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Abstract
Online contention resolution schemes (OCRSs) were proposed by Feldman, Svensson, and Zen-
klusen [11] as a generic technique to round a fractional solution in the matroid polytope in an
online fashion. It has found applications in several stochastic combinatorial problems where there
is a commitment constraint: on seeing the value of a stochastic element, the algorithm has to
immediately and irrevocably decide whether to select it while always maintaining an independent
set in the matroid. Although OCRSs immediately lead to prophet inequalities, these prophet
inequalities are not optimal. Can we instead use prophet inequalities to design optimal OCRSs?

We design the first optimal 1/2-OCRS for matroids by reducing the problem to designing a
matroid prophet inequality where we compare to the stronger benchmark of an ex-ante relaxation.
We also introduce and design optimal (1−1/e)-random order CRSs for matroids, which are similar
to OCRSs but the arrival order is chosen uniformly at random.
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1 Introduction

Given a combinatorial optimization problem, a common algorithmic approach is to first solve
a convex relaxation of the problem and to then round the obtained fractional solution x
into a feasible integral solution while (approximately) preserving the objective. Contention
resolution schemes (CRSs), introduced in [8], is a way to perform this rounding given a
fractional solution x ∈ Rn≥0. For c > 0, intuitively a c-CRS is a rounding algorithm that
guarantees every element i is selected into the final feasible solution w.p. at least c · xi. For
a maximization problem with a linear objective, by linearity of expectation such a c-CRS
directly implies a c-approximation algorithm.
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In a recent work, Feldman et al. [11] introduced an Online CRS (OCRS), which is a
CRS with an additional property that it performs the rounding in an “online fashion”.
This property is crucial for the prophet inequality problem (or any stochastic combinatorial
problem with a commitment constraint; see §1.3).

I Definition 1 (Prophet inequality). Suppose each element i ∈ N takes a value vi ∈ R≥0
independently from some known distribution Di. These values are presented one-by-one to
an online algorithm in an adversarial order. Given a packing feasibility constraint F ⊆ 2N ,
the problem is to immediately and irrevocably decide whether to select the next element i,
while always maintaining a feasible solution and maximizing the sum of the selected values.

A c-approximation prophet inequality for 0 ≤ c ≤ 1 means there exists an online algorithm
with expected value at least c times the expected value of an offline algorithm that knows all
values from the beginning. As shown in [11], a c-OCRS immediately implies a c-approximation
prophet inequality. Some other applications are oblivious posted pricing mechanisms and
stochastic probing.

Although powerful, the above approach of using OCRSs to design prophet inequalities does
not give us optimal prophet inequalities. For example, while we know a 1/2-approximation
prophet inequality over matroids [20], we only know a 1/4-OCRS over matroids [11]. This
indicates that the currently known OCRSs may not be optimal. Can we design better
OCRSs? The main contribution of this work is to design an optimal OCRS over matroid
constraints using the following idea:

Not only can we design prophet inequalities from OCRSs, we can also design OCRSs
from prophet inequalities.

More specifically, our OCRS is based on an ex-ante prophet inequality: we compare the online
algorithm to the stronger benchmark of a convex relaxation. We modify existing prophet
inequalities to obtain ex-ante prophet inequalities while preserving the approximation factors.
As a corollary, this gives the first optimal 1/2-OCRS over matroids.

Since for many applications the arrival order is not chosen by an adversary, some recent
works have also studied prophet secretary inequalities where the arrival order is chosen
uniformly at random [10, 9, 5]. Motivated by these works, we introduce random order
contention resolution schemes (RCRS), which is an OCRS for uniformly random arrival1.
Again by designing the corresponding random order ex-ante prophet inequalities, we obtain
optimal (1− 1/e)-RCRS over matroids.

In §1.1 we formally define an OCRS/RCRS and an ex-ante prophet inequality. In §1.2
we describe our results and proof techniques. See §1.3 for further related work.

1.1 Model
CRSs are a powerful tool for offline and stochastic optimization problems [8, 15]. For a given
x ∈ [0, 1]N , let R(x) denote a random set containing each element i ∈ N independently w.p.
xi. We say an element i is active if it belongs to R(x).

I Definition 2 (Contention resolution scheme). Given a finite ground set N with n = |N |
and a packing (downward-closed) family of feasible subsets F ⊆ 2N , let PF ⊆ [0, 1]N be the
convex hull of all characteristic vectors of feasible sets. For a given x ∈ PF , a c-selectable

1 A parallel independent work has also introduced RCRS [1]; however, their technical results are very
different.
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CRS (or simply, c-CRS) is a (randomized) mapping π : 2N → 2N satisfying the following
three properties:
(i) π(S) ⊆ S for all S ⊆ N .
(ii) π(S) ∈ F for all S ⊆ N .
(iii) PrR(x),π[i ∈ π(R(x))] ≥ c · xi for all i ∈ N .
Notice, if f is a monotone linear function then E[f(π(R(x)))] ≥ c·E[f(R(x))]. By constructing
CRSs for various constraint families of F , Chekuri et al. [8] give improved approximation
algorithms for linear and submodular maximization problems under knapsack, matroid,
matchoid constraints, and their intersections2.

In the above applications to offline optimization problems, the algorithm first flips all
the random coins to sample R(x), and then obtains π(R(x)) ⊆ R(x). For various online
problems such as the prophet inequality, this randomness is an inherent part of the problem.
Feldman et al. [11] therefore introduce an OCRS where the random set R(x) is sampled in
the same manner, but whether i ∈ R(x) (or not) is only revealed one-by-one to the algorithm
in an adversarial order3. After each revelation (arrival), the OCRS has to irrevocably decide
whether to include i ∈ R(x) into π(R(x)) (if possible). A c-selectable OCRS (or simply,
c-OCRS) is an OCRS satisfying the above properties (i) to (iii) of a c-CRS.

In this work, we also study RCRS which is an OCRS with the arrival order chosen
uniformly at random. A c-selectable RCRS (or simply, c-RCRS) is an RCRS satisfying the
above properties (i) to (iii) of a c-CRS, where in Property (iii) we also take expectation over
the arrival order.

While prophet inequalities have been designed using OCRSs, our main result in this
paper is to show a deeper reverse connection between OCRSs and prophet inequalities. We
first define an ex-ante prophet inequality. Given a prophet inequality problem instance with
packing constraints F and r.v.s vi ∼ Di for i ∈ N , the following ex-ante relaxation gives an
upper bound on the expected offline optimum:

max
x

∑
i

xi · Evi∼Di
[vi | vi takes value in its top xi quantile] s.t. x ∈ PF . (1)

To prove that (1) is an upper bound, we interpret xi as the probability that i is in the offline
optimum. It is also known that (1) is a convex program and can be solved efficiently; see [11]
for more details.

I Definition 3 (Ex-ante prophet inequality). For 0 ≤ c ≤ 1, a c-approximation ex-ante prophet
inequality for packing constraints F is a prophet inequality algorithm with expected value at
least c times (1).

Before describing our results, to build some intuition for the above definitions we discuss
the special case of a rank 1 matroid, i.e., where we can only select one of the n elements.

Example: Rank 1 matroid

For simplicity, in this section we assume that all random variables are Bernoulli, i.e., vi takes
value yi independently w.p. pi, and is 0 otherwise. We first show why a c-OCRS implies a
c-approximation prophet inequality for rank 1 matroids.

2 Some “greedy” properties are also required from the CRS for the guarantees to hold for a submodular
function f [8].

3 For adversarial arrival order, we assume that this order is known to the OCRS algorithm in advance.
This offline adversary is weaker than the almighty adversary considered in [11], but is common in the
prophet inequality literature [24, 25]. We need this assumption in §2 to define our exponential sized
linear program.

ESA 2018
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Consider the optimum solution x to the ex-ante relaxation (1) for the above Bernoulli
instance. Its objective value is

∑
i xiyi where x satisfies

∑
i xi ≤ 1. Moreover, xi ≤ pi for all

i because selecting i beyond pi does not increase (1). To see why (1) gives an upper bound on
the expected offline maximum, observe that if we interpret xi as the probability that vi is the
offline maximum, this gives a feasible solution to

∑
i xi ≤ 1 and with value at most

∑
i xiyi.

Thus, to prove a c-approximation prophet inequality, it suffices to design an online algorithm
with value at least c ·

∑
i xiyi. Consider an algorithm that runs a c-OCRS on x, where i is

considered active independently w.p. xi/pi whenever vi takes value yi. This ensures element
i is active w.p. exactly xi. Since a c-OCRS guarantees each element is selected w.p. ≥ c

when it is active, by linearity of expectation such an algorithm has expected value at least
c ·
∑
i xiyi.

We now discuss a simple 1/4-OCRS for a rank 1 matroid. Given x satisfying
∑
i xi ≤ 1,

consider an algorithm that ignores each element i independently w.p. 1/2, and otherwise
selects i only if it is active. Since this algorithm selects any element i w.p. at most xi/2
(when i is not ignored and is active), by Markov’s inequality the algorithm selects no element
till the end w.p. at least 1−

∑
i xi/2 ≥ 1/2. Hence the algorithm reaches each element i w.p.

at least 1/2 without selecting any of the previous elements. Moreover, it does not ignore
i w.p. 1/2, which implies it considers each element w.p. at least 1/4. The OCRS due to
Feldman et al. [11] can be thought of generalizing this approach to a general matroid.

An interesting result of Alaei [4] shows that the above 1/4-OCRS can be improved to a
1/2-OCRS over a rank 1 matroid by “greedily” maximizing the probability of ignoring the
next element i, but considering i w.p. 1/2 on average. In the full version of the paper we
present Alaei’s proof for completeness, and also show how to obtain a simple (1− 1/e)-RCRS
for a rank 1 matroid. This raises the question whether one can obtain a 1/2-OCRS and a
(1− 1/e)-RCRS for general matroids.

1.2 Results and Techniques
Our first theorem gives an approximation factor preserving reduction from OCRSs to ex-ante
prophet inequalities.

I Theorem 4. For 0 ≤ c ≤ 1, a c-approximation ex-ante prophet inequality for adversarial
(random) arrival order over a packing constraint F implies a c-OCRS (c-RCRS) over F .

We complement the above theorem by designing ex-ante prophet inequalities over matroids.

I Theorem 5. For matroids, there exists a 1/2-approximation ex-ante prophet inequality
for adversarial arrival order and a (1− 1/e)-approximation ex-ante prophet inequality for
uniformly random arrival order.

As a corollary, the above two theorems give optimal OCRS and RCRS over matroids.
This generalizes the rank 1 results discussed in the previous section to general matroids;
although the proof techniques are very different.

I Corollary 6. For matroids, there exists a 1/2-OCRS and a (1− 1/e)-RCRS.

Our 1/2-OCRS above assumes that the arrival order is known to the algorithm. It is an
interesting open question to find a 1/2-OCRS for an almighty/online adversary as in [11].

We first prove that both the factors 1/2 and (1− 1/e) in Corollary 6 are optimal.

Optimality of 1/2-OCRS and (1 − 1/e)-RCRS

We argue that the factors 1/2 and (1− 1/e) in Corollary 6 are optimal even in the special
case of a rank 1 matroid. For adversarial arrival, consider just two elements, i.e., n = 2, with
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v1

v2

vn−1

vn

u1 u2
Figure 1 The Hat example on n + 2 vertices. The following x belongs to the graphic matroid:

xe = 1/2 for e = (ui, vj) where i ∈ {1, 2} and j ∈ {1, . . . , n}, and xe = 1 for e = (u1, u2).

x1 = 1 − ε and x2 = ε for some ε → 0. Since the OCRS algorithm has to select the first
element at least 1/2 fraction of the times, it can attempt to select the second element at
most 1/2 + ε/2 fraction of the times.

For random arrival order, consider the feasible solution x with xi = 1/n for every i ∈ N .
We show that no online RCRS algorithm can guarantee each element is selected w.p. greater
than (1−1/e)

n . This is because for the product distribution, w.p. 1/e none of the n elements
is active (more precisely, w.p. (1− 1/n)n). Hence the RCRS algorithm, which only selects
active elements, selects some element w.p. 1− 1/e. This implies on average it cannot pick
every element w.p. greater than (1−1/e)

n . This example, originally shown in [8], also proves
that offline CRS cannot better than (1− 1/e)-selectable.

Our techniques

We first see the difficulty in extending Alaei’s greedy approach from a rank 1 matroid to a
general matroid. Consider the graphic matroid for the Hat example (see Figure 1). Suppose
the base edge (u1, u2) appears in the end of an adversarial order. Notice that any algorithm
which ignores the structure of the matroid is very likely to select some pair of edges (u1, vi)
and (vi, u2) for some i. Since this pair spans the base edge (u1, u2), such an OCRS algorithm
will not satisfy c-selectability for (u1, u2). To overcome this, Feldman et al. [11] decompose
the matroid into “simpler” matroids using x. However, it is not clear how to extend their
approach beyond a 1/4-OCRS.

In this paper we take an alternate LP based approach to design OCRSs, which was first
used by Chekuri et al. [8] to design offline CRSs. The idea is to define an exponential sized
linear program where each variable denotes a deterministic OCRS algorithm. The objective
of this linear program is to maximize c s.t. each element is selected at least c fraction of the
times (c-selectability). Thus to show existence of a 1/2-OCRS, it suffices to prove this linear
program has value c ≥ 1/2. In §2 we prove this by showing that the dual LP has value at
least 1/2 because it can be interpreted as an ex-ante prophet inequality.

Next, to show there exists a 1/2 approximation ex-ante prophet inequality, our approach
is inspired from the matroid prophet inequality of Kleinberg and Weinberg [20]. They give
an online algorithm that gets at least half of the expected offline optimum for the product
distribution (independent r.v.s). Unfortunately, their techniques do not directly extend
because the ex-ante relaxation objective could be significantly higher than for the product
distribution (this is known as the correlation gap, which can be e/(e − 1) [2, 6]). Our
primary technique is to view the ex-ante relaxation solution as a “special kind” of a correlated
value distribution. Although prophet inequalities are not possible for general correlated
distributions [19], we show that in this special case the original proof of the matroid prophet
inequality algorithm retains its 1/2 approximation after some modifications.

ESA 2018
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1.3 Further Related Work
Krengel and Sucheston gave the first tight 1/2-single item prophet inequality [22, 21]. The
connection between multiple-choice prophet inequalities and mechanism design was recognized
in [18]; they proved a prophet inequality for uniform matroids. This bound was later
improved by Alaei [3] using the Magician’s problem, which is an OCRS in disguise. Chawla
et al. [7] further developed the connection between prophet inequalities and mechanism
design, and showed how to be O(1)-prophet inequality for general matroids in a variant
where the algorithm may choose the element order. Yan [26] improved this result to e/(e−1)-
competitive using the correlation gap for submodular functions, first studied in [2, 6]. Chekuri
et al. [8] adapted correlation gaps to a polytope to design CRSs. Improved correlation gaps
were presented in [26, 17]. The matroid prophet inequality was first explicitly formulated
in [20]. Feldman et al. [11] gave an alternate proof, and extended to Bernoulli submodular
functions, using OCRSs. Finally, information theoretic O(poly log(n))-prophet inequalities
are also known for general downward-closed constraints [24, 25].

The prophet secretary notion was first introduced in [10], where the elements arrive in a
uniformly random order and draw their values from known independent distributions. Their
results have been recently improved [9, 5]. There is a long line of work on studying the
commitment constraints for combinatorial probing problems, e.g., see [13, 15, 16, 14]. In these
models the algorithm starts with some stochastic knowledge about the input and on probing
an element has to irrevocably commit if the element is to be included in the final solution. A
common approach to handle such a constraint is using a prophet inequality/OCRS.

2 OCRS Assuming an Ex-Ante Prophet Inequality

In this section we prove Theorem 4, showing how to reduce the problem of designing an
OCRS to a prophet inequality where we compare ourself to the ex-ante relaxation instead of
the expected offline maximum.

2.1 Using LP Duality
Given a finite ground set N with n = |N | and a downward-closed family of feasible subsets
F ⊆ 2N , let PF ⊆ [0, 1]N be the convex hull of all characteristic vectors of feasible sets.
Let x ∈ PF and R(x) denote a random set containing each element i ∈ N independently
w.p. xi. For offline CRSs, let Φ∗ be the set of valid offline deterministic mappings; i.e.,
φ : 2N → F is in Φ∗ iff φ(A) ⊆ A and φ(A) ∈ F for all A ⊆ N . For φ ∈ Φ∗ and i ∈ N , let
qi,φ := PrR(x)[i ∈ φ(R(x))] denote the probability of selecting i if the CRS executes φ. The
following LP relaxation, introduced by Chekuri et al. [8], finds a c-selectable randomized
CRS. It has variables {λφ}φ∈Φ∗ and c.

maxλ,c c

s.t.
∑
φ∈Φ∗

qi,φλφ ≥ xi · c i ∈ N

∑
φ∈Φ∗

λφ = 1

λφ ≥ 0 ∀φ ∈ Φ∗

Observe that if the above LP has value c, there exists a randomized c-CRS. This is because
we can randomly select one of the φ’s w.p. λφ, and the constraint

∑
φ∈Φ∗ qi,φλφ ≥ xi · c
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ensures c-selectability for every i ∈ N . Chekuri et al. noticed that by strong duality, to
prove the above LP has value at least c, it suffices to show that the following dual program
has value at least c. It has variables {yi}i∈N and µ.

miny,µ µ

s.t.
∑
i∈N

qi,φyi ≤ µ φ ∈ Φ∗∑
i∈N

xiyi = 1

yi ≥ 0 ∀i ∈ N

To design OCRSs (RCRSs), we take a similar approach as Chekuri et al and let Φ∗ be
the set of all deterministic online algorithms. Formally, φ : 2N × 2N ×N → {0, 1} belongs
to Φ∗ iff φ(A,B, i) = 1 only for B ⊆ A, i 6∈ A, and B ∪ {i} ∈ F . Intuitively, φ(A,B, i) = 1
indicates that the online algorithm selects element i in the current iteration after processing
elements in A and selecting elements in B. Let qi,φ denote the probability of selecting i if
the OCRS (RCRS) executes φ, where for RCRS we also take probability over the random
order. By the above duality argument, to show existence of a c-OCRS (c-RCRS) it suffices
to prove the dual LP has value at least c. We prove this by showing that for any y ≥ 0 s.t.∑
i∈N xiyi = 1, there exists φ ∈ Φ∗ such that

∑
i∈N qi,φyi ≥ c.

Consider a Bernoulli prophet inequality instance where each element i ∈ N has value yi
with probability xi, and 0 otherwise. Since x ∈ PF , notice that

∑
i∈N xiyi = 1 is exactly the

value of the ex-ante relaxation (1) for this instance. Thus, a c-approximation ex-ante prophet
inequality implies there exists a φ ∈ Φ∗ with value at least c. By linearity of expectation,
the value of φ is

∑
i∈N qi,φyi, which proves

∑
i∈N qi,φyi ≥ c.

2.2 Solving the LP Efficiently

While the original primal LP has an exponential number of variables, we can compute an
OCRS (or RCRS) that achieves value at least c as follows. In the dual program, given
y s.t.

∑
i xiyi = 1, we can use the ex-ante prophet inequality to find φ ∈ Φ∗ with value∑

i qi,φyi ≥ c in polynomial time. (Notice qi,φ can be computed in polynomial time because
the adversarial order is known to the OCRS algorithm.) This implies for any ε > 0, the
polytope Qc−ε := {y : y ≥ 0,

∑
i xiyi = 1,

∑
i qi,φyi ≤ c− ε for all φ ∈ Φ∗} is empty.

Since we have an efficient separation oracle (for any y, we can find a violated constraint
in polynomial time) for Qc−ε, by running the ellipsoid algorithm [12] we can find a subset
Φ′ ⊆ Φ∗ with |Φ′| = poly(n) in polynomial time such that Q′c−ε := {y : y ≥ 0,

∑
i xiyi =

1,
∑
i qi,φyi ≤ c − ε for all φ ∈ Φ′} is empty. Now the following linear program, which has

a polynomial number of variables and constraints, with optimal value at least c− ε can be
solved efficiently.

maxλ,c c

s.t.
∑
φ∈Φ′

qi,φλφ ≥ xi · c i ∈ N

∑
φ∈Φ′

λφ = 1

λφ ≥ 0 ∀φ ∈ Φ′

ESA 2018
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3 Ex-Ante Prophet Inequalities for a Matroid

This section proves Theorem 5 by designing for a matroid a 1/2-ex-ante prophet inequality
under adversarial arrival and a (1− 1/e)-ex-ante prophet inequality under random arrival.

3.1 Notation
Let v ∼ D be a set of random element values {v1, . . . , vn} where each vi is independently
drawn from Di. Let x be the optimal solution to the ex-ante relaxation in (1) for a given
matroidM = (N, I). For i ∈ N , denote

yi := Evi∼Di [vi | vi takes value in its top xi quantile]. (2)

Since x ∈ PM, we can write it as a convex combination of independent sets in the matroid.
In particular, this gives a correlated distribution D̂ over independent sets ofM such that
for each i ∈ N , we have PrI∼D̂[i ∈ I] = xi. Let v̂ = {v̂1, . . . , v̂n} be a set of random values
obtained by sampling I ∼ D̂ and setting v̂i = yi for i ∈ I, and v̂i = 0 otherwise. Notice the
optimal value of (1) is

∑
i xiyi and for each i ∈ N , we have E[v̂i] = xiyi.

We need the following notation to describe our algorithms.

I Definition 7. For any vector v̂ denoting values of elements of N and any A ⊆ N , we
define:

Let Opt(v̂ | A)⊆ N \A denote the maximum value independent set in the contracted
matroidM/A.
Let R(A, v̂) :=

∑
i∈Opt(v̂|A) v̂i denote the remaining value after selecting set A.

We next define a base price of for every element i.

I Definition 8. For A ∈ I denoting an independent set of elements accepted by our algorithm,
we define

Let bi(A, v̂) := R(A, v̂)−R(A ∪ {i}, v̂) denote a threshold for element i.
Let bi(A) := Ev̂∼D̂[bi(A, v̂)] denote the base price for element i.

3.2 Reducing to Bernoulli Distributions
In this section we show that it suffices to only prove Theorem 5 for Bernoulli distributions.

I Lemma 9. If there exists an α-approximation ex-ante prophet inequality for Bernoulli
distributed independent random values then there exists an α-approximation ex-ante prophet
inequality for general distributed independent random values.

Proof. Given a prophet inequality instance where v ∼ D for a general distribution D,
consider a new Bernoulli prophet inequality instance v′ ∼ D′ where for each i ∈ N , r.v.
v′i ∼ D′i independently takes value yi (defined in (2)) w.p. xi, and is 0 otherwise. Since the
optimal ex-ante fractional value for both the general and Bernoulli instance is the same, to
prove this theorem we use an ex-ante prophet inequality for the Bernoulli instance to design
an ex-ante prophet inequality for the general instance with the same expected value.

On arrival of an element i, consider an algorithm for the general distribution that treats
i is active iff vi takes value in its top xi quantile. If active, the algorithm asks the ex-ante
prophet inequality of the Bernoulli instance to decide whether to select i. We claim that the
expected value of this algorithm is α ·

∑
i xiyi, which will prove this theorem. The claim is

true because for the above algorithm each element i is active independently w.p. exactly
xi, and conditioned on being active its expected value is exactly yi. Thus by linearity of
expectation, the expected value is the same as the Bernoulli instance, which is α ·

∑
i xiyi. J
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3.3 Adversarial Order
We prove the optimal ex-ante prophet inequality for a matroid under the adversarial arrival.

I Theorem 10. For matroids, there exists a 1/2-approximation ex-ante prophet inequality
for adversarial arrival order.

Given the notation and definitions in §3.1, the proof of Theorem 10 is similar to the proof
of the matroid prophet inequality in [20].

By Lemma 9, we know it suffices to prove this theorem only for Bernoulli distributions.
Consider v ∼ D as the input to our online algorithm, where vi takes value yi w.p. xi and is
0 otherwise. Given v, our algorithm is deterministic and let A := A(v) denote the set of
elements that it selects. Relabel the elements such that the arrival order of the elements is
1, . . . , n. Let Ai = A ∩ {1, . . . , i}.

Our algorithm selects the next element i iff both vi > Ti := α · bi(Ai−1) and selecting
i is feasible in M, where α = 1

2 . Thus, the total value of algorithm Alg :=
∑
i∈A vi =

Revenue + Utility, where

Revenue :=
∑
i∈A Ti and Utility :=

∑
i∈A(vi − Ti)+.

Since
∑
i∈N xiyi is the optimal value of (1), to prove Theorem 10 it suffices to show

E[Alg] = E[Revenue] + E[Utility] ≥ α ·
∑
i∈N xiyi.

We keep track of the algorithm’s progress using the following residual function:

r(i) := Ev∼D,v̂∼D̂[R(Ai−1, v̂)].

Clearly, r(0) =
∑
i∈N xiyi. In the following Lemma 11 and Lemma 12, we use the residual

function to lower bound E[Revenue] and E[Utility].

I Lemma 11. Ev∼D[Revenue] = α ·
(
r(0)− r(n)

)
.

Proof. From the definition of Revenue, we get

Revenue = α ·
∑
i∈A

bi(Ai−1) = α ·
∑
i∈A

(
Ev̂[R(Ai−1, v̂)]− Ev̂[R(Ai−1 ∪ {i}, v̂)]

)
= α ·

∑
i∈A

(
Ev̂[R(Ai−1, v̂)]− Ev̂[R(Ai, v̂)]

)
= α ·

(
Ev̂[R(A0, v̂)]− Ev̂[R(A, v̂)]

)
.

Taking expectation over v ∼ D and using definitions of r(0) and r(n), the lemma follows. J

I Lemma 12. Ev∼D[Utility] ≥ (1− α) · r(n).

Proof. We prove the following two inequalities:

Ev∼D[Utility] ≥ Ev∼D,v̂∼D̂

[ ∑
i∈Opt(v̂|A)

(v̂i − Ti)+
]

(3)

and

Ev∼D,v̂∼D̂

[ ∑
i∈Opt(v̂|A)

(v̂i − Ti)+
]
≥ (1− α) · Ev∼D,v̂∼D̂[R(A, v̂)]. (4)

Lemma 12 now follows by summing (3) and (4), and using r(n) = Ev∼D,v̂∼D̂[R(A, v̂)].
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To prove (3), notice that for any i not selected by the algorithm, vi ≤ Ti. This implies

Ev∼D[Utility] = Ev

[∑
i∈A

(vi − Ti)+
]

= Ev

[∑
i∈N

(vi − Ti)+
]
.

Now observe that for any fixed i and v1, . . . , vi−1, the threshold Ti is determined. Since vi
and v̂i are independent random variables with the same distribution, we get

Ev[(vi − Ti)+|v1, . . . , vi−1] = Ev,v̂[(v̂i − Ti)+|v1, . . . , vi−1].

This implies

Ev∼D[Utility] = Ev

[∑
i∈N

(vi − Ti)+
]

= Ev,v̂

[∑
i∈N

(v̂i − Ti)+
]
≥ Ev,v̂

[ ∑
i∈Opt(v̂|A)

(v̂i − Ti)+
]
.

Finally, to prove (4), we have

Ev,v̂[R(A, v̂)] = Ev,v̂

[ ∑
i∈Opt(v̂|A)

v̂i

]
≤ Ev,v̂

[ ∑
i∈Opt(v̂|A)

Ti
]

+ Ev,v̂

[ ∑
i∈Opt(v̂|A)

(v̂i − Ti)+
]

≤ α · Ev,v̂[R(A, v̂)] + Ev,v̂

[ ∑
i∈Opt(v̂|A)

(v̂i − Ti)+
]
,

where the first inequality uses v̂i ≤ Ti + (v̂i − Ti)+ and the second inequality uses Claim 13
for S = Opt(v̂ | A). After rearranging, this implies (4). J

We need the following Claim 13 in the proof of Lemma 12.

I Claim 13. For every pair of disjoint sets A,S such that A ∪ S ∈M,

α · Ev̂∼D̂

[∑
i∈S

R(Ai−1, v̂)−R(Ai−1 ∪ {i}, v̂)
]

=
∑
i∈S
Ti ≤ α · Ev̂∼D̂[R(A, v̂)]. (5)

Proof. This directly follows from [20], as they proved it for every fixed v̂. The proof is
similar to Claim 18 in the next section. J

Proof of Theorem 10. Using Lemma 11 and Lemma 12, and substituting α = 1
2 , we get

E[Alg] = E[Utility] + E[Revenue] ≥ 1
2 · r(0) = 1

2 ·
∑
i∈N

xiyi. J

3.4 Random Order
We prove the optimal ex-ante prophet inequality for a matroid for random arrival.

I Theorem 14. For matroids, there exists a (1 − 1/e)-approximation ex-ante prophet in-
equality for uniformly random arrival order.

The proof of Theorem 14 is similar to the matroid prophet secretary inequality in [9].
We consider the model where each item chooses the arrival time from [0, 1] uniformly and
independently, which is equivalent to the random permutation model. Starting with A0 = ∅,
let At denote the set of accepted elements by our algorithm before time t. This is a random
variable that depends on the values v and arrival times T. For t ∈ [0, 1], let

α(t) := 1− exp(t− 1).
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Suppose an element i arrives at time t, then our algorithm selects i iff both vi > α(t) · bi(At)
and selecting i is feasible inM.

Similar to §3.3, we keep track of the algorithm’s progress using the residual function

r(t) := Ev∼D,v̂∼D̂,T[R(At, v̂)],

where At is a function of v and T. Clearly, r(0) =
∑
i∈N xiyi.

I Claim 15. Ev∼D,T[Revenue] = −
∫ 1

t=0
α(t) · r′(t)dt.

Proof. This follows directly from the definition of Revenue. See [9] for details. J

I Lemma 16. Ev∼D,T[Utility] ≥
∫ 1

t=0
(1− α(t)) · r(t)dt.

Proof. The utility for element i arriving at time t is given by

Ev,T[ui | Ti = t] = Ev,T−i

[
(vi − α(t) · bi(At))+ · 1i6∈Span(At)

∣∣∣ Ti = t
]
.

Observe that At does not depend on vi if Ti = t because it includes only the acceptances
before t. It does not depend on v̂i either, as v̂i is only used for analysis purposes and not
known to the algorithm. Since vi and v̂i are identically distributed, we can also write

Ev∼D,T[ui | Ti = t] = Ev∼D,v̂∼D̂,T−i

[
(v̂i − α(t) · bi(At))+ · 1i 6∈Span(At)

∣∣∣ Ti = t
]
. (6)

Now observe that element i can belong to Opt(v̂ | At) only if it’s not already in Span(At),
which implies 1i 6∈Span(At) ≥ 1i∈Opt(v̂|At). Using this and removing non-negativity, we get

Ev,T[ui | Ti = t] ≥ Ev,v̂,T−i

[
(v̂i − α(t) · bi(At)) · 1i∈Opt(v̂|At)

∣∣ Ti = t
]
.

Now we use Lemma 17 to remove the conditioning on element i arriving at time t as this
gives a valid lower bound on expected utility,

Ev,T[ui | Ti = t] ≥ Ev,v̂,T
[
(v̂i − α(t) · bi(At)) · 1i∈Opt(v̂|At)

]
. (7)

We can now lower bound sum of all the utilities using Eq. (7) to get

Ev,T[Utility] =
∑
i

∫ 1

t=0
Ev,T[ui | Ti = t] · dt

≥
∑
i

∫ 1

t=0
Ev,v̂∼D̂,T

[
(v̂i − α(t) · bi(At)) · 1i∈Opt(v̂|At)

]
· dt.

By moving the sum over elements inside the integrals, we get

Ev,T[Utility] ≥
∫ 1

t=0
Ev,v̂,T

[∑
i

(v̂i − α(t) · bi(At)) · 1i∈Opt(v̂|At)

]
· dt

=
∫ 1

t=0
Ev,v̂,T

[
R(At, v̂)− α(t) ·

∑
i∈Opt(v̂|At)

bi(At)
]
· dt.

Finally, using Claim 18 for S = Opt(v̂ | At), we get

Ev,T[Utility] ≥
∫ 1

t=0
Ev,v̂,T [(1− α(t)) ·R(At, v̂)] · dt. J
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Proof of Theorem 14. Using Lemma 16 and Claim 15, we get

E[Alg] = E[Revenue] + E[Utility]

≥ −
∫ 1

t=0
α(t) · r′(t) · dt+

∫ 1

t=0
(1− α(t)) · r(t) · dt

=
∫ 1

t=0
r(t) · (1− α(t) + α′(t)) · dt− [r(t) · α(t)]1t=0.

Notice that for α(t) = 1− et−1, we have 1− α(t) + α′(t) = 0. Hence, we get

E[Alg] ≥ −[r(t) · α(t)]1t=0 =
(

1− 1
e

)
· r(0) =

(
1− 1

e

)
·
∑
i∈N

xiyi. J

Finally, we prove the missing Lemma 17 that removes the conditioning on i arriving at t.

I Lemma 17. For any i, any time t, and any fixed v, v̂, we have

ET−i

[
(v̂i − α(t) · bi(At)) · 1i∈Opt(v̂|At) | Ti = t

]
≥ ET

[
(v̂i − α(t) · bi(At)) · 1i∈Opt(v̂|At)

]
.

Proof. We prove the lemma for any fixed T−i. Suppose we draw a uniformly random
Ti ∈ [0, 1]. Observe that if Ti ≥ t then we have equality in the above equation because set At
is the same both with and without i. This is also the case when Ti < t but i is not selected
into At. Finally, when Ti < t and i ∈ At we have 1i∈Opt(v̂|At) = 0 in the presence of element
i (i.e., RHS of lemma), making the inequality trivially true. J

I Claim 18. For any fixed v,T, time t, and set of elements S ⊆ N that is independent in
the matroidM/At, we have∑

i∈S
bi(At) ≤ Ev̂ [R(At, v̂)] .

Proof. By definition∑
i∈S bi(At) = Ev̂

[∑
i∈S (R(At, v̂)−R(At ∪ {i}, v̂))

]
.

Fix the values v̂ arbitrarily, we also have∑
i∈S

(R(At, v̂)−R(At ∪ {i}, v̂)) ≤ R(At, v̂).

This follows from the fact that R(At, v̂)−R(At ∪ {i}, v̂) are the respective critical values of
the greedy algorithm onM/At with values v̂. Therefore, the bound follows from Lemma 3.2
in [23]. An alternative proof is given as Proposition 2 in [20] while in our case the first
inequality can be skipped and the remaining steps can be followed replacing A by At.

Taking the expectation over v̂, the claim follows. J
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