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Abstract. State estimation is vital for the stability of control systems

particularly the power system which heavily relies on measurement de-

vices installed throughout the wide area network. Recently, the problems

of bad data injection and topology error have been thoroughly analysed,

with numerous newly proposed mitigation and protection schemes.

In this paper we consider hierarchical state estimators (HSE) relying on

the common WLS formulation and study the propagation of faults in

both intermediate and top-level state estimates as a result of re-ordering

attack on a single area in the bottom level. Though at present time, our

grids are equipped with modern defence but re-ordering attacks are still

possible in the presence of such protections via ISO/IEC 62351 controls.

We concentrate on how an inexpensive swapping attack in one area of the

lower level influence the accuracy of other areas in the same level/upper

levels and force the system towards undesirable state. We use the IEEE

test cases for validation and illustration of results.
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1 Introduction

Efficient and reliable Supervisory Control and Data Acquisition (SCADA)

systems along with Energy Management Systems (EMS) contribute

to efficient and safe operation of the power grid. The SCADA system

gathers measurement data from remote substations into a control

centre. EMS process all the collected data at the control centre by an

on-line application called state estimation. State estimation allows

the operator to get an accurate estimate of the state despite noisy or

faulty measurement data by using a steady state flow model in the

physical system [1],[2]. Numerous EMS applications e.g, contingency

analysis use the estimated state and therefore the state estimation

is crucial both for the efficiency and the safety of the power grid’s

operation.

Modern power systems are becoming more inter-connected and less

likely to be dependant on a single control centre for operations. This

way, operational efficiency can be improved by having multiple oper-

ators throughout the system e.g., in hierarchical or distributed struc-

ture. Each operator has its own control center and SCADA/EMS

system to manage a certain region of the system. Examples of such

inter-connected systems include ENTSO-E in Europe and Western



Interconnect (WECC) in the U.S. among others. In the future, power

systems are expected to be more inter-connected than before and

thus, systems with no central co-ordinators should be anticipated.

For the safety of the large inter-connected power network, timely

exchange of accurate information between the regional operators is

quite important. Practically, the data exchange is limited due to

sensitivity related issues. Regardless of this, all the exchanged infor-

mation is used by the respective regional operators for estimating

the local state and that way contribute to the state of the whole

system.

HSE requires that control centres on each level exchange data regu-

larly. Standard Inter-Control Center Communications Protocol (ICCP)

is a widely used protocol to transmit information from one level to

another in HSE. Access control is possible using this protocol but it

does not provide key-based authentication for the exchanged data.

Therefore standard layer protocols such as TLS as mandated by IEC

62351 are used to provide authentication for ICCP associations [3].

As a result, ICCP messages might be passed in clear text to the

protocol stalk providing authentication. An adversary can compro-

mise all incoming and outgoing messages from ICCP by installing a

Trojan [4]. The vulnerability of control systems to such attacks can

be seen by the fact that ICCP relations are often formed between

hosts in civil areas.



The main objective of the present paper is to determine certain

conditions under which one compromised region at lower level can

have a desired impact on other regions in same level of hierarchy by

propagation of faults upto the top level and then way back to each

level. An attacker can force its desired impact on other region(s) by

manipulating a single region realistically, an attacker is limited in

the magnitude of change that can be induced this way. We aim to

determine a necessary condition on which a minimum cost attack

can be formulated to give maximum impact.

The remainder of the paper is organized as follows: Background

and related work are briefly described in section 2 and a description

of the system models used in state estimation, bad-data detection

and identification is presented in the section 3. Hierarchical state

estimation is outlined in section 4 and the novel measurement re-

ordering attack model is presented in section 5 along with the neces-

sary conditions to make the attack feasible. In section 6, simulation

results are shown for the introduced attack on IEEE bus systems.

We offer concluding remarks and suggest future work directions in

section 7.

2 Related Work

The effect of bad data on state estimation in power systems has

long been studied including in the influential work by Schweppe and



Wildes [5], with a bad data detection algorithm inside state estima-

tion typically depending on simple statistical threshold to remove

outliers.

When the measurement data collected by SCADA system is com-

promised, a straightforward outcome can be an undesirable state by

forcing the state estimator without further constraints on data and

correlation among them especially the case examined by Liu et al.

[6] relying on DC power flows and a number of consequent studies

on how to find the minimal undetectable attacks require the least

manipulation of data [7], [8].

One of the earliest works on hierarchical state estimation (HSE)

is by Van Cutsem in his survey in which he over-viewed the ad-

vancements in HSE that helps in building present models. Lakshmin

proposed a two-level HSE algorithm for wide area power systems as-

suming a highly reliable PMU at every boundary bus. Several types

of data attacks on decentralised state estimation are explained while

no argument about computational complexity is made [4]. More-

over, the offered mitigation scheme involving outlier approach that

can detect the errors after hundreds of iterations and even then the

identification of attack can not be made possible.

False data injection (FDI) attacks that were initially formulated

on conventional state estimation, were proved to be possible in hi-

erarchical topology as well [9]. Further, Baiocco et al. present au-



tomated (graph) partitioning of robust HSE as a result of some

unexpected failure of single/multiple lines or due to some attack

[10]. Motivated by PMU’s spoofing attack in [11], ill-conditionality

of Jacobian can be achieved that leads to divergence by including

jitter in communication channels of HSE [12]. A number of state

estimators have been proposed, but studies of robustness against at-

tacks has concentrated solely on the centralised case hence Baiocco

et al. discuss the hierarchical case particularly relevant for smart and

micro-grid environments [15].

In [13], we highlighted the vulnerabilities in the existing com-

munication infrastructure by introducing an attack relying solely on

re-ordering of the measurement vector which result in undesirable es-

timates by formulating targeted re-ordering attack. It is worth noting

that we assumed that the preceding and present measurement vec-

tors are known to the attacker. Specifically, considering two distinct

scenarios, the system diverged as a result of ill-conditioned Jacobian.

3 Power System State Estimation

As usual, we denote the power system by a graph G with a set of V

buses and E transmission lines. We consider AC power flow model

for the network. It is given by

z = h(x) + e (1)



where z ∈ Rm is measurement vector, x ∈ Rn is the state vector

(m > n), h is the measurement function relating z to x and e is the

noise vector having zero mean and known co-variance R. The errors

are assumed to be independent, therefore, R = diag{σ2
1, σ

2
2, · · · , σ2

m}

is a diagonal matrix.

Once the states (let us call them x̂) are estimated by solving

Normal Equations,

[F TR−1F ]∆x̂ = F TR−1[x− f(x)] (2)

bad data analysis is done by a statistical threshold τ

r = z− h(x̂) (3)

Residual values larger than τ are detected and corresponding

measurements are flagged as bad and after their removal, state es-

timation can be re-run until the system converges. But bad data

detection is not easy if there is more than one bad measurement. In

practice a bad data goes undetected due to the presence of other bad

data or good measurements are flagged as bad due to other reasons

such as topology change (for more details of state estimation, please

visit [1]).



4 Hierarchical State Estimation

The conventional or centralized state estimation which is currently in

use worldwide can be followed by a multi-area hierarchical procedure

in which local state estimators processes all the raw measurements

available locally, hence transferring only a manageable data set to its

immediate higher level. This process continues until the highest level

where the state for the whole system is evaluated and conveyed to the

lower levels for other crucial tasks for example bad data processing

[14]. The multi-area hierarchical structure is of two types, i.e., sym-

metric hierarchy and asymmetric hierarchy. Symmetric hierarchy is

the one with a balanced division of bus-bars/tie-lines in all regions

whereas, asymmetric hierarchy is the one with an unbalanced dis-

tribution of bus-bars/tie-lines among regions. While symmetric HSE

is trivial and easy to understand, asymmetric is more realistic and

general in power systems. For this reason, from now onwards, we

are considering only asymmetric hierarchical state estimation. It is

worth mentioning here that the following HSE formulation in this

section is taken from [12] and [15].

Baioccoo et al. introduced a tree structure to represent multi-

area hierarchical SE with the tree root (level k) denoting the highest

level state estimation [15]. At lower levels, each level can have child

nodes and those without child nodes are known as leaf nodes and

lie on the lowest level (level 1) of hierarchy. Each node performs its



own state estimation using the measurements available in terms of

estimated states from the lower nodes and for level 1, measurements

are obtained by computing power flows. We assume here that the

partitioning is already done and it is robust that ensures and there

is no overlapping between areas except the common tie-lines con-

necting the neighbouring areas.

When a node estimates its state vector, it must send this output

(including the Gain matrix) over to all the child or to the parent

node. This kind of multi-area HSE works on a two-way transmis-

sion of information i.e, from lower levels information flow towards

the higher ones until it reaches the root node and then re-send the

estimation towards leaf nodes such that the updated state spread on

all the tie-line branches.

A general k level multi-area state estimation can be expressed

as:

y0,j1 = f1,j1(y1,j1) + e1,j1 , j1 = 1, · · · , r1

y0,b1 = f1,b1(y1) + e1,b1

(4)

y1,j2 = f2,j2(y2,j2) + e2,j2 , j2 = 1, · · · , r2

y1,b2 = f2,b2(y2) + e2,b2

(5)

...

y0,b1 = f1,b1(y1) + e1,b1 (6)



where

y0,j1 local measurement vector in Sj1 at level 1;

y0,b1 border measurement vector at level 1;

y1,j2 local measurement vector in Sj2 at level 2;

y1,b2 border measurement vector at level 2;

yk state vector of over all system;

fl corresponding non-linear measurement functions for each

level l;

el corresponding Gaussian measurement noise vector.

Now, let us formulate each level

Level 1 multi-area state estimation: For level 1, each area Sj esti-

mates its own state ỹ1j by solving the corresponding Normal Equa-

tions iteratively

[F T
1,j1
R−11,j1

F1,j1 ]∆ỹ1,j1 = F T
1,j1
R−11,j1

[y0,j1 − f1,j1(y1,j1(k))]

[F T
1,b1
R−11,b1

F1,b1 ]∆ỹ1,j1 = F T
1,b1
R−11,b1

[y0,b1 − f1,b1(y1,j1(k))]

(7)

where the inputs at this level include the measurement vectors y0,j1

and y0,b1 and the Jacobian matrices, F1,j1 and F1,b1 and the gain ma-

trices R1,j1 and R1,b1 . Note that the Jacobian matrices are updated

at every iteration.

Level i multi-area state estimation: The following two equations must

be solved for each intermediate level hierarchically from the lower

levels. Using the estimate ỹi−1,ji−1
from the level l − 1 as the mea-



surements in a distributed approach, ỹi,ji can be obtained from [9]

[F T
i,ji−1

Gi−1,ji−1
Fi,ji−1

]∆ỹi−1,ji−1
(k) = F T

i,ji−1
Gi−1,ji−1

[ỹi−1,ji−1
− fi,ji−1

(yi(k))]

[F T
i,bi
Gi−1,bi−1

Fi,bi ]∆ỹi−1(k) = F T
1,b1
Gi−1,bi−1

[ỹi−1 − fi(yi(k))]

(8)

Based on the estimates from level i and i+ 1, the Jacobian matrices

are revised.

Level l multi-area state estimation: Using the vector ỹl1 supplied by

the lower level l−1 as the measurement vector, the system state can

be estimated by iteratively solving the following equations

[F T
l,jl−1

Gl−1,jl−1
Fl,jl−1

]∆ỹl−1,jl−1
(k) = F T

l,jl−1
Gl−1,jl−1

[ỹl−1,jl−1
− fl,jl−1

(yl(k))]

[F T
l,bl
Gl−1,bl−1

Fl,bl ]∆ỹl−1(k) = F T
1,b1
Gl−1,bl−1

[ỹl−1 − fl(yl(k))]

(9)

The HSE outlined above requires two-way interchange of data be-

tween local state estimators at each layer of the hierarchy [12].



4.1 Simplification of a multi-level HSE to a 3-level HSE

Now, Let us simplify the multi-level approach to three level for better

understanding. Then the three-level model can be explained as

y0,j1 = f1,j1(y1,j1) + e1,j1 , j1 = 1, 2

y0,b = f1,b(y1,b) + e1,b

y1,j2 = f2,j2(y2,j2) + e2,j2 , j2 = 1, 2

y1,b = f2,b(y2,b) + e2,b

y2 = f3(x) + e3

(10)

where, the measurement vectors y0,j1 , y1,j1 and y0,b, y1,b, the state

vectors y1,j1 , y2,j2 and yb,j1 , yb,j2 and the non-linear measurement

functions f1,j1 , f2,j2 and f1,b, f2,b are as described earlier. For making

the process more simpler, lets assume that there are no border vari-

ables and the measurement functions are linear as well. Now, more

simplified version of three-level can be seen as

y0j = F1jy1j + e1j, j = 1, 2

y1j = F2jy2j + e2j, j = 1, 2

y2 = F3x+ e3

(11)

where F1j, F2j and F3 are the Jacobian matrices of the correspond-

ing measurement functions. For each area, the state estimator carries

out iterative solution algorithm and determines the local state vector



along with another iterative process among the two levels [9]

Level 1: The inputs at the first level are y1j for area j = 1, 2 (as-

suming two areas) and the weighting matrix R−11j . The output is the

local state vector ŷ1j for each area, Normal equations to be solved

by each area iteratively are

[F T
1jR

−1
1j F

T
1j]ŷ1j = F T

1jR
−1
1j y0j (12)

Level 2: The inputs at the second level are y1j for area j = 1, 2

(assuming two areas) and the weighting matrix R−11j . The output is

the local state vector ŷ1j for each area, Normal equations to be solved

by each area iteratively are

[F T
2jR

−1
2j F

T
2j]ŷ2j = F T

2jR
−1
2j y1j (13)

Level 3: The inputs of this level are state vectors of level-2 ŷ2 and the

gain matrices G2 = F T
1jR

−1
2j F

T
2j as the weighting matrix. The output

x̂ is the state of the entire system when solving the following Normal

equations for the third level

[F T
3 G

−1
2 F T

3 ]x̂ = F T
3 G

−1
2 ŷ2 (14)

where y2 and G2 can be found by juxtaposing the corresponding y2j

an G2j respectively.



5 Attack Model

The goal of our proposed attack is to create disruption in HSE.

To attain this goal, we consider that the attacker is capable of re-

ordering the measurement set y0 of only one partition S0 ∈ S in

the lower level l1 of hierarchy where S is the set of all partitions.

As a result, the untrue state variables are being transmitted to the

partitions at upper levels at the beginning of each iteration of HSE.

A structured re-ordering attack is considered while assuming the

internal knowledge of the partitions to launch the re-ordering attack

in a way that maximizes its effect. The knowledge required for the

success of the re-ordering attack includes some previous plausible

measurement set yold of the targeted partition. The main aim of the

attack is to have a desired/false local state estimate that propagate

to higher levels to produce certain estimate x.

The scheme we are following for the attack is a three level hierarchical

structure with the following constraints:

– Once the attack is launched on a single partition of level l1, the

data exchange between the upper two levels i.e, l2 and l3 would

still remain normal. That means there is no further attack on

upper levels.

– The network configuration, i.e, the sub area partitioning at level

l2 and l2 is not permitted to change over a course of full top-



down synchro-upgrade (This constraint is usually not required

by HSE[12].

After the attack, the flow equations of the first level would be like

[F T
1jR

−1
1j F

T
1j]ŷ

∗
1j = F T

1jR
−1
1j y

∗
0j (15)

where y∗0j is the swapped measurement vector of one of the sub-areas

at level one. The inputs at the second level y∗1j for area j = 1, 2 are

the false estimates from the first level and then

[F T
2jR

−1
2j F

T
2j]ŷ

∗
2j = F T

2jR
−1
2j y

∗
1j (16)

and finally, the output x̂∗ is the state of the entire system when

solving the following Normal equations for the third level

[F T
3 G

−1
2 F T

3 ]x̂∗ = F T
3 G

−1
2 ŷ∗2 (17)

where y∗2 and G2 are as defined earlier in section 4.1.

In case of False Data Injection (FDI), a generally denotes the

attack vector that shows the amount of change to the original mea-

surement vector [6].

a = Fc



where c is a vector denotes the magnitude of change and is bounded

by some stealthy condition. Jamming or delay attacks can be seen as

a sub-class of re-ordering as they resend the previous data with some

time interval. Also, attacks performed by replaying or blocking the

measurement vector can be considered a special case of re-ordering

with a time constraint on them. The common aspect among all of

the above is that there is no attack vector to be added, rather ad-

versary just drop/block or jitter the measurements irrespective of

whether they are secure/protected or not by hacking the communi-

cation infrastructure. Therefore, a general term, re-ordering of the

measurement vector is introduced where the adversary swap the true

measurement vector with the previously plausible (true) vector.

In this case, time horizon is critical for the attacker and it de-

termines the strength of the attack. Being realist, we assume that

the attacker has the measurement information from the present till

some particular limited point in time. Within these time instances,

the attacker can choose the measurement vector to be swapped the

present one while keeping itself hidden. By hidden, we mean an at-

tack that is successful in state forcing or non-convergence while be-

ing in-noticed by the model-based bad data detection. There may

be more sophisticated detection criteria, of course, but these apply

mostly to determining whether measurement devices (vector entries)

are compromised, and that doesn’t apply here. Other models rely on



redundancy among measurements to determine compromise, but for

a network-based attack this does not match very well.
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Fig. 1: Bus-bars distribution of 118-bus system

5.1 Re-ordering Attack Cost and Attack Impact

We quantify the minimum attack cost as the attacking cost where at-

tacker needs to put the least effort to get the maximum Mean Square

Error (MSE) and denote it by Γy. All the regions in the power grid

can be secured in one of the three ways, i.e. non tamper proof au-

thentication (Sntp ⊆ Sm), tamper-proof authentication (Stp ⊆ Sm)

or protected. Non-tamper proof authentication is of Bump-in-the-

Wire (BITW) type device authentication or a Remote Terminal Unit

(RTU) with a non tamper-proof authentication module. The regions



with this type of authentication are only susceptible to attacks by

some physical access to the region from where the data is origi-

nated. Tamper-proof authentication is not susceptible to attacks in

any case. Other cases of protection are also possible by guards or

video surveillance and generally this type is also not vulnerable to

attacks. But realistically, all regions of the power grid can not be

made protected by all means and there must be at least one region

that is vulnerable (Sm′). If the region where the measurement vector

to be attacked is located is protected and uses non tamper-proof au-

thentication or tamper-proof authentication then the measurement

is not vulnerable and we define Γy = ∞. Otherwise, for a measure-
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Fig. 2: Information flow in Hierarchical State Estimation



ment y, we define Γy as

Γy = min ‖a‖ s.t. a = Fc = ŷnew − ŷold and

a(y) 6= 0 =⇒ |S(m′)| 6= 0, s.t. S = S(m) ∪ S(m′)

(18)

where Sm denotes authenticated areas/regions and Sm′ denotes the

vulnerable areas s.t. S = S(m) ∪ S(m′).

In addition, we assume that the attacker is free to choose the set

from plausible measurements in a particular time frame to be used

for re-ordering attack. As a result of this freedom and the attack cost

(Γy) mentioned above, we quantify the maximum attack impact as

the attacker’s outcome and denote it by Iy

Iy = max I =
√∑

(ỹnew − ỹold)2

s.t. tnew − told > ε

(19)

where t denotes the time slot among the available time frames to

the attacker and ε is the pre-defined threshold to limit the attacker’s

choice. Superscripts “old” and “new” denotes the measurement used

in the swapping and the measurement to be swapped respectively.

6 Numerical Results

Before going into the detail of simulation results, it should be recalled

that to perform re-ordering attacks, the attacker requires the topol-



ogy/subspace knowledge of the system and it is assumed that the

topology is not changing or it is static in the duration of the attack.

In this section, we discuss the performance of the above mentioned

model in constructing the re-ordering attacks on each region of a hi-

erarchical state estimation by simulations on IEEE 118-bus systems.

We divide the 118-bus system into 6 sub-areas/regions and addition-

ally there is an intermediate level between the top and bottom layers

(shown in Fig. 1). Since the presented hierarchical model is two-way

synchro-upgrade model i.e., at first, from lower level to the top-most

and then the way back to the bottom levels again, it is very inter-

esting to see the error propagation after the proposed attack. The

attacker is free to choose the particular data set from a certain time

frame i.e, attacker has a limited amount previous data knowledge.

The technique used to estimate the state is WLS and MATPOWER

is used for loading the data for AC model.

Mean square error (MSE) after performing least cost re-ordering

attacks of the type described in subsection 5.1, is illustrated in Fig.

3 for 118-bus system. Figure denotes the logarithm (base 10) of MSE

for one complete round of WLS state estimation i.e., from the lower

layer the the top (Fig. 3) and all the way down detailing how that

error propagates from the lower level to the top and back again. We

can clearly see that in the end of a complete round after re-ordering

attack, all areas are affected no matter what the intensity is and
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which area is re-ordered individually. The important point to no-

tice is the epidemic property of the attack and it shows the error

propagation from one infected area at lower level to all the areas at

lower level. The plot illustrates how a single area from lower level

hierarchy influence all the areas at lower level such that the attacker

can choose for the cheapest and the most vulnerable area to perform

the attack. An obvious observation is that the error is maximum for

the areas from where the attack originates. In the given partitioning

of 118-bus system, area-5 seems to be the most vulnerable as the

system diverges when the input data is re-ordered. It is worth not-

ing here that the partitioning of 118-bus system for the re-ordering

attack is a particular one and other cases may exist.



The measurement re-ordering attack as described in section 5 is

made to work even if some parts of power system are integrity pro-

tected. Key observation is that currently in our power grid, all the

measurements are not authenticated time-stamped to detect such

re-ordering and such authentication for detection purposes is ade-

quately expensive to implement all over the grid atleast till near

future. This implies that as long as there are old components in our

power network, there can be a chance of such kind of attacks. But, in

ten years time, cryptographically time-stamped authentication can

be made possible over the entire network leaving the re-ordering at-

tack less effective.

7 Conclusion

We proposed an attack termed as “re-ordering attacks” on hierar-

chical state estimation that we introduced earlier in [13] where the

adversary uses swapping of data sets as a tool to swap the order of

data with some previous data set while not injecting or modifying

any data. The present paper relied on the fact that not all parts

of the grid can be made tamper/non-tamper proof authenticated

over night. Therefore, a targeted re-ordering attack on the most vul-

nerable region of the system is studied that can provide desirable

propagation of error all over the system and not just the attacked

area. Moreover, it can be clearly seen that such an attacker can force

the estimate of a authenticated region by launching an intelligent at-

tack in less protected region.

Our ongoing research includes determining the mitigation/protection



to the re-ordering on hierarchical or fully distributed state estima-

tion which is more realistic in the smart grid. Other possible future

research includes answering how much and which particular mea-

surements should be swapped for the optimal swapping attack.
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