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Abstract
The design and implementation of theoretically-sound robot motion planning algorithms is chal-
lenging. Within the framework of resolution-exact algorithms, it is possible to exploit soft pre-
dicates for collision detection. The design of soft predicates is a balancing act between easily
implementable predicates and their accuracy/effectivity.

In this paper, we focus on the class of planar polygonal rigid robots with arbitrarily complex
geometry. We exploit the remarkable decomposability property of soft collision-detection predic-
ates of such robots. We introduce a general technique to produce such a decomposition. If the
robot is an m-gon, the complexity of this approach scales linearly in m. This contrasts with the
O(m3) complexity known for exact planners. It follows that we can now routinely produce soft
predicates for any rigid polygonal robot. This results in resolution-exact planners for such robots
within the general Soft Subdivision Search (SSS) framework. This is a significant advancement
in the theory of sound and complete planners for planar robots.

We implemented such decomposed predicates in our open-source Core Library. The exper-
iments show that our algorithms are effective, perform in real time on non-trivial environments,
and can outperform many sampling-based methods.
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1 Introduction

Motion planning is widely studied in robotics [9, 10, 5]. Many planners are heuristics,
i.e., without a priori guarantees of its performance. In this paper, we are interested in
non-heuristic algorithms for the basic planning problem: this basic problem involves
only kinematics and the existence of paths. The robot R0 is fixed, and the input is a triple
(α, β,Ω) where α, β are the start and goal configurations of R0, and Ω ⊆ Rd is a polyhedral
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Figure 1 Some rigid planar robots ((a)-(b):
star-shaped; (c)-(e): general shaped).

Figure 2 GUI interface for planner for a
3-legged robot.

environment in d = 2 or 3. The algorithm outputs an Ω-avoiding path from α to β if one
exists, and NO-PATH otherwise. See Figure 1 for some rigid robots, and also Figure 2 for our
GUI interface for path planning.

The basic planning problem ignores issues such as the optimality of paths, robot dynamics,
planning in the time dimension, non-holonomic constraints, and other considerations of a real
scenario. Despite such an idealization, the solution to this basic planning problem is often
useful as the basis for finding solutions that do take into account the omitted considerations.
E.g., given a kinematic path, we can plan a smooth trajectory with a homotopic trace.

The algorithms for this basic problem are called “planners”. In theory, it is possible to
design exact planners because the basic path planning is a semi-algebraic (non-transcendental)
problem. Even when such algorithms are available, exact planners have relatively high
complexity and are non-adaptive, even in the plane (see [12]). So we tend to see inexact
implementations of exact algorithms, with unclear guarantees. When fully explicit algorithms
are known, exact implementation of exact planners is possible using suitable software tools
such as the CGAL library [7].

In current robotics [10, 5], those algorithms that are considered practical and have some
guarantees may be classified as either resolution-based or sampling-based. The guarantees
for the former is the notion of resolution completeness and for the latter, sampling
completeness. Roughly speaking, if there exists a path then:

resolution completeness says that a path will be found if the resolution is fine enough;
sampling completeness says that a path will be found with high probability if “enough”
random samples are taken.

But notice that if there is no path, these criteria are silent; indeed, such algorithms would
not halt except by artificial cut-offs. Thus a major effort in the last 20 years of sampling
research has been devoted to the so-called “Narrow Passage” problem. It is possible to view
this problem as a manifestation of the Halting Problem for the sampling approaches: how
can the algorithm halt when there is no path? (A possible approach to address this problem
might be to combine sampling with exact computation, as in [13].)

Motivated by such issues, as well as trying to avoid the need for exact computation,
we in [15, 17] introduced the following replacement for resolution complete planners: a
resolution-exact planner takes an extra input parameter ε > 0 in addition to (α, β,Ω),
and it always halts and outputs either an Ω-avoiding path from α to β or NO-PATH. The
output satisfies this condition: there is a constant K > 1 depending on the planner, but
independent of the inputs, such that:

if there is a path of clearance Kε, it must output a path;
if there is no path of clearance ε/K, it must output NO-PATH.
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Notice that if the optimal clearance lies between Kε and ε/K, then the algorithm may output
either a path or NO-PATH. So there is output indeterminacy. Note that the traditional way of
using ε is to fix K = 1, killing off indeterminacy. Unfortunately, this also leads us right back
to exact computation which we had wanted to avoid. We believe that indeterminacy is a
small price to pay in exchange for avoiding exact computation [15]. The practical efficiency
of resolution-exact algorithms is demonstrated by implementations of planar robots with
2, 3 and 4 degrees of freedom (DOF) [15, 11, 16], and also 5-DOF spatial robots [8]. All
these robots perform in real-time in non-trivial environments. In view of the much stronger
guarantees of performance, resolution-exact algorithms might reasonably be expected to have
a lower efficiency compared to sampling algorithms. Surprisingly, no such trade-offs were
observed: resolution-exact algorithms consistently outperform sampling algorithms. Our
2-link robot [11, 16] was further generalized to have thickness (a feat that exact methods
cannot easily duplicate), and can satisfy a non-self-crossing constraint, all without any
appreciable slowdown. Finally, these planners are more general than the basic problem: they
all work for parametrized families R0(t1, t2 . . .) of robots, where ti’s are robot parameters.
All these suggest the great promise of our approach.

What is new in this paper. In theoretical path planning, the algorithms often focused on
simple robots like discs or line segments. In this paper, we address the issue of “complex
robots” where the complexity comes from the geometry of the robots rather than from the
degrees of freedom. Complex robots provide more realistic models for real-world robots. We
focus on planar robots that are rigid and connected. Such a robot may be represented by a
compact connected polygonal set R0 ⊆ R2 whose boundary is an m-sided polygon, i.e., an
m-gon. Informally, we call R0 a “complex robot” if it is a non-convex m-gon for “moderately
large” values of m, say m ≥ 5. By this criterion, all the robots in Figure 1 are “complex”.
According to [19], no exact algorithms for m > 3 have been implemented; in this paper,
we have robots with m = 18. To see why complex robots may be challenging, recall that
the free space of such robots may have complexity O((mn)3 log(mn)) (see [1]) when the
robot and environment have complexity m and n, respectively. Even with m fixed, this can
render the algorithm impractical. For instance, if m = 10, the algorithm may slow down by
3 orders of magnitude. But our subdivision approach does not have to compute the entire
free space before planning a path; hence the worst-case cubic complexity of the free space is
not necessarily an issue.

More importantly, we show that the complexity of our new method grows only linearly
with m. To achieve this, we exploit a remarkable property of soft predicates called “decom-
posability”. We show how an arbitrary complex robot can be decomposed (via triangulation
that may introduce new vertices) into an ensemble of “nice triangles” for which soft predicates
are easy to implement. As we see below, there is a significant difference between a single
triangle and an ensemble of triangles. In consequence of our new techniques, we can now
routinely construct resolution-exact planners for any reasonably complex robot provided by a
user. This could lead to a flowering of experimentation algorithmics in this subfield.

Technically, it is important to note that the previous soft predicate construction for a
triangle robot in [15, 18] requires that the rotation center, i.e., the origin of the (rotational)
coordinate system, be chosen to be the circumcenter of the triangle. But for our new soft
predicates the triangles in the triangulation of the complex robot cannot be treated in the
same way. This is because all the triangles of the triangulation must share a common
origin, to serve as the rotation center of the robot. To ensure easy-to-compute predicates,
we introduce the notion of a “nice triangulation” relative to a chosen origin: all triangles
must be “nice” relative to this origin. These ideas apply for arbitrary complex robots, but
we also exploit the special case of star-shaped robots to achieve stronger results.

ESA 2018
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Figure 2 shows our experimental setup for complex robots. A demo showing the real-time
performance of our algorithms is found in the video clip available through this web link:
https://cs.nyu.edu/exact/gallery/complex/complex-robot-demo.mp4. All proofs are
deferred to the full version of this paper [20].

Remark. Although it is not our immediate concern to address noisy environments and
uncertainties, it is clear that our work can be leveraged to address these issues. E.g., users
can choose ε > 0 to be correlated with the uncertainty in the environment and the precision of
the robot sensors. By using weighted Voronoi diagrams [4], we can achieve practical planners
that have obstacle-dependent clearances (larger clearance for “dangerous” obstacles).

Previous related work. An early work is Zhu-Latombe [21] who also classify boxes into
FREE or MIXED or STUCK (using our terminology below). They introduced the concept of
M-channels (comprised of FREE or MIXED leaf boxes), as a heuristic basis to find an F-
channel comprising only of FREE boxes. Subsequent researchers (Barbehenn-Hutchinson [2]
and Zhang-Manocha-Kim [19]) continued this approach. Researchers in resolution-based
approaches were interested in detecting the non-existence of paths, but their solutions remain
partial because they do not guarantee to always detect non-existence of paths (of sufficient
clearances) [3, 19]. The challenge of complex robots was taken up by Manocha’s group who
implemented a series of such examples [19]: a “five-gear” robot, a “2-D puzzle” robot a
certain “star” robot with 4 DOFs, and a “serial link” robot with 4 DOFs. Except for the
“star”, the rest are planar robots.

2 Review: Fundamentals of Soft Subdivision Approach

Our soft subdivision approach includes the following three fundamental concepts (see [15]
and the Appendix of [11] for the details):

Resolution-exactness. This is an alternative replacement for the standard concept of
“resolution completeness” in the subdivision literature. Briefly, a planner is resolution-
exact if there is a constant K > 1 such that if there is a path of clearance Kε, it will
return a path, and if there is no path of clearance ε/K, it will return NO-PATH. Here,
ε > 0 is an additional input to the planner, in addition to the normal parameters.
Soft Predicates. Let Rd be the set of closed axes-aligned boxes in Rd. We are interested
in predicates that classify boxes. Let C : Rd → {+1, 0,−1} be an (exact) predicate where
+1,−1 are called definite values, and 0 the indefinite value. For motion planning, we
may also identify +1/− 1/0 with FREE/STUCK/MIXED, respectively. In our application,
if p is a free configuration, then C(p) = FREE; if p is on the boundary of the free space,
C(p) = MIXED; otherwise C(p) = STUCK. We extend C to boxes B ∈ Rd as follows:
for a definite value v ∈ {+1,−1}, C(B) := v if C(x) = v for every x ∈ B. Otherwise,
C(B) := 0. Call C̃ : Rd → {+1, 0,−1} a “soft version” of C if whenever C̃(B) is a
definite value, C̃(B) = C(B), and moreover, if for any sequence of boxes Bi (i ≥ 1) that
converges monotonically to a point p, C̃(Bi) = C(p) for i large enough.
Soft Subdivision Search (SSS) Framework. This is a general framework for a broad class
of motion planning algorithms. One must supply a small number of subroutines with
fairly general properties in order to derive a specific algorithm. For SSS, we need a
predicate to classify boxes in the configuration space as FREE/STUCK/MIXED, a method to
split boxes, a method to test if two FREE boxes are connected by a path of FREE boxes,
and a method to pick MIXED boxes for splitting. The power of such frameworks is that
we can explore a great variety of techniques and strategies. Indeed we introduced the
SSS framework to emulate such properties found in the sampling framework.

https://cs.nyu.edu/exact/gallery/complex/complex-robot-demo.mp4


B. Zhou, Y.-J. Chiang, and C. Yap 73:5

(a) triangular set
(unbounded case)

apex

C
B′

C ′

BA

C

B′

C ′

(c) swept area by a nice triangle(b) truncated triangular set (d) sweeping [A, B, C] to [A, B′, C ′]
A

B

Figure 3 Truncated triangular set and swept areas.

Feature-Based Approach. Following our previous work [15, 11], our computation and
predicates are “feature based” whereby the evaluations of box primitives are based on a set
φ̃(B) of features associated with the box B. Given a polygonal set Ω ⊆ R2 of obstacles, the
boundary ∂Ω may be subdivided into a unique set of corners (points) and edges (open line
segments), called the features of Ω. Let Φ(Ω) denote this feature set. Our representation of
f ∈ Φ(Ω) ensures this local property of f : for any point q, if f is the closest feature to q,
then we can decide if q is inside Ω or not. To see this, first note that if f is a corner, then q
is outside Ω iff f is a convex corner of Ω. But if f is an edge, our representation assigns an
orientation to f such that q is inside Ω iff q lies to the left of the oriented line through f .

3 Star-Shaped Robots

We first consider star-shaped robots. A star-shaped region R is one for which there exists
a point A ∈ R such that any line through A intersects R in a single line segment. We call
A a center of R. Note that A is not unique. When a robot R0 is a star-shaped polygon,
we decompose R0 into a set of triangles that share a common vertex at a center A. The
rotations of the robot R0 about the point A can then be reduced to the rotations of “nice”
triangles about A. The soft predicates of nice triangles will be easy to implement because
their footprints have special representations.

3.1 Nice Shapes for Rotation
From now on, by a triangular set we mean a subset T ⊆ R2 which is written as the
non-redundant intersection of three closed half-spaces: T = H1 ∩H2 ∩H3. Non-redundant
means that we cannot express T as the intersection of only two half-spaces. Note that if T is
bounded, this is our familiar notion of a triangle with 3 vertices. But T might be unbounded
and have only 2 vertices as in Figure 3(a). If T is a triangular set, we may arbitrarily call one
of its vertices the apex and call the resulting T a pointed triangular set. By a truncated
triangular set (TTS), we mean the intersection of a pointed triangular set T with any
disc centered at its apex A, as shown in Figure 3(b).

Notation for Angular Range: It is usual to identify S1 (unit circle) with the interval [0, 2π]
where 0 and 2π are identified. Let α 6= β ∈ S1. Then [α, β] denote the range of angles from α

counter-clockwise to β. Thus [α, β] and [β, α] are complementary ranges in S1. If Θ = [α, β],
then its width, |Θ| is defined as β − α if β > α, and 2π + β − α otherwise. Moreover, we
will write “α < θ < β” to mean that θ ∈ [α, β].

Fix an arbitrary bounded triangular set T0, represented by its three vertices A,B,C
where A is the apex. For θ ∈ S1, let T0[θ] denote the footprint of T0 after rotating T0 counter-
clockwise (CCW) by θ about the apex. If Θ ⊆ S1, we write T0[Θ] =

⋃
{T0[θ] : θ ∈ Θ}. The

ESA 2018
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sets T0[θ] and T0[Θ] are called footprints of T0 at θ and Θ, respectively. If Θ = [α, β], write
T0[α, β] for T0[Θ], and call T0[α, β] the swept area as T0 rotates from α to β.

One of our concerns is to ensure that the swept area T0[Θ] is “nice”. Consider an example
where [A,B,C] is a triangular set with apex A (see Figure 3(c)). Consider the area swept by
rotating [A,B,C] in a CCW direction about its apex to position [A,B′, C ′]. This sweeps
out the truncated triangular set shown in Figure 3(b). This truncated triangular set (TTS)
is desirable since it can be easily specified by the intersection of three half-spaces and a
disc. On the other hand, if [A,B,C] is the triangular set in Figure 3(d), then no rotation of
[A,B,C] would sweep out a truncated triangular set. So the triangular set in Figure 3(d) is
“not nice”, unlike the triangular set in Figure 3(c).

In general, let T = [A,B,C] be a bounded triangular set. Let a, b, c denote the corres-
ponding angles at A,B,C. We say T is nice if either b or c is at least π/2 (= 90◦). We call
the corresponding vertex (B or C) a nice vertex. Assuming T is non-degenerate and nice,
there is a unique nice vertex. In the following, we assume (w.l.o.g.) that B is the nice vertex.
The reason for defining niceness is the following.

I Lemma 1. Let T be a pointed triangular set. Then T is nice iff for all α ∈ S1 (0 < α <

π − a), the footprints T [0, α] and T [−α, 0] are truncated triangular sets (TTS).

I Lemma 2. Let R0 be a star-shaped polygonal region with A as center. If the boundary of
R0 is an n-gon, then we can decompose R0 into an essentially disjoint1 union of at most 2n
bounded triangular sets (i.e., at most 2n triangles) that are nice and have A as the apex.

3.2 Complex Predicates and T/R Subdivision Scheme
For complex robots in general (not necessarily star-shaped), we can exploit the remarkable
decomposability property of soft predicates. More specifically, suppose R0 = ∪m

j=1Tj where
each Tj is a triangle or other shapes and not necessarily pairwise disjoint. If we have soft
predicates C̃j(B) for each Tj (where B is a box), then we immediately obtain a soft predicate
for R0 defined as follows:

C̃(B) =


FREE if each C̃j(B) is FREE
STUCK if some C̃j(B) is STUCK
MIXED otherwise.

(1)

Let σ > 1 and C̃ be the soft version of an exact predicate C. Recall [15, 18] that C̃ is
σ-effective if for all boxes B, if C(B) = FREE then C̃(B/σ) = FREE.

Proposition A.
(1) C̃ is a soft version of the exact classification predicate for R0.
(2) Moreover, if each C̃j is σ-effective, then C̃ is σ-effective.

We need σ-effectivity in soft predicates in order to ensure resolution-exactness; see [15, 18]
where this proposition was proved. There are two important remarks. First, this proposition
is false if the C̃j and C̃ were exact predicates. More precisely, suppose C is the exact
predicate for R0 and Cj is the exact predicate for each Tj . It is true that if C(B) = FREE
then Cj(B) = FREE for all j. But if C(B) = STUCK, it does not follow that Cj(B) = STUCK
for some j. Second, the predicates C̃j(B) for all the Tj ’s must be based on a common

1 A set {A1, . . . , Ak} where each Ai ⊆ R2 is said to be essentially disjoint if the interiors of the Ai’s
are pairwise disjoint.
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coordinate system. As mentioned in Sec. 1, the soft predicate construction for a triangle
robot in [15] does not work here. A technical contribution of this paper is the design of soft
predicates C̃j(B) for all the Tj ’s that are based on a common coordinate system. In the case
of star-shaped robots, we apply Lemma 2 and use the apex A as the origin of this common
coordinate system. Let rj be the length of the longer edge out of A in Tj . We define r0 as
r0 = maxj rj (i.e., r0 is the radius of the circumcircle of R0 centered at A).

T/R Splitting. The simplest splitting strategy is to split a box B ⊆ Rd into 2d congruent
subboxes. In the worst case, to reduce all boxes to size < ε requires time Ω(log(1/ε)d); this
complexity would not be practical for d > 3. In [11, 16] we introduced an effective solution
called T/R splitting which can be adapted to configuration space2 SE(2) in the current
paper. Write a box B ⊆ SE(2) as a pair (Bt, Br) where Bt ⊆ R2 is the translational box
and Br ⊆ S1 an angular range Θ. We say box B = (Bt, Br) is ε-small if Bt and Br are
both ε-small; the former means the width of Bt is ≤ ε; the latter means the angle (in radians)
satisfies |Br| ≤ ε/r0. Our splitting strategy is to only split Bt (leaving Br = S1) as long as
Bt is not ε-small. This is called a T-split, and produces 4 children. Once Bt is ε-small, we
do binary splits of Br (called R-split) until Br is ε-small. We discard B when it is ε-small.
The following lemma (and proof) in [15] can be carried over here:

I Lemma 3. ([15]) Assume 0 < ε ≤ π/2. If B = (Bt, Br) is ε-small and Bt is a square,
then the Hausdorff distance between the footprints of R0 at any two configurations in B is at
most (1 +

√
2)ε.

Soft Predicates. Suppose we want to compute a soft predicate C̃(B) to classify boxes B.
Following the previous work [15, 11], we reduce this to computing a feature set φ̃(B) ⊆ Φ(Ω).
The feature set φ̃(B) of B is defined as comprising those features f such that

Sep(mB , f) ≤ rB + r0 (2)

where mB and rB are respectively the midpoint and radius of the translational box Bt of
B = (Bt, Br) (also call them themidpoint and radius of B), and Sep(X,Y ) := inf{‖x−y‖ :
x ∈ X, y ∈ Y } denotes the separation of two Euclidean sets X,Y ⊆ R2. We say that B is
empty if φ̃(B) is empty but φ̃(B1) is not, where B1 is the parent of B. We may assume the
root is never empty. If B is empty, it is easy to decide whether B is FREE or STUCK: since
the feature set φ̃(B1) is non-empty, we can find the f1 ∈ φ̃(B1) such that Sep(mB , f1) is
minimized. Then Sep(mB , f1) > rB , and by the local property of features (see Feature-Based
Approach in Sec. 2), we can decide if mB is inside (B is STUCK) or outside Ω (B is FREE).

For a box B where Bt = S1, we maintain its feature set φ̃(B) as above. But when
Bt 6= S1, we compute its feature set φ̃(B) as follows. Recall that we decompose R0 into a
set of nice triangles Tj with a common apex A. For each Tj , consider the footprint of Tj

with A at mB and rotating Tj about A from θ1 to θ2, where Br = [θ1, θ2]. By Lemma 1 the
resulting swept area is a truncated triangular set (TTS); call it TTSj . We define (cf. [15]) for
a 2D shape S the s-expansion of S, denoted by (S)s, to be the Minkowski sum of S with
the Disc(s) of radius s centered at the origin. For a TTS, recall that TTS = T ∩D where
T = H1 ∩H2 ∩H3 is an unbounded triangular set (with each Hi a half space) and D is a disk
(Figure 3). Note that (TTS)s is a proper subset of (H1)s ∩ (H2)s ∩ (H3)s ∩ (D)s; a theorem
in the next section gives an exact representation of (TTS)s. We now specify the feature

2 The configuration space of planar rigid robots is SE(2) = R2×S1 where S1 is the unit circle representing
angles [0, 2π).

ESA 2018
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set φ̃(B): for each Tj , let φ̃j(B) comprise those features f satisfying Sep(mB , f) ≤ rB + rj

(replacing r0 with rj in Eq. (2)), such that f also intersects the rB-expansion of TTSj .
We can think of φ̃(B) as a collection of these φ̃j(B)’s, each of which is used by the soft
predicate C̃j(B) so that we can apply Proposition A.

4 General Complex Robots

When R0 is a general polygon, not necessarily star-shaped, we can still decompose R0 into a
set of triangles Tj (j = 1, . . . ,m), and consider the rotation of these triangles relative to a
fixed point O (we may identify O with the origin). In this section, we define what it means
for Tj to be “nice” relative to a point O. If O lies in the interior of Tj , we could decompose
Tj into at most 6 nice pointed triangles at O, as in the previous section. Henceforth, assume
that O does not lie in the interior of Tj .

4.1 Basic Representation of Nicely Swept Sets
Let T = [A,B,C] be any non-degenerate triangular region defined by the vertices A,B,C.
Let the origin O be outside the interior of T . We define what it means for T to be “nice
relative to O”. W.l.o.g., let 0 ≤ ‖A‖ ≤ ‖B‖ ≤ ‖C‖ where ‖A‖ is the Euclidean norm.

We say that T is nice if the following three conditions hold:

〈A,B −A〉 ≥ 0, 〈A,C −A〉 ≥ 0, 〈B,C −B〉 ≥ 0. (3)

Here 〈u, v〉 denotes the dot product of vectors u, v.
A more geometric view of niceness is as follows (see Figure 4). Draw three concentric

circles centered at O with radii ‖A‖, ‖B‖, ‖C‖, respectively. Two circles would coincide if
their radii are equal, but we will see that the distinctness of the vertices and niceness prevent
such coincidences. Let LA be the line tangent to the circle of radius ‖A‖ and passing through
the point A. Let HA denote the closed half-space bounded by LA and not containing O. The
first condition in (3) 〈A,B −A〉 ≥ 0 says that B ∈ HA. Similarly, the second condition says
that C ∈ HA. Finally, the last condition says that C ∈ HB (where HB is analogous to HA).

If T is a nice triangle, then T [α, β] is called a nicely swept set (NSS). See Figure 5,
where T [α, β] is shaded in blue. Let T [α] be the triangle [A,B,C] and T [β] be [A′, B′, C ′].
W.l.o.g., assume3 that A,B,C appear in counter-clockwise (CCW) order as indicated in Fig-
ure 5. Then we can subdivide T [α, β] into two parts: a triangular region [A,B,C] and
another part which we call a swept segment.

3 In case A,B,C appear in clockwise (CW) order, the boundary of T [α, β] can be similarly decomposed
into two parts, comprising the swept segment S[α, β] and the triangle [A′, B′, C′].
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Notation for Swept Segment: if S is the line segment [A,C], then write S[α, β] for this
swept segment. The boundary of S[α, β] is decomposed into the following sequence of four
curves given in clockwise (CW) order: (i) the arc (A,A′) centered at O of radius ‖A‖ from
A to A′, (ii) the segment [A′, C ′], (iii) the arc (C ′, C) centered at O of radius ‖C‖ from C ′

to C, (iv) the segment [C,A].
Our next goal is to consider s-expansion of the swept segment, i.e.,

X = S[α, β]⊕Disc(s). (4)

Specifically, we want an easy way to detect the intersection between this expansion with
any given feature (corner or edge). To do so, we want to express X as the union of “basic
shapes”. A subset of R2 is a 0-basic shape if it is a half-space, a disc or complement of a
disc. We write Disc(r) for the disc of radius r centered at O, and Ann(r, r′) for the annulus
with inner radius r and outer radius r′ centered at O. A shape X is said to be 1-basic if it
can be written as the finite intersection X =

⋂k
j=1 Xj where Xj ’s are 0-basic shapes. The

1-size of X is the minimum k in such an intersection. So polygons with n sides have 1-size
of n. Truncated triangular sets have 1-size of 4. We need some other 1-basic shapes:

Strips: Strip(a, b; a′, b′) is the region between the two parallel lines a, b and a′, b′. Here
a, b, a′, b′ are distinct points.
Truncated strips: TruncStrip(a, b; a′, b′) is the intersection of Strip(a, b; a′, b′) with
an annulus; the boundary of this shape is comprised of two line segments [a, b] and [a′, b′]
and two arcs (a, a′) and (b, b′) from the boundary of the annulus.
Sectors: Sector(a, b, b′) denotes any region bounded by a circular arc (b, b′) and two
segments [a, b] and [a, b′].

Finally, a shape X is said to be 2-basic if it can be written as a finite union of 1-basic
shapes, X =

⋃m
j=1 Xj whereXj ’s are 1-basic. We call {X1, . . . , Xm} a basic representation

of X. The 2-size of the representation is the sum of the 1-sizes of Xj ’s. Thus, for any box
Bt ⊆ R2, the s-expansion of Bt is a 2-basic shape since it is the union of four discs and an
octagon. We now consider the case where X is the s-expansion of a swept segment S[α, β].
We first decompose S[α, β] into two shapes as follows: suppose C ′′ lies on the circle of radius
‖C‖ = ‖C ′‖. There are two possible representations:
(1) If [A′, C ′′] is parallel to [A,C] and [A′, C ′′] ⊆ Ann(‖A‖, ‖C‖), then we have

S[α, β] = Sector(A′, C ′, C ′′) ∪ TruncStrip(A,C;A′, C ′′) (5)

(2) If [A,C ′′] is parallel to [A′, C ′] and [A,C ′′] ⊆ Ann(‖A‖, ‖C‖), then we have

S[α, β] = Sector(A,C ′, C ′′) ∪ TruncStrip(A,C ′′;A′, C ′). (6)

The swept segment in Figure 5 supports the representation (5), but not (6). Also, if the
angular range of [α, β] is greater than 90 degrees, and the points O,A,C are collinear, then
both representations fail! We next show when at least one of the representations succeeds:

I Lemma 4. Assume the width of the angular range [α, β] is at most π/2. Then swept
segment S[α, β] can be decomposed into a sector and a truncated strip as in (5) or (6).

Clearly, the s-expansion of a sector is 2-basic. This is also true for truncated strips:

I Lemma 5. Let X = TruncStrip(A,C;A′, C ′′). There is a basic representation of X⊕D(s)
of the form {D1, D2, D3, D4, X

′} where Di’s are discs and X ′ is the intersection of a convex
hexagon with an annulus.

ESA 2018
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Combining all these lemmas, we conclude:

I Theorem 6. Let T [α, β] be a nicely swept set where [α, β] has width ≤ π/2. Then T [α, β]
can be decomposed into a triangle, a sector and a truncated strip. The s-expansion of T [α, β]
has a basic representation which is the union of the s-expansions of the triangle, sector and
truncated strip.

The complexity of testing intersection of 2-basic shapes with any feature is proportional
to its 2-size, which is O(1). This theorem assures us that the constants in “O(1)” is small.

4.2 Partitioning an n-gon into Nice Triangles
Suppose P is an n-gon. We can partition it into n−2 triangles. W.l.o.g., there is at most one
triangle that contains the origin O. We can split that triangle into at most 6 nice triangles,
using our technique for star-shaped polygons (Lemma 2).

I Lemma 7. If T is an arbitrary triangle and O is exterior to T , then we can partition T
into at most 4 nice triangles.

The number 4 in this lemma is the best possible: if T is a triangle with circumcenter O,
then any partition of T into nice triangles would have at least 4 triangles because we need to
introduce vertices in the middle of each side of T .

I Theorem 8. Let P be an n-gon.
(i) Given any triangulation of P into n− 2 triangles, we can refine the triangulation into

a triangulation with ≤ 4n− 6 nice triangles.
(ii) This bound is tight in this sense: for every n ≥ 3, there is triangulation of P whose

refinement has size 4n− 6.

4.3 Soft Predicates and T/R Subdivision Scheme
We can now follow the same paradigm as for star-shaped robots in Sec. 3.2. We first apply
Theorem 8(i) to partition the robot R0 into a set of nice triangles, R0 = ∪jTj , where all Tj ’s
share a common origin O, and we will use the soft predicates developed for Tj and apply
Proposition A. The origin O plays a similar role as the apex in Sec. 3.2. The T/R splitting
scheme is exactly the same: we first perform T-splits, splitting only the translational boxes
until they are ε-small, and then we perform R-splits, splitting only the rotational boxes until
they are ε-small. Essentially the top part of the subdivision tree is a quad-tree, and the
bottom parts are binary subtrees (see Sec. 3.2).

The feature set for a subdivision box B where we perform T-splits is the same as before;
the only difference is that now for a box B where we perform R-splits, we use a new feature set
φ̃j(B) for each nice triangle Tj where O is not at its vertex (there are at most 6 nice triangles
with O at a vertex/apex; see Theorem 8(i)). Suppose Tj = [a, b, c] with 0 ≤ ‖a‖ ≤ ‖b‖ ≤ ‖c‖.
Let rj = ‖c‖. Also, suppose the angle range of box B = (Bt, Br) is Br = [θ1, θ2]. Recall the
footprint of Tj [θ1, θ2] is a nicely swept set (NSS); denote it NSSj . Then the new feature
set φ̃j(B) for Tj comprises those f where Sep(mB , f) ≤ rB + rj and f also intersects the
rB-expansion of NSSj (where mB and rB are the midpoint and radius of B).

5 Experimental Results

We have implemented our approaches in C/C++ with Qt GUI platform. The software and
data sets are freely available from the web site for our open-source Core Library [6]. All
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Table 1 Running Our Planner (R: radius of the robot’s circumcircle around its rotation center;
P?: path found? (Yes/No); Time is in s; S-shaped*: thin version).

Exp# Robot Envir. R ε α β P? Time

0 L-shaped gateway 50 2 (18, 98, 340◦) (458,119,270◦) Yes 10.106
1 L-shaped gateway 50 4 (18, 98, 340◦) (458,119,270◦) No 8.431
2 snowflake sparks 56 2 (108, 136, 0◦) (358, 155, 0◦) Yes 17.846
3 snowflake sparks 56 2 (108, 136, 0◦) (358, 155, 180◦) Yes 3.370
4 S-shaped sparks 74 4 (132, 80, 90◦) (333, 205, 90◦) Yes 34.284
5 S-shaped sparks 74 4 (132, 80, 90◦) (333, 205, 60◦) No 57.371
6 3-legged sparks 70 2 (108, 136, 0◦) (368, 155, 0◦) Yes 41.745
7 L-shaped corridor 68 2 (75, 420, 0◦) (370, 420, 0◦) Yes 4.012
8 L-shaped corridor 68 3 (75, 420, 0◦) (370, 420, 0◦) Yes 1.926
9 L-shaped corridor 68 5 (75, 420, 0◦) (370, 420, 0◦) Yes 2.684
10 L-shaped corridor-L 68 5 (75, 420, 0◦) (370, 420, 0◦) No 2.908
11 L-shaped corridor-L 68 3 (75, 420, 0◦) (370, 420, 0◦) Yes 2.255
12 C-shaped corridor-S 80 4 (80, 450, 0◦) (380, 450, 0◦) Yes 26.200
13 S-shaped maze 38 2 (38, 38, 0◦) (474, 474, 90◦) No 90.097
14 S-shaped* maze 38 2 (38, 38, 0◦) (474, 474, 90◦) Yes 79.518

Table 2 Comparing with OMPL (“#”: Exp#; “Time/P?”: our run time (in s)/path found?
(Y/N). Each OMPL method: Average Time (in s)/Standard Deviation/Success Rate, over 10 runs).

# Time/P? PRM RRT EST KPIECE

0 10.106/Y 4.18/2.53/1 42.13/38.49/1 76.22/110.44/0.9 300/0/0
2 17.846/Y 9.22/6.82/1 210.41/144.25/0.3 271.75/89.31/0.1 240.00/126.47/0.2
3 3.370/Y 300/0/0 300/0/0 300/0/0 300/0/0
4 34.284/Y 5.93/7.20/1 217.33/134.53/0.3 300/0/0 300/0/0
5 57.371/N 300/0/0 300/0/0 300/0/0 300/0/0
6 41.745/Y 2.72/4.89/1 154.22/141.77/0.5 104.32/78.10/0.7 3.16/4.28/1
8 1.926/Y 0.63/0.55/1 300/0/0 3.02/4.71/1 0.41/0.28/1
11 2.255/Y 1.49/0.84/1 300/0/0 241.24/124.88/0.2 1.58/1.47/1
12 26.200/Y 3.16/4.21/1 300/0/0 172.506/120.38/0.7 93.88/88.03/0.8
13 90.097/N 300/0/0 300/0/0 300/0/0 300/0/0
14 79.518/Y 300/0/0 236.72/106.44/0.3 300/0/0 39.81/91.57/0.9

experiments are reproducible as targets of Makefiles in Core Library. Our experiments
are on a PC with one 3.4GHz Intel Quad Core i7-2600 CPU, 16GB RAM, nVidia GeForce
GTX 570 graphics and Linux Ubuntu 16.04 OS. The results are summarized in Table 1 and
Table 2. Table 1 is only concerned with the behavior of our complex robots; Table 2 gives
comparisons with the open-source OMPL library [14]. The robots are as shown in Figure 1.

We select some interesting experiments to explain characteristic behavior of our plan-
ner. Please see Table 1 and the video (https://cs.nyu.edu/exact/gallery/complex/
complex-robot-demo.mp4). In Exp0-1, we show how the parameter ε affects the result.
With a narrow gateway, when we change ε from 2 to 4, the output changes from a path to
NO-PATH for the same configuration. In Exp2-3, we observe how the snowflake robot rotates
and maneuvers to get from the start to two different goals. For Exp4-5, the difference is in
the angles of the goal configuration; in Exp5 this is designed to be an isolated configuration
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Figure 7 Six Environments in our experiments.

and the planner outputs NO-PATH as desired. Exp6 shows how the robot can move to use
its complex shape and the environment to squeeze through the obstacles. Exp7-9 are of
the same configuration with only the differences in ε. The planner can find three totally
different paths. When ε is small (Exp7), the path is very carefully adjusted to move the
robot around the obstacles. When ε is larger (Exp8), the planner finds an upper path with a
higher clearance. When ε is even larger (Exp9), the planner chooses a very safe but much
longer path at the bottom. Note that using a larger ε usually makes the search faster, since
we stop splitting boxes smaller than ε, but a longer path can make the search slower. In
Exp10-11, we modify the environment of Exp7-9 by putting a large obstacle at the bottom,
which forces the robot to find a path at the top. Exp12 uses an environment similar to
those in Exp7-11 but with much smaller scattered obstacles. It is designed for the C-shaped
robot, which can rotate while having an obstacle in its pocket. Exp13-14 use a challenging
environment where the small scattered obstacles force the S-shaped robot to rotate around
and only the “thin” version (Exp14, also in Fig. 7 “maze”) can squeeze through.

In Table 2 we compare our planner with several sampling algorithms in OMPL: PRM,
RRT, EST, and KPIECE. These experiments are correlated to those in Table 1 (see the Exp
#). Each OMPL planner is run 10 times with a time limit 300 seconds (default), where all
planner-specific parameters use the OMPL default values. We see that for OMPL planners
there are often unsuccessful runs and they have to time out even when there is a path. On the
other hand, our algorithm consistently solves the problems in a reasonable amount of time,
often much faster than the OMPL planners, in addition to being able to report NO-PATH.

6 Conclusions

Although the study of rigorous algorithms for motion planning has been around for over 40
years, there has always been a gap between such theoretical algorithms and the practical
methods. Our introduction of resolution-exactness and soft predicates on the theoretical
front, together with matching implementations, closes this gap. Moreover, it eliminated the
“narrow passage” problem that plagued the sampling approaches. The present paper extends
our approach to challenging planning problems for which no exact algorithms exist.

What are the current limitations of our work? We implement everything in machine
precision (the practice in this field). But it can be easily modified to achieve the theoretical
guarantees of resolution-exactness if we use arbitrary precision BigFloats number types.

We pose two open problems: One is to find an optimal decomposition of m-gons into nice
triangles (currently, we simply give an upper bound). Such decompositions will have impact
for practical complex robots. Second, we would like to develop similar decomposability of
soft predicates for complex rigid robots in R3.
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2015. 3-5 Aug 2014, Boǧazici University, Istanbul, Turkey.

12 Victor Milenkovic, Elisha Sacks, and Steven Trac. Robust complete path planning in the
plane. In Proc. 10th Workshop on Algorithmic Foundations of Robotics (WAFR 2012),
Springer Tracts in Advanced Robotics, vol.86, pages 37–52. Springer, 2012.

13 O. Salzman, M. Hemmer, B. Raveh, and D. Halperin. Motion planning via manifold
samples. In Proc. European Symp. Algorithms (ESA), 2011.

14 I.A. Şucan, M. Moll, and L.E. Kavraki. The Open Motion Planning Library. IEEE Robotics
& Automation Magazine, 19(4):72–82, 2012. doi:10.1109/MRA.2012.2205651.

15 Cong Wang, Yi-Jen Chiang, and Chee Yap. On Soft Predicates in Subdivision Motion
Planning. Comput. Geometry: Theory and Appl. (Special Issue for SoCG’13), 48(8):589–
605, 2015.

16 Chee Yap, Zhongdi Luo, and Ching-Hsiang Hsu. Resolution-exact planner for thick non-
crossing 2-link robots. In Proc. 12th Intl. Workshop on Algorithmic Foundations of Ro-
botics (WAFR ’16), 2016. 13-16 Dec 2016, San Francisco. The appendix in the full paper
(and arXiv from http://cs.nyu.edu/exact/ (and arXiv:1704.05123 [cs.CG]) contains
proofs and additional experimental data.

17 Chee K. Yap. Soft Subdivision Search in Motion Planning. In A. Aladren et al., editor,
Proceedings, 1st Workshop on Robotics Challenge and Vision (RCV 2013), 2013. Robot-
ics Science and Systems Conference (RSS 2013), Berlin. In arXiv:1402.3213. Full paper:
http://cs.nyu.edu/exact/papers/.

18 Chee K. Yap. Soft Subdivision Search and Motion Planning, II: Axiomatics. In Frontiers
in Algorithmics, volume 9130 of Lecture Notes in Comp.Sci., pages 7–22. Springer, 2015.
Plenary Talk at 9th FAW. Guilin, China. Aug 3-5, 2015.

ESA 2018

https://cs.nyu.edu/exact/core_pages/downloads.html
http://cse.poly.edu/chiang/rod-ring18.pdf
http://dx.doi.org/10.1109/MRA.2012.2205651


73:14 Soft Subdivision Motion Planning for Complex Planar Robots

19 Liangjun Zhang, Young J. Kim, and Dinesh Manocha. Efficient cell labeling and path non-
existence computation using C-obstacle query. Int’l. J. Robotics Research, 27(11–12):1246–
1257, 2008.

20 Bo Zhou, Yi-Jen Chiang, and Chee Yap. Soft subdivision motion planning for complex
planar robots, 2018. Full version available at http://cse.poly.edu/chiang/esa18-full.
pdf.

21 D.J. Zhu and J.-C. Latombe. New heuristic algorithms for efficient hierarchical path plan-
ning. IEEE Transactions on Robotics and Automation, 7:9–20, 1991.

http://cse.poly.edu/chiang/esa18-full.pdf
http://cse.poly.edu/chiang/esa18-full.pdf

	Introduction
	Review: Fundamentals of Soft Subdivision Approach
	Star-Shaped Robots
	Nice Shapes for Rotation
	Complex Predicates and T/R Subdivision Scheme

	General Complex Robots
	Basic Representation of Nicely Swept Sets
	Partitioning an n-gon into Nice Triangles
	Soft Predicates and T/R Subdivision Scheme

	Experimental Results
	Conclusions

