
Practical Low-Dimensional Halfspace Range
Space Sampling
Michael Matheny
University of Utah, USA

Jeff M. Phillips1

University of Utah, USA

Abstract
We develop, analyze, implement, and compare new algorithms for creating ε-samples of range
spaces defined by halfspaces which have size sub-quadratic in 1/ε, and have runtime linear in
the input size and near-quadratic in 1/ε. The key to our solution is an efficient construction of
partition trees. Despite not requiring any techniques developed after the early 1990s, apparently
such a result was never explicitly described. We demonstrate that our implementations, including
new implementations of several variants of partition trees, do indeed run in time linear in the
input, appear to run linear in output size, and observe smaller error for the same size sample
compared to the ubiquitous random sample (which requires size quadratic in 1/ε). This result
has direct applications in speeding up discrepancy evaluation, approximate range counting, and
spatial anomaly detection.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Partitions, Range Spaces, Sampling, Halfspaces

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.62

1 Introduction

Taming the relationship between a point set X ⊂ Rd and its interaction with halfspaces
Hd, has long been a focus of computational geometry. Understanding and controlling this
interaction is at the heart of problems in range searching, linear classification, coresets, and
spatial anomaly detection. This pair (X,Hd) describes a range space, the combinatorial set
of all subsets of X defined by h∩X for any halfspace h ∈ Hd. In this paper we focus on two
specific and closely-interrelated (as it turns out) constructions for (X,Hd): ε-samples and
partitions, defined next.

An ε-sample Y ⊂ X of (X,Hd) is a small point set that approximately preserves density
with respect to halfspaces: for all h ∈ Hd, and error parameter ε ∈ (0, 1) it bounds

Error(X,Y) = max
h∈Hd

∣∣∣∣ |Y ∩ h||Y |
− |X ∩ h|
|X|

∣∣∣∣ ≤ ε.
It is known that ε-samples of size Θ(1/ε2d/(d+1)) exist for halfspaces [3], and in general

this size may be required [21]. For many years (c.f., [22, 8]) such proofs were not constructive,
as they relied on the “partial coloring lemma”; until in 2010 when Bansal [5] introduced a poly-
nomial time construction. The runtime of the low-discrepancy coloring on m points was later
reduced [16] to O(m3(d+1)polylog(m)), this within the standard merge-reduce framework [10]
results in a O(n(1/ε)2d(3d+2)/(d+1)polylog(1/ε)) runtime for sample construction– which is

1 Thanks to supported by NSF CCF-1350888, IIS-1251019, ACI-1443046, CNS-1514520, and CNS-1564287.

© Michael Matheny and Jeff M. Phillips;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 62; pp. 62:1–62:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/160477967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.62
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

62:2 Range Space Sampling

still not very efficient. For instance for d = 2, this requires O(n(1/ε)10+2/3polylog(1/ε))
time. A random sample, which can be generated in O(n + 1/ε2) time, is an ε-sample of
size O(1

ε2 (d+ log 1
δ)) with probability at least 1− δ [27, 15]. The above discrepancy-based

algorithm can be run on the output of this sample to get optimal size, but it only reduces the
overall runtime of the ε-sample construction to O(n+ (1/ε)2d(3d+2)/(d+1)+2polylog(1/ε)).

There are other constructions for ε-samples, which either focus on small space (to work in
a stream) [26, 4] or have better performance in practice without size guarantees below that
of random sampling [2]. As with the optimal algorithms, these require the enumeration of all
combinatorial halfspaces associated with a set of size roughly the size of the final ε-sample,
requiring at least Ω((1/ε2d/(d+1))d) time. Indeed Suri et al. [26] concludes with: “The high
computational complexity of the currently known algorithms for these subroutines may be
prohibitive for data stream applications. It is a long standing open problem to find efficient
exact or approximation algorithms for either of them.”

A partition of (X,Hd) is a set of pairs {(∆1, X1), (∆2, X2), . . .} where each ∆i is a small
complexity region and contains Xi ⊂ X, and X is the disjoint union of the Xis. It is a (t, z)-
partition when there are O(t) pairs, |Xi| ≤ 2n/t; and each h ∈ Hd crosses O(tz) cells. The
smallest possible guarantee for z is z = (1− 1/d), and an algorithm for such a construction
was provided by Matoušek [20], that takes O(n log t) time after O(n1+η) preprocessing time
for any η > 0. Chan provided a refined algorithm which takes O(n log t) time, and has a few
nicer structural properties. There are other algorithms which generate (t, z)-partitions for
large values of z. For instance in R2 Edelsbrunner and Welzl [11] describe an algorithm with
z = 0.695 and a structure similar to a kd-tree leads to a size of z = log4(3) ≤ 0.7925 [29].

Our results. In this paper, we use partition construction algorithms to efficiently create
ε-samples for (X,Hd). Our algorithm takes O(n+ 1

ε2 log 1
ε) time and produces an ε-sample

of size O((1/ε)2d/(d+1) logd/(d+1)(1/ε)), nearly matching the Ω(1/ε2d/(d+1)) lower bound.
We also implement several variants of these algorithms in R2. We know of no other

implementation of ε-sample construction for (X,H2) which is guaranteed to get subquadratic
size in 1/ε. We know of no implementations of optimal partitions, although Har-Peled [13]
has implemented a related concept called a cutting, which (as we will explain) is a key
ingredient for creating partitions. We choose to build our own implementation of cuttings,
and explain why we did not use Har-Peled’s in Section 4.

We are able to demonstrate that our algorithm indeed scales linearly in n, scales linearly
in the output size, and produces ε-samples with less measured error than random samples.

Our initial goal in fast ε-sample construction comes from finding approximately maximal
ranges in range spaces, as part of a large-scale spatial anomaly detection framework [18, 17].
At a high level, these algorithms follow two phases: (1) create an ε-sample S, (2) use S to
find an approximately maximal range. The second step takes O(|S|/ε) or O(|S|/ε2), so it is
only worth using a smaller ε-sample of size roughly 1/ε4/3 if it takes less than 1/ε2+1/3 or
1/ε3+1/3 time to create. We show this is the case in theory, and in practice. Similar overall
runtime gains exist when using S for classification, or approximate range counting, or other
tasks where the use of S is more expensive than the new construction time.

2 Overview and Proof for Fast ε-Samples

The key to our construction of an ε-sample S for a range space (X,Hd) is to first create
a partition over (X,Hd). Given such a partition algorithm, our algorithm constructs an
ε-sample as follows. Randomly sample Y ⊂ X, construct the partition ∆ = {(∆1, Y1), . . . , }
on Y , and return a single point at random from each Yi weighted by |Yi|.

M. Matheny and J. M. Phillips 62:3

I Theorem 1. For range space (X,Hd) with |X| = n and constant d, with constant probability
an ε-sample S of size O(1

ε2d/(d+1) logd/(d+1) 1
ε) can be constructed in O(n+ 1

ε2 log 1
ε) time.

Proof. Take a random uniform sample Y ⊂ X of size s = O(1
ε2

1
) then Y is an ε1-sample of

(X,Hd) with constant probability. Next we build a (t, 1− 1/d)-partition on Y in O(s log t)
time [7]; this results in a set of O(t) partitions of Y each containing at most 2s/t points such
that any halfspace in Hd will only cross O(t1−1/d) of them. From each partition (∆, Yi) we
will choose a single point yi at random to put in our result S, and weight it proportional to
the number of points in the partition.

In our construction any partition contained completely inside a halfspace or outside does
not contribute to the error of the sample. Only regions crossing the boundary of the halfspace
h contribute to the error. The error in each boundary region is an independent bounded
random variable Vi with value in the range [0, 2 st]. There are at most k = c · t1−1/d boundary
regions for some constant c, so we can apply Hoeffding’s inequality, with failure probability δ

Pr[|V − E[V]| ≥ sε2] ≤ 2 exp
(
− 2s2ε2

2

ct1−1/d · 4 s2

t2

)
= 2 exp

(
−ε

2
2t

1+1/d

2c

)
≤ δ.

Rearranging the last inequality, gives that with t ≥ (2c
ε2

2
ln 2

δ)d/(d+1), for any one halfspace h,
|V − E[V]| is more than sε2 with probability at most δ.

There are O(sd) = O(1/ε2d
1) halfspaces in (Y,H2), so setting δ = c2ε

2d
1 for some constant

c2, and the additivity property of ε-approximations [8], gives an (ε1 + ε2)-approximation

of size t ≥
(

4dc
ε2

2
ln 2

c2ε1

)d/(d+1)
with constant probability. By setting ε1 = ε2 = ε

2 the total

error is ε1 + ε2 = ε and the size of the ε-sample is O
(

1
ε2d/(d+1) logd/(d+1) (1

ε

))
for constant d.

Creating Y takes O(n+ 1
ε2) time, the partition tree construction takes O(1

ε2 log 1
ε) time since

t = O(poly(1
ε)), and the re-weighting and sampling step takes O(1

ε2) time. In total therefore
the entire algorithm takes O(n+ 1

ε2 log 1
ε) time. J

The same proof technique will work with other (t, z)-partitions in place of Chan’s [7]. In
general, for z < 1, a scheme that generates a (t, z)-partition of t cells where any halfspace
crosses at most O(tz) of the cells results in an ε-sample of size O(1

ε2/(2−z) log1/(2−z) 1
ε).

For instance in R2, Edelsbrunner and Welzl’s z = 0.695 result [11] in an ε-sample of size
O(1

ε1.532 log0.766(1
ε)). Alternatively, Willards z = 0.7925 result in R2 [29] results in an

ε-sample size of O(1
ε1.657 log0.829(1

ε)).

3 Overview of Algorithms for Constructing the Partition

Random sampling, and sampling a point from each cell of a partition is straight-forward;
the challenge in our implementation of Theorem 1 is the creation of a partition. In this
section we describe the key components of the two prominent optimal size (z = 1 − 1/d)
algorithms: Matoušek’s efficient partitioning [20] (ComputePartition-Mat) and Chan’s Optimal
partitioning [7] (ComputePartition-Chan).

These algorithms rely on a related object called a cutting, defined over Rd and a set of m
hyperplanes H. For a parameter r < m, a (1/r)-cutting is a decomposition of Rd into O(rd)
cells Λ = {Λ1,Λ2, . . .}, so no cell is crossed by more than O(m/r) hyperplanes in H. Such
cuttings exist and can be computed in O(mrd−1) time [9, 19].

Cuttings are almost enough to compute partitions. A set of n points in Rd induces m =
O(nd) combinatorially distinct halfspaces H. Letting r = t1/d, the total number of crossings
will be O(rd ·m/r) = O(mrd−1), so the average per region will be O(rd−1) = O(t1−1/d). Also,

ESA 2018

62:4 Range Space Sampling

ignoring dependences, the average cell contains O(n/rd) = O(n/t) points, as desired. The
main challenge is ensuring that these average properties of the cutting map to the specific
properties required for the partition. In short, we can create an appropriate cutting, detect
where it does not satisfy the partition properties, and then amend it so it does.

We specifically focus our implementations in the d = 2 setting, which for instance is
enough for our original application of spatial anomaly detection we mentioned previously [17],
even in higher dimensions. Our implementations are similar to the existing implementation of
cuttings by Har-Peled [13], but adds several features which will aid in computing the partition.
Our cutting implementation builds a cutting by iteratively adding lines in a random order
while keeping track of the number of lines crossing each cell in an arrangement. From a
practical point of view, it is important to force the cells of the partition to be constant size.
We have focused on two methods for this, a vertical trapezoidal decomposition (Trapezoid),
or a hierarchy of constant size polygons (PolyTree).

Constructing a (1/r)-cutting over the entire set of O(nd) halfspaces would lead to a
runtime of O(ndrd−1) which would be prohibitively slow. Instead of using the full set of
halfspaces a smaller set (a test set) can be constructed, such that the number of partitions
crossed by any halfspace in this test set will not be too different from the full set Hd.

In particular, an (1/r)-test set is a set of halfspaces H which applies to any partition
∆ = {(∆1, X1), (∆2, X2), . . .} and point set X of size n so |Xi| ≥ n/r for all (∆i, Xi) ∈ ∆.
It ensures that if κ = maxh∈H |h ∩∆|, then maxh∈Hd

|h ∩∆| ≤ O(κ+ r1−1/d). Here h ∩∆
is the set of (∆i, Xi) ∈ ∆ for which ∆i intersects h, but do not completely contain h. Test
sets can be built a number of ways, including randomly sampling lines, randomly sampling
points and using the lines they induce, and using the dual arrangement.

4 Implementation Particulars of Partitions

Our implementation of Partition trees is in python. It relies on an efficient way to construct
and maintain an arrangement of lines and associated points. At each step of the construction
we will maintain a tree with leaves that correspond to cells ∆1,∆2, . . . of an arrangement.
Each cell will maintain a list of contained points Xi ∈ ∆i and crossing lines.

As part of the construction so the result is a (t, 1 − 1/d)-partition ∆, with desired t

parameter, cells can be refined by applying various operations to them. For instance a
cutting can be constructed locally inside of a cell ∆i, or a cell can be partitioned into a set
of sub-cells.

Geometric Primitives. All of our algorithms rely on operations over line segments. The
most important operation is being able to test, within a region ∆, if a line lies completely
above a line segment or if it crosses a line segment. This fairly simple operation is slightly
complicated by numerical issues that can occur. For instance when constructing a test
set using the BuildTestSet-Points or BuildTestSet-Dual method (see below) many lines will
potentially meet at the same point. Line segments that meet in this point could be mistaken
as crossing. To handle numerical issues we use python’s implementation of math.isclose to
handle point comparisons. This method allows us to assign two floating point numbers as
equal if their relative values are sufficiently close [6]. Moreover, all methods that compare
line segments have closed and open versions where closed versions allow end-point overlap
and open versions do not. The method segment.above_closed(line) returns true if the
line intersects with the segment at one the segment’s end points, but is otherwise above the
segment, while segment.above_open(line) returns false in this case. This allows us in our
experiments to effectively handle degeneracies while avoiding slower exact precision libraries.

M. Matheny and J. M. Phillips 62:5

Internally our segment objects are represented by the slope, a, the y-intercept, b, and
the [xl, xr] interval on the x-axis the segment is defined over. This representation makes
many operations easy, but also results in several challenges, most notably: vertical lines
are undefined, unbounded segments (e.g., (−∞, xr]) require extra logic to handle crossing
queries, lines which are nearly vertical can become numerically unstable, and the dual of
unbounded polygons require significant extra logic to handle correctly. However, we have
implemented stable functions for intersect and above relations for pairs of segments in a cell.

Using line segments and points as the primitives we also define more complicated structures
notably: polygons, dual wedges, vertical line segments, and trapezoids.

PolyTrees. There are a number of ways to maintain the structure of an arrangement. A
common method is to store each cell with a corresponding list of pointers to adjacent cells.
Inserting a line involves finding the leftmost crossing cell, identifying the next adjacent cell
the line crosses, splitting the crossed cell into an upper and lower cell, and then repeating
this operation for each crossed cell.

This has a number of downsides: there are special cases if a line crosses a vertex of a cell,
inserting points into the arrangement requires the maintenance of a secondary structure, and
cells require a significant amount of adjacency information that must be maintained. Instead
of maintaining this structure we use the idea of forcing each cell to be simple, and follow
certain restrictions, as introduced by Seidel [25] and refined by Har-Peled [13].

In particular, we either maintain a decomposition into constant complexity polygons
(polygons with a constant number of boundary segments) or a trapezoidal decomposition.
In both cases we maintain a tree where each node in the tree consists of a line segment
that separates a cell into two cells. With trapezoids an inserted line could in some cases
divide a trapezoid vertically into 2 separate trapezoids and then horizontally into 4 separate
trapezoids. In the case of polygons the inserted line would split the polygon into two separate
polygons which could possibly be further split if the number of sides in either of the resulting
polygons is greater than a chosen constant. We also enforce that no vertical segments are
used to avoid limitations of our line segment representation.

Given a line h and a decomposition Λ = {Λ1,Λ2, . . .}, the zone of h is the set of regions
Λi that intersect h; we represent this as Zoneh = Λ ∩ h. To find the zone of a line in this
structure at each node we treat the line as an infinite length segment and then traverse
the line down the tree. At each node we will have three cases where the portion of the line
contained in the node lies completely either above or below, or crosses the current node’s line
segment. In the completely above or below case we merely traverse to the above or below
child of the node. In the crossing case we split the portion of the line contained in the node
into two segments, above and below, and recursively query the above and below nodes. Point
information is easy to maintain with this method since a point always lies on one side of the
line segment, so the tree structure can be used to insert or remove points in logarithmic time
to the number of cells.

More complicated structures can also be queried on these trees, most notably wedges and
polygons. Wedge queries are particularly useful in ComputePartition-Chan since a wedge is
the dual of a line segment, so the number of points contained in a wedge corresponds in the
dual to the number of lines crossing a line segment.

Cuttings. Our cutting algorithm CreateCutting(H, r) (Algorithm 1) follows closely Al-
gorithm 1, from Har-Peled [13]. We implement the cutting with respect to weighted lines
as this speeds up and somewhat simplifies the later partitioning algorithms. We require a

ESA 2018

62:6 Range Space Sampling

Algorithm 1 CreateCutting(H, r).
1: Λ = R2

2: for h ∈ H (ordered by a random weighted permutation) do
3: Find Viol(h,Λ) = {Λi ∈ Zoneh(Λ) | |H ∩ Λi| > |H|/r}.
4: For all Λi ∈ Viol(h,Λ), replace Λi in Λ by split(Λi, h)
5: return Λ

Algorithm 2 BuildTestSet-Dual (X, r).
1: S = sample(X,O(

√
r log r)); S∗ is dual of S.

2: Λ← CreateCutting(S∗, O(r1/2))
3: return the dual of V ∗, where V is the set of vertices of the cells of Λ.

weighted permutation of lines using [12]; this ensures that the probability we see a line after
some point in the permutation is equivalent to the probability we would have seen at least
one instance after seeing that many distinct lines in a variant where weights are multiplicities
(as advocated by Chan [7]), and each copy is treated independently in a uniform random
permutation. For notational convenience, for a subset H ′ ⊆ H, let |H ′| =

∑
h∈H′ w(h),

where w(h) is the weight implicitly stored with each halfspace h ∈ H.
In practice, we implement CreateCutting(H, r) slightly differently then described in Al-

gorithm 1. Instead of choosing the h ∈ H to process in the random weighted permutation,
our approach is centered around the violated cells. We choose a cell Λi ∈ Λ which is too
heavy (i.e., |H ∩ Λi| > |H|/r), and then choose some halfspace h ∈ Λi ∩H, and only replace
Λi (not the entire Zoneh) with the result of the split(Λi, h), which divides Λi into two parts
separated by h. This change has two advantages. First we do not need to find the Zoneh(Λ)
which involves traversing the PolyTree, so our approach is slightly faster. Second, we can
choose the h ∈ Λi ∩H to use in the split wisely; e.g., as the one that maximizes the smaller
of the two resulting cells. We find the second heuristic produces slightly smaller cuttings in
practice, but is significantly slower, and is not used in our experiments.

How split(Λi, h) is implemented is the difference between the Trapezoid-based cutting and
the Polygon-based cutting we refer to as PolyTree.

For the Trapezoid-based method each cell ∆ is a trapezoid to begin with. The split
operation first inserts up to two new vertical cuts for each intersection of the line with the
top or bottom of the cell and then horizontally cuts the resulting cells using the inserted
line. For PolyTree, the first important detail is that we store H ∩ Λi as the line segments
restricted to where they intersect Λi.

On a split, we need to maintain which halfspaces h ∈ Λi ∩ H are in each child; if
h′ ∈ Λi ∩H intersects both children, then we split h′ into two line segments at the point
where it intersects h, and store the corresponding segment in each child. If h′ ∈ Λi ∩H is in
only one child, because we store them as segments it is easy to check which child it goes into.

Both of these algorithms are then fairly straightforward to implement once given structures
for efficiently maintaining arrangements of line segments.

We find that PolyTree is faster and produces a smaller cutting than Trapezoid-based ones;
see Figure 1 and Figure 2 which show the runtime and cutting size as a function of input
size and choice of r. For this reason we will primarily focus on PolyTree hereafter.

Test Set Generation. There are a number of ways to generate test sets (BuildTestSet-Dual,
BuildTestSet-Points, BuildTestSet-Lines), but these do not appear to have a significant effect
on the runtime of the final algorithms; again see Figure 1 and Figure 2 for comparisons

M. Matheny and J. M. Phillips 62:7

200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Lines

4

6

8

10

12

14

16

18

20
C

u
tt

in
g
 C

o
n
st

a
n
t

PolyTree_8 Dual

PolyTree_8 Points

PolyTree_8 Lines

Trapezoid Dual
Trapezoid Points
Trapezoid Lines

200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Lines

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

T
im

e
 (

se
c)

PolyTree_8 Dual

PolyTree_8 Points

PolyTree_8 Lines

Trapezoid Dual
Trapezoid Points
Trapezoid Lines

Figure 1 Size of cutting (divided by r2) and time (in seconds) vs. the number of input lines.

0 5 10 15 20 25 30 35
r

4

6

8

10

12

14

16

18

20

22

C
u
tt

in
g
 C

o
n
st

a
n
t

PolyTree_8 Dual

PolyTree_8 Points

PolyTree_8 Lines

Trapezoid Dual
Trapezoid Points
Trapezoid Lines

0 5 10 15 20 25 30 35
r

0

1

2

3

4

5

6

7

8

9
T
im

e
 (

se
c)

PolyTree_8 Dual

PolyTree_8 Points

PolyTree_8 Lines

Trapezoid Dual
Trapezoid Points
Trapezoid Lines

Figure 2 Size of cutting (divided by r2) and time (in seconds) as r increases for 1000 input lines.

of the PolyTree and Trapezoid methods. The simplest method, BuildTestSet-Lines, simply
samples O(r logd n) halfplanes, from those defined by passing through d points in X. The
next simplest, BuildTestSet-Points, samples O(r1/d logn) points S, and then the test set is
all halfplanes passing through d-tuples chosen from S; it again defines O(r logd n) halfplanes.
Finally the most complicated approach is BuildTestSet-Dual (see Algorithm 2); it produces the
smallest size test set, size O(r) [20], and thus is the one we advocate. It samples O(r1/d log r)
points S ⊂ X; it considers the dual set of halfplanes S∗ of primal points S; it creates a
(1/r1/d)-cutting of S∗ (in the dual); and then it returns the primal halfspaces defined by the
vertices of the cutting in the dual. Each halfspace h in the test set H is implicitly endowed
with a weight w(h), which by default is w(h) = 1 for all h ∈ H.

Matoušek Partitioning. We have implemented Matoušek’s efficient partition trees [20].
At a high level this algorithm computes the cutting of a test set and then finds a single
good cell that contain at least n/b points (for a constant b, we use b = 16 as default). It
adds this cell to the partition, doubles the weight of all halfspaces in the test set crossing
that cell, computes a new cutting and good cell. It repeats until the number of points
remaining has been cut by half, and then it recurses on the remained of the points at half
the precision (e.g., set b := 1/2b). This is too expensive to do with b = r, so after this we
then recursively partition each cell (∆i, Xi) until the result is an (1/r, 1 − 1/d)-partition

ESA 2018

62:8 Range Space Sampling

Algorithm 3 ComputePartition-Mat(X, r, n, j).
1: if (|X| < n/r) then return {(X,∆0)} where ∆0 contains X.
2: H ← BuildTestSet-x(X, b/2j)
3: ∆ = ∅
4: while (|X| ≥ n/2j) do
5: Λ← CreateCutting(H,

√
b/2j)

6: Find Λi ∈ Λ so |X ∩ Λi| > n/b; shrink Λi so |X ∩ Λi| = bn/bc exactly.
7: Add (Λi,Λi ∩X) to ∆; remove Λi ∩X from X

8: Double the weight h ∈ H which cross Λi
9: ∆′ =

⋃
(∆j ,Xj)∈∆ ComputePartition-Mat(Xj , r, n, j)

10: return ∆′ ∪ ComputePartition-Mat(X, r, n, j + 1)

Algorithm 4 ComputePartition-Chan(∆, r, n).
1: Trim to ∆′ = {(∆i, Xi) ∈ ∆ | |Xi| > n/r}; if ∆′ = ∅ return ∆
2: H = BuildTestSet-x(X, |∆|)
3: for (∆i, Xi) ∈ ∆′ do
4: Sample L ⊂ H, proportional to their weight w(h), at rate q
5: Λ = CreateCutting(L, ri); with ri chosen so |Λ| ≤ b/4
6: For all Λj ∈ Λ, further split Λj (with split) until |Xi ∩ Λj | ≤ |Xi|/b
7: Replace (∆i, Xi) in ∆ with {(Λ1,Λ1 ∩Xi), (Λ2,Λ2 ∩Xi), . . .}
8: Update all weights w(h) = w(h)(1 + 1/b)|h∩Λ̄i|/p.
9: return ComputePartition-Chan(∆, r, n)

as desired. The branching factor of the partition tree is not fixed on each level, but will
be roughly b on average. Algorithm 3 presents this approach, and is initially called as
ComputePartition-Mat(X, r, |X|, 0).

Note that Line 9 is the refinement step where each cell is further partitioned. Since the
first level is the most important for good ε-samples, faster algorithms could be used at later
recurve calls at this step. In contrast, the recursive call at Line 10 is handing objects not
handled in the first pass, where each pass handles roughly half of the data.

Chan Partitioning. Chan’s optimal partition trees [7] are faster in theory than Matoušek’s
algorithm, but are more complicated to implement. The algorithm works by processing each
node at a certain level in the tree in a random order. For each node it creates a cutting of
approximately b/4 size for an appropriately large branching parameter b (our implementation
uses b = 22 as a default). It then further splits the cells of the cutting to contain 1/b fraction
of points at that node. It multiplicatively updates weights for halfplanes that cross each cell.
This multiplicative update influences subsequent cuttings by biasing away from creating cells
that are crossed by already heavily weighted lines (lines that cross many cells). After splitting
all of the cells in this level of the tree the algorithm recurses on the newly created level. The
ultimate partition ∆ = {(∆1, X1), (∆2, X2), . . .} are the leaf nodes of the tree. Algorithm 4
presents this approach, calling ComputePartition-Chan({(R2, X)}, r, |X|) initially.

Implementing the algorithm as described is too slow asymptotically, so Chan presents a
faster variant, which requires two additional parameters p and q. Roughly q =

√
b|∆|/|X|

(see [7] for details) determines the probability that a line ends up in the reduced test set L.
The parameter p, about

√
b/|∆| logn (again, see [7] for details), effects the number of cells

Λi that are used to update the weight in each h (we sample each cells with probability p as

M. Matheny and J. M. Phillips 62:9

opposed to dividing by this number, as written on Line 8). Also, Line 4, where L is sampled
from H, can be made more efficient by only minimally updating L each pass through the
loop, since it generally has large weight lines and that set is fairly stable.

Near the bottom of the tree, Line 8 can be expensive. We make this efficient with a
crucial observation that the test set H was generated by computing a cutting over the dual
space. Thus these halfspaces are duals to the vertices of the PolyTree structure. Thus we can
search over the PolyTree to determine the number of crossing lines. A cell of the partitioning
is a polygon consisting of a constant number of line segments. A line crossing the polygon
will cross at least one of the line segments and in the dual this will correspond to a point
contained inside of a double wedge. For each line segment in the polygon we take its dual (a
double wedge) and query the PolyTree that was used to construct the test set to determine
the number of vertices contained inside of it. Since we only return the overlapped polygons
and each polygon consists of at most a constant number of edges, the number of queried cells
can only be a constant factor larger than the number of lines crossed by the line segment.

However, code profiling shows that the two steps involving sampling with p and q, and
updating L are the most expensive parts of the algorithm. As a result we also consider a
variant ComputePartition-Chan-Simple which avoids these sampling steps that were supposed
to speed things up. In the context of Algorithm 4 this basically sets p = q = 1, so L = H,
and Line 4 is not required.

The given algorithm is only guaranteed to compute a set of partitions in O(n logO(1) n)
time; incurring extra log factors due to the height of the partition tree. Chan removes log
factors with a method he calls bootstrapping. We do not do this since the branching factor is
high (around 22) so the depth of the tree is low, and this method is not worth the overhead.

In our implementation, we only compute the test set H once at the beginning. On each
recursive call (Line 9) we can reuse it, but simply reset all of the weights to be uniform.

Ham-Sandwich Tree. We also implement an alternative using Willard’s [29] Ham-Sandwich
Tree. It provides a partitioning with z = log3 4, which gives a O(1

ε1.657 log0.829 1
ε) sized sample,

and constructs a tree with a branching factor of 4. At each level we split the point set in half
with a single vertical line, and on these two resulting sets we find a single (roughly horizontal)
line that divides both the left and right point set in half. Such a separator is guaranteed by
the ham-sandwich theorem, and can be computed in linear time [24], but is complicated to
implement. We instead approximate the ham-sandwich cut by computing a number of test
lines and choosing the best separator from these. This is simple to implement, gives good
cuts in practice, and can guarantee to be at most ε-imbalanced [23].

Why not use Har-Peled’s implementation and CGAL? It may seem at first that we could
simply use Har-Peled’s implementation for ε-cuttings [13]. However, our initial goal was
to use this as part of a code for spatial anomaly detection [18, 17], and there were several
issues that made this less feasible. (1) We wanted to use non infinite precision floating point
arithmetic. Har-Peled reports that switching to exact precision representations results in a
30-factor slow down, but was necessary for degeneracy issues. We managed these precision
issues while using floating point arithmetic with careful use of open and closed operators
for line above/below and intersection. (2) We can measure wedges, and line segments on
the PolyTree structure which is very useful in ComputePartition-Chan. (3) Har-Peled’s code
created a cutting inside of a 1×1 box. This makes computing dual cuttings difficult as we first
have to normalize the lines to lie in such a region, but computing the correct normalization
quickly would require us to re-implement much of the PolyTree algorithm. Ultimately we
opted to build our ε-cutting code from scratch rather than modify the previous code.

ESA 2018

62:10 Range Space Sampling

5 10 15 20 25 30
b

0.00

0.02

0.04

0.06

0.08

0.10

0.12

E
rr

o
r

Mat Poly Dual
Mat Poly Lines
Mat Poly Points
Chan
Chan Simple

5 10 15 20 25 30
b

0

1

2

3

4

5

6

7

8

T
im

e
 (

se
c)

Mat Poly Dual
Mat Poly Lines
Mat Poly Points
Chan
Chan Simple

Figure 3 The Branching Factor b vs. Time and Error using the default parameters.

Har-Peled [13] also reported the cutting constant (number of cells divided by r2) for
various of his algorithms, about 7.3 (polygons) and 12.8 (trapezoids). This roughly matches
the numbers we observe in Figure 1 and Figure 2.

Another option for computing cuttings and managing the partition trees is using the
current 2d-arrangement implementation in CGAL [28]. This would have most likely made
portions of this project much easier to implement and removed various hurdles. However,
the possibilities of several factor slow-downs using exact precision would have potentially
resulted in no ultimate gains in the spatial anomaly application demonstrated below.

5 Experiments on ε-Samples and Applications

In this section we explore the efficacy of our ε-sample algorithms based on partitions. We
use as X the Chicago crime data [1] with roughly 6.5 million data points.

A key step of the analysis is measuring the accuracy of the ε-sample. That is for a
sampled S we measure Error(X,Y) = maxh∈Hd

| |Y ∩h||Y | −
|X∩h|
|X| |, which unfortunately requires

|X|d+1 time to simply enumerate, which would be infeasible for large X. Instead we use
techniques [18, 2, 17] which provide guaranteed approximation of this function, designed
with spatial anomaly detection in mind. We have set the parameters large enough so the
noise in computing Error is insignificant compared to the quantities we are evaluating. We
evaluated the accuracy and efficiency of computing ε-samples with 8 different methods.

There are 3 algorithms based on sampling one element per cell from Matousek’s partition
algorithm with polygonal cells, using tests created by lines Mat Poly Lines, points Mat
Poly Points, or the dual approach Mat Poly Dual.
We consider 2 algorithms based on Chan’s partition algorithm Chan and Chan Simple.
Each uses polygonal cells and the dual approach for the test set since this specific type of
test set allowed for an optimization in the reweighting step. The Chan variant includes
subsampling among cells for purpose of reweighting, while the Chan Simple simply uses
all of these cells and does not require the sampling step which in practice was inefficient.
Then Ham Tree Sample draws samples from the cells of the Willards partitioning; these
are also cells of a partition, but with worse theoretical size-accuracy bounds.
Finally we consider two baselines: random sampling, Random Sample, and another
approach Biased-L2 [2] which is a greedy, but slow algorithm which has similar worst case
guarantees to random sampling, but achieves better error in practice.

M. Matheny and J. M. Phillips 62:11

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Input Size

0.00

0.02

0.04

0.06

0.08

0.10

E
rr

o
r

Mat Poly Dual
Mat Poly Lines
Mat Poly Points
Ham Tree Sample
Chan
Chan Simple
Random Sample

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Input Size

0

1

2

3

4

T
im

e
 (

se
c)

Mat Poly Dual
Mat Poly Lines
Mat Poly Points
Ham Tree Sample
Chan
Chan Simple
Random Sample

Figure 4 Input size vs. Time and Error using the default parameters.

500 1000 1500 2000
Output Size

10-2

10-1

E
rr

o
r

Mat Poly Dual
Mat Poly Lines
Mat Poly Points
Ham Tree Sample
Chan
Chan Simple
Random Sample

500 1000 1500 2000
Output Size

0

2

4

6

8

10

12

14

T
im

e
 (

se
c)

Mat Poly Dual
Mat Poly Lines
Mat Poly Points
Ham Tree Sample
Chan
Chan Simple
Random Sample

Figure 5 Output size vs. Time and Error using the default parameters.

In testing these algorithms we can control three parameters: the Branching Factor b, the
Input Size n (default n = 100,000 sampled from the crime data set), and the Output Size k
(default k = 1,000). We do not create a sample before creating the partition as analyzed in
Theorem 1; we just create the partition on the n points, then sample a point from each cell for
the ε-sample. The branching factor only effects ComputePartition-Mat (default b = 16) and
ComputePartition-Chan (default b = 22) and is constant for the execution of the algorithm.

Sample Evaluation Results. We do not plot Biased-L2 since it was quite slow as a function
of the Output Size. For k = 51 it required 360 seconds which was already more than a
factor 100× slower than any other algorithm, and became nearly intractable for k > 100.
We do note however that its measured Error on small k is competitive with the best of our
partitioning based methods.

Figure 3 shows how Branching Factor b affects the time and error. Matoušek-based
algorithms seem to gradually decrease in Error, but the trend is very small. For Chan Simple,
the Error encounters a phase shift at around b = 25, where the error suddenly becomes
significantly worse for larger b, probably as an effect of the data set size. The timing is
fairly unaffected by b for Chan-based algorithms, but increases noticeably and linearly for
the Matoušek based algorithms. We conclude that b = 22 is a good choice for Chan-based
algorithms and b = 16 is a good choice for Matoušek based algorithms.

Figure 4 shows the Input Size relationship to time and Error. As prescribed by the theory,
Input Size has no noticeable effect on Error. Moreover, also as expected the runtime of all
algorithms scale linearly with Input Size.

ESA 2018

62:12 Range Space Sampling

10 0.5 100.0 100.5 101.0 101.5 102.0

Time (sec)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Di
sc

re
pa

nc
y

Er
ro

r

Chan
Chan Simple
Mat Poly Points
Random Sample
Ham Tree Sample

Figure 6 Smooth Discrepancy Error vs. time.

Figure 5 plots the Output Size against the time and Error. As Output Size increases,
as expected the error for all methods decreases, note that Error is plotted on a log-scale.
The Ham Tree Sample and Mat Poly Lines achieve the smallest Error, with Ham Tree Sample
doing the best, and all proposed methods appear to improve upon the old default Random
Sample in terms of Error. In particular with Output Size k = 1000 both Mat Poly Points
and Ham Tree Sample have Error ≈ 0.01 while Random Sample has Error ≈ 0.04. For the
Matoušek-based partitioning algorithms, the choice of test set does not have much effect on
Error, and perform slightly worse than those based on Chan’s partitioning.

Moreover, as Output Size increases the observed run time of all algorithms increases at
most linearly. In some cases (e.g., Ham Tree Sample and Mat Poly Lines) the increase is
sublinear as these are hierarchical methods, and the largest cost is incurred at the top of the
hierarchy. Here as in other plots, we observe that Random Sample is absurdly faster than
any other approach. However, even for Output Size k = 1000, our methods Ham Tree Sample,
Chan Simple, and Mat Poly Points take only about 1, 2.5, and 4 seconds, respectively.

Spatial Anomaly Detection Evaluation. As a concrete demonstration of the usefulness of
efficient ε-samples in practice, we apply our new algorithms to a framework for approximately
detecting spatial anomalies – maximizing the spatial scan statistic [14]. Specifically each
point is endowed with two measures (b(x) the baseline quantity like population and m(x)
the measured quantity like disease instance), and let m(h) and b(h) be the fraction of all
measured and baseline counts within range h ∈ Hd, respectively. The main computational
problem of exact scan statistics is to find h∗ = arg maxh∈Hd

Φ(h) where for simplicity we
use Φ(h) = φ(m(h), b(h)) = |m(h) − b(h)|. Approximate scan statistics [18, 17] depend
on creating two samples an ε-net which approximates the density of the regions and an
ε-samples which approximates the density of points. Together this allows the algorithm to
find a ĥ where |Φ(ĥ)− Φ(h∗)| ≤ ε; and this is still statistically powerful [18]. In particular,
we consider an algorithm for ĥ which runs in time O(n+ 1

εk log 1
ε + T (n, k)), where k is the

ε-sample size and T (n, k) its construction time. We fix ε to be approximately .0025 which
corresponds approximately to an ε-net of size 400. and vary only k. We find approximate
anomalies on the crime data set with a particular h′ ∈ Hd chosen and points chosen, so
that Φ(h′) will be anomalously large. Namely we plant a region containing .02 fraction of
the points, where in that region points are in the measured set with probability of .7 and
baseline set of .3 and outside with probability .5 and .5 respectively. In Figure 6 we plot
Discrepancy Error = |Φ(ĥ) − Φ(h′)| as a function of the overall runtime of the algorithms.
Note that Φ(h∗) ≥ Φ(h′), so it is possible to find a Φ(ĥ) ≥ Φ(h′), but Φ(h′) serves as a

M. Matheny and J. M. Phillips 62:13

useful proxy. We find that Ham Tree Sample generally outperforms Random Sample; for
instance for 0.003 error, Ham Tree Sample takes 10 seconds to Random Sample’s 50 seconds.
Mat Poly Points also usually performs better than Ham Tree Sample, while Chan and Chan
Simple perform comparably to random sampling, albeit with high variance, even though their
sampling procedure is hundreds of times slower.

Conclusion. Overall we recommend Ham Tree Sample for computing ε-samples if moderate
computing beyond random sampling can be tolerated. This method significantly reduces the
size and error versus random sampling, and is not difficult to implement.

References
1 Crimes in Chicago. https://www.kaggle.com/currie32/crimes-in-chicago, 2017.
2 Huseyin Akcan, Herve Bronnimann, and Robert Marini. Practical and efficient geometric ε-

approximations. Proceedings of the 18th Canadian Conference on Computational Geometry,
pages 120–125, 2006.

3 J. Ralph Alexander. Geometric methods in thge theory of uniform distribution. Combin-
atorica, 10:115–136, 1990.

4 Amitabha Bagchi, Amitabh Chaudhary, David Eppstein, and Michael T. Goodrich. De-
terministic sampling and range counting in geometric data streams. ACM Transactions on
Algorithms, 3(A16), 2007.

5 Nikhil Bansal. Constructive algorithms for discrepancy minimization. In Proceedings 51st
Annual IEEE Symposium on Foundations of Computer Science, pages 407–414, 2010.

6 Christopher Barker. Pep 485 – a function for testing approximate equality. https://www.
python.org/dev/peps/pep-0485/, Jan 2015.

7 Timothy M. Chan. Optimal partition trees. In In: Proc. 26th Annu. ACM Sympos. Comput.
Geom, pages 1–10, 2010.

8 Bernard Chazelle. The Discrepancy Method. Cambridge, 2000.
9 Bernard Chazelle and Joel Friedman. A deterministic view of random sampling and its use

in geometry. Combinatorica, 10:229–249, 1990.
10 Bernard Chazelle and Jiri Matousek. On linear-time deterministic algorithms for optimiz-

ation problems in fixed dimensions. Journal of Algorithms, 21:579–597, 1996.
11 Herbert Edelsbrunner and Emo Welzl. Halfplanar range search in linear space and o(n0.695)

query time. In 23, editor, Information Processing Letters, pages 289–293, 1986.
12 Pavlos S. Efraimidis and Paul G. Spirakis. Weighted random sampling with a reservoir.

Information Processing Letters, 97(5):181–185, 2006.
13 S. Har-Peled. Constructing planar cuttings in theory and practice. SIAM J. Comput.,

29(6):2016–2039, 2000.
14 Martin Kulldorff. A spatial scan statistic. Communications in Statistics: Theory and

Methods, 26:1481–1496, 1997.
15 Yi Li, Philip M. Long, and Aravind Srinivasan. Improved bounds on the samples complexity

of learning. J. Comp. and Sys. Sci., 62:516–527, 2001.
16 Sachar Lovett and Raghu Meka. Constructive discrepancy minimization by walking on the

edges. SIAM Journal on Computing, 44:1573–1582, 2015.
17 Michael Matheny and Jeff M. Phillips. Computing approximate statistical discrepancy.

CoRR, abs/1804.11287, 2018. arXiv:1804.11287.
18 Michael Matheny, Raghvendra Singh, Liang Zhang, Kaiqiang Wang, and Jeff M. Phillips.

Scalable spatial scan statistics through sampling. In Proceedings of the 24th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems, 2016.

ESA 2018

https://www.kaggle.com/currie32/crimes-in-chicago
https://www.python.org/dev/peps/pep-0485/
https://www.python.org/dev/peps/pep-0485/
http://arxiv.org/abs/1804.11287

62:14 Range Space Sampling

19 Jiri Matoušek. Approximations and optimal geometric divide-and-conquer. In Proceedings
23rd Symposium on Theory of Computing, pages 505–511, 1991.

20 Jiri Matoušek. Efficient partition trees. Discrete & Computational Geometry, 8:315–334,
1992.

21 Jiri Matoušek. Tight upper bounds for the discrepancy of halfspaces. Discrete and Com-
putational Geometry, 13:593–601, 1995.

22 Jiri Matoušek. Geometric Discrepancy. Springer, 2009.
23 Jiří Matoušek, Chi-Yuan Lo, and William Steiger. Ham-sandwich cuts in rd. In Proceedings

of the Twenty-fourth Annual ACM Symposium on Theory of Computing, STOC ’92, pages
539–545, New York, NY, USA, 1992. ACM.

24 Nimrod Megiddo. Partitioning with two lines in the plane. Journal of Algorithms, 6(3):430–
433, 1985.

25 Raimund Seidel. A simple and fast incremental randomized algorithm for computing
trapezoidal decompositions and for triangulating polygons. Computational Geometry, 1:51–
64, 1991.

26 Subhash Suri, Csaba D. Tóth, and Yunhong Zhou. Range counting over multidimensional
data streams. In Proceedings 20th Symposium on Computational Geometry, pages 160–169,
2004.

27 Vladimir Vapnik and Alexey Chervonenkis. On the uniform convergence of relative fre-
quencies of events to their probabilities. Theo. of Prob and App, 16:264–280, 1971.

28 Ron Wein, Eric Berberich, Efi Fogel, Dan Halperin, Michael Hemmer, Oren Salzman, and
Baruch Zukerman. 2D arrangements. In CGAL User and Reference Manual. CGAL Edit-
orial Board, 4.12 edition, 2018.

29 D. E. Willard. Polygon retrieval. In 11, editor, SIAM Journal of Computing, pages 149–165,
1982.

	Introduction
	Overview and Proof for Fast epsilon-Samples
	Overview of Algorithms for Constructing the Partition
	Implementation Particulars of Partitions
	Experiments on epsilon-Samples and Applications

