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Abstract
We present polynomial-time algorithms as well as hardness results for equilibrium computation in
atomic splittable routing games, for the case of general convex cost functions. These games model
traffic in freight transportation, market oligopolies, data networks, and various other applications.
An atomic splittable routing game is played on a network where the edges have traffic-dependent
cost functions, and player strategies correspond to flows in the network. A player can thus split
its traffic arbitrarily among different paths. While many properties of equilibria in these games
have been studied, efficient algorithms for equilibrium computation are known for only two cases:
if cost functions are affine, or if players are symmetric. Neither of these conditions is met in
most practical applications. We present two algorithms for routing games with general convex
cost functions on parallel links. The first algorithm is exponential in the number of players,
while the second is exponential in the number of edges; thus if either of these is small, we get
a polynomial-time algorithm. These are the first algorithms for these games with convex cost
functions. Lastly, we show that in general networks, given input C, it is NP-hard to decide if
there exists an equilibrium where every player has cost at most C.

2012 ACM Subject Classification Theory of computation → Network games

Keywords and phrases Routing Games, Equilibrium Computation, Convex costs, Splittable
flows

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.58

Related Version A full version of the paper is available at [6], https://arxiv.org/abs/1804.
10044.

1 Introduction

The problem of equilibrium computation, particularly efficient computation, is the cornerstone
of algorithmic game theory, and is an area where researchers have had many successes. In
many games, we have a good understanding of where the boundaries of computation lie,
including normal-form games [9], markets [11], and congestion games [10]. The study of
equilibrium computation has had a significant impact on algorithms, contributing new
techniques and complexity classes.

1 This work was partly funded by a Ramanujan Fellowship.
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In this paper, we are interested in equilibrium computation in atomic splittable routing
games (ASRGs) with convex cost functions. These games are used to model many applications,
including freight transportation, market oligopolies, and data networks (e.g., [8, 21]). In an
ASRG, we are given a network with cost functions on the edges, and k players. Each player
i has a source si, destination ti, and a fixed demand vi. Each player needs to transport its
demand from its source to its destination at minimum cost, and is free to split the demand
along multiple paths. Each player thus computes a minimum cost si-ti flow, given the
strategy of the other players.

The fact that each player can split its flow along multiple paths is what differentiates
these from weighted congestion games. This freedom reduces the combinatorial structure
of the game, making ASRGs harder to analyze. For example, equilibria in ASRGs may be
irrational. While equilibrium computation in (unsplittable) congestion games is well-studied,
much less is known about ASRGs. In fact, properties of ASRGs apart from equilibrium
computation have been studied. We know tight bounds on the price of anarchy [8, 14, 25],
and can characterize games with multiple equilibria [4].

However for equilibrium computation little is known. We know of only two cases when an
equilibrium can be efficiently computed – when cost functions are affine, or when players are
symmetric, i.e., they have the same source, destination, and demand [8, 16]. These conditions
are hardly ever met in practice. We know of no hardness results for this problem. A number
of iterative algorithms for equilibrium computation are proposed, and sufficient conditions
for convergence are given by Marcotte [20]. Further, it is implicit in a paper by Swamy that
one can compute equilibrium efficiently, given the total flow on each edge [27].

Computing equilibria in ASRGs is an interesting theoretical challenge as well. In some
regards, properties of pure Nash equilibria in ASRGs resemble mixed Nash equilibria in
games. For example, an equilibrium in pure strategies always exists [23]. For many games
with this property, local search algorithms are known that converge to an equilibrium (e.g.,
congestion games). However in ASRGs we do not know of any such algorithms.

In this work, we focus on polynomial time algorithms for computing equilibria in ASRGs
with general convex costs on parallel edges. Parallel edges are interesting because a number
of applications can be modeled using parallel edges, such as load balancing across servers [26],
and in traffic models [15]. Further, many results were first obtained for graphs consisting
of parallel edges and then extended (e.g., results on the price of collusion [17], extended to
series-parallel graphs [5], or on the price of anarchy [19, 7]). These are thus a natural starting
point to study equilibrium computation. We believe it likely that some of our structural
results extend beyond parallel edges, to nearly-parallel and series-parallel graphs.

Our Contribution. For ASRGs with convex costs on parallel edges, we give two algorithms.
Our first algorithm computes an equilibrium2 in time O ((log |I|)n), where |I| is the input
size and n is the number of players. If the number of players is near-logarithmic in the input
size, i.e., O(log |I|/ log log |I|), this gives a polynomial time algorithm. Our algorithm is
based on the idea of reducing equilibrium computation to guessing the marginal costs of
the players at equilibrium. The marginal costs turn out to have a number of interesting
monotonicity properties, which we use to give a high-dimensional binary search algorithm.

2 We use the standard notion of polynomial-time computation when outputs are possibly irrational: we
say an algorithm is efficient if for any ε > 0, the algorithm computes and ε-approximate solution in time
polynomial in the inputs size and log(1/ε).
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Our second algorithm has running time exponential in the number of edges in the network.
If the number of edges is constant, then this gives us a polynomial-time algorithm. Define
players to be of the same type if they have flow on the same set of edges at equilibrium.
The algorithm is based on the following structural result: for parallel edges, computing
equilibrium in a general ASRG can be reduced to computing equilibrium in an ASRG where
players of the same type also have the same demand. At a high level, this allows us to replace
players of the same type by a single player, and then use our previous algorithm. Somewhat
surprisingly, this result does not subsume the previous result. This is because the actual
partition of players into types is unknown, hence we must enumerate over all possible such
partitions, which introduces a factor of O(n|E|) to the running time.

Lastly, we show that in general networks, determining existence of a Nash equilibrium
where the cost of every player is at most C is NP-hard. Our proof here is a reduction
from SUBSET-SUM, and builds upon a construction showing multiplicity of equilibria in
ASRGs [4]. Our result parallels early results for bimatrix games [12], which showed that it is
NP-hard to determine existence of a Nash equilibrium in bimatrix games where the cost of
players is above a threshold [12]. Our proof is computer-assisted, and we use Mathematica
to verify properties of equilibria in the games used in our reduction.

The complete proofs can be found in the full version of the paper [6].

Related Work. Existence of equilibria in atomic splitable routing games (and for more
general concave games) is shown by Rosen [23]. Equilibria in these games are unique when
delay functions of the edges are polynomials of degree ≤ 3 [2], when the players are symmetric,
or when the underlying network is nearly-parallel [4]. In general, the equilibria may not
be unique [4]. For computation, the equilibria can be obtained as the solution to a convex
problem if the edge costs are linear, or if the players are symmetric [8]. Huang considers
ASRGs with linear delays on a class of networks called well-designed which includes series-
parallel graphs, and gives a combinatorial algorithm to find the equilibrium [18]. A network
is well-designed if for the optimal flow (which minimizes total cost), increasing the total flow
value does not decrease the flow on any edge. Recently, Harks and Timmermans gave an
algorithm to compute equilibrium for ASRGs with player specific-linear costs on parallel
links [16]. This setting allows players to have different cost functions on an edge. Their
results use a reduction to integrally splittable flows, where the flow each player puts on
an edge is an integral multiple of some quantity. In our case, the equilibrium flow can be
irrational, hence these ideas do not seem to work. A number of algorithms for equilibrium
computation are also proposed by Marcotte, based on either sequential best-response by the
players, or linearization of the cost functions [20]. Marcotte shows conditions under which
these algorithms converge to an equilibrium. It is unclear if these algorithms can be shown
to run in polynomial time.

Nonatomic games have an infinite set of players, each of which has infinitesimal flow.
Unlike ASRGs, equilibria in nonatomic games are well-studied: an equilibrium can be
obtained by solving a convex program, and is unique if the costs are strictly increasing [3]. It
is also known that ASRGs captures the setting where nonatomic players to form coalitions,
and within a coalition players cooperate to minimize the total cost of its flow [17]. A number
of papers study the change in total cost as players in a nonatomic game form coalitions,
forming an ASRG [17, 5, 18]. Another property of ASRGs that has received a lot of attention
is the price of anarchy (PoA), formalised as the ratio of the total cost of the worst equilibrium,
to the optimal cost. Upper bounds on the PoA were obtained by Cominetti, Correa, and
Stier-Moses [8] and improved upon by Harks [14]. These bounds were shown to be tight [25].

ESA 2018
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Atomic games where demands are unsplittable are also extensively studied. If all players
have the same demand, these are called congestion games. Player strategies may not
correspond to paths in a graph; if they do, these are called network congestion games. For
congestion games, existence of a potential function is well-known [24], though computing an
equilibrium is PLS-hard [10, 1], even if players are symmetric or the edge cost functions are
linear. For symmetric players in a network congestion game, or if player strategies correspond
to bases of a matroid, the equilibrium can be computed in polynomial time [1, 10].

2 Preliminaries

An atomic splittable routing game (ASRG) Γ = (G = (V,E), (vi, si, ti)i∈[n], (le)e∈E)) is
defined on a directed network G = (V,E) with n players. Each player i wants to send vi
units of flow from si to ti, where vi is the demand of player i. Each edge e has a cost function
le(x) which is non-negative, increasing, convex and differentiable. Players are indexed so
that v1 ≥ v2 ≥ . . . ≥ vn, and the total demand V :=

∑
i vi. Vector f i denotes the flow of

player i. By abuse of notation, we say vector f is the flow on the network with n players
such that f ie denotes the amount of flow player i sends along the edge e, and fe :=

∑
i f

i
e is

the total flow on edge e.
Given a flow f = (f1, f2, . . . , fn) for n players, player i incurs a cost Cie(f) := f iele(fe)

on the edge e. His total cost is Ci(f) =
∑
e∈E Cie(f). Each player’s objective is to minimize

his cost, given the flow of the other players. We say a flow f is at equilibrium3 if no player
can unilaterally change his flow and reduce his total cost. More formally,

I Definition 1. In an ASRG a flow f = (f1, f2, . . . , fn) is a Nash Equilibrium flow if for
every player i and every flow g = (f1, f2, . . . , f i−1, gi, f i+1, . . . , fn), where gi is a flow of
value vi, Ci(f) ≤ Ci(g).

The equilibrium flow can be characterized in terms of the marginal costs of each player.
Intuitively, the marginal cost for a player on a path is the increase in cost for the player
when he increases his flow on the path by a small amount.

I Definition 2. Given a flow f , the marginal cost for the player i on path p is given by

Lip(f) =
∑
e∈p

le(fe) + f iel
′
e(fe)

By applying the Karush-Kuhn-Tucker conditions [13] for player i’s minimization problem,
we get the following lemma 3 which characterizes the equilibrium using marginal costs.

I Lemma 3. Flow f = (f1, f2, . . . , fn) is a Nash equilibrium flow iff for any player i and
any two directed paths p and q between si and ti such that f ie > 0 ∀e ∈ p, Lip(f) ≤ Liq(f).

Lemma 3 says that for any player i at equilibrium, the marginal delay Lip(f) on all paths
p such that f ie > 0 ∀e ∈ p is equal, and is the minimum over all si-ti paths. In a network of
parallel edges, every edge is an s-t path, hence the condition holds at equilibrium with edges
replacing paths.

We will frequently use the support of a player, where given a flow f = (f1, f2, . . . , fn),
the support of player i, Si is defined as the set edges with f ie > 0.

3 More specifically, a pure Nash equilibrium.
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Swamy studies the use of edge tolls to enforce a particular flow as equilibrium [27].
However, if we start with an equilibrium flow, the tolls required are identically zero. The
following theorem regarding equilibrium computation is then implicit, and will be useful to
us in Section 4.

I Theorem 4 ([27]). For ASRG Γ , let (he)e∈E be the total flow on each edge at an equilibrium.
Then given the total flow h, the equilibrium flow for each player can be obtained in polynomial
time by solving a convex quadratic program.

We make the following smoothness assumptions on edge cost functions.
1. Cost functions are continuously differentiable, nonnegative, convex, and increasing.
2. There is a constant Ψ ≥ V that satisfies:

Ψ ≥ max
e∈E, x∈[0,V ]

{
le(x), l′e(x), l′′e (x), 1

l′e(x)

}
By the first assumption, the edge marginal cost Lie(f) is strictly increasing, both with the
total flow fe and player i’s flow f ie. Define Li(f) := mine∈E Lie(f). Hence if ~f , ~f ′ are two
equilibrium flows, and for some player i and edge e fe ≥ f ′e, f ie ≥ f ′e

i, and f ie > 0, then

Li(f) = Lie(f) ≥ Lie(f ′) ≥ Li(f ′)

and the second inequality is strict if fe > f ′e or f ie > f ie
′. We frequently use this inequality in

our proofs.
Also observe that for each edge e and flow values x, y ∈ [0, V ], the following properties of

the edge cost functions hold.

|x− y| ≤ δ ⇒ |le(x)− le(y)| ≤ δΨ and |le(x)− le(y)| ≤ δ ⇒ |x− y| ≤ δΨ

3 An Algorithm with Complexity Exponential in the Number of
Players

To convey the main ideas of the algorithm, we will ignore issues regarding finite precision
computation in this section. In particular, we assume the algorithm carries out binary
search to infinite precision, and show that such an algorithm computes the exact equilibrium.
In this article we will give the algorithms for computing equilibria assuming that we can
compute values upto arbitrary precision. In the full version of the paper [6], we give an
implementation of the algorithm with finite precision. We show that our implementation
computes an ε-equilibrium in time O

(
mn2 (log(nΨ/ε))n

)
Recall that the equilibrium in case of parallel edges is unique [22]. We start with an

outline of the algorithm. Our first idea is to reduce the problem of equilibrium computation,
to finding the marginal costs at equilibrium. We give a function GraphFlow that at a high
level, given a vector of marginal costs ~M = (M1, . . .Mn), returns a vector of demands
~w = (w1, . . . , wn) and a flow vector ~f = (f ie)e∈E,i∈[n] so that (1) ~f is the equilibrium flow
for the demand vector ~w, and (2) for each player i, the marginal cost Li(f) = M i. That is,
the marginal costs for the players at equilibrium are given by the input vector ~M . We show
that in fact each marginal cost vector ~M maps to a unique (demand, flow) pair that satisfies
these conditions. Hence given marginal costs at equilibrium, the function must return the
correct demands (vi)i∈[n], and the required equilibrium flow. Thus, our problem reduces to
finding a marginal cost vector ~M for which GraphFlow returns the correct demand vector
~v = (v1, v2, . . . , vn). We say a demand wi for player i is correct if wi = vi.

ESA 2018
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Algorithm 1 GraphFlow( ~M).

Input: Vector ~M = (M i)i∈[n] of nonnegative real values
Output: Flow ~f = (fi(e))i∈[n],e∈E and demands ~w = (wi)i∈[n] so that wi = |f i| and ~f is an

equilibrium flow for demands ~w with marginal costs ~M .
1: Assume that M1 ≥M2 ≥ · · · ≥Mn, else renumber the vector components so that this

holds.
2: for each edge e ∈ E do
3: f ie = 0 for each player i ∈ [n]
4: if le(0) ≥M1 then
5: Se ← ∅; continue with the next edge
6: for k = 1→ n do
7: S = [k]
8: Let xe be the unique solution to kle(x) + xl′e(x) =

∑
i∈SM

i . Since le(x) is
strictly increasing and convex, the solution is unique

9: f ie = Mi−le(xe)
l′e(xe) for each player i ∈ S . Note that

∑
i∈S f

i
e = xe

10: if (f ie ≥ 0 for all i ∈ S) and (k = n or Mk+1 ≤ le(xe)) then
11: fe ← xe, Se ← S, continue with the next edge
12: wi ←

∑
e f

i
e for each player i; return (~f, ~w)

Since only the marginal costs and demands matter to us, we can think of GraphFlow as
a function from marginal cost vectors to demand vectors. We then give a high-dimensional
binary search algorithm that computes the required marginal cost vector. This proceeds in a
number of steps. We first show that the function GraphFlow is continuous, and is monotone
in a strict sense: if we increase the marginal cost of a player, then the demand for this
player increases, and the demand for every other player decreases. This allows us to show in
Lemma 6 that given any marginal costs for the first n− k players, there exist marginal costs
for the remaining k players so that the demands returned by GraphFlow for these remaining
players is correct. Lemma 6 allows us to ignore first n− k players, and focus on the last k
players, since no matter what marginal costs we choose for the first n− k players, we can
find marginal costs for the last k players that give the correct demand for these players.

The crux of our binary search algorithm is then Lemma 7, which says the following.
Suppose we are given two marginal cost vectors ~M and ~M ′ that differ only in their last k
coordinates, and for which the demands of the last k − 1 players is equal. Thus, M i = M i′

for all players i < k, and the demands returned by GraphFlow( ~M), GraphFlow( ~M ′) are
equal for all players i > k. Suppose for the kth player, the demand with marginal costs ~M

is higher than the demand with marginal costs ~M ′. Then Lemma 7 says that k’s marginal
cost in ~M must be higher than in ~M ′, i.e., Mk > Mk′. Thus Lemma 7 allows us to give a
recursive binary search procedure. For a player k, the procedure fixes a marginal cost Mk,
and finds marginal costs for players i > k so that these players have the correct demand. By
Lemma 6, we know that such marginal costs exist. With these marginal costs, if the demand
for player k is greater than vk, then by Lemma 7 Mk is too large. We then reduce Mk, and
continue.

Algorithm 1 describes the function GraphFlow. The algorithm considers each edge in
turn. For an edge e, it tries to find a subset of players S ⊆ [n] and flows f ie so that, for all
players i ∈ S, Lie(f) = M i, and for all players not in S, f ie = 0 and M i ≤ Lie(f). The set S
can be obtained in O(n) time by adding players to S in decreasing order of marginal costs
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M i. Given a set S, summing the equalities Lie(f) = M i, we get the following equation with
variable fe:

|S| le(fe) + fel
′
e(fe) =

∑
i∈S

M i .

Noting that the left-hand side is strictly increasing in fe, we can solve this equation for fe
using binary search. This gives us the total flow on the edge fe. We can then obtain the flow
for each player by solving, for each player i ∈ S, the following equation:

f ie = M i − le(fe)
l′e(fe)

.

We set f ie = 0 for all players not in S. It can be checked that
∑
i∈S f

i
e = fe. If f ie ≥ 0 for all

players, and Lie(f) = le(fe) ≥M i for all players not in S, we move on to the next edge. Else,
we add the next player with lower marginal cost M i to the set S, and recompute fe.

We first establish in Claims 1, 2, and 3 that the algorithm is correct, and gives a continuous
map from marginal cost vectors to demand vectors.

I Claim 1. Given ~M , assume w.l.o.g. that M1 ≥ M2 ≥ · · · ≥ Mn. Then GraphFlow( ~M)
returns flow ~f and demands ~w so that, on each edge e and for each player i,
1. if f ie = 0 then Lie(f) ≥M i

2. if f ie > 0 then Lie(f) = M i

Thus, ~f is an equilibrium flow for values ~w, and if wi > 0 then M i = Li(f).

I Claim 2. For each vector ~M of marginal costs, there is a unique pair of vectors (~w, ~f) so
that:
1. ~f is the equilibrium flow for demands ~w, and
2. for each player i, Li(f) ≥M i. If wi > 0, then Li(f) = M i.

I Corollary 5. For a demand vector ~w, let ~f be the equilibrium flow, and M i = Li(f) be
the marginal costs of the players at equilibrium. Then the function GraphFlow(M1, . . . ,Mn)
returns (~w, ~f) as the output.

I Claim 3. Given marginal costs ~M , ~M ′ so that for player l, |M l−M l′| ≤ ε, and M j = M j ′

for all players j 6= l, let (~f, ~w) and (~f ′, ~w′) be the flows and demands returned by GraphFlow.
Then for each player i, |f ie− f ie

′| ≤ ε′, where ε′ = 2nΨε. Hence, for each player i, |wi−w′i| ≤
mε′.

Claim 3 then shows that the function GraphFlow is continuous.
In the remainder of the discussion, given a vector of marginal costs ~M , we will primarily

be concerned with the demands ~w returned by the function GraphFlow. We therefore define
the functions GraphVali for each player i ∈ [n]. Function GraphVali takes as input a vector
~M of marginal costs for the players, and returns the demand wi, the ith component of
the demand vector ~w returned by GraphFlow( ~M). Claim 4 now shows that the function
GraphFlow is monotone: if we increase the input marginal cost of a player, that player’s
demand goes up, while the demand for all the other players goes down. This is crucial in
establishing existence of marginal costs for a subset of players (Lemma 6), and in our binary
search algorithm later on.

I Claim 4. Consider marginal cost vectors ~M and ~M ′ that differ only in their kth coordinate,
so that ~M = (M i)i∈[n] and ~M ′ = (M1,M2, . . . ,Mk′, . . . ,Mn). For each player i, let
wi = GraphVali( ~M), and w′i = GraphVali( ~M ′). If Mk′ > Mk, then the following hold true
as well:

ESA 2018
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1. w′k ≥ wk,
2. if w′k > 0, then w′k > wk,
3. w′i ≤ wi for i 6= k, and
4. for any subset of players P containing player k,

∑
i∈P w

′
i ≥

∑
i∈P wi.

Consider the game with cost functions as in Γ , but with n players, each with demand V .
Since this is a symmetric game, the equilibrium flow can be computed in polynomial time [8].
We define Λ to be the marginal cost of each player at this equilibrium.

I Lemma 6. Let S ⊆ [n] be a subset of the players. Given strictly positive input demands
ŵi ≤ V for players i ∈ S and marginal costs M i ≤ Λ for players i 6∈ S, there exist marginal
costs M̂ i ≤ Λ for the players in S so that, given input ((M̂ i)i∈S , (M i)i6∈S), GraphVali returns
ŵi as the demand for players i ∈ S.

I Lemma 7. Given a player k, and two marginal cost vectors ~M and ~M ′ that satisfy the
following properties:
1. for all players i < k, M i = M i′,
2. for all players i > k, GraphVali( ~M) = GraphVali( ~M ′).
Let wk = GraphValk( ~M), and w′k = GraphValk( ~M ′). If wk > w′k, then Mk > Mk′.

Proof. Let Mk ≤ Mk′, and let P be the set of players {i ≥ k : M i ≤ M i′}. Thus k ∈ P .
We will show that wk ≤ w′k. The proof proceeds by changing the marginal cost of each player
in order from M i to M i′, and considering the effect on total demand of players in P . We
show that in this process, the total demand of these players does not increase, and hence∑

i∈P
GraphVali( ~M) ≤

∑
i∈P

GraphVali( ~M ′) . (1)

The expression on the left equals wk +
∑
i∈P,i6=k wi, while the expression on the right equals

w′k +
∑
i∈P,i6=k wi since for players i > k, GraphVali( ~M) = GraphVali( ~M ′). Hence, this will

show that wk ≤ w′k, as required.
We now need to prove (1). Our proof uses Claim 4. Formally, let ~M(t) = ((M i′)i≤t, (M i)i>t).
Then ~M(0) = ~M , and ~M(n) = ~M ′. We will show that∑

i∈P
GraphVali( ~M(t)) ≤

∑
i∈P

GraphVali( ~M(t+ 1)) . (2)

For each player t ∈ [n], there are three cases: either (1) M t = M t′, (2) M t ≤M t′ and t ∈ P ,
or (3) M t > M t′ and t 6∈ P . We consider these three cases separately. In the first case,
~M(t) = ~M(t+ 1), and (2) clearly holds. In the second case, by Claim 4 and since t ∈ P , (2)
holds. In the third case, again by Claim 4, for all i 6= t the demand either increases or
remains the same. Since t 6∈ P , the total demand of players in P either increases or remains
the same, and hence (2) holds. This completes the proof. J

We now give our algorithm for obtaining the “correct” marginal costs ~M , so that
GraphFlow( ~M) returns the required equilibrium flow. The algorithm is recursive. For each
player k, it picks a candidate marginal cost Mk, and then recursively calls itself to find
marginal costs M i for players i > k so that the demands for these players i > k is correct. If
the demand for player k itself is too large, it reduces Mk, and otherwise increases Mk. Thus
the algorithm conducts a binary search to find the correct marginal cost for player k, and in
each iteration calls itself to determine correct marginal values for players i > k.
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Algorithm 2 EqMCostk((M1, . . . ,Mk−1)).

Input: Vector (M1, . . . ,Mk−1), with each component M i ∈ [0,Λ] . If k = 1, there is no
input required.

Output: Vector ( ~M) of marginal costs so that the first k − 1 marginal costs are equal to
the inputs, and for players i ≥ k, the demand GraphVali( ~M) = vi.

1: if k = n then
2: Using binary search in [0,Λ], find M so that GraphValn((M i)i<n,M) = vn. return
M .

3: Low← 0, High← Λ, Mid← (Low + High)/2
4: (Mk+1, . . . ,Mn)← EqMCostk+1(M1, . . . ,Mk−1,Mid)
. Call EqMCostk+1 to get marginal costs for the remaining player k + 1, . . . , n so that
the demand for these players is correct

5: if (GraphValk((M i)i<k,Mid, (M i)i>k) = vk) then
6: return (Mid, (M i)i>k)
7: else if (GraphValk((M i)i<k,Mid, (M i)i>k) > vk) then
8: High← Mid, Mid← (Low + High)/2, goto 4
9: else if (GraphValk((M i)i<k,Mid, (M i)i>k) < vk) then
10: Low← Mid, Mid← (Low + High)/2, goto 4

I Theorem 8. For ASRG Γ , EqMCost1 returns marginal cost vector ~M such that
GraphFlow( ~M) = (~w, ~f), where ~w = ~v and ~f is the equilibrium flow in Γ .

The main ingredient in the proof of Theorem 8 is the following lemma, which shows that
recursively, for any player k, the function EqMCost returns correct marginal costs.

I Lemma 9. For any vector (M1, . . . ,Mk−1) with each component in [0,Λ], the function
EqMCostk((M1, . . . ,Mk−1)) returns marginal costs (Mk, . . . ,Mn) for the remaining players
so that, for each player i ≥ k, GraphVali(M1, . . . ,Mn) = vi.

Proof. The proof is by induction on n. In the base case, k = n, and the input is the
vector (M1, . . . ,Mn−1) with each component in [0,Λ]. By Lemma 6, there exists M̂ so
that GraphValn(M1, . . . ,Mn−1, M̂) = vn. We now show that the value M̂ can correctly
be found by binary search. Initially, the search interval is [0,Λ], and by Lemma 6, M̂
lies in the search interval. Assume in some iteration the search interval is [Low,High]; M̂
lies in the search interval; and that GraphValn(M1, . . . ,Mn−1,Mid) > vn. Since vn > 0,
and vn = GraphValn(M1, . . . ,Mn−1, M̂) < GraphValn(M1, . . . ,Mn−1,Mid), it follows by
Lemma 7 that M̂ < Mid. Hence, M̂ lies in the interval [Low,Mid], and we can restrict
our search to this space, which is exactly how the binary search proceeds. The case when
GraphValn(M1, . . . ,Mn−1,Mid) < vn is similar, and M̂ then lies in the interval [Mid,High].

For the inductive step, we are given player k < n. We assume that given any input
vector (M1, . . . ,Mk) with each component in [0,Λ], EqMCostk+1 returns marginal costs
(Mk+1, . . . ,Mn) for the remaining players so that for each of these remaining players
i ≥ k + 1, GraphVali(M1, . . . ,Mn) = vi. We need to show that given any input marginal
costs (M1, . . . ,Mk−1) for the first k−1 players, EqMCostk finds marginal costs (Mk, . . . ,Mn)
for players k onwards so that the demand returned for these players i ≥ k by GraphVali is
vi. Firstly, by Lemma 6, choosing S = [k, . . . , n] and ŵi = vi for players i ∈ S, there exist
marginal costs (M̂k, . . . , M̂n) so that for all i ≥ k, GraphVali((M i)i<k, (M̂ i)i≥k) = vi. We
now show that the binary search procedure in EqMCostk finds the required marginal cost
M̂k. By Lemma 6, M̂k lies in the initial search interval [0,Λ]. Assume that in some iteration,
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M̂k lies in the search interval [Low,High], and Mid = (Low + High)/2. By the induction
hypothesis, EqMCostk+1(M1, . . . ,Mk−1,Mid) returns marginal costs (Mk+1, . . . ,Mn) for
the players k + 1, . . . , n so that for each of these players i ≥ k + 1 (but not player k),
GraphVali((M i)i<k,Mid, (M i)i>k) = vi. Further, for each player i ≥ k, GraphVali((M i)i<k,
(M̂ i)i≥k) = vi. Suppose that for player k, GraphValk((M i)i<k,Mid, (M i)i>k) > vk =
GraphVali((M i)i<k, (M̂ i)i≥k). Then by Lemma 7, Mid > M̂k, and hence M̂k lies in the
interval [Mid,High]. The algorithm then reduces the search space to this interval, and
continues. If GraphValk((M i)i<k,Mid, (M i)i>k) < vk, it can be similarly shown that Mid <
M̂k. Thus, M̂k always lies in the search space [Low,High], which is halved in each iteration.
The binary search is thus correct, and must eventually terminate. J

Proof of Theorem 8. By Lemma 9, EqMCost1 returns a marginal cost vector ~M = (M1, . . . ,

Mn) so that GraphVali( ~M) = vi for each player i. Let ~v = (v1, . . . , vn). By definition of
the function GraphVal, this implies that GraphFlow( ~M) returns vectors ~v and ~f . Finally by
Claims 1 and 2, ~f is the equilibrium flow for demands ~v, as required. J

Implementation and Complexity. Under the assumption that binary search could be done
to arbitrary precision, we showed that the algorithm EqMCost is correct. However, the
solutions to the polynomial equations could be irrationals, and thus the algorithm given is not
a finite algorithm. In the full version of paper [6], we show that for any given error parameter
ε, we can implement EqMCost to run in time O

(
poly(log Ψ, log 1

ε ,m, n)
)
, and return an

ε-equilibria. We say a flow ~f is an ε-equilibrium if any player i has flow only on ε-minimum
marginal cost edges. That is, if f ie > 0 for player i on edge e, then Lie(f) ≤ mine′ Lie′(f) + ε.
Conventionally, a strategy profile is an ε-equilibrium if no player can improve it’s cost by ε.
One can check that the two are equivalent: if a flow f is an ε-equilibrium by our definition,
then no player i can improve its cost by more than εvi, where vi is its demand.

The work in giving an implementation for the algorithm EqMCost is in implementing the
binary search correctly, up to some error parameter ε. Since the algorithm is iterative, this
error grows across each iteration, and bounding the error in each iteration is quite technical.
Additionally, approximate versions of some of the results for EqMCost have to be reproved.
Further details are given in the full version of paper [6].

4 An Algorithm with Complexity Exponential in Number of Edges

Our second algorithm is based on Theorem 10, which shows that at equilibrium the supports
of players form chains.

I Theorem 10 ([4]). Consider an ASRG with n players on a graph consisting of parallel
edges4, and let f be the equilibrium flow. Then L1(f) ≥ · · · ≥ Ln(f). Consequently, the
supports S1(f) ⊇ · · · ⊇ Sn(f).

Thus in an ASRG on m parallel links, there exist numbers 1 = a1 < a2 < · · · < aT ≤ n
with T ≤ m, so that players with indices in [ai, ai+1−1] have the same support at equilibrium.
Define a type set T = (P1, . . . , PT ) with T ≤ m to be a partition of the players so that players
in a set Pt in the partition have consecutive indices. Hence, a type set T = (P1, . . . , PT )
can be denoted by a sequence of numbers (a1, . . . , aT ) where 1 = a1 < a2 < · · · < aT ≤ n

and Pt consists of the players with indices at, . . . , at+1 − 1. We say a type set is valid for

4 The proof by Bhaskar et al. [4] is for series-parallel graphs which are a superset of parallel link graphs.
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Γ iff two players in the same partition in T also have the same support in the equilibrium.
Theorem 10 then shows that in a graph consisting of m parallel links, there is a type set
that is valid.

We will now give an algorithm with running time that is exponential in the number of
edges, using the algorithm from Section 3, which is exponential in the number of players, and
Theorem 4. Our algorithm in this section crucially uses Lemma 11, which has the following
content. Let T = (P1, . . . , PT ) be a type set, not necessarily valid, for a game Γ . Consider
the game Γ T where for each set Pt ∈ T , we replace the players in Pt with |Pt| players that
have the same demand, given by

∑
i∈Pt

vi/|Pt|. That is, we pick a set Pt, and replace all
players in this set by players with demands equal to the average demand of players in Pt.
We do this for each set Pt. Lemma 11 then says that if T is valid for Γ , then the total flow
on any edge does not change between Γ and Γ T .

I Lemma 11. Let T = (P1, . . . , PT ) be the valid type set for game Γ with n players on a
network of parallel edges. Let f and g be the respective equilibrium flows for games Γ and
Γ T respectively. Then on each edge e, fe = ge.

The proof of Lemma 11 closely follows an earlier proof of uniqueness of equilibrium in
an ASRG [4, Theorem 5]. Lemma 11 implies that in an ASRG on parallel edges we can
replace players that have the same support with players that have the same demand without
affecting the total flow at equilibrium on the edges. Further, given the total flow on each edge
at equilibrium in a general network, the flow for each player can be computed by Theorem 4.

The algorithm EqMCost runs a binary search for the marginal cost at equilibrium for
each player. For each player i, EqMCosti runs a binary search, in each iteration of which
it calls EqMCosti+1. If each binary search runs for R iterations, and each iteration takes
time S, then this recursively gives a running time of O(S Rn). However, if players i, i+ 1
have the same demand, then by Theorem 10 they also have the same marginal cost at
equilibrium. Hence we can run the binary search for the marginal cost at equilibrium, for
both players simultaneously. This is the basic idea for the modification. For a given type set
T = (P1, . . . , PT ), and the game Γ T , we know that all players in the same set Pt have the
same marginal cost at equilibrium. Hence, we run the binary search once for each set Pt,
rather than once for each player. By Theorem 10, the number of types T ≤ m.

This gives us the reduced running time of O(S Rm) for type set T , for each run of the
modified algorithm EqMCostTy. However, note that we run the algorithm once for each
possible type set. If the game is played on m parallel links, then the number of possible type
sets is about (n+m)m. In the full version of paper [6], we show that this takes a running
time of O

(
(n+m)mm3 (log(nΨ/ε))m

)
.

5 Hardness of Computing Equilibria

Prior to the proof of PPAD-hardness of computing a (mixed) Nash equilibrium in bimatrix
games, Gilboa and Zemel showed that it was NP-hard to determine if there existed an
equilibrium in bimatrix games where every player had payoff above a given threshold C [12].
We show a similar result for ASRGs.

I Theorem 12. Given an ASRG with convex, strictly increasing and continuously differenti-
able cost functions, it is NP-hard to determine if there exists an equilibrium at which cost of
every player is at most C.
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Figure 1 ASRG G, with multiple equilibria.

The main idea of the proof is to build upon the existence of multiple equilibria in
ASRGs, and is a reduction from SUBSET-SUM. In this problem, we are given a set S =
{s1, s2, . . . , sn} ⊂ N such that the sum of elements in S is M , and we want to determine
if there exists a subset T ⊆ S such that the sum of elements in T is M/2. SUBSET-SUM
problem is known to be NP-complete. Our reduction is in two steps. First, we construct
an ASRG G with four players b, r, p, and q, and exactly three equilibria, one of which is
irrational, which is used as gadget in the reduction (Figure 1).5 This construction builds
upon an earlier example showing multiplicity of equilibria in ASRGs [4]. We will be mainly
concerned with the rational equilibrium flows, say f and g. We choose the cost functions so
that (i) Cpe7

(g) > Cpe7
(f), and (ii) the sum of costs of players p and q are equal for f and g,

that is,

Λ := Cpe7
(f) + Cqe9

(f) = Cpe7
(g) + Cqe9

(g) (3)

Then Cqe9
(f) > Cqe9

(g).
We now repeat this subgame n times in series, once for each element in the set S in the

SUBSET-SUM instance. Each subgame is independent of the others, i.e., the players bi and
ri in ith subgame are local to that subgame and do not play any role in other subgames.
All the subgames are connected by players p and q, who can only use one edge (e7 and e9
respectively) in each subgame. We show that f , g, and h continue to be the only equilibria
within each subgame. In the ith subgame Gi, we multiply each cost function by si. This
causes all costs to get multiplied by si, and does not affect the equilibria. Thus, in each
subgame Gi, player p has costs siCpe7

(f) and siCpe9
(g) in equilibrium flows f , g, and h (confined

to the subgame) respectively. Similar for player q. Roughly, we think of equilibrium f in a
subgame as putting si in the subset S, and equilibrium g as leaving si out.

We will show that if the given instance satisfies SUBSET-SUM, then there exists an
equilibrium at which both players p and q have cost (MΛ)/2, otherwise at least one of them
has cost strictly greater than (MΛ)/2. At equilibrium in the game, let F be the subgames
where f is the equilibrium, and G be the subgames where g is the equilibrium. Then the
total cost of players p and q is

Cpe7
(f)
∑
i∈F

si + Cpe7
(g)
∑
i∈G

si + Cqe9
(f)
∑
i∈F

si + Cqe9
(g)
∑
i∈G

si = MΛ

5 We use Mathematica to verify properties of equilibria in the games used in the reduction. Further
details are given in the full version of paper [6].
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where the equality follows from (3). From Cpe7
(g) > Cpe7

(f), it follows that the cost of each
player p, q is (MΛ)/2 iff at equilibrium,

∑
i∈F si =

∑
i∈G si. Else, since the sum of costs of

the two players is constant, exactly one player has cost above (MΛ)/2.
To complete the proof, we add player-specific edges to ensure that (MΛ)/2 is large enough

so that all the other players bi, ri always have cost at most (MΛ)/2 at any equilibrium.
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