 2011, Matsuda et al., 2008, Paillard et al., 2006). 

Positive correlations between the fatigue-index and sway-fatigue/rest-ratio for CoP 

total displacement (cm) (r = 0.631, P = 0.01), anterior-posterior sway velocity 

(cm·s1) (r = 0.577, P = 0.01) and medial-lateral sway velocity (cm·s1) (r = 0.529, 

P = 0.014) however were evidenced for the non-dominant/ stance leg. This indicates 

that the non-dominant leg’s rate of fatigue during match play was greater than the 

dominant kicking leg, and that sway displacement and velocity increase 

exponentially with neuromuscular fatigue. Pau et al., (2014) findings therefore 

advocate that based on this study’s post intervention data G2 are at greater risk of 

injury than G1. This is because unlike G1 individualised DT, the generic DT 

prescribed to G2 had a detrimental impact on motor control. Pau et al., (2014) 

findings therefore reinforce that G2 would be at greater risk of injury than G1, and 
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that G2 generic DT was ineffective compared to G1 individualised DT as it had a 

detrimental impact on SLST performance and plantar CoP measures. Increased CoP 

sway displacements and velocities during static unilateral stance is symptomatic of 

decreased motor control (Takacs et al., 2014, Abdul Razak et al., 2012, Knapp et al., 

2011, Ross et al., 2009, Santos and Aruin, 2009, Hubbard et al., 2007b, Mochizuki et 

al., 2006). In addition, neuromuscular fatigue is a pathological factor of acute and 

overuse non-contact injuries accounting for 90% of injuries in English elite academy 

football (Ekstrand et al., 2011, Hagglund et al., 2009, Price et al., 2004). Alarmingly, 

the range of G1 and G2 X and Y displacement is also closer to Pau et al., (2014) post 

RSA protocol fatigued values. The elite academy players in Pau et al., (2014) study 

trained for a minimum of six hours per week. By comparison, G1 symptomatic 

decreased motor control may be expected due to a lower weekly training frequency 

(despite having a greater dose-response effect than G2). However, G2 training was 

greater than six hours a week suggesting inappropriate training prescription. 

However, like Paillard et al., (2006), Pau et al., (2014) did not state what a training 

day comprised. 

 

 

5.3 The Effects of Maturation and Growth on the Mechanisms Underpinning 

the Dose-Response to DT and Assessments of Motor Control 

 

As would be expected, G1 and G2 maturational offset from predicted APHV was 

significantly different (P = 0.001) and indicated that G1 were circa puberty whereas 

G2 were post-pubescent (Table 3.1). Inherent musculoskeletal and 

neurophysiological differences between them therefore could elucidate G1 and G2 
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dose-response to DT, as well as their respective FPMS, DJL, YBT and SLST 

performances (Mersmann et al., 2014, Meylan et al., 2014, Couppé et al., 2013, 

Hansen et al., 2013, Arya and Kulig, 2010, Lazaridis et al., 2010, Meylan et al., 

2010, Oliver and Smith, 2010, Xu et al., 2009, Beunen and Malina, 2008, Grosset et 

al., 2007, Croce et al., 2004, Malina et al., 2004, De Ste Croix et al., 2003, Lambertz 

et al., 2003, Hawkins and Metheny, 2001, Gasser et al., 2001, Malina et al., 2000, 

Viru et al., 1999). When comparing predicted APHV, Lloyd et al., (2015) and Le 

Gall et al., (2007) investigations using academy players from UK professional clubs 

(Table 2.3) and the French Centre of Excellence (13.3 ± 0.3 years, range 12.3 to 

14.4) indicate that G1 and G2 were late maturers.  Le Gall et al., (2007) also 

evidenced that late maturers had a lower incidence of moderate injuries compared to 

normal and early maturers. Therefore, G1 and G2 inherent slower growth and 

maturational rate could abate the intensification of injury risk, notably during circa 

pubescent periods (Beunen and Malina, 2008, Gasser et al., 2001, Hägg and 

Taranger, 1991). Johnson et al., (2009) general log linear analysis also concluded 

maturation, as well as competition and training exposure, accounted for 47% of the 

variance in injury incidence. Identifying APHV to establish early, normal, or late 

maturational status is therefore not only important for determining the level of risk 

(Le Gall et al., 2007), but also when using physical competency assessments of 

motor control to predict injury risk. For instance, Lloyd et al., (2015) found that 

despite U16 advanced maturational status, and significantly (P < 0.05) 

outperforming U13 and U11 on the FMS (Table 2.3), ANCOVA applied to 

maturation indicated no significant between group differences. This indicates that the 

screen outcome was influenced by maturational status. Moreover, the FMS inline 

lunge, active straight leg raise, and rotary stability assessments are biomechanically 
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comparable to the FPMS tests three, five, seven and nine (Table 2.5). This is 

conjectural however and the effect of different stages of biological development on 

the FPMS remains to be elucidated. Nonetheless, as changes in FPMS outcome are 

considered reflective of DT efficacy (Mottram and Comerford, 2008), any change in 

motor control that is, to a larger or lesser extent, a result of growth and/or maturation 

means that the effectiveness of the prescribed DT could be misinterpreted.  

 

Concomitant increases in limb mass and moment of inertia with long bone growth, 

in the absence of MTU hypertrophy and ligament cross-sectional area, lead to earlier 

onset of neuromuscular fatigue (Mersmann et al., 2014, Xu et al., 2009, Stafilidis 

and Arampatzis, 2007, Arampatzis et al., 2006, Hawkins and Metheny, 2001). 

Invariably this reduces joint stiffness and increases the risk of chronic or acute 

overload injuries (Mersmann et al., 2014, Xu et al., 2009, Stafilidis and Arampatzis, 

2007, Arampatzis et al., 2006, Hawkins and Metheny, 2001). Furthermore, the 

greater force requirement would increase joint torque when the connective tissue 

tensile strength is already close to the failure limits as a consequence of the increased 

pre-load (Mersmann et al., 2014, Couppé et al., 2013, Hansen et al., 2013, Arya and 

Kulig, 2010, De Ste Croix et al., 2003). This evidence advocates that the risk of 

injury will exponentially reflect the rate that growth and maturational changes occur. 

G1 anthropometric measures and post-APHV circa-pubescent status (Table 3.1) infer 

that they might have been at greater risk of injury through these mechanisms. No 

significant difference between G1 and G2 stature and leg length (which accelerates 

before APHV (Beunen and Malina, 1988)) also advocates that G1 growth spurt had 

already occurred. As late maturers however, G1 inherent slower bone growth and 

maturational rate would offset the degree of risk because the pre-load on the MTU 
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would be less than that for normal and early maturers (Xu et al., 2009). As a 

consequence, this could potentially decrease the level of monosynaptic inhibition 

which, while functioning primarily as a protective mechanism (as GTO Ib-afferent 

interneurons inhibit intrafusal fibre impulses if the MTU is overloaded (Moore, 

2007, Gabriel et al., 2006, Chalmers, 2002b, Lin et al., 1997, Ovalie, 1987)) can 

inadvertently destabilise the joint having the adverse effect (Wilson and Flanagan, 

2008, Lephart, 2000, Jaric et al., 1995). This also infers that G1 and G2 as late 

maturers should have had a greater scope for adaptation to the neural stimulus 

presented by DT. This could therefore have potentially contributed to G1 superior 

enhancement in DJL performance and dose-response to individualised DT during a 

period whereby temporary disruptions in neuromuscular coordination have been 

reported previously (Quatman-Yates et al., 2012, Philippaerts et al., 2006). However, 

this can only be surmised from this investigations evidence and remains to be 

elucidated. 

 

Despite having a marginally superior FPMS score (Figure 4.1), G1 pre DT DJL, 

YBT and SLST measures were inferior compared to G2 advocating they were at 

greater risk of injury. As G1 were only 0.22 ± 0.54 years post-APHV (Table 3.1) 

their pre DT intervention scores could be symptomatic of an innate reliance on 

reactive feedback afferent pathways often observed during circa-pubescence (Lloyd 

et al., 2011b, Lazaridis et al., 2010, Oliver and Smith, 2010, Grosset et al., 2007, 

Croce et al., 2004, Lambertz et al., 2003). This notion is supported by G1 YBT sway 

velocity which was indicative of compensatory postural adjustments. Although 

reactive feedback is associated with monosynaptic inhibition (Lazaridis et al., 2010, 

Oliver and Smith, 2010, Grosset et al., 2007, Moore, 2007, Gabriel et al., 2006, 
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Croce et al., 2004, Lambertz et al., 2003, Chalmers, 2002b), the efficacy of 

correcting motor control is dependent on the ability to challenge afferent feedback 

(Comerford and Mottram, 2001a). The sole purpose of DT is to be able to 

cognitively dissociate movements (Mottram and Comerford, 2008) which reinforces 

why a superior dose-response following individualised DT was observed for G1. 

Furthermore, cognitive control has been repeatedly identified as a pathological factor 

of injury (Verrelst et al., 2014, Verrelst et al., 2013, Leetun et al., 2004, Ireland et al., 

2003, Fredericson et al., 2000, Bendjaballah et al., 1997). Conversely, Lloyd et al., 

(2012) Youth Physical Development model advocates the implementation of specific 

training to promote feed-forward neural pathways, taking advantage of innate post-

pubescent neurophysiological adaptations. The nature of DT however predominantly 

enhances motor control via afferent feedback which could have potentially 

attenuated G2 training adaption, compounded by its generic prescription. 

Furthermore, increased androgen receptor levels post-APHV have been directly 

associated with morphological adaptations in connective tissue (Fragala et al., 2011, 

Boisseau and Delamarche, 2000). While a neural stimulus should always be 

presented, hypertrophy based training is advocated to develop MTU and ligament 

strength which would attenuate monosynaptic inhibition (Lambertz et al., 2003). 

Consequently, this would promote feed-forward anticipatory postural adjustments 

essential to sport-specific motor skills that can contribute to academy footballers’ 

risk of non-contact injury (dos Santos et al., 2014, Lloyd et al., 2012b, Barone et al., 

2011, Fragala et al., 2011, Matsuda et al., 2008, Kibler et al., 2006, Ebenbichler et 

al., 2001, Radebold et al., 2001, Voight et al., 1998). While it can only be surmised 

from this study’s findings the stimulus presented by individualised DT could have 

been favourable for G1 whereas generic DT could have been unsuitable for G2. 
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5.4 Implications of Enhancing Motor Control in Elite Male Academy 

Footballers 

 

Where previous independent remedial motor control programmes have been 

unsuccessful, individualised DT indicates that it can have a positive dose-response. 

As DJL, YBT and SLST indicated greater effects than the FPMS this suggests that 

they are more appropriate surrogate markers of DT efficacy and motor control. It is 

conceivable that they indicated greater effects as they predominantly focussed on 

LPHC and lower limb control, whereas the FPMS comprised upper limb assessments 

which could have had an impact on composite score. However, the kinetic variables 

measured for all tests assessed lower limb function only. As enhanced lower limb 

function is governed by proximal control of the LPHC through reciprocal sensory 

pathways (dos Santos et al., 2014, Hides et al., 2012, Kiers et al., 2012, Kibler et al., 

2006, Konin et al., 2003, Devlin, 2000, Hodges and Richardson, 1997, Hodges and 

Richardson, 1996), G1 and G2 recorded kinetic measures support the proposal that 

surrogate markers are more appropriate for monitoring DT efficacy. These findings 

also reinforce Wingfield et al., (2004) and Chalmers et al., (2002a) meta-analysis 

evidence that the validity of screening select physical competencies as predictors of 

injury remains equivocal. However, despite the FPMS apparent weaker sensitivity to 

G1 and G2 changes in motor control the FPMS directed the DT prescription. It 

therefore remains to be elucidated whether the proposed surrogate markers could 

direct DT and subsequently have an equal or greater dose-response. However, due to 

no empirical evidence supporting the FPMS this cannot be ascertained. 
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In chronological age groups of >14 years increases in injury incidence have been 

consistently reported in elite academy footballers (Cloke et al., 2012, Deehan et al., 

2007, Merron et al., 2006, Emery et al., 2005, Malina et al., 2004, Price et al., 2004, 

Volpi et al., 2003, Peterson et al., 2000, Schmikli and Bol, 1995), with the lower 

extremity accounting for 90% of non-contact injuries (Ekstrand et al., 2011, 

Hagglund et al., 2009, Price et al., 2004). These increases could be attributed to the 

current English EPPP as training and competition increases linearly with 

chronological age irrespective of biological development (Rumpf and Cronin, 2012). 

However, there were no significant differences between G1 and G2 match time and 

frequency throughout the DT intervention or 2013/14 season (Table 4.1). Therefore, 

G1 post individualised DT evidence advocates injury risk can be attenuated through 

enhanced motor control. G1 individualised DT enhanced LPHC control superiorly to 

G2 generic DT, for which there is a plethora of pathological evidence of injury 

indicating impaired LPHC synergies causes greater uncontrolled displacements 

(Verrelst et al., 2014, Wilkerson et al., 2012, Chuter and de Jonge, 2012, Willems et 

al., 2006, Willson et al., 2006, Willson et al., 2005, Niemuth et al., 2005, Leetun et 

al., 2004, Ireland et al., 2003). By reducing the potential for compensatory 

kinematics to develop, overload and/or overuse injuries through early onset of 

neuromuscular fatigue can be attenuated (Mersmann et al., 2014, Parchmann and 

McBride, 2011, Chorba et al., 2010). G1 greater dose-response to individualised DT 

indicates that it could be an effective facet of training for elite academy footballers 

competing under the current English EPPP. Moreover, G2 failure to improve by the 

same magnitudes as G1 despite a greater DT frequency also means that one 

individualised DT per week over eight weeks would allow time for complementary 

training. The importance of this was evidenced by Filipa et al., (2010) whereby 
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superior magnitudes of change were found following eight weeks multifaceted 

Integrative Neuromuscular Control Training compared to this study’s independent 

DT intervention. 

 

While G1 CoP measures were indicative of compensatory postural adjustment 

afferent feedback pathways, LPHC control improved indicating a positive change in 

motor pattern. Moreover, enhanced compensatory postural adjustments set the 

foundation for developing anticipatory postural adjustments as enhanced 

intermuscular coordination decreases the electromechanical delay of resisting forces 

(Hides et al., 2012, Kibler et al., 2006, Anderson and Behm, 2005, Konin et al., 

2003, Behm et al., 2002, Lloyd, 2001, Devlin, 2000, Hodges and Richardson, 1997, 

Hodges and Richardson, 1996, Kearney and Hunter, 1990). Subsequently, this would 

elicit an earlier onset and change in activation pattern increasing proximal stability of 

LPHC allowing enhanced distal mobility and effective attenuation of GRF (Kibler et 

al., 2006, Ebenbichler et al., 2001, Radebold et al., 2001, Kibler, 1993). As a 

consequence, G1 onset of neuromuscular fatigue should be attenuated. This is central 

to motor control training’s ability to reduce injury risk as the manifestation of non-

contact injuries in elite academy populations has been attributed to this (Mersmann 

et al., 2014, Meylan et al., 2010, Hawkins and Metheny, 2001, Devlin, 2000). This 

would elucidate G1 evidenced attenuation of PVGRF and increased TTS through 

enhanced LPHC control. In addition, this could increase the GRF transferred from 

the stance to the non-standing leg. This could increase angular velocity, and 

therefore impulse, reducing the force required to overcome inertia when executing 

football specific skills (Strauss et al., 2012, Orloff et al., 2008, Harrison and 

Mannering, 2006, Barfield et al., 2002, Barfield, 1998). Although this is beyond the 
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realms of this study, this would have significant implications for youth footballers 

because of the inherent concomitant increased risks of injury and somatic growth, 

particularly during circa-pubescence (Mersmann et al., 2014, Meylan et al., 2014, 

Meylan et al., 2010, Beunen and Malina, 2008, Malina et al., 2004, Hawkins and 

Metheny, 2001). 

 

 

6.0 Conclusion 

 

6.1 Practical Applications 

 

To enhance motor control DT needs to be individualised to effectively challenge an 

individual’s cognitive processes and afferent feedback. G1 positive response to a low 

dose of individualised DT also provides practitioners with an effective motor control 

retraining strategy that can be easily integrated into two traditional four week 

mesocycle training blocks throughout a season. Moreover, G1 positive dose-

response has significant application for elite academy footballers. As G1 assessments 

of neuromuscular control all improved following only one DT per week over eight 

weeks this advocates that the overall training workloads of the present EPPP for each 

age group could be reduced. Consequently, this could attenuate the reported 

concomitant increase between chronological age group and injury incidence. A high 

percentage of which are lower extremity non-contact injuries frequently attributed to 

poor cognitive control and early onset of neuromuscular fatigue. The impact of this 

study’s findings are further accentuated by the fact that only the non-dominant 

kicking leg of elite academy footballers’ were assessed. Therefore, the scope for any 
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adaptation in motor control would have already been reduced. G1 observed changes 

in this reduced window of opportunity infer that individualised DT could attenuate 

potential compensatory synergistic dominant motor skills, previously evidenced to 

be induced by football training and competition exposure. Although G2 findings 

indicated that the stimulus presented by generic DT was inadequate, it can only be 

surmised to what extent G1 and G2 inherent growth and maturational differences 

affected this study’s outcome. Likewise, prospective studies should aim to elucidate 

the dose-response threshold of individualised DT and its effectiveness in the absence 

of the FPMS directed prescription. Nonetheless, the main findings of this study 

advocate that a lower dose of DT is sufficient for improving neuromuscular control 

provided training is individualised, and is superior to generically prescribed DT. In 

addition, as SLST, YBT and DJL indicated greater effects than the FPMS and have 

all been proposed to predict injury through reduced motor control, they could be a 

more suitable surrogate marker for assessing the effectiveness of DT. 
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Appendix 2.0 
 
 

 
 
 
 

Dear Participant 
 
I would like to invite you to volunteer to take part in a research study on behalf of Bristol City 

Football Club. The study will measure the effects of 8 weeks of the ‘motor control training’ you 

already perform during academy training. This will be measured during Bristol City FC 

Foundation Performance Matrix (FPM) injury screening plus three other measures testing your 

balance and movement. 

 
This study aims to help Bristol City FC to: 

Gain a greater understanding of the mechanisms involved in injury occurrence. 

Improve the type of strength training you perform to lower your likelihood of injury. 

Improve your athletic performance. 

 

 

 

 

 
 
 
There are very low risks associated with taking part in this research. If you wish for any further 

information please contact Gary Davenport, me (E: robertburge@connect.gloas.ac.uk) or my 

supervisors Dr Jonathan Hughes (E: jhughes1@glos.ac.uk ) or Professor Mark De Ste Croix (E: 

destecroix@glos.ac.uk) on the email details provided. The University of Gloucestershire 

research ethics subcommittee has approved this study. If you have any concerns please contact 

Dr Malcolm MacLean, chair of the subcommittee at the University of Gloucestershire, on the 

details provided (Email: mmaclean@glos.ac.uk, Tel: 01242 715158). Dr MacLean has no direct 

involvement in the study. 

 

Yours sincerely 
 

Robert Burge 

THING YOU NEED TO KNOW IF YOU WOULD LIKE TO TAKE 
PART: 

1. You will only be included with your signed permission. 

2. You will need to sign a health questionnaire to make sure you are suitable to 

participate in the study. 
3. If under 18 years of age, a separate consent will need to be signed by your parent/ 

guardian. 



   

 
 

 
INFORMATION SHEET: WHAT TESTING INVOLVES 

On the morning of each testing YOU will need to: 

 
 
 
 
 

What YOU will be required to perform at Bristol City FC academy training: 

 

 

 

 

 

 

 

 

 
What YOU need to know about volunteering for this study: 

 

 

 

 

 

 

 
 
 
 

1. Wear briefs/ cycle shorts or close-fitting undergarments under your shorts; 

(When you arrive at training) 

2. Take off all upper body clothing when performing the upper body FPM screen movements. 
This will allow select joints of the upper body to be observed during assessment. 

1. U15/ U16 age groups will take part in one dissociation training session per week. 

2. U17/ U18 age groups will take part in three dissociation training sessions per week. 

3. Each session will last no longer than 60 minutes. 

4. Gary Davenport and/ or Steve Taylor will supervise all of your training. 

5. All training will take place during Bristol City FC academy training. 

 

Two practice sessions will be provided. Correct exercise technique will be taught and any 

questions about the study answered. The program duration has been set as an appropriate time 

for any positive change to occur. 

� As a volunteer you have the right to withdraw from the study at any point without 

consequence. 

� All of your individual data will remain anonymous. 

� Data will be kept for a minimum of five years. After five years, all data will be destroyed. 

� Bristol City FC sports science and medical staff will be made aware of the study’s outcome. 

They will not have access to your individual data to prevent any bias for your future 

selection. 

� For coaching feedback video analysis will be employed by the researcher, Gary Davenport 

or Steve Taylor. All video footage will be deleted within 24 hours. 

� Continue participating in all physical education and sports throughout the duration of the 

study. 

� This study will be published as the researcher’s academic work. A publication may be made 

available to students in the University of Gloucestershire library and in the public domain 

- You will not be identifiable by name. 

- Your data will be used for research purposes only. 



   

 
 
 
 

 
Participant Informed Consent Form 

 
 
 

Title of Project 
The Dose-Response Effects of Dissociation Training on 

Measures of Neuromuscular Control during Performance 
Screening in Male Youth Footballers 

 
 
Principle 
investigators 

 
Robert Burge 
Sports Strength and Conditioning MSc by Research student & Bristol 
City FC research scholar 
 
Faculty of Applied Sciences, University of Gloucestershire, Oxstalls Campus, Oxstalls Lane, 
Gloucester, GL2 9HW 
robertburge@connect.glos.ac.uk 
 

I understand what I have been asked to participate in a research 
study? Yes No 

I have read and received a copy of the information letter? Yes No 
I understand the benefits and risks involved in taking part in this 
research study? Yes No 

I understand that I am free to contact the researcher to ask 
questions and discuss this study? Yes No 

I understand that I am free to not volunteer, or to withdraw from the 
study at any time, without consequence and that my information will 
be deleted at my request? 

Yes No 

I understand that the researcher will keep my data confidential? I 
understand who will have access to your information? Yes No 

 
I wish to take part in this research study: 
 
Participant Printed Name:         
 
Participant Signature:         
 
Date:            
 
Preferred contact number:         
 
Email:            



   

Appendix 2.1 
 
 

Mr Robert Burge 
Sports Strength & Conditioning 
Faculty of Applied Sciences 
Oxstalls Campus 
Oxstalls Lane 
Longlevens 
GLOUCESTER GL2 9HW 
robertburge@.connect.glos.ac.uk 

22nd January 2014 
 
Dear Parent/ Guardian 
 

The Dose-Response Effects of Dissociation Training on Measures of 
Neuromuscular Control during Performance Screening in Male Youth Footballers 

I am a postgraduate MSc by Research Sports Strength and Conditioning student and 

research scholar for Bristol City Football Club. I would like to invite your son to take part 

in a research study. They will only be included with your permission. The purpose of the 

study is to measure the effects of 8 weeks dissociation training on four measures of 

balance and dynamic postural control. (Dissociation training is a form of bodyweight 

corrective movement training to improve muscle coordination. Its aim is to lower the risk 

of injury by improving identified uncontrolled movements). This will be measured during 

Bristol City FC injury screening. 

 

The researcher and Bristol City FC academy head of sport science (Gary Davenport) 

will be present at all times during testing. The researcher is CRB certified to work with 

youth populations. Participants will be required to wear briefs or close-fitting 

undergarments under their shorts. Participants will be asked to perform the screening 

movements without a shirt on. This will allow for observational assessments of select 

upper body joints. Participants will be asked to fill out a health questionnaire to make 

sure they are suitable to participate in the study. Participants aged 15 to 16 years will 

take part in one dissociation training session per week. Participants aged 17 to 18 

years will take part in three dissociation training sessions per week. Each session will 

last no longer than 60 minutes. All sessions will be supervised by Bristol City FC head 

of sport science and/ or head of physiotherapy. All training will take place during Bristol 

City FC academy training. Two practice sessions will be provided. Correct exercise 

technique will be taught and any questions about the study answered. The programme 



   

duration has been set as an appropriate time for any positive change to occur. This 

study poses a very low risk of injury. As a volunteer, your son reserves the right to 

withdraw from the study at any point without consequence. All individual data will 

remain anonymous. Data will only be stored on a password secured laptop locked in 

the researcher’s supervisor’s office. Data will be kept for a minimum of five years. After 

five years, all data will be destroyed.  

 

Bristol City FC sports science and medical staff will be made aware of the study’s 

outcome. They will not have access to individual participant data. This will eliminate any 

bias in future selection. The results from this study will be presented in my academic 

thesis. No participant will be identifiable by name. All data will be used for research 

purposes only. A publication may be made available to students in the University library 

and in the public domain. For coaching feedback video and photographic analysis will 

be employed. This will be administered by the researcher or one of Bristol City FC 

coaching staff. For data protection, any memory card containing images or video 

footage will be stored in a locked draw in the researcher’s supervisor’s office. 

Continued participation in all physical education throughout the duration of the study is 

encouraged. Participation in this study could help coaches to: Gain a greater 

understanding of the mechanisms involved in injury occurrence; assist the prescription 

of strength training to lower the likelihood of injury; and improve athletic performance. 

There are very low risks associated with taking part in this research.  

 

The University of Gloucestershire faculty research ethics panel has approved this 

study. Please contact Dr Malcolm MacLean, chair of the research ethics subcommittee 

for the Faculty of Applied Sciences at the University of Gloucestershire, by email or 

phone if you have any concerns (Email: mmaclean@glos.ac.uk, Tel: 01242 715158). Dr 

MacLean has no direct involvement in the study. If you wish for any further information 

please contact me on my email details provided. Alternatively, please contact my 

supervisors Dr Jonathan Hughes (E: jhughes1@glos.ac.uk) or Professor Mark De Ste 

Croix (E: destecroix@glos.ac.uk) on the email details provided. 

 

Yours sincerely 

 

Robert Burge 



   

 
 
 

Parent/ Guardian Informed Consent Form 

Title of Project 
 

 
The Dose-Response Effects of Dissociation Training on 

Measures of Neuromuscular Control during Performance 
Screening in Male Youth Footballers 

 
 
Principle 
investigators 

 
Robert Burge 
Sports Strength and Conditioning MSc by Research student & Bristol 
City FC research scholar 
 
Faculty of Applied Sciences, University of Gloucestershire, Oxstalls Campus, Oxstalls Lane, 
Gloucester, GL2 9HW 
robertburge@connect.glos.ac.uk 
 

Do you understand that I have asked you to participate in a 
research study? Yes No 

Have you read and received a copy of the attached information 
letter? Yes No 

Do you understand the benefits and risks involved in taking part in 
this research study? Yes No 

Do you understand that you are free to contact the researcher to 
take the opportunity to ask questions and discuss this study? Yes No 

Do you understand that you are free to refuse participation, or to 
withdraw from the study at any time, without consequence and that 
your information will be withdrawn at your request? 

Yes No 

Do you understand that I will keep your data confidential? Do you 
understand who will have access to your information? Yes No 

 
I wish to take part in this study: 
 
Participant Printed Name:         
 
Participant Signature:         
 
Parent/ Guardian Printed Name:        
 
Parent/ Guardian Signature:        
 
Date:            
 
Preferred contact number:         
 
Email:            



Appendix 3.0 

 
 
GLM PreFPMSscore PostFPMSscore BY Group 
  /WSFACTOR=Time 2 Polynomial 
  /METHOD=SSTYPE(3) 
  /SAVE=SRESID 
  /PLOT=PROFILE(Time*Group) 
  /EMMEANS=TABLES(Group) COMPARE ADJ(BONFERRONI) 
  /EMMEANS=TABLES(Time) COMPARE ADJ(BONFERRONI) 
  /EMMEANS=TABLES(Group*Time) 
  /PRINT=DESCRIPTIVE ETASQ 
  /CRITERIA=ALPHA(.05) 
  /WSDESIGN=Time 
  /DESIGN=Group. 
 

General Linear Model 
 

Within-Subjects Factors 

Measure:   MEASURE_1   
Time Dependent Variable 

1 PreFPMSscore 

2 PostFPMSscore 

Between-Subjects Factors 

 N 

Group 1.00 6 

2.00 8 

Descriptive Statistics 
 Group Mean Std. Deviation N 

PreFPMSscore 1.00 26.3333 4.08248 6 

2.00 25.0000 6.18755 8 

Total 25.5714 5.24352 14 

PostFPMSscore 1.00 27.0000 4.04969 6 

2.00 24.2500 5.54849 8 

Total 25.4286 4.98790 14 

Multivariate Testsa 

Effect Value F Hypothesis df Error df Sig. Partial Eta Squared 

Time Pillai's Trace .002 .019b 1.000 12.000 .892 .002 

Wilks' Lambda .998 .019b 1.000 12.000 .892 .002 

Hotelling's Trace .002 .019b 1.000 12.000 .892 .002 

Roy's Largest Root .002 .019b 1.000 12.000 .892 .002 

Time * Group Pillai's Trace .317 5.567b 1.000 12.000 .036 .317 

Wilks' Lambda .683 5.567b 1.000 12.000 .036 .317 

Hotelling's Trace .464 5.567b 1.000 12.000 .036 .317 

Roy's Largest Root .464 5.567b 1.000 12.000 .036 .317 

a. Design: Intercept + Group  

 Within Subjects Design: Time 

b. Exact statistic 

Mauchly's Test of Sphericitya 

Measure:   MEASURE_1   

Within Subjects Effect Mauchly's W Approx. Chi-Square df Sig. 

Epsilonb 

Greenhouse-Geisser Huynh-Feldt Lower-bound 

Time 1.000 .000 0 . 1.000 1.000 1.000 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional to an identity matrix. 

a. Design: Intercept + Group  

 Within Subjects Design: Time 

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table. 

 
Tests of Within-Subjects Effects 

Measure:   MEASURE_1   
Source Type III Sum of Squares df Mean Square F Sig. Partial Eta Squared 

Time Sphericity Assumed .012 1 .012 .019 .892 .002 

Greenhouse-Geisser .012 1.000 .012 .019 .892 .002 

Huynh-Feldt .012 1.000 .012 .019 .892 .002 

Lower-bound .012 1.000 .012 .019 .892 .002 

Time * Group Sphericity Assumed 3.440 1 3.440 5.567 .036 .317 

Greenhouse-Geisser 3.440 1.000 3.440 5.567 .036 .317 

Huynh-Feldt 3.440 1.000 3.440 5.567 .036 .317 

Lower-bound 3.440 1.000 3.440 5.567 .036 .317 

Error(Time) Sphericity Assumed 7.417 12 .618    

Greenhouse-Geisser 7.417 12.000 .618    

Huynh-Feldt 7.417 12.000 .618    

Lower-bound 7.417 12.000 .618    

 

 



 

Tests of Within-Subjects Contrasts 
Measure:   MEASURE_1   
Source Time Type III Sum of Squares df Mean Square F Sig. Partial Eta Squared 

Time Linear .012 1 .012 .019 .892 .002 

Time * Group Linear 3.440 1 3.440 5.567 .036 .317 

Error(Time) Linear 7.417 12 .618    

 
Tests of Between-Subjects Effects 

Measure:   MEASURE_1   
Transformed Variable:   Average   
Source Type III Sum of Squares df Mean Square F Sig. Partial Eta Squared 

Intercept 18040.012 1 18040.012 337.503 .000 .966 

Group 28.583 1 28.583 .535 .479 .043 

Error 641.417 12 53.451    

 
Estimated Marginal Means 
 
1. Group 

Estimates 

Measure:   MEASURE_1   

Group Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1.00 26.667 2.111 22.068 31.265 

2.00 24.625 1.828 20.643 28.607 

Pairwise Comparisons 

Measure:   MEASURE_1   

(I) Group (J) Group Mean Difference (I-J) Std. Error Sig.a 

95% Confidence Interval for Differencea 

Lower Bound Upper Bound 

1.00 2.00 2.042 2.792 .479 -4.041 8.125 

2.00 1.00 -2.042 2.792 .479 -8.125 4.041 

Based on estimated marginal means 

a. Adjustment for multiple comparisons: Bonferroni. 

Univariate Tests 

Measure:   MEASURE_1   
 Sum of Squares df Mean Square F Sig. Partial Eta Squared 

Contrast 14.292 1 14.292 .535 .479 .043 

Error 320.708 12 26.726    

The F tests the effect of Group. This test is based on the linearly independent pairwise comparisons among the estimated marginal means. 

 
2. Time 

Estimates 

Measure:   MEASURE_1   

Time Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1 25.667 1.461 22.483 28.850 

2 25.625 1.345 22.696 28.554 

Pairwise Comparisons 

Measure:   MEASURE_1   

(I) Time (J) Time Mean Difference (I-J) Std. Error Sig.a 

95% Confidence Interval for Differencea 

Lower Bound Upper Bound 

1 2 .042 .300 .892 -.612 .696 

2 1 -.042 .300 .892 -.696 .612 

Based on estimated marginal means 

a. Adjustment for multiple comparisons: Bonferroni. 

Multivariate Tests 

 Value F Hypothesis df Error df Sig. Partial Eta Squared 

Pillai's trace .002 .019a 1.000 12.000 .892 .002 

Wilks' lambda .998 .019a 1.000 12.000 .892 .002 

Hotelling's trace .002 .019a 1.000 12.000 .892 .002 

Roy's largest root .002 .019a 1.000 12.000 .892 .002 

Each F tests the multivariate effect of Time. These tests are based on the linearly independent pairwise comparisons among the estimated marginal 

means. 

a. Exact statistic 



 

 

 

 

 

 

 

3. Group * Time 

Measure:   MEASURE_1   

Group Time Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

1.00 1 26.333 2.209 21.520 31.146 

2 27.000 2.033 22.571 31.429 

2.00 1 25.000 1.913 20.832 29.168 

2 24.250 1.760 20.414 28.086 

 
 
Profile Plots 

 
 
 
T-TEST PAIRS=PreFPMSscoreG2 PreFPMSscoreG1 PreFPM92SwayVelocityG2 PreFPM92SwayVelocityG1 WITH 
PostFPMSscoreG2 PostFPMSscoreG1 PostFPM92SwayVelocityG2 PostFPM92SwayVelocityG1 (PAIRED) 
  /CRITERIA=CI(.9500) 
  /MISSING=ANALYSIS. 
 

T-Test 
Paired Samples Statistics 

 Mean N Std. Deviation Std. Error Mean 

Pair 1 PreFPMSscoreG2 25.0000 8 6.18755 2.18763 

PostFPMSscoreG2 24.2500 8 5.54849 1.96169 

Pair 2 PreFPMSscoreG1 26.3333 6 4.08248 1.66667 

PostFPMSscoreG1 27.0000 6 4.04969 1.65328 

Pair 3 PreFPM92SwayVelocityG2 9.9463 8 1.79243 .63372 

PostFPM92SwayVelocityG2 8.5163 8 4.22097 1.49234 

Pair 4 PreFPM92SwayVelocityG1 8.7467 6 2.41889 .98751 

PostFPM92SwayVelocityG1 11.7033 6 2.32977 .95112 

 

Paired Samples Correlations 

 N Correlation Sig. 

Pair 1 PreFPMSscoreG2 & PostFPMSscoreG2 8 .990 .000 

Pair 2 PreFPMSscoreG1 & PostFPMSscoreG1 6 .956 .003 

Pair 3 PreFPM92SwayVelocityG2 & 

PostFPM92SwayVelocityG2 

8 .295 .479 

Pair 4 PreFPM92SwayVelocityG1 & 

PostFPM92SwayVelocityG1 

6 .134 .800 

 
Paired Samples Test 

 

Paired Differences 

t df 

Sig. (2-

tailed) Mean 

Std. 

Deviation 

Std. Error 

Mean 

95% Confidence Interval of 

the Difference 

Lower Upper 

Pair 

1 

PreFPMSscoreG2 - PostFPMSscoreG2 .75000 1.03510 .36596 -.11536 1.61536 2.049 7 .080 

Pair 

2 

PreFPMSscoreG1 - PostFPMSscoreG1 -.66667 1.21106 .49441 -1.93760 .60426 -

1.348 

5 .235 

Pair 

3 

PreFPM92SwayVelocityG2 - 

PostFPM92SwayVelocityG2 

1.43000 4.07078 1.43924 -1.97326 4.83326 .994 7 .354 

Pair 

4 

PreFPM92SwayVelocityG1 - 

PostFPM92SwayVelocityG1 

-

2.95667 

3.12479 1.27569 -6.23593 .32260 -

2.318 

5 .068 
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