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Memory effects in language acquisition and attrition pro-

cesses

Abstract. We recall some models and computer simulations that employed statistical
physics and complex systems approach for language competitions, such as the model of
Abrams and Strogatz, its natural extension by Minett and Wang, which added bilinguals
into the dynamics. We also take a look at a game theoretical approach to language
competition made by Iriberri and Uriarte. We introduce a new model that also brings
a notion of memory into the dynamics, mimicking how agents acquire a language and
potentially go through a language attrition processes, while being able to continually
refresh their memory, if they are given the opportunity. We discuss the algorithm and
implementation of the model.

The goal of this work is to explore what effects memory may have on language acquisi-
tion and attrition processes. In particular, memory effects may help to explain why many
bilingual communities survive despite odds. Variants where the language used between
bilingual agents is chosen by random decision making process and prior memory-based
decision making processes are considered. Based on the results obtained it can be con-
cluded, that in this model, competing languages can survive within a bilingual community,
when agents possess a memory and are on a fully connected graph. Similar results were
observed for asymmetrical languages and for populations that were initially split into un-
equal number of representatives of competing languages. Additionally, given the simple
structure of the model proposed, some proposals for a more advanced model are given for
further exploration.
Keywords: complex systems, language dynamics, bilingualism
CERCS: P190 - Mathematical and general theoretical physics, classical mechanics, quan-
tum mechanics, relativity, gravitation, statistical physics, thermodynamics
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Mälu mõjud keele omandamise ja unustamise protses-

sides

Lühikokkuvõte. Me vaatleme mõningaid mudeleid, mis rakendasid statistilise füüsika ja
kompleksussüsteemide vahendeid keelte dünaamika modeleerimiseks, nagu näiteks Abrams
ja Strogatz’i mudel ning ka Minett ja Wang’i mudel, mis hõlmas dünaamikasse lisaks
kakskeelsed. Samuti vaatleme ka mänguteoreetilist lähenemist Iriberri ja Uriarte mudeli
näol keelte dünaamikale. Esitleme oma välja arendatud uut mudelit, mis lisab agen-
tidele ka mälu, jäljendades sellega keele omandamise ja unustamise protsesse. Mudelis
on lubatud agentidel ka oma mälu värskendada, kui selle jaoks peaks olema tekkinud
interaktsioonide käigus võimalus.

Antud töö eesmärgiks on uurida mälu mõjusid keele omandamise ja unustamise prot-
sessides. Mälu mõju võib aidata ka selgitada, miks paljud keeled saavad kakskeelsetes
ühiskondades vastupidiselt ootustele jääda ellu. Vaatleme olukordi, kus kakskeelsed vali-
vad omavahel kasutatava keele juhuslikult ning ka olukordi, kus vastav otsus tehtakse
eelnevaid eelistusi arvestades. Saame järeldada, et mudelis, kus kõik agendid on ük-
steise naabrid ning nende mälu saab pidevalt värskendada, siis on võimalik, et omavahel
võistlevad keeled jäävad kakskeelses ühiskonnas ellu. Analoogilised tulemused olid ka
olukordades, kus arvestati keelte omavahelise asümmeetriaga. Samuti vaadeldi olukordi,
kus populatsioonide suurused kahe keele esindajate vahel olid algtingimustel erinevalt
jaotatud ning leiti, et ka sellistes olukordades võivad mälu mõjude arvestamisel omvahel
võistlevad keeled kakskeelsetes ühiskondades jääda ellu. Arvestades esitletud mudeli li-
htsat olemust, pakume ka mõningaid võimalusi mudeli täiustamiseks edasise uurimustöö
jaoks.
Märksõnad: komplekssüsteemid, keelte dünaamika, kakskeelsus
CERCS: P190 - Matemaatiline ja üldine teoreetiline füüsika, klassikaline mehaanika,
kvantmehaanika, relatiivsus, gravitatsioon, statistiline füüsika, termodünaamika
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1. Introduction

Introduction

Tools and ideas from statistical physics and complex systems theory have been applied
successfully in various scientific disciplines outside traditional physics, such as biology,
medicine, computer science and social sciences [1, 2]. They have also been used to model
language dynamics and competition [3, 4, 5, 6].

The modelling of languages began already with the works of Baggs and Freedman in
1990’s [7, 8]. However, the work that started a rapid development of multiple models
which used computer simulations to gain insight into the competition between various
languages was done by Abrams and Strogatz in 2003 [3]. Aside from the models done by
Baggs and Freedman, those models only considered monolingual groups NX and NY and
the existence of bilingual group NXY was not considered within the dynamics. Therefore,
as a natural extension of the Abrams-Strogatz model, Minett and Wang introduced the
concept of bilingual agents into the language dynamics [4, 9]. The role of bilinguals in
language competition have been modelled from multiple approaches, including from a
game theoretical approach and detailed overviews of some of them are given in Refs.
[5, 6].

According to UNESCO [10], out of the approximately 6000 languages currently used,
about 43% of them are endangered and linguists are predicting that by as early as the year
2050, almost all of them would be extinct [11]. These predictions are further reinforced
by the conclusions made by both the Abrams and Strogatz model and the Minett and
Wang models, unless special tactics are applied [3, 4]. Considering the complexity of
interactions between competing languages, it is natural that questions about the dynamics
about language acquisition and attrition arise. Is there a way that languages can survive
or are they invariably doomed to die until only one remains? Under which criteria can
an equilibria be reached between competing systems, for example, can stable bilingual
communities be the answer? In the hope to provide answers to these questions, computer
simulations are extremely important because they allow us to take a look at languages
and their general trends on a microscopic, agent-based level and by fitting the simulations
to real life data, the simulations can even provide hints at how to properly protect an
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endangered language from going extinct or how viable different strategies can be.
Within this work, we first give a short overview into some language dynamics mod-

els introduced to model language competition and additionally we also give a short in-
troduction into general ideas about language acquisition and attrition processes from a
linguistical perspective.

In Chapter 3 we provide a model of language acquisition and attrition processes. The
goal of the present work is to determine what effects memory may have in language
competition. Memory effects could be important in explaining the existence of many
stable bilingual communities and are known to have an important role in opinion dynamics
[12]. We implement the model in C++. In Chapter 4 we present and discuss the results,
to gain insight into the aforementioned processes in language competition dynamics. We
study memory effects in two different respects: in the first case, memory affects the
learning and forgetting of a language. Furthermore, we study what happens when an
additional memory effect is present, which determines the choice of the language used
by a bilingual individual, as the language which has been used more. Additionally, we
study both symmetrical models where languages X and Y follow the same dynamics, and
asymmetrical models, where the acquisition of one of the competing languages is easier.

We discuss possibilities for further research and improvements in complex systems
models of language competition in Chapter 5.
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2. Theoretical background

In this section we present some prototypical examples of language dynamics models
and some notions of linguistics about language acquisition and attrition processes.

2.1 The Abrams and Strogatz model

The seminal work that started an effort in a statistical physics and complex systems
approach to langugage dynamics was one by Abrams and Strogatz [3]. In order to model
language competition they constructed the first order differential equation

dx

dt
= yPyx(x, s)− xPxy(x, s), (2.1)

where x is the fraction of the population speaking language X, y = 1− x is the comple-
mentary fraction of Y at a time and Pyx(x, s) is the probability with which an individual
from Y converts to X. The parameter s takes values from 0 6 s 6 1 and represents the
prestige of a corresponding language. Assuming the transition functions to have forms
Pyx(x, s) = cxas, Pxy(x, s) = c(1 − x)a(1 − s) and substituting y = 1 − x, the equation
(2.1) takes the following form

dx

dt
= c(1− x)xas− cx(1− x)a(1− s). (2.2)

The general scheme for the Adams and Strogatz model is illustrated in Figure 2.1.
For the exponent a, which represents the volatility parameter, Abrams and Stro-

gatz tested their model against collected data for language competitions between Welsh-
English, Gaelic-English and Quechua-Spanish and found the value for it to be a = 1.31

[3]. The volatility parameter can produce for three different regimes. For a = 1 (neutral
situation), the transition probabilities depend linearly on local population density. For
a < 1 (high volatility), the probability of an agent changing their language is higher than
in the neutral case and for a > 1 (low volatility), the probability of changing a language
is lower than in the neutral case. It could be shown that in general, low volatility leads to
the domination of a single language and no coexistence between two languages can take
place [13] while for a < 1 a fragmentation process can happen.
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In general, the Abrams and Strogatz model is in a good agreement with the general
notion that endangered languages will go extinct, unless measures are taken to improve
the prestige s of an language through means such as education and advertisement or
increase in the number of speakers through other policies is achieved for example [3].

NYNX

cxas

c(1− x)as

Figure 2.1: General scheme for the Abrams and Strogatz.

2.2 The Minett and Wang model

Minett and Wang proposed an improvement upon the Abrams and Strogatz model in
Ref. [9] and published a new model, incorporating bilinguals into language dynamics in
Ref. [4]. The original Minett-Wang model is given with the equations:

dNX

dt
= kZXN

a
XNZ − kXZNa

YNX ,

dNY

dt
= kZYN

a
YNZ − kY ZNa

XNY .

(2.3)

These equations describe how the monolingual populations of NX , NY and bilingual pop-
ulation NZ change in time. The transition rates to change from one population to another
are fixed with the rate constants kZX , kZX , kZY , kY Z , the volatility parameter a and the
size of the populations NX , NY , NZ . The rate constants kZX , kZX , kZY , kY Z contain infor-
mation about the mortality rate, language status or other various sociolinguistic factors
[4]. The Minett and Wang model allows for both vertical and horizontal transmissions
within the population. Within the vertical transmissions, children inherit from their par-
ents the original language that they possess at a rate corresponding to their attractiveness
or both languages. In horizontal transmissions, it is assumed that all adults, after becom-
ing bilingual, will stay bilingual and that adults of either language X or Y will acquire the
opposing language according to its attractiveness. All other monolinguals stay monolin-
guals of their respective language. The general scheme for the Minett and Wang model
is illustrated in Figure 2.2.

Overall, the Minett and Wang model reaches the same conclusion as the Abrams and
Strogatz model, that eventually one language will dominate over the other and forces the
minority into extinction unless specific strategies of intervention are adopted when the
number of speakers of the endangered language decreases below a threshold where the
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language can naturally survive on its own. It should be noted that in the original Minett
and Wang model [4] only the case where a = 1 was studied (neutral volatility). Regimes
where a 6= 1 have also been studied for the Minett and Wang model in Ref. [13] with the
conclusion, that different volatility parameters can lead to either language coexistence or
dominance, with the prestige of a language also playing an important role.

NZNX NY

kXZN
a
Y

kZXN
a
X

kZYN
a
Y

kY ZN
a
X

Figure 2.2: General scheme for the Minett and Wang model incorporating bilinguals.

2.3 The Iriberri-Uriarte model

Because the language competition model implemented within this work also incor-
porates game-theoretical elements, we would like to review also the model developed by
Iriberri and Uriarte [14]. The language conversation game (LCG) is a simple game played
by at least two individuals, out of whom one should be bilingual as a minimum initial
condition. The model itself and the decisions that the players make are based on the
following five assumptions [6, 14]:

• Assumption I: Imperfect information. The players know if they are a monolin-
gual of either language X or language Y or a bilingual, however, do not possess any
information about the type of the other player. The type of an agent is determined
by randomly, but it is assumed that the probability distributions α for bilinguals
and 1−α for the monolinguals hold. Additionally α < 1−α, where α is considerably
smaller than 1− α.

• Assumption II: Language preference. Bilinguals prefer to use language Y.

• Assumption III: Linguistic distance. The languages X and Y are sufficiently
different from one another, so that successful interaction between the two agents
can only be possible in one language. In other words, the representative of language
X is not a passive speaker of language Y and vice versa.

• Assumption IV: Payoff. For α, so that α < 1−α, the payoff ordering is defined as
m > n > c > 0. Maximum payoff m is achieved when a bilingual is able to use their
preferred language as defined in Assumption II. Equal payoff n is achieved when
the monolingual or the bilingual uses the majority language X. This can happen

8



when a bilingual is matched with a monolingual who uses X. However, there is an
associated frustration cost c for the bilingual, due to having been ’forced’ to use the
majority language and not their own.

• Assumption V: Frustration. Frustration cost is smaller than the weighted aver-
age:

c <
(m− n)α

1− α
,

because if the frustration cost is too high, a bilingual would refrain from using
another language.

From these assumptions one can derive the following pure strategies:

S1: Always use Y, whether you know for certain you are speaking to a bilingual individual
or not.

S2: Use Y only when you know for certain that you are speaking to a bilingual individual;
use X, otherwise.

These assumptions and strategies lead to the following result:
Proposition: There exists a mixed strategy Nash equilibrium in which the bilingual

population plays S1 with probability x∗ = 1−c(1−α)
α(m−n) . This equilibrium is evolutionary stable

- that is x∗ is a language convention built by the bilingual population - and asymptotically
stable in the associated one-population Replicator Dynamics.

Proofs of the above proposition and a more extensive overviews of the Iriberri-Uriarte
model are given in articles [6, 14].

2.4 The Naming Games

We also mention that in semiotic dynamics, the Naming Game [15] is a simple example
of how complex processes can lead to the formation of a consensus, as in human-like
language, without any central control. The Naming Game is characterized by a population
of agents taking part in a pairwise game, where they try to negotiate words, meanings
and how they are globally perceived. Within the Naming Game, the initial vocabularies
are set up by individual agents themselves but as they are forced to interact with other
agents in the population, globally shared vocabularies should emerge. It can be mentioned
that The Naming Game has multiple variants such as the Naming Game restricted to two
conventions (2c-Naming Game) [1], where the competition between only two conventions
is looked at, which is similar to the language competition model considered here; or The
Minimal Naming Game [16, 2], where the game is made up of a population on a fully
connected graph trying to give a common name to an object, while choosing possible
names from their individual repository of knowledge until a consensus is met.
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2.5 Language acquisition and attrition

In language acquisition and attrition processes, a human being acquires or loses the
ability to comprehend and utilize languages [17]. As these processes are generally regarded
to belong to the scientific discipline of linguistics, it is also important to give a short
overview of some of the aspects involved in those processes.

Language acquisition usually refers to first-language acquisition and how children ac-
quire their native language. This is separate from the study of second-language acqui-
sition, by which everyone acquires any number of additional languages and are thereby
referred to as multilingual speakers. While this distinction is made by linguists, then
usually in the study of language competition it is not considered.

Multilingualism

A multilingual person is an individual, who can communicate, either actively or pas-
sively, in more than one language. Multilingualism is very common and considered impor-
tant, especially in European countries, where the domestic market is rather constricted
and international trade is a necessity [18, 19]. Additionally, in order to master a language,
one also has to obtain an extensive understanding of the culture associated with it as well.
Therefore, bilinguals have a tangibly broader view of the world itself. Globalization and
the advent of the Internet has also lead to an ever increasing interconnectedness and es-
tablished English as the current lingua franca, the bridge or trade language. It should
be mentioned however, that while currently English is perhaps the most common lingua
franca, it is not the only one and can vary by region.

However, in order to become a multilingual person, one first has to acquire a new
language besides their first language, which can bring with it multiple attrition effects,
among which, at least theoretically, can be the loss of the entire first language. Language
acquisition and attrition processes are described in the following sections.

Acquisition

How exactly individuals, especially children, acquire a language is a subject of great
debate. For example, it is argued on one hand, that childrens ability to acquire a language
must be guided biologically by the human brain, while others argue, that it is more akin to
a social phenomena [20]. It is, however, noted with the use of modern technologies such as
functional magnetic resonance imaging (fMRI) and positron-emission tomography (PET),
that the acquisition and maintenance of a first and subsequent languages are processed
differently within the cortex and seem to concentrate into areas known as Broca’s area,
which is in the left frontal lobe and Wernicke’s area, which is in the temporal lobe. The
areas are associated with the roles of syntactic and lexical processing, respectively. The
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importance of Broca’s and Wernicke’s area can be illustrated by mentioning, that any
damage (such as from a stroke or a head trauma) to those brain regions can lead to
signifcant language disorders, such as aphasia [20, 21].

There are tangible differences between learning a language in a controlled class envi-
ronment and learning through complete immersion, which is the situation considered in
this model.

Attrition

Language attrition, as the process of losing a language or aspects of it, is usually
caused by an individual becoming isolated from the language in question, as a side effect
of acquiring a second language. While there are many disputed aspects that may affect
the process of attrition, such as frequency of use and overall attractiveness of language
communities, it has been shown that the probability of attrition is linked to age [22, 23]. It
is currently a held belief, that a language attrition process begins notably with the decline
of a persons lexical ability while phonological and grammatical aspects of language seem
to be more stable [24, 25].

There are various ways how language attrition happens. Lexical attrition is a standard
deterioration of an agents ability to properly use a language. The cause for this is believed
to be the side effect of constant use of a competing language, since words from the first
language are in direct competition with their translated counterparts [26]. Another type
of attrition is phonological and it consists of the decreased ability to reproduce the correct
pronunciation. Additionally, grammatical attrition is characterized as the disintegration
of the syntax structure, while in contact situations with a second language.

As was mentioned before, language attrition also depends on various factors such as
age, frequency of use and motivation.

Among all the factors mentioned in both language acquisition and attrition, which de-
termines transitions between the state of being a bilingual and a monolingual, in the
following we study a simple model of language dynamics, focusing on the role of usage
frequency and attractiveness of language.
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3. Model

3.1 Description of the model

We consider a model in which the population of size N is composed of two monolingual
communities of size NX and NY and a bilingual community NXY that is initially zero.
During the interactions, we give the monolingual agents an ability to acquire the other
language, therefore becoming bilingual. Our model is different from the model of Minett
and Wang due to an additional memory for each individual agent, allowing them to refresh
their knowledge about the language that they are using or trying to learn. In order to
learn a new language, a monolingual agent has to use it K times within a time interval
∆tb, without refreshing the memory. Analogously, an agent has to use a certain language
L times within a time interval ∆tm without refreshing the memory, otherwise forgetting
the language. Bilinguals can choose their language for interacting either randomly or
by taking into account their previous interactions and preferences regarding the use of
language X or Y.

3.2 Algorithm of the model

The general algorithm and description for the simulation is as follows:

1. Initial conditions: A population is generated, containing fractions of agents repre-
senting languages X and Y such that N = NX + NY + NXY = 1 is normalized to
1. The fraction NXY represents the bilingual agents within the population and is
initially set to zero, NXY (0) = 0. For the purpose of the simulation, all data and
time evolution about the population will be held in an interaction matrix, which is
explained in further detail in the following Section 3.3.

2. Parameters:

• The maximum number of iterations the simulation would ideally run ∆tMAX.

• The upper value for the time allowed for learning a new language ∆tb without
refreshing the memory.
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• The number of interactions K needed for becoming a bilingual or the values for
KX and KY if an asymmetry between the languages is also being considered.

• The number of interactions L needed for retaining a language before reverting
back to a monolingual without memory refreshing.

• The upper time limit ∆tm without memory refreshing, after which the number
of acquired interactions will be checked against the previously given value for
L.

3. Interactions: At each time step t two agents are randomly selected:

• If they are both from the same X or Y subset of the population, then they are
monolinguals of the same language and nothing happens.

• If one is from group X and the other is from Y, then they are representatives of
different language groups and through their interaction, they will learn some-
thing about the other agents language and that interaction will be recorded
for both and their memory refreshed. If K interactions within a time interval
∆tb are met by an agent from either group, that member of the group becomes
a bilingual in the group NXY . The same holds if an asymmetry is considered
between the languages, by substituting K with KX and KY .

• When a bilingual NXY and a monolingual agent (either NX or NY ) interact,
they select the language that the monolingual uses. The interaction is recorded
for the bilingual and their memory refreshed for that language but the mono-
lingual learns nothing new.

• When two bilinguals of the population group NXY interact they can either
choose the language for their communication completely randomly or make
their decision based on memory about which language they prefer to use. The
memory-based decision making is elaborated upon in Section 3.4. If, how-
ever, the two agents had the same original language, they will prefer to use it.
The interaction will be recorded between the agents and their corresponding
memories refreshed.

• After each interaction between two agents, time is updated. And two new
agents will be selected for the next interaction until the simulation ends.

4. Learning and attrition:

• During the simulation bilinguals need to have at least L interactions within
∆tm for both their original language and the learned language. If this condition
is not met, then their state of being a bilingual will be erased and based on
the language they have used more while being a bilingual, they become a
monolingual.
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• During the learning process, every time an agent spends time learning a new
language, the time counter for learning a new language is updated. If the agent
has K interactions within ∆tb, then they become bilingual.

5. All data: time t, number of agents for language X,NX , number of agents for language
Y, NY and the number of bilinguals NXY will be gathered and outputted into a file
for later statistical analysis. The data will be appended into a file of the following
form:

t NX NY NXY

0 NX(0) NY (0) 0
...

...
...

...
ti NX(ti) NY (ti) NXY (ti)
...

...
...

...
t NX(t) NY (t) NXY (t)

6. During the simulations runtime, the following criterion is being constantly checked:

N∑
i=1

Ni

N
=


1, if everyone is a monolingual of X

0, if everyone is a monolingual of Y

0 < x < 1, otherwise, x ∈ R

If either of the first two conditions is met, the program will terminate because one
of the languages has completely dominated the other and the total population N

has become a homogeneous representation of either NX or NY where no learning of
another language can occur. Otherwise the program will run until the maximum
number of iterations have passed.
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3.3 The interaction matrix

For a given population of size N , all the data and interactions can be summarized with
the following interaction matrix of size (N, 8) that includes submatrices of sizes (NX , 8)

and (NY , 8) so that N = NX +NY for the simulation is given as:

1 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0



NX

NY


N (3.1)

where the columns 1, 2, . . . , 8 hold the following meanings:

1. The first column holds the data about the agents original language in the form of
(X,Y) 7→ (1, 0) where X and Y are the original languages for either the agent NX

or NY respectively.

2. The second column holds the data about the state of whether the corresponding
agent is a bilingual of languages X and Y or not. The state of being a bilingual is
marked with the following relation (true, false) 7→ (1, 0).

3. If the state of bilingualism is true (set to 1), then the third column will hold the
data about how many times the agent has used their own original language while
being a bilingual of language X and Y.

4. If the state of bilingualism is true (set to 1), then the fourth column will hold the
data about how many times the agent has used the learned language of either X or
Y while being a bilingual.

5. If the state of bilingualism is true (set to 1), then the fifth column counts the time
the agent has been a bilingual with respect to their original language.

6. If the state of bilingualism is true (set to 1), then the sixth column counts the time
the agent has been a bilingual with respect to the language that they learned.

7. The seventh column counts the time one has spent learning a language before be-
coming a bilingual.

8. The eight column counts the number of interactions an agent has spent learning a
new language during the learning period.
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For a simulation that also takes into account the possible asymmetry between two language
groups the eight column that stands for K learning interactions must be split into two
columns that will hold the data for KX and KY or the 8th and 9th column respectively.

3.4 Memory-based decision making for bilinguals

Within our model there are two possible approaches to the language selection between
interacting bilinguals. Either they select the language completely by random or the lan-
guage is selected by using data from their previous interactions and taking into account
their personal preferences. For the later purpose a memory must be built. From the 3rd
and 4th column of the interaction matrix (3.1) we can build a 2× 2 submatrix, where the
first row is for a representative of group NX and the second row is for the representative
from group NY .

Generation of the decision matrices

In order to account for all the possible variants that two interacting agents may have
and what language they choose to use next, then by having the elements a, b, c, d ∈ N0

we can write in total 47 different matrices for decision making and the algorithm for
generating them as the following sets:
The first 24 matrices, where all elements are different (a 6= b 6= c 6= d):[

a b

c d

]
Rotate by π

2−−−−−−−→

[
c a

d b

]
Rotate by π

2−−−−−−−→

[
d c

b a

]
Rotate by π

2−−−−−−−→

[
b d

a c

]
[
b a

c d

]
Rotate by π

2−−−−−−−→

[
c b

d a

]
Rotate by π

2−−−−−−−→

[
d c

a b

]
Rotate by π

2−−−−−−−→

[
a d

b c

]
[
a b

d c

]
Rotate by π

2−−−−−−−→

[
d a

c b

]
Rotate by π

2−−−−−−−→

[
c d

b a

]
Rotate by π

2−−−−−−−→

[
b c

a d

]
[
c b

a d

]
Rotate by π

2−−−−−−−→

[
a c

d b

]
Rotate by π

2−−−−−−−→

[
d a

b c

]
Rotate by π

2−−−−−−−→

[
b d

c a

]
[
a d

c b

]
Rotate by π

2−−−−−−−→

[
c a

b d

]
Rotate by π

2−−−−−−−→

[
b c

d a

]
Rotate by π

2−−−−−−−→

[
d b

a c

]
[
a c

b d

]
Rotate by π

2−−−−−−−→

[
b a

d c

]
Rotate by π

2−−−−−−−→

[
d b

c a

]
Rotate by π

2−−−−−−−→

[
c d

a b

]
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The next 12 matrices with three differing elements (a = b 6= c 6= d):[
a a

c d

]
Rotate by π

2−−−−−−−→

[
c a

d a

]
Rotate by π

2−−−−−−−→

[
d c

a a

]
Rotate by π

2−−−−−−−→

[
a d

a c

]
[
a a

d c

]
Rotate by π

2−−−−−−−→

[
d a

c a

]
Rotate by π

2−−−−−−−→

[
c d

a a

]
Rotate by π

2−−−−−−−→

[
a c

a d

]
[
a d

c a

]
Rotate by π

2−−−−−−−→

[
c a

a d

]
Rotate by π

2−−−−−−−→

[
a c

d a

]
Rotate by π

2−−−−−−−→

[
d a

a c

]

The set of 6 matrices with two differing elements (a = b 6= c = d):[
a a

d d

]
Rotate by π

2−−−−−−−→

[
d a

d a

]
Rotate by π

2−−−−−−−→

[
d d

a a

]
Rotate by π

2−−−−−−−→

[
a d

a d

]
[
a d

d a

]
Rotate by π

2−−−−−−−→

[
d a

a d

]

Set of 4 matrices with only a single differing element (a = b = c 6= d):[
a a

a d

]
Rotate by π

2−−−−−−−→

[
a a

d a

]
Rotate by π

2−−−−−−−→

[
d a

a a

]
Rotate by π

2−−−−−−−→

[
a d

a a

]

Matrix with no elements differing (a = b = c = d) from one another has only a single
possible variant: [

a a

a a

]
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3.4.1 Examples of decision making

For a clearer picture, we can choose the elements a, b, c, and d to be 1, 2, 3 and 4

respectively and then view some of the following configurations for the matrices:

1. For the decision matrix, where all the elements are the same:[
a a

a a

]
=

[
1 1

1 1

]

we’ll have no preference between the agents toward either language and thus the
language will be chosen randomly so that the submatrix within the interaction
matrix would change as follows:

[
1 1

1 1

]
Select X or Y−−−−−−−→



2 1

1 2

 if chose X

1 2

2 1

 if chose Y

2. For the decision matrix, where all but one of the elements is the same we’ll have:[
a a

a d

]
=

[
1 1

1 4

]

In this case, the first agent has no preference but the second agent does have one for
the language that they have obtained through the learning process. Thus the first
agent will use their original language and the second agent shall use the language
that they prefer: [

1 1

1 4

]
Select language X−−−−−−−−−−→

[
2 1

1 5

]

It is easy to see that depending on the specific configuration of the matrix, that this
type of decision making matrix will always select the language that either the first
or the second agent prefers to use.

3. For the decision matrix that contains two different elements in the following way:[
a a

d d

]
=

[
1 1

4 4

]
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there will be two possible ways of selecting the language based on the matrix con-
figuration. For the matrix type that is already shown, the language will be chosen
randomly, since neither of the agents has a preference.
The second way of selecting a language arises when a and d in one of the columns
are interchanged and thus there will be a clear preference toward either language X
or Y. Example when language X would be chosen:[

4 1

1 4

]
Select langauge X−−−−−−−−−−→

[
5 1

1 5

]

4. For the decision matrix that has three different elements we can write:[
a a

c d

]
=

[
1 1

3 4

]

there are again both scenarios possible, where either the language selection will be
straightforward or will have to be decided upon randomly. For the already given
example, language X will be decided upon, because while the first agent doesn’t
have a preferred language, the second agent does. It is also possible, that both the
agents that happen to interact would like to use their own original language or the
one that they have learned as illustrated with the following examples:

[
3 1

4 1

]
Select X or Y−−−−−−−→



4 1

4 2

 if chose X

3 2

5 1

 if chose Y

,

[
1 4

1 3

]
Select X or Y−−−−−−−→



2 4

1 4

 if chose X

1 5

2 3

 if chose Y

The first case is where both agents prefer to use their own original language and the
second scenario is when the opposite is true.

5. For the decision matrix where all the elements are different we can write:[
a b

c d

]
=

[
1 2

3 4

]

which again is a scenario, where both agents prefer to use the language that they
have acquired and thus the tie will be solved by randomly choosing between X or
Y. For decision matrices of this type all possible variations must be considered and
through different configurations we can easily have interactions where the language
X is preferred, where the language Y comes out as a winner and also scenarios where
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the agents would rather use their own original or learned language and a tie will
be solved by randomly selecting the language for a given interaction between two
agents.

All possible 47 variants are explicitly shown in Appendix A and the more general rules
for deciding between languages are given in the Table A.1.
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4. Results

Selection of the study parameters

The main goal of this exploratory work is to study the effects of memory on the
language acquisition ability of an agent. For this reason, we selected the following param-
eters:

• We assume a concentrated time unit ∆t = 1 and we define a single day within our
model as ∆tDAY = 4·∆t so that a year would be equal to ∆tYEAR = 4·∆t·365 = 1460.
This means, that on average, an individual agent can effectively have a minimum
of 4 language contacts during the day.

• We take ∆tYEAR as a reference value for ∆tb, within which an agent can become
bilingual in principle, depending additionally on the selection of the parameter K,
the number of interactions required to learn a new language. It should be noted,
that within our model ∆tb is actually a dynamic parameter, as it is continuously
refreshed as the agent is learning

• We take the maximum number of iterations for the simulation as ∆tMAX = 100 ·
∆tYEAR.

• For the parameter ∆tm, the maximum time allowed without continuous use of a
language before forgetting it, we assume ∆tm = 7300 or 5 years within the context
of this simulation, since it can be argued that after becoming a bilingual, a bilingual
should be able to retain their status without using the learned language again for
at least some years. ∆tm works similarly to ∆tb because as people interact and
reinforce their knowledge of the obtained language their memory is also refreshed.

• For K, the number of contacts needed to learn a language, and L, the number of
contacts needed to retain a language without using it during time interval ∆tm, we
also use the reference value ∆tb, since selecting a value for K that is too close to
∆tb, we can assume there will little or no chance for someone to realistically become
a bilingual. Thus, we set K < ∆tb. As a natural assumption, an agent uses a
language at least once a day in order to learn a new one over the course of a year
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and we also naturally assume, that L < K, where L should at least have a minimum
value L ≈ K

4
≈ 92. Therefore, we can summarize it in the following fashion for all

values that were checked:

365 6K < 1460

92 6 L < K

All of the above described parameters and the values that were used in the symmetrical
model within Section 4.1 and in asymmetrical model within Section 4.2 are summarized
in Table 4.1.

Short summary of study parameters

Description Parameter Initial values
Concentrated unit of time ∆t 1
Assumed unit for a day ∆tDAY 4 ·∆t
Assumed unit for a year ∆tYEAR 365 ·∆tDAY

Maximum number of iterations simulation
would ideally run ∆tMAX 100 ·∆tYEAR

Number of interactions needed to learn a new
language K 365 6 K < ∆tYEAR

Time allowed for learning a new language with-
out refreshing memory ∆tb ∆tYEAR

Number of interactions needed after becoming
bilingual to remember a language L 92 6 L < K

Maximum time allowed after becoming a bilin-
gual without memory refreshing, after which L
will be checked, if a language is forgotten or not

∆tm 5 ·∆tYEAR

Table 4.1: Short summary of parameters used in the study.

4.1 Symmetrical model

In a symmetrical model both competing languages are considered to be equally difficult
to acquire and can therefore be characterized with a single parameter K.

4.1.1 Random and memory-based decision making for bilinguals

We observe that for a population distribution, NX + NY + NXY = 1 where NX(0) =

NY (0) both languages over the course of a generation will survive indefinitely within a
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completely bilingual population NXY = 1. The time evolution of such a population is
shown on Figure 4.1a.

For population where either NX(0) > NY (0) or NX(0) < NY (0), we can observe that
populations can also survive arbitrarily long with the caveat, that the minority language
will do so within the population of NXY and the majority language will exist on its own,
as it can be seen on Figure 4.1b. Within these types of symmetrical interactions it can
be shown that one of the languages can eventually take over if the population of minority
language representatives is below a critical threshold N∗. For N = 100 it was found to
be about N∗ = 0.02. These results hold both for a system, where all decisions about
language selection are made randomly, and where memory-based decisions are made by
taking into account the previous interactions.

We also checked the model in the limit of no memory within the dynamics, in which
we recovered similar results to the Minett and Wang model.
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Figure 4.1: Time evolution of population fractions above a) for initial population ratio
between X and Y, NX/NY = 1/2 and b) NX/NY = 1/3. Only the first 3000 iterations
have been shown.
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4.2 Asymmetrical model

Results were different when an additional layer of asymmetry was added into the
dynamics by splitting the number of interactions needed to learn a new language, K, into
KX and KY within the interaction matrix (3.1), for the respective language. In other
words, when different levels of difficulty in acquiring a language is given to language X
and Y. This produces interesting non-monotonous dependence of the final state on the
difference between KX and KY . In all the examples considered, language X is easier one
with KY > KX .

4.2.1 Random-based decision making for bilinguals

Initial populations of NX(0) = NY (0) = 0.5. When NX(0) = NY (0) the simula-
tions converged to a point where the language that was easier to acquire became the only
monolingual population and the other survived as part of NXY . As expected, it can be
noted that when KX = KY , as was the case in a symmetrical simulation, the simulation
ended with everyone becoming bilingual. However, defining a difference between KX and
KY as

∆KXY = |KX −KY |, (4.1)

for values where
1 6 ∆KXY 6 53

one could see a steady decline in the number of bilinguals NXY and the slow increase in
the population whose language was easier to acquire, until an dynamical equilibrium is
reached, where bilinguals NXY = 50%, the more complicated language had disappeared
in terms of monolingual representatives and the easier language exists as the remaining
50%. This is illustrated on Figure 4.2a.

Initial population of NX(0) = 0.4 and NY (0) = 0.6. When the simulation was
also taking into account the difference between the number of original speakers of X or Y,
in this case they were distributed so that NX made up 40% of the total population and
NY made up 60% of the total population N , a change in ∆KXY was observed expectedly,
due to one of the population having a clear advantage over the other in terms of the
number of speakers alone. As was the case in the symmetrical simulations, one of the
populations in its pure form quickly disappeared and survived within the population of
NXY proportionally. However, once ∆KXY reached the following range

107 6 ∆KXY 6 243

a slow decline within the monolingual representatives of the majority population was
observed, eventually reaching a point of inversion, where the minority representatives
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survived as monolinguals and all others had to become part of bilinguals NXY . Within
the inversion process a peak value for bilinguals NXY was observed at ∆KXY = 183 when
the minimum KX value for language X was taken to be 365, where approximately all
members of N were bilingual. It was further observed, that for all initial lower K values
a ratio of about 3

2
can be detected when looking for a value of ∆KXY , where the number

of bilinguals would reach a maximum. This is a rather natural result when one thinks of
the ratio between number of speakers in both initial monolingual population (for example
for NX = 40 and NY = 60, then the ratio is ∆Kmax

XY = 60
40

= 3
2
). This is illustrated on

Figure 4.3a.
Initial population of NX(0) = 1/3 and NY (0) = 2/3. The general dynamics

were similar to the case where one of the initial populations formed 40% of the total
population N . Therefore we only summarize the different values of ∆KXY , within which
the inversion process took place and give the peak ratio at,

255 6 ∆KXY 6 437, ∆Kmax
XY =

67

33
.

This is illustrated on Figure 4.4a.
Initial population of NX(0) = 1/4 and NY (0) = 3/4. The dynamics observed

for a population ratio where NX = 25% (see Figure 4.5a), gave the results following,

545 6 ∆KXY 6 799, ∆Kmax
XY =

75

25
.

Furthermore, it can be shown that these changes in both ∆KXY and the ratio ∆Kmax
XY

hold for other fractions of the population as well such as 1
5
, 1
6
and etc. In general, ∆Kmax

XY

turns out be as the ratio between the two initial populations, resulting in a multiplier
that one can use on the K value for the minority population to find ∆KXY , where the
maximum number of bilinguals will emerge in an asymmetrical model. Considering this
and using N = NX +NY with equation (4.1) we can write:

∆Kmax
XY =

Nmajority

Nminority

⇒ ∆KXY |NXY =max = Kminority(∆Kmax
XY − 1)

= Kminority

(
N

Nminority

− 2

)
.

4.2.2 Memory-based decision making for bilinguals

Because the overall tendency of the dynamics was very similar to simulations, where
the language chosen between bilinguals was decided by chance, then we can summarize
the results as follows
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Population ratio Inversion range Peak ratio ∆Kmax
XY within the inversion range

50% 1 6 ∆KXY 6 66 1
40% 163 6 ∆KXY 6 246 3/2

33.33% 360 6 ∆KXY 6 451 67/33

25% 720 6 ∆KXY 6 807 3

When comparing the values where inversion took place, one can notice that the values
for ∆KXY are quite different than before, resulting in a much smaller area where such
transition took place. Also, after entering the inversion range, the maximum number of
bilinguals is reached rather quickly followed by a slow convergence toward a situation,
where all members of NXY are the initial members of the majority population. This is
contrary to the case that could be observed in a purely random system without a memory-
based decision making process for the bilinguals, where a gradual increase in the number
of bilinguals could be noted after entering the inversion range and then after going past
the maximum value for bilinguals, a quicker conclusion was reached, where the majority
population made up the entire NXY and the initial minority continued to exist as their
own monolingual group. It can also be noted from the results, that while the random
asymmetrical model started to gradually shift toward a society with maximum number
of bilinguals and then towards the reversal of initial groups, the dynamics in memory
asymmetrical were completely different. For the memory asymmetrical model, ∆KXY

values seem to produce a much quicker and a more violent inversion in the group roles.
Additionally, the range of inversion is typically also smaller than it is for the completely
random asymmetrical model. All graphs illustrating the inversion ranges can be found
on Figures 4.2b, 4.3b, 4.4b and 4.5b for population ratios of 50%, 40%, 33.33% and 25%,
respectively.

Varying the parameter L

Due to the fact that in our model both ∆tb and ∆tm are dynamic parameters in the
sense that they are being continually refreshed during interactions as explained before
and the considerably large value used for ∆tm, then within the parameter values allowed
for L in the context of this simulation L played little to no role. Therefore, once a person
was able to become a bilingual, then due to continued use and constant refreshing of their
memory, they never went back to being a monolingual of either language unless extreme
conditions were met. For example, when an agent doesn’t have enough contact with
representatives of their own language as would be the case where Nmajority is sufficiently
larger than Nminority.
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Random- versus memory-based decisions for bilinguals

From these results we could see that despite the vast difference between making a
decision by pure random chance and via complicated decision matrix, no real difference
can be noted in the final results. When taking a detailed look at individual time intervals
and the state of the interaction matrix (Section 3.3), we could see that while initially as
populations started becoming bilingual, all variants of the memory-based decision matrices
were used to reach a consensus between two agents about which language to use. However,
as time advanced, almost all agents on average still used their own original language more
than the learned one and thus their following decisions were again made by a random
chance (Decision matrix in the second row, third column in Table A.1). This result can
most likely be explained by viewing how agents are located within the simulation as they
form two large groups and in an interaction between two bilinguals who originate from the
same population, their original language is always preferred. Since this interaction has
a high probability of happening, then it is natural that eventually a completely random
regime must be achieved. It can be hypothesized, that if the agents were either moving
around or made to interact on a 2D lattice (only with their immediate neighbours), then
the results could be different.

For a model with asymmetrical learning, in general, similar tendency could be observed
for ∆KXY values not within the range of inversion. For values within the inversion range
the transition from one dominant language group to the other seems to be a lot smoother
for the model, where decisions are made by random chance. For models where previous
memory was taken into account for decision making, more noise could be seen prior to
reaching maximum value of bilingual population within the transition and then a slow
convergence to the reversal of initial proportions.

In general, it could be concluded that memory-based decision making adds a layer of
inertia into the dynamics as one can seen from the nearly twice smaller inversion ranges,
when compared to a model where all decisions were made by chance. However, when a
critical value for ∆KXY was reached, which was larger than in the completely random
decision making model, the transition appeared to be quite rapid followed by a slow
stabilization.
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Figure 4.2: Population fractions versus ∆KXY with initial conditions NX/NY = 1/2 for
a) random-based decision making (above) and b) memory-based decision making (below)
model. For a) interesting values for ∆KXY were found in the range 1 6 ∆KXY 6 53 and
for b) the corresponding values were 1 6 ∆KXY 6 66. It can be seen that within these
values the majority language starts to lose its dominance as the monolingual population
and is eventually forced to become the sole bilingual community, while the initial minority
language can survive on as a monolingual group.
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Figure 4.3: Population fractions versus ∆KXY with initial conditions NX/NY = 2/5 for
a) random-based decision making (above) and b) memory-based decision making (below)
model. For a) interesting values for ∆KXY were found in the range 107 6 ∆KXY 6 243
and for b) the corresponding values were 163 6 ∆KXY 6 246. It can be seen that
within these values the majority language starts to lose its dominance as the monolingual
population and is eventually forced to become the sole bilingual community, while the
initial minority language can survive on as a monolingual group.
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Figure 4.4: Population fractions versus ∆KXY with initial conditions NX/NY = 1/3 for
a) random-based decision making (above) and b) memory-based decision making (below)
model. For a) interesting values for ∆KXY were found in the range 255 6 ∆KXY 6 437
and for b) the corresponding values were 360 6 ∆KXY 6 451. It can be seen that
within these values the majority language starts to lose its dominance as the monolingual
population and is eventually forced to become the sole bilingual community, while the
initial minority language can survive on as a monolingual group.
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Figure 4.5: Population fractions versus ∆KXY with initial conditions NX/NY = 1/4 for a)
random-based decision making (above) and b) memory-making decision making (below)
model. For a) interesting values for ∆KXY were found in the range 545 6 ∆KXY 6 799
and for b) the corresponding values were 720 6 ∆KXY 6 807. It can be seen that
within these values the majority language starts to lose its dominance as the monolingual
population and is eventually forced to become the sole bilingual community, while the
initial minority language can survive on as a monolingual group.
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5. Possible developments and summary

5.1 Proposals for model improvement

Due to the simple structure of the model studied, numerous natural improvements can
be added for further investigations.

1. Connectedness. In the current model all agents are fully connected or in other words,
everyone is a neighbour of everyone else. Therefore no geographical or other spatial
effects are considered. Further models can improve upon this matter by locating
the agents on a 2D lattice or a complex network for example, where they can only
interact with their first neighbours. It can be advanced even more by implementing
agents that also travel around in small steps and are thus forced to change their
adjacent partners.

2. Population dynamics. The current model only describes the first hundred years of
a population that is essentially immortal within this time interval. Therefore no
mortality of agents is accounted for. In a more advanced model, this can also be
an additional factor in the dynamics and can essentially model how language is
passed on from a parent to a child and what percentage of it survives. One can
here think of an example where the first generation of immigrants to a country with
another language may retain their own language and acquire a new one in order to
survive and their offspring, who will likely understand their heritage language but
usually will not use it in everyday interaction. Then it can happen, that by the
third generation offsprings, the heritage language has probably disappeared within
that community.

3. Probability of learning. Our model currently assumes that everyone in the popula-
tion, when in contact with a representative of another language is willing and able
to learn a fraction of a new language. However, in real life, this is highly improbable
and therefore at least at first, only some members of the population should be open
to learning and after a certain threshold is reached, this willingness to learn should
spread to others. In other terms it can be viewed as the gradual increase of a certain
languages status or prestige or even usefulness.
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4. Effectiveness of learning. It is natural to assume, that in most cases, a single contact
with another language does does not result in absolutely effective incrementation of
K. For example, for some it can be difficult to grasp and remember new information.
A clear example of it could be the word supercalifragilisticexpialidocious, which is
another way of saying extraordinarily good or wonderful but could also be seen as
a rather difficult word to learn by few simple tries for every agent. Thus a different
probability of learning effectiveness pl can essentially be assigned to every agent.
Although this factor is already accounted for by the minimum values of K and how
time is defined in our model, it can still be further improved upon.

5. Effectiveness of retaining. The same idea can be assigned to the parameter L in
a way that there is a different probability pr for each agent, by which L decreases
in value ’spontaneously’ and can account for the natural phenomena of how some
information may be ’there’, but is eerily difficult to access lexically or in terms of
overall memory.

5.2 Summary

In this work we first recalled the prior investigations done by Abrams and Strogatz,
we took a look at the Minett and Wang model and how game-theory has been used by
Iriberri and Uriarte to model language competition. Additionally, a look at how linguists
view the acquisition and attrition processes of languages was described.

In Chapter 3, we introduced a detailed description of a new model, with the goal of
studying memory effects in language competition. We found, that in this model memory
plays a critical role in the dynamics between two competing languages. We found that
both languages can survive indefinitely, provided that all agents form a fully connected
graph (everyone is connected to everyone), they are open to acquiring a language from
their partnering agents and that as they do so, their memory is continually being refreshed.

For symmetrical learning models, where neither language was more difficult to acquire
than the other, everyone became a bilingual if the initial population ratio was set at
50%. However, for other population ratios the language representatives who held the
majority stayed monolingual, while the minority formed the bilingual group NXY , but
their language was not driven into extinction by the majority. Only when the majority
population was overwhelmingly larger than the minority, then the minority language
was driven to disappear. Interestingly these conclusions hold for both a purely random-
decision making process and a memory-based decision making process for bilinguals.

For asymmetrical models, where K was split into KX and KY for the two languages
X and Y, we could observe similar results: continual memory refreshing and interaction
produced either completely bilingual populations for a population ratio of 50% or other
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ratios resulted in the monolingual groups of the majority population staying monolingual
and the minority population forming the entirety of bilingual population. In any case,
neither language X or Y was observed to disappear. However, it was further observed,
when languages hold varying level of difficulty in acquisition, ∆KXY = |KX − KY | >
0, compared to each other, that a range of inversion was revealed, where the minority
population began gaining numbers of speakers until eventually overtaking the majority
population.

Additionally, within the range of inversion, a peak value for bilinguals among two
competing asymmetrical language representatives with a difference between the number
of speakers was observed to be associated with a coefficient ∆Kmax

XY = Nmajority/Nminority.
While we can clearly see that two languages can indeed survive within bilingual com-

munities as their memories are being refreshed, this is also a very simple model and the
various mentioned proposals for further work can clarify and enlarge the results obtained.

34



Acknowledgments

I would like to extend my deepest gratitude to my supervisors, especially Els Heinsalu
and Marco Patriarca for the continued guidance, patience, support and understanding
beyond anything that I would have expected during this work. It has been a very in-
teresting voyage into the world of complex systems and how the methods of statistical
physics could be used, to my utter fascination, to model something as unconventional as
language competitions to a surprising level of success. I would also like thank the mem-
bers of my family for their continued support, since without it, this body of work would
have surely been impossible.

This work was done within the IUT39-1 project.

35



Bibliography

[1] Castelló, X., Baronchelli, A. and Loreto, V. Eur. Phys. J. B (2009) 71: 557.

[2] C. Castellano, S. Fortunato, V. Loreto, Rev. Modern Phys. 81, 591 (2009)

[3] Abrams, D. M. and Strogatz, S. H., Modelling the dynamics of language death, Nature
424 (2003) 900.

[4] Minett, J. and Wang, W.-Y., Modelling endangered languages: The effects of bilin-
gualism and social structure, Lingua 118 (2008) 19.

[5] Heinsalu, E., Patriarca, M., and Léonard, J. L., Advs. Complex Syst. 17, 1450003
(2014)

[6] Patriarca, M., Castelló, X., Uriarte, J. R., Eguíluz, V. M. and San Miguel, M., Advs.
Complex Syst. 15, 1250048 (2012)

[7] Baggs, I. and Freedman, H., A mathematical model for the dynamical interactions
between a unilingual and bilingual population: Persistence versus extinction, J. Math.
Sociol. 16 (1990) 51.

[8] Baggs, I. and Freedman, H., Can the speakers of a dominated language survive as
unilinguals — a mathematical-model of bilingualism, Math. Comput. Model. 18 (1993)
9.

[9] Wang, W. S.-Y. and Minett, J. W., The invasion of language: Emergence, change and
death, Trends Ecol. Evol. 20 (2005) 263

[10] Moseley, Christopher (ed.). 2010. Atlas of the World’s Languages in Danger, 3rd edn.
Paris, UNESCO Publishing. Online version.

[11] Austin, P., 1000 Languages. The Worldwide History of Living and Lost Tongues.
London, Thames and Hudson, 2008.

[12] Jędrzejewski, A., and Sznajd-Weron, K.,. Impact of memory on opinion dynamics.
Physica A: Statistical Mechanics and Its Applications, 505, 306–315, 2018

36

https://doi.org/10.1140/epjb/e2009-00284-2
https://arxiv.org/abs/0710.3256v2
https://www.nature.com/articles/424900a
https://www.nature.com/articles/424900a
https://www.sciencedirect.com/science/article/pii/S002438410700071X
https://www.sciencedirect.com/science/article/pii/S002438410700071X
https://www.worldscientific.com/doi/abs/10.1142/S0219525914500039
https://www.worldscientific.com/doi/abs/10.1142/S0219525914500039
https://www.worldscientific.com/doi/abs/10.1142/S0219525912500488
https://www.worldscientific.com/doi/abs/10.1142/S0219525912500488
https://doi.org/10.1080/0022250X.1990.9990078
https://doi.org/10.1080/0022250X.1990.9990078
https://doi.org/10.1080/0022250X.1990.9990078
https://doi.org/10.1016/0895-7177(93)90122-F
https://doi.org/10.1016/0895-7177(93)90122-F
https://doi.org/10.1016/0895-7177(93)90122-F
https://doi.org/10.1016/j.tree.2005.03.001
https://doi.org/10.1016/j.tree.2005.03.001
http://www.unesco.org/languages-atlas/index.php?hl=en&page=atlasmap
http://www.unesco.org/languages-atlas/index.php?hl=en&page=atlasmap
https://doi.org/10.1016/j.physa.2018.03.077
https://doi.org/10.1016/j.physa.2018.03.077


[13] Chapel, L., Castelló, X., Bernard C., Deffuant G., Eguíluz, V. M., Martin, S. and
San Miguel, M., Viability and resilience of languages in competition, PLoS ONE 5
(2010) e8681.

[14] Iriberri, N. and Uriarte, J. R., Minority language and the stability of bilingual equi-
libria, Rationality and Society 24(4), 442–462, 2012

[15] L. Steels, Artificial Life 2(3), 319, 1995

[16] Baronchelli, A., M. Felici, V. Loreto, E. Caglioti, and L. Steels, 2006b, J. Stat. Mech.
P06014.

[17] Friederici, A. D., The brain basis of language processing: from structure to function,
Physiol Rev. 91 (4): 1357–1392, 2011

[18] Agirdag, O., The long-term effects of bilingualism on children of immigration: student
bilingualism and future earnings, International Journal of Bilingual Education and
Bilingualism. 17 (4): 449–464, 2014

[19] Gunnarsson, Britt-Louise, Multilingualism in European Workplaces, Multilingua. 33:
11–33, 2014

[20] Sakai, Kuniyoshi L., Language Acquisition and Brain Development, Science. 310
(5749): 815–819, 2005

[21] Presson, N. and MacWhinney, B., The Competition Model and Language Disorders,
2011

[22] Bylund, E., Maturational Constraints and First Language Attrition. Language Learn-
ing, 59: 687-715, 2009

[23] Hyltenstam, K.; Bylund, E.; Abrahamsson, N.; Park, H. S., Dominant-language re-
placement: The case of international adoptees, Bilingualism: Language and Cognition.
12(2): 121–140, 2009

[24] Schmid, M. S., Köpke, B., Keijzer, M., and Weilemar, L. (Eds.). (2004). First lan-
guage attrition: Interdisciplinary perspectives on methodological issues (Vol. 28). John
Benjamins Publishing.

[25] Schmid, M. S., On L1 attrition and the linguistic system, EUROSLA Yearbook. 9:
212–244, 2009

[26] Schmid, M. S.; Jarvis, S., Lexical access and lexical diversity in first language attri-
tion, Bilingualism: Language and Cognition. 17 (04): 729–748, 2014

37

https://doi.org/10.1371/journal.pone.0008681
https://doi.org/10.1371/journal.pone.0008681
https://doi.org/10.1371/journal.pone.0008681
https://doi.org/10.1177/1043463112453556
https://doi.org/10.1177/1043463112453556
https://pdfs.semanticscholar.org/751a/ea7d47fe8bf0b058d498946b6188b0045fc1.pdf
https://arxiv.org/abs/physics/0509075v2
https://arxiv.org/abs/physics/0509075v2
https://doi.org/10.1152/physrev.00006.2011
https://doi.org/10.1152/physrev.00006.2011
https://doi.org/10.1080/13670050.2013.816264
https://doi.org/10.1080/13670050.2013.816264
https://doi.org/10.1080/13670050.2013.816264
https://doi.org/10.1515/multi-2014-0002
https://doi.org/10.1515/multi-2014-0002
https://doi.org/10.1126/science.1113530
https://doi.org/10.1126/science.1113530
https://doi.org/10.4324/9780203848005.ch2
https://doi.org/10.4324/9780203848005.ch2
https://doi.org/10.1111/j.1467-9922.2009.00521.x
https://doi.org/10.1111/j.1467-9922.2009.00521.x
https://doi.org/10.1017/S1366728908004008
https://doi.org/10.1017/S1366728908004008
https://doi.org/10.1017/S1366728908004008
https://www.researchgate.net/profile/Monika_Schmid2/publication/257945593_First_Language_Attrition_Interdisciplinary_Perspectives_on_Methodological_Issues/links/5714a17408ae8b02e65d7501/First-Language-Attrition-Interdisciplinary-Perspectives-on-Methodological-Issues.pdf
https://www.researchgate.net/profile/Monika_Schmid2/publication/257945593_First_Language_Attrition_Interdisciplinary_Perspectives_on_Methodological_Issues/links/5714a17408ae8b02e65d7501/First-Language-Attrition-Interdisciplinary-Perspectives-on-Methodological-Issues.pdf
https://www.researchgate.net/profile/Monika_Schmid2/publication/257945593_First_Language_Attrition_Interdisciplinary_Perspectives_on_Methodological_Issues/links/5714a17408ae8b02e65d7501/First-Language-Attrition-Interdisciplinary-Perspectives-on-Methodological-Issues.pdf
https://www.researchgate.net/publication/233685164_On_L1_attrition_and_the_linguistic_system
https://www.researchgate.net/publication/233685164_On_L1_attrition_and_the_linguistic_system
https://doi.org/10.1017/S1366728913000771
https://doi.org/10.1017/S1366728913000771


A. Decision matrices

This section contains all the possible variants for the decision matrices and the inter-
actions that will be decided from them.
Letting a, b, c, and d to be 1, 2, 3 and 4 respectively, the decisions will be made as follows
for the first set of decision matrices where a 6= b 6= c 6= d:

[
1 2

3 4

]
Select X or Y−−−−−−−→



2 2

3 5

 if chose X

1 3

4 4

 if chose Y

,

[
3 1

4 2

]
Select X or Y−−−−−−−→



4 1

4 3

 if chose X

3 2

5 2

 if chose Y

[
4 3

2 1

]
Select X or Y−−−−−−−→



5 3

2 2

 if chose X

4 4

3 1

 if chose Y

,

[
2 4

1 3

]
Select X or Y−−−−−−−→



3 4

1 4

 if chose X

2 5

2 3

 if chose Y

[
2 1

3 4

]
Decides for X−−−−−−−→

[
3 1

3 5

]
,

[
3 2

4 1

]
Select X or Y−−−−−−−→



4 2

4 2

 if chose X

3 3

5 1

 if chose Y

[
4 3

1 2

]
Decides for X−−−−−−−→

[
5 3

1 3

]
,

[
1 4

2 3

]
Select X or Y−−−−−−−→



2 4

2 4

 if chose X

1 5

3 3

 if chose Y
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[
1 2

4 3

]
Decides for Y−−−−−−−→

[
1 3

5 3

]
,

[
4 1

3 2

]
Select X or Y−−−−−−−→



5 1

3 3

 if chose X

4 2

4 2

 if chose Y

[
3 4

2 1

]
Decides for Y−−−−−−−→

[
3 5

3 1

]
,

[
2 3

1 4

]
Select X or Y−−−−−−−→



3 3

1 5

 if chose X

2 4

2 4

 if chose Y

[
3 2

1 4

]
Decides for X−−−−−−−→

[
4 2

1 5

]
,

[
1 3

4 2

]
Decides for Y−−−−−−−→

[
1 4

5 2

]
[

4 1

2 3

]
Decides for X−−−−−−−→

[
5 1

2 4

]
,

[
2 4

3 1

]
Decides for Y−−−−−−−→

[
2 5

4 1

]
[

1 4

3 2

]
Decides for Y−−−−−−−→

[
1 5

4 2

]
,

[
3 1

2 4

]
Decides for X−−−−−−−→

[
4 1

2 5

]
[

2 3

4 1

]
Decides for Y−−−−−−−→

[
2 4

5 1

]
,

[
4 2

1 3

]
Decides for X−−−−−−−→

[
5 2

1 4

]

[
1 3

2 4

]
Select X or Y−−−−−−−→



2 3

2 5

 if chose X

1 4

3 4

 if chose Y

,

[
2 1

4 3

]
Select X or Y−−−−−−−→



3 1

4 4

 if chose X

2 2

5 3

 if chose Y

[
4 2

3 1

]
Select X or Y−−−−−−−→



5 2

3 2

 if chose X

4 3

4 1

 if chose Y

,

[
3 4

1 2

]
Select X or Y−−−−−−−→



4 4

1 3

 if chose X

3 5

2 2

 if chose Y
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For the set of matrices where a = b 6= c 6= d:

[
1 1

3 4

]
Decides for X−−−−−−−→

[
2 1

3 5

]
,

[
3 1

4 1

]
Select X or Y−−−−−−−→



4 1

4 2

 if chose X

3 2

5 1

 if chose Y

[
4 3

1 1

]
Decides for X−−−−−−−→

[
5 3

1 2

]
,

[
1 4

1 3

]
Select X or Y−−−−−−−→



2 4

1 4

 if chose X

1 5

2 3

 if chose Y

[
1 1

4 3

]
Decides for Y−−−−−−−→

[
1 2

5 3

]
,

[
4 1

3 1

]
Select X or Y−−−−−−−→



5 1

3 2

 if chose X

4 2

4 1

 if chose Y

[
3 4

1 1

]
Decides for Y−−−−−−−→

[
3 5

2 1

]
,

[
1 3

1 4

]
Select X or Y−−−−−−−→



2 3

1 5

 if chose X

1 4

2 4

 if chose Y

[
1 4

3 1

]
Decides for Y−−−−−−−→

[
1 5

4 1

]
,

[
3 1

1 4

]
Decides for X−−−−−−−→

[
4 1

1 5

]
[

1 3

4 1

]
Decides for Y−−−−−−−→

[
1 4

5 1

]
,

[
4 1

1 3

]
Decides for X−−−−−−−→

[
5 1

1 4

]
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For the case where a = b 6= c = d:

[
1 1

4 4

]
Select X or Y−−−−−−−→



2 1

4 5

 if chose X

1 2

5 4

 if chose Y

,

[
4 1

4 1

]
Select X or Y−−−−−−−→



5 1

4 2

 if chose X

4 2

5 1

 if chose Y

[
4 4

1 1

]
Select X or Y−−−−−−−→



5 4

1 2

 if chose X

4 5

2 1

 if chose Y

,

[
1 4

1 4

]
Select X or Y−−−−−−−→



2 4

1 5

 if chose X

1 5

2 4

 if chose Y

[
4 1

1 4

]
Decides for X−−−−−−−→

[
5 1

1 5

]
,

[
4 1

1 4

]
Decides for Y−−−−−−−→

[
5 1

1 5

]
For the case where a = b = c 6= d:[

1 1

1 4

]
Decides for X−−−−−−−→

[
2 1

1 5

]
,

[
1 1

4 1

]
Decides for Y−−−−−−−→

[
1 2

5 1

]
[

4 1

1 1

]
Decides for X−−−−−−−→

[
5 1

1 2

]
,

[
1 4

1 1

]
Decides for Y−−−−−−−→

[
1 5

2 1

]
And finally where a = b = c = d:

[
1 1

1 1

]
Select X or Y−−−−−−−→



2 1

1 2

 if chose X

1 2

2 1

 if chose Y
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Table A.1: Summary of how decisions to use language X, language Y or for picking one
randomly are made for bilinguals using logic operators. Variables a, b, c, d ∈ N0 represent
the number of times the corresponding agent has used their native (a, c) or learned (b, d)
language.

Use language X Use language Y X or Y randomly[
a > b
c = d

] [
a < b
c = d

] [
a = b
c = d

]
[
a = b
c < d

] [
a = b
c > d

] [
a > b
c > d

]
[
a > b
c < d

] [
a < b
c > d

] [
a < b
c < d

]
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