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Abstract
Let C be a bounded convex object in Rd, and P a set of n points lying outside C. Further let
cp, cq be two integers with 1 ≤ cq ≤ cp ≤ n−

⌊
d
2
⌋
, such that every cp +

⌊
d
2
⌋
points of P contains

a subset of size cq +
⌊
d
2
⌋
whose convex-hull is disjoint from C. Then our main theorem states

the existence of a partition of P into a small number of subsets, each of whose convex-hull is
disjoint from C. Our proof is constructive and implies that such a partition can be computed in
polynomial time.

In particular, our general theorem implies polynomial bounds for Hadwiger-Debrunner (p, q)
numbers for balls in Rd. For example, it follows from our theorem that when p > q ≥ (1 + β) · d2
for β > 0, then any set of balls satisfying the HD(p, q) property can be hit by O

(
q2p1+ 1

β log p
)

points. This is the first improvement over a nearly 60-year old exponential bound of roughly
O
(
2d
)
.

Our results also complement the results obtained in a recent work of Keller et al. where,
apart from improvements to the bound on HD(p, q) for convex sets in Rd for various ranges of p
and q, a polynomial bound is obtained for regions with low union complexity in the plane.
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1 Introduction

Given a finite set C of geometric objects in Rd, we say that C satisfies the HD(p, q) property
if for any set C′ ⊆ C of size p, there exists a point in Rd common to at least q objects of C′.
The goal then is to show that there exists a small set Q of points in Rd such that each object
of C contains some point of Q; such a Q is called a hitting set for C.

These bounds for a set C of convex sets in Rd have been studied since the 1950s (see the
surveys [7, 8, 15]), and it was only in 1991 that Alon and Kleitman [1], in a breakthrough
result, gave an upper-bound that is independent of |C|. Unfortunately it depends exponentially
on p, q and d. For the case where C consists of arbitrary convex objects, the current best
bounds remain exponential in p, q and d.

1 The work of Nabil H. Mustafa in this paper has been supported by the grant ANR SAGA (JCJC-14-
CE25-0016-01).

© Nabil H. Mustafa and Saurabh Ray;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 64; pp. 64:1–64:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/160477969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mustafan@esiee.fr
mailto:saurabh.ray@nyu.edu
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.64
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de
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I Theorem A ([1, 9]). Let C be a finite set of convex objects in Rd satisfying the HD(p, q)
property, where p, q are two integers with p ≥ q ≥ d+ 1. Then there exists a hitting set for C
of size

O
(
pd

q−1
q−d · logc

′d3 log d p
)
,

(p− q) +O

((
p
q

)d
logc

′d3 log d
(
p
q

))
, for q ≥ log p

p− q + 2, for q ≥ p1− 1
d+ε, p ≥ p(d, ε).

where c′ is an absolute constant independent of |C|, p, q and d, and p(d, ε) is a function
depending only on d and ε.

Consider the basic case where C is a set of balls in Rd satisfying the HD(p, q) property.
Theorem A implies – ignoring logarithmic factors and for general values of p and q – the
existence of a hitting set of size no better than O

(
pd
)
. Furthermore, it requires q ≥ d+ 1 –

a necessary condition for arbitrary convex objects2 but not for balls.

Almost 60 years ago, Danzer [4, 5] considered the HD(p, q) problem for balls. The best
bound that we are aware of, derived from the survey of Eckhoff [7] by combining inequalities
(4.2), (4.4) and (4.5), is stated below. It is better than the one from Theorem A quantitatively,
but also in that it gives a bound requiring only that q ≥ 2. Further, for a very specific case –
namely when p = q and (d− q) is O(log d) – it succeeds in giving polynomial bounds.

I Theorem B ([7]). Let B be a finite set of balls in Rd. If B satisfies the HD(p, q) property
for some d ≥ p ≥ q ≥ 2, then there exists a hitting set for B of size at most√

3π
2 · 2

d−q ·
(

(p− q) · 2q · d 3
2 · g(d) + 4 (d− q + 2)

3
2 · g(d− q + 2)

)
where g(x) = log x + log log x + 1. Ignoring logarithmic terms, the above bound is of the
form Θ

(
(p− q) · 2d · d 3

2 + 2d−q · (d− q) 3
2

)
. If p 6= q the first term dominates, otherwise the

second term dominates.

Turning towards the lower-bound for the case where C is a set of unit balls in Rd, Bourgain
and Lindenstrauss [2] proved a lower-bound of 1.0645d when p = q = 2 in Rd, i.e., one needs
at least 1.0645d points to hit all pairwise intersecting unit balls in Rd.

Our Result
We consider a more general set up for the HD(p, q) problem, as follows.

Let C be a convex object in Rd, and P a set of n points lying outside C. For each p ∈ P ,
let Hp be the set of hyperplanes separating p from C. Let Cp be the set of points in Rd dual
to the hyperplanes in Hp (see [12, Chapter 5.1]), and let S = {Cp : p ∈ P}.

Our goal is to study the HD(p, q) property for S – namely, that out of every p objects of
S, there exists a point in Rd common to at least q of them. This is equivalent to the property
of C and P that out of every p-sized set P ′ ⊆ P , there exists a hyperplane separating C
from a q-sized subset P ′′ ⊂ P ′ – or equivalently, conv(P ′′) is disjoint from C.

Our main theorem is the following. For a simpler expression, let cq, cp be two positive
integers such that p = cp +

⌊
d
2
⌋
and q = cq +

⌊
d
2
⌋
.

2 There are easy examples, e.g. when the convex objects are hyperplanes in Rd.
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I Theorem 1. Let C be a bounded convex object in Rd and P a set of n points lying outside
C. Further let cp, cq be two integers, with 1 ≤ cq ≤ cp ≤ n−

⌊
d
2
⌋
, such that for every cp+

⌊
d
2
⌋

points of P , there exists a subset of size cq +
⌊
d
2
⌋
whose convex-hull is disjoint from C. Then

the points of P can be partitioned into

λd (cp, cq) = K2
d

cq
·
(√

2K1

) d
cq · (bd/2c+ cq)2 · (bd/2c+ cp)

1+ bd/2c−1
cq · log (bd/2c+ cp)

sets, each of whose convex-hull is disjoint from C. Here K1,K2 are absolute constants
independent of n, d, cp and cq. Furthermore, such a partition can be computed in polynomial
time.

The proof, presented in Section 2, is a combination of three ingredients: the Alon-Kleitman
technique [1], bounds on independent sets in hypergraphs [9] and bounds on (≤ k)-sets for
half-spaces [3]. It is an extension of the proof in [14] which studied Carathéodory’s theorem
in this setting.
I Remark. The restriction that q ≥

⌊
d
2
⌋

+ 1 is necessary – as can be seen when P form the
vertices of a cyclic polytope in Rd and C is a slightly shrunk copy of conv(P ).
I Remark. Note that when cq ≥ β · d2 for any absolute constant β > 0, the above bound is
polynomial in the dimension d – it is upper-bounded by O

(
q2p1+ 1

β log p
)
.

I Remark. It was shown in [13] that Cp is a convex object in Rd and thus the bounds of
Theorem A apply. As before, Theorem 1 substantially improves upon this, as the bounds
following from Theorem A are exponential in d and furthermore, require q ≥ d+ 1.

As an immediate corollary of Theorem 1, we obtain the first improvements to the old
bound on the (p, q) problem for balls in Rd. The bound in Theorem B is exponential in d –
except in special cases where p = q and (d− q) is3 O(log d). On the other hand, our result
gives polynomial bounds as long as q ≥ βd for any constant β > 1

2 .

I Corollary 2 (Hadwiger-Debrunner (p, q) bound for balls in Rd). Let B be collection of balls
in Rd such that for every subset of cp +

⌊
d+1

2
⌋
balls in B, some cq +

⌊
d+1

2
⌋
have a common

intersection, where cp and cq are integers such that 1 ≤ cq ≤ cp ≤ n −
⌊
d+1

2
⌋
. Then there

exists a set X of λd+1(cp, cq) points that form a hitting set for the balls in B. Here λd+1(·, ·)
is the function defined in the statement of Theorem 1.

Proof. Observe that one can stereographically ‘lift’ balls in Rd to caps of a sphere S in Rd+1,
where a cap of a sphere is a portion of the sphere contained in a half-space that doesn’t
contain the center of the sphere. Thus we will prove a slightly more general result where B
consists of caps of a d-dimensional sphere S embedded in Rd+1.

For a point x ∈ S, let hx denote the hyperplane tangent to S at x. For any point y lying
outside S, define the separating set of y to be

Sy = {z ∈ S : hz separates y and S} .

Geometrically, Sy is the set of points of S ‘visible’ from y, and form a cap of S. Furthermore,
for any cap K of S, there is a unique point w such that K = Sw. We denote this point w by
apex(K).

3 Recall that Theorem B assumes q ≤ p ≤ d.

ESA 2018
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Given the set of caps B on S, consider the point set

apex (B) = {apex(B) : B ∈ B} .

Observe that for a point x ∈ S and a cap B ∈ B, x ∈ B if and only if x ∈ Sapex(B). As B
satisfies the (p, q) property – namely that for every p-sized subset B′ of B, there exists a
point x ∈ S lying in some q elements of B′ – we have that for every p-sized subset A′ of
apex(B), there exists a point x ∈ S lying in the separating set of some q points of A′. In
other words, hx separates these q points from S.

Applying Theorem 1 with C = S and P = apex (B) in dimension d+ 1, we conclude that
P can be partitioned into a family Ξ of λd+1(cp, cq) sets, each of whose convex hull is disjoint
from S. Consider a set P ′ ∈ Ξ. Since the convex hull of P ′ is disjoint from S, we can find a
hyperplane hx tangent to S at x such that hx separates P ′ from S. This implies that all
the caps in B corresponding to the points in P ′ contain the point x. Thus for each set of Ξ
we obtain a point which is contained in all the caps corresponding to the points in that set.
These |X| = λd+1(cp, cq) points form the required set X. J

Our results complement the recent results of Keller, Smorodinsky and Tardos [9, 10] who
obtain polynomial bounds for regions of low union complexity in the plane.

2 Proof of Theorem 1

Given a set P of points in Rd and an integer k ≥ 1, a set P ′ ⊆ P is called a k-set of P if
|P ′| = k and if there exists a half-space h in Rd such that P ′ = P ∩ h. A set P ′ ⊆ P is
called a (≤ k)-set if P ′ is a l-set for some l ≤ k. The next well-known theorem gives an
upper-bound on the number of (≤ k)-sets in a point set (see [17]).

I Theorem 3 (Clarkson-Shor [3]). For any integer k ≥
⌊
d
2
⌋

+ 1, the number of (≤ k)-sets of
any set of n points in Rd is at most

κd (n, k) = 2
(

K1

dd/2e

)dd/2e(
n

bd/2c

)
(k + dd/2e)dd/2e ≤ κ′d (k) · nbd/2c, (1)

where κ′d (k) = 2Kd
1 bd/2c−bd/2c

(
1 + k

dd/2e

)dd/2e
and K1 ≥ e is an absolute constant inde-

pendent of n, d and k.

I Definition 4 (Depth). Given a set P of n points in Rd and any set Q ⊆ P , define the
depth of Q with respect to P , denoted depthP (Q), to be the minimum number of points of
P contained in any half-space containing Q.

For two parameters l ≥ k ≥ 2, let τd (n, k, l) denote the maximum number of subsets of
size k and depth at most l with respect to P in any set P of n points in Rd:

τd (n, k, l) = max
P⊆Rd
|P |=n

|{Q ⊆ P : |Q| = k and depthP (Q) ≤ l}| .

The following statement is easily implied by an application of the Clarkson-Shor tech-
nique [3] (e.g., see [16]).

I Theorem 5. For parameters l ≥ k ≥
⌊
d
2
⌋

+ 1,

τd(n, k, l) ≤ e · κd(n, k) · lk−bd/2c,

where the function κ(·, ·) is as defined in Equation (1).
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Proof. Let P be any set of n points in Rd. Let t be the number of sets of P of size k and
depth at most l. Pick each element of P independently with probability ρ = 1

l to get a
random sample R. The expected number of k-sets in R satisfies

ρk · (1− ρ)l−k · t ≤ E [ number of k-sets in R ]

≤ 2
(

K1

dd/2e

)d d2 e
E
[(
|R|⌊
d
2
⌋)](k +

⌈
d

2

⌉)d d2 e
= 2

(
K1

dd/2e

)d d2 e( n⌊
d
2
⌋)ρb d2 c(k +

⌈
d

2

⌉)d d2 e
= κd(n, k) · ρb

d
2 c

=⇒ t ≤ κd(n, k) · ρb
d
2 c

ρk · (1− ρ)l−k ≤ e · κd(n, k) · lk−bd/2c,

as
(
1− 1

l

)−(l−k) ≤ e for any l ≥ k ≥ 2. J

I Lemma 6. Let C be a bounded convex object in Rd, and P a set of n points lying outside
C. Let p ≥ q ≥

⌊
d
2
⌋

+ 1 be parameters such that for every subset Q ⊆ P of size p, there exists
a set Q′ ⊂ Q of size q such that Q′ can be separated from C by a hyperplane. Then there
exists a hyperplane separating at least(

2 q pq−1 · e κ′d(q)
) 1
bd/2c−q

fraction of the points of P from C.

Proof. From [6, 9], it follows that the number of distinct q-tuples of P that can be separated
from C by a hyperplane is, assuming that n ≥ 2p, at least

n− p+ 1
n− q + 1

(
n
q

)(
p−1
q−1
) ≥ nq

2q pq−1 .

Let l be the maximum depth (Definition 4) of any of these separable q-tuples. The number
of such tuples is therefore at most τd(n, q, l). Thus by Theorem 5 we must have

nq

2q pq−1 ≤ τd (n, q, l) ≤ e κd (n, q) lq−bd/2c.

Re-arranging the terms and from inequality (1), we get

l ≥
(

nq

2 q pq−1 · e κd (n, q)

) 1
q−bd/2c

≥

(
nq

2 q pq−1 · e κ′d (q) nb
d
2 c

) 1
q−bd/2c

= n ·
(
2 q pq−1 · e κ′d (q)

) 1
bd/2c−q .

Thus one of the separable q-tuples, say P ′ ⊆ P , must have depth at least l; in other words,
the hyperplane separating P ′ from C must contain at least l points of P . This is the required
hyperplane. J

We now prove a weighted version of the above statement.

ESA 2018
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I Corollary 7. Let C be a bounded convex object in Rd, and P a weighted set of n points
lying outside C, where the weight of each point p ∈ P is a non-negative rational number. Let
p ≥ q ≥

⌊
d
2
⌋

+ 1 be parameters such that for every subset Q ⊆ P of size p, there exists a set
Q′ ⊂ Q of size q such that Q′ can be separated from C by a hyperplane. Then there exists a
hyperplane separating a set of points whose weight is at least

αd(p, q) =
(
2e κ′d (q) qq pq−1) 1

bd/2c−q

fraction of the total weight of the points in P .

Proof. By appropriately scaling all the rational weights, we may assume that each weight
is a non-negative integer and we replace a point with weight m by m unweighted copies of
the point. Let P ′ be the new set of points. Observe that any set S of pq points in P ′ either
contains q copies of some point in P or it contains p distinct points from P . In either case,
there is hyperplane separating q points of S from C. Thus, we can apply Lemma 6 to the
point set P ′ with the parameter p in the lemma replaced by pq. The result follows. J

Finally we return to the proof of the main theorem.

I Theorem 1. Let C be a bounded convex object in Rd and P a set of n points lying outside
C. Further let cp, cq be two integers, with 1 ≤ cq ≤ cp ≤ n−

⌊
d
2
⌋
, such that for every cp+

⌊
d
2
⌋

points of P , there exists a subset of size cq +
⌊
d
2
⌋
whose convex-hull is disjoint from C. Then

the points of P can be partitioned into

λd (cp, cq) = K2
d

cq
·
(√

2K1

) d
cq · (bd/2c+ cq)2 · (bd/2c+ cp)

1+ bd/2c−1
cq · log (bd/2c+ cp)

sets, each of whose convex-hull is disjoint from C. Here K1,K2 are absolute constants
independent of n, d, cp and cq. Furthermore, such a partition can be computed in polynomial
time.

Proof. Let p = cp+bd/2c and q = cq+bd/2c. Let H be the set of all hyperplanes separating a
distinct subset of points of P from C. As the number of subsets of P is finite, one can assume
that H is also finite. Consider the following linear program on |H| variables {uh ≥ 0: h ∈ H}:

min
∑
h∈H

uh, such that ∀r ∈ P :
∑
h∈H

h separates r from C

uh ≥ 1. (2)

The LP-dual to the above program, on |P | variables {wr ≥ 0: r ∈ P}, is:

max
∑
p∈P

wp, such that ∀h ∈ H :
∑
r∈P

h separates r from C

wr ≤ 1. (3)

Consider an optimal solution w∗ of the dual linear program and interpret w∗r as the weight
of each r ∈ P . Since the weights are rational, by Corollary 7, there exists a hyperplane
h ∈ H separating a subset of P of combined weight at least ε = αd(p, q) fraction of the total
weight of all the points. Since the total weight of the points in any half-space is constrained
to be at most 1 by the linear program, the total weight of all the points of P must be at
most 1

ε . In other words, the optimal value of linear program (3) is at most 1
ε . Since the

optimal values of both linear programs are equal due to strong duality, the optimal value of
linear program (2) is also at most 1

ε .
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Let u∗ be the optimal solution of linear program (2). If we interpret uh as the weight of
the hyperplane h, the constraints of the program imply that each point is separated by a set
of hyperplanes in H whose combined weight is at least 1 out of a total weight of at most
1
ε – in other words, at least ε-th fraction of the total weight of H. By associating with each
hyperplane the half-space bounded by it and not containing C, and using the ε-net theorem
for half-spaces in Rd (see [11]), there exists a set of O

(
d
ε log 1

ε

)
hyperplanes which together

separate all points of P from C. Recalling that
1
ε

= 1
αd(p, q)

=
(
2e κ′d(q) qq pq−1) 1

q−bd/2c =
(
2e κ′d(q) qq pq−1) 1

cq .

and that κ′d (q) = 2Kd
1 bd/2c−bd/2c

(
1 + q

dd/2e

)dd/2e
, we get

1
ε

=
(

4Kd
1ebd/2c−bd/2c

(
1 + q

dd/2e

)dd/2e
qq pq−1

) 1
cq

≤
(

4Kd+1
1 bd/2c−d (cq + d)dd/2e qq pq−1

) 1
cq (using e ≤ K1 and q = cq + bd/2c)

≤
(

4Kd+1
1 bd/2c−d(cq + d)dd/2eqcq+bd/2cpcq+bd/2c−1

) 1
cq

= O

(
K

d
cq

1 bd/2c
− d
cq (cq + d)

dd/2e
cq (cq + bd/2c)1+ bd/2c

cq (cp + bd/2c)1+ bd/2c−1
cq

)

= O

K d
cq

1 d
2+ bd/2c−1

cq (1 + cq
d

)
dd/2e
cq

(
1 + cq
bd/2c

)1+ bd/2c
cq
(

1 + cp
bd/2c

)1+ bd/2c−1
cq


= O

K d
cq

1 d
2+ bd/2c−1

cq e
cq
d ·
dd/2e
cq

(
1 + cq
bd/2c

)
e

cq
bd/2c ·

bd/2c
cq

(
1 + cp
bd/2c

)1+ bd/2c−1
cq


= O

K d
cq

1 d
2+ bd/2c−1

cq

(
1 + cq
bd/2c

) (
1 + cp
bd/2c

)1+ bd/2c−1
cq


= O

(
K

d
cq

1 2
d

2cq (bd/2c+ cq) (bd/2c+ cp)
1+ bd/2c−1

cq

)
= O

((√
2K1

) d
cq (bd/2c+ cq) (bd/2c+ cp)

1+ bd/2c−1
cq

)
.

The Big-Oh notation here does not hide dependencies on d – namely we do not treat d as a
constant. From the above it follows that

log 1
ε

= O
(
c−1
q (bd/2c+ cq) log (bd/2c+ cp)

)
.

Thus, dε log 1
ε is

O

(
d ·
((√

2K1
) d
cq (bd/2c+ cq) (bd/2c+ cp)1+ bd/2c−1

cq

)
·
(
c−1

q (bd/2c+ cq) log (bd/2c+ cp)
))

which simplifies to

O

(
d

cq

(√
2K1

) d
cq (bd/2c+ cq)2 (bd/2c+ cp)1+ bd/2c−1

cq log(bd/2c+ cp)
)

.

Since linear programs can be solved in polynomial time and epsilon nets can be computed
in polynomial time, the partition of P into the above number of sets can be achieved in
polynomial time. The theorem follows. J

ESA 2018
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