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Abstract

A permutation π is a merge of a permutation σ and a permutation τ , if we can color the elements
of π red and blue so that the red elements have the same relative order as σ and the blue ones as τ .
We consider, for fixed hereditary permutation classes C and D, the complexity of determining
whether a given permutation π is a merge of an element of C with an element of D.

We develop general algorithmic approaches for identifying polynomially tractable cases of
merge recognition. Our tools include a version of nondeterministic logspace streaming recogniz-
ability of permutations, which we introduce, and a concept of bounded width decomposition,
inspired by the work of Ahal and Rabinovich.

As a consequence of the general results, we can provide nontrivial examples of tractable per-
mutation merges involving commonly studied permutation classes, such as the class of layered
permutations, the class of separable permutations, or the class of permutations avoiding a de-
creasing sequence of a given length.

On the negative side, we obtain a general hardness result which implies, for example, that
it is NP-complete to recognize the permutations that can be merged from two subpermutations
avoiding the pattern 2413.
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50:2 Generalized Coloring of Permutations

1 Introduction

Definitions and previous results

A permutation is a sequence π = π1, π2, . . . , πn in which each number from the set [n] =
{1, 2, . . . , n} appears exactly once. We then say that a permutation π = π1, . . . , πn contains
a permutation σ = σ1, . . . , σk, if π has a subsequence of length k whose elements have the
same relative order as the elements of σ (see Section 2 for a more formal definition). If π
does not contain σ, we say that π avoids σ, or π is σ-avoiding.

A permutation π is a merge of a permutation σ and a permutation τ , if we can color the
elements of π with colors red and blue so that the red elements have the same relative order
as σ and the blue ones as τ . For two sets of permutations C and D, we let C � D denote
the set of the permutations that can be obtained by merging a permutation τ ∈ C with a
permutation σ ∈ D.

In this paper, we study the algorithmic complexity of determining whether a given
permutation is a merge of a pair of permutations with a prescribed structure. More formally,
for a fixed pair of hereditary permutation classes C and D, we consider the complexity of
determining whether a given permutation π belongs to C � D.

The notion of merge has been originally introduced as an approach for the enumeration of
pattern-avoiding permutations [5, 4]. For instance, Claesson et al. [13] have shown that every
1324-avoiding permutation can be obtained by merging a 132-avoiding permutation with a
213-avoiding one, and this result, and its subsequent strengthenings by Bóna [8, 9] and Bevan
et al. [7], are the basis of the best known upper bounds for the number of 1324-avoiding
permutations.

Apart from enumeration questions, the research into permutation merges has also ad-
dressed structural issues, such as whether a given permutation class can be obtained by
merging two of its proper subclasses [18, 17], or which classes can be obtained by merging a
bounded number of permutations from a given class [3, 19, 21]. Our paper is, however, the
first to address algorithmic aspects of permutation merges.

So far, most of the algorithmic research related to permutations has focused on the
decision problem known as Permutation Pattern Matching, or PPM, where the goal is to
determine whether a given permutation π (the ‘pattern’) is contained in a permutation τ
(the ‘text’). Bose et al. [11] have shown that PPM is NP-complete for general π and τ , but
it is polynomial when π is restricted to the class of the so-called separable permutations.
The latter result was generalized by Ahal and Rabinovich [2]. More precisely, Ahal and
Rabinovich introduced a notion of tree decomposition for permutations and an associated
width parameter, closely related to the concept of tree-width from graph theory; they then
proved that PPM is polynomial when the pattern π is restricted to a class of bounded
tree-width, of which separable permutations are a special case. We remark that a different
width parameter for permutations was introduced by Guillemot and Marx [16], who used
it to prove that PPM is in FPT with the length of the pattern π as the parameter. While
the results on the complexity of PPM do not have any immediate consequences for the
problems we consider in this paper, the tree-width concept of Ahal and Rabinovich is a
crucial ingredient in our results.

The decision problem of recognizing permutations from C � D can be viewed as a
permutation analogue of the generalized graph coloring problem from graph theory. For a
fixed k-tuple G1, . . . ,Gk of graph classes, a generalized coloring of a graph is an assignment
of colors 1, 2, . . . , k to its vertices so that the vertices of color i induce a subgraph from Gi.
In particular, if all the Gi are equal to the class of edgeless graphs, this notion reduces to the
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classical notion of k-coloring. The research into the complexity of generalized graph coloring
was initiated by Rutenburg [20], who considered graph properties defined by a finite set of
forbidden subgraphs. Later, Farrugia [15] has shown that if all the Gi are hereditary and
additive (i.e., closed under taking induced subgraphs and forming disjoint unions) then the
problem is NP-hard, except the trivially polynomial case when k = 2 and both G1 and G2
are equal to the class of edgeless graphs. Further results in this area were obtained, e.g., by
Brown [12], Alexeev et al. [6], Achlioptas et al. [1], or Borowiecki [10].

As with generalized graph coloring, the recognition of permutation merges admits several
cases which are trivially polynomial. For instance, let Ik be the class of permutations that
can be merged from at most k increasing subsequences, or equivalently, of permutations that
avoid the pattern k + 1, k, . . . , 1. Similarly, let Dk be the permutations merged from at most
k decreasing subsequences, which are exactly the avoiders of 1, 2, . . . , k + 1. One may easily
see that Ik � I` = Ik+` and Dk �D` = Dk+`, and in particular, these merges are trivially
polynomially recognizable. Moreover, Kézdy et al. [19] have shown that for any k, ` ≥ 1, the
class Ik �D` has only finitely many minimal excluded patterns, and therefore these classes
are polynomially recognizable as well.

Ekim et al. [14] studied the complexity of generalized 2-colorings when the input graph is
restricted to the class of the so-called permutation graphs. Their results, in our terminology,
imply the polynomial recognition of L � I1 and of L � L, where L and L denote the classes
of layered and co-layered permutations (see Section 2 for definitions).

Our results

In this paper, we show that there are many more cases of polynomially tractable merges of
permutation classes. This contrasts with Farrugia’s above-mentioned result on generalized
graph coloring. As our main results, we will present two general approaches to show that a
permutation class of the form C � D is polynomially recognizable.

Our first approach, which we present in Section 3.1, is based on the concept of non-
deterministically logspace on-line recognizable (or NLOL-recognizable) permutation classes,
which we introduce. We will show that an arbitrary merge of NLOL-recognizable classes is
polynomially recognizable. While this approach is conceptually quite simple, it generalizes
all the previously known examples of tractable merges following from the work of Kézdy et
al. [19] and Ekim et al. [14].

For our second approach, presented in Section 4, we introduce the notion of grid de-
compositions, and the associated width parameter called grid-width. We combine the grid
decomposition technique with a restricted version of NLOL, called 2D-NLOL, to prove that the
merge of a 2D-NLOL-recognizable class with a class of bounded grid-width can be recognized
in polynomial time. This approach allows us to handle further cases of natural permutation
classes that are not NLOL-recognizable, such as the class of 213-avoiders, or the class of
separable permutations.

To complement our tractability results, we also provide, in Section 5, an NP-hardness
result. The result implies, among other examples, that the recognition of Av(2413)�Av(2413)
is NP-hard, where Av(2413) is the class of 2413-avoiding permutations.

2 Basic definitions

A permutation of order n is a sequence in which each element of the set [n] appears
exactly once. We let Sn denote the set of permutations of order n. When writing out
short permutations explicitly, we shall omit all punctuation and write, e.g., 15342 for the
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Figure 1 Example of direct sum (left), skew sum (center) and inflation (right).

permutation 1, 5, 3, 4, 2 ∈ S5. We shall assume that there is a unique permutation of order 0,
corresponding to the empty sequence.

To represent a permutation π = π1, π2, . . . , πn graphically, we will use the permutation
diagram, which is the set of points {(i, πi); i ∈ [n]} in the plane. See Figure 1 for an example.
Note that we use Cartesian coordinates, that is, the first row of the diagram is at the bottom.

Let x = x1, x2, . . . , xn and y = y1, y2, . . . , yn be two sequences of numbers. We say that
x and y are order-isomorphic, if, for every 1 ≤ i, j ≤ n we have xi < xj ⇐⇒ yi < yj . A
permutation π ∈ Sn contains a permutation σ ∈ Sk, if π has a subsequence order-isomorphic
to σ. Such a subsequence is then an occurrence (or a copy) of σ in π. If π does not contain
σ, we say that π avoids σ.

A hereditary permutation class (or just permutation class, for short) is a set C of per-
mutations with the property that if π is in S, then all the permutations contained in π are
in C as well. For a permutation σ, we let Av(σ) denote the set of σ-avoiding permutations.
More generally, for a set F of permutations, we let Av(F ) be the set of permutations that
avoid all the elements of F . Clearly, Av(F ) is a permutation class, and any permutation
class is equal to Av(F ) for a (possibly infinite) set F .

Consider a pair of permutations σ = σ1, . . . , σk ∈ Sk and τ = τ1, . . . , τ` ∈ S`. The direct
sum of σ and τ , denoted σ ⊕ τ , is the permutation π = σ1, . . . , σk, k + τ1, k + τ2, . . . , k +
τ` ∈ Sk+`. Similarly, their skew sum, denoted σ 	 π, is the permutation ` + σ1, . . . , ` +
σk, τ1, τ2, . . . , τ` ∈ Sk+`; see Figure 1.

For a pair of permutation classes C and D, we let C ⊕D be the set {σ⊕ τ ; σ ∈ C, τ ∈ D};
note that this is again a permutation class. The class C 	 D is defined analogously. The
sum-closure of a class C, denoted C⊕, is the class of all the permutations that can be obtained
as a direct sum of finitely many members of C; the skew-closure C	 is defined analogously.

A permutation π is a merge of permutations σ and τ if we can color the elements of π
with colors red and blue so that the red elements are order-isomorphic to σ and the blue
ones to τ . The merge of a class C and a class D is the class C � D of permutations that can
be obtained by merging an element of C with an element of D.

For integers i and j, we let [i, j] denote the set {k ∈ Z; i ≤ k ≤ j}. A set of this form is an
integer interval. We also use the notation [i, j) for the interval [i, j − 1] and (i, j] for [i+ 1, j].
A box is the Cartesian product of two integer intervals. For a box B = I × J ⊆ [n]× [n] and
a permutation π = π1, . . . , πn, the restriction of π to B, denoted π|B , is the subsequence of
π formed by the entries πi satisfying i ∈ I and πi ∈ J .

Let σ = σ1, . . . , σk and τ = τ1, . . . , τ` be again a pair of nonempty permutations. The
inflation of an element σi of σ by τ , is an operation which produces a permutation

π = σ′1, σ
′
2, . . . , σ

′
i−1, τ

′
1, τ
′
2, . . . , τ

′
`, σ
′
i+1, . . . , σ

′
k,
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where the subsequence τ ′1, τ ′2, . . . , τ ′` is a copy of τ , and for any j ∈ `, the subsequence
σ′1, σ

′
2, . . . , σ

′
i−1, τ

′
j , σ
′
i+1, . . . , σ

′
k is a copy of σ; see again Figure 1. A permutation is simple,

if it cannot be obtained from two strictly smaller permutations by an inflation. For instance,
the permutation 25314 is simple, while 25341 is not, since it can be obtained, e.g., by inflating
the element ‘3’ in 2431 by the permutation 12.

For a permutation π = π1, . . . , πn the reverse of π is the permutation πn, πn−1, . . . , π1,
the complement of π is the permutation n+ 1−π1, n+ 1−π2, . . . , n+ 1−πn, and the inverse
of π is the permutation σ = σ1, . . . , σn satisfying πi = j ⇐⇒ σj = i. We let πr, πc and
π−1 denote the reverse, complement and inverse of π, respectively. Similarly, for a class of
permutations C, we let Cr denote the set {πr; π ∈ C}, and similarly for Cc and C−1. Note
that Cr, Cc and C−1 are again permutation classes.

Several commonly encountered permutation classes have standard names in the literature.
The increasing permutations are the permutations from the class Av(21) and symmetrically,
the elements of Av(12) are the decreasing permutations. The permutations avoiding both
231 and 312 are known as the layered permutations. Layered permutations can also be
characterized as those permutations that can be written as a finite direct sum in which
each summand is a decreasing permutation; that is, the class of layered permutations is the
sum-closure of Av(12). The complements of layered permutations are known as the co-layered
permutations; they form the class Av({132, 213}). Finally, the permutations from the class
Av({2413, 3142}) are known as the separable permutations; it is known [11] that these are
precisely the permutations that can be created from the permutation of size 1 by direct sums
and skew sums.

3 Tractable merges

For a permutation class C, C-recognition is the decision problem to determine whether a
given permutation belongs to C. Our main goal is to identify pairs of classes C,D for which
the (C � D)-recognition problem is tractable, i.e., solvable in polynomial time.

3.1 NLOL-recognizable classes
Our first nontrivial example of classes whose merges can be efficiently recognized are the
so-called NLOL-recognizable permutation classes. Informally speaking, a permutation class
is NLOL-recognizable if its members can be recognized by a single-pass nondeterministic
streaming algorithm with logarithmic memory.

More formally, we say that a permutation class C is nondeterministically logspace on-line
recognizable, or NLOL-recognizable for short, if there is a nondeterministic algorithm A that
recognizes C in the following setting: as the first part of the input, the algorithm A receives a
number n, which is an upper bound on the length and also on the largest value in the input
sequence. The algorithm is then given access to O(logn) bits of memory, and it receives a
sequence of distinct values π1, . . . , πk from the set [n], terminated by a special symbol EOF.
Upon receiving the EOF symbol, A answers whether the input sequence is order-isomorphic
to a permutation in C. The algorithm can store arbitrary data of size O(logn) in its memory,
but as soon as it reads the input value πi, it can no longer access the previous values of
the input. A is nondeterministically recognizing C in the sense that the input sequence is
order-isomorphic to a permutation in C if and only if at least one computation of A accepts
it. The algorithm A is then called an NLOL-recognizer of C. Note that the input sequence is
guaranteed to consist of distinct values, so the NLOL-recognizer itself does not need to verify
this property. This also implies that the input sequence has length at most n.

ESA 2018



50:6 Generalized Coloring of Permutations

We let NLOL denote the set of the NLOL-recognizable permutation classes. Clearly, for any
permutation class C ∈ NLOL, the C-recognition problem is tractable, since nondeterministic
logspace computations can be simulated in polynomial time.

One may easily observe that NLOL contains any finite permutation class, as well as the
classes Av(12) and Av(21). The key feature of NLOL is that it is closed under many important
operations with permutation classes, including the merge operation.

I Lemma 1. If C and D are NLOL-recognizable classes, then the following classes are
NLOL-recognizable as well:
(a) The classes C ∩ D and C ∪ D.
(b) The classes Cr and Cc.
(c) The classes C⊕ and C	, i.e., the sum-closure and skew-closure of C.
(d) The classes C ⊕ D and C 	 D.
(e) The class C � D.

I Corollary 2. For any sequence of classes C1, C2, . . . , Ck ∈ NLOL, the class C1�C2�· · ·�Ck
is in NLOL, and therefore polynomially recognizable.

Lemma 1 shows that NLOL contains many important permutation classes, including the
classes of layered and co-layered permutations, as well as any class of the form Av(1, 2, 3 . . . , k)
or Av(k, k − 1, . . . , 1).

On the negative side, it can be shown that NLOL does not contain some other important
classes, such as the class of separable permutations, or its subclasses Av(231), Av(213),
Av(312) and Av(132). These five classes share a common feature: their elements have a
simple recursive tree-like structure involving direct sums, skew sums and inflations. We shall
soon formalize this notion of tree-like structure via the concept of bounded grid-width, and
show that it leads to another general type of tractable merges. Before we get there, however,
we first introduce a restricted form of NLOL that will play an important part in conjunction
with bounded grid-width classes.

3.2 2D-NLOL-recognizable classes
Informally speaking, a permutation class is 2D-NLOL-recognizable, if its members can
be recognized by a single-pass nondeterministic streaming algorithm over a sequence of
index-value pairs in a left-to-right, bottom-to-top order.

Let P = {(x1, y1), . . . , (xn, yn)} be a set of points in the plane. We say that P is in
general position if no two of its points are on the same horizontal or vertical line, i.e., there
is no i 6= j with xi = xj or yi = yj . We say that a permutation π ∈ Sn is shape-isomorphic
to P if there is a bijection f : [n]→ [n] such that for every i and j the following holds: i < j

if and only if xf(i) < xf(j) and πi < πj if and only if yf(i) < yf(j). Note that a permutation
π ∈ Sn is shape-isomorphic to its diagram {(i, πi); i ∈ [n]}.

Let (x1, y1), (x2, y2), . . . , (xk, yk) be a sequence of distinct points in general position. We
say that the sequence is top-right monotone if for every i ∈ [k] the point (xi, yi) is to the
right or above all the previous points of the sequence; formally, for every i ∈ [k], either for
every j < i we have xj < xi or for every j < i we have yj < yi. Note that there can be
several top-right monotone sequences corresponding to a single point set. Note also, that a
sequence (x1, y1), (x2, y2), . . . , (xk, yk) ⊆ [n]× [n] in general position is top-right monotone
if and only if for every i ∈ [k] there is a box Bi = [1, ri]× [1, ti] which contains the points
(x1, y1), . . . , (xi, yi) but none of the points (xi+1, yi+1), . . . , (xk, yk). A sequence of points is
admissible if it is in general position and top-right monotone.
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We will now consider nondeterministic logspace algorithms that receive an integer n,
followed by an admissible sequence of points in [n] × [n] as their input. To describe the
assumptions we make about the algorithms, we first introduce some terminology. Let A
be such nondeterministic algorithm. A position of the algorithm A is a pair (p,m), where
p = (px, py) is a point in [n + 1] × [n + 1] and m is a memory state of A. Let S be an
admissible sequence of points. We say that A can reach the position (p,m) on input S, if
S is contained in the box [1, px)× [1, py) and there is a computation of A starting from its
initial state and ending in state m after processing S. Let p = (px, py) and p′ = (p′x, p′y) be
two points with 1 ≤ px ≤ p′x ≤ n and 1 ≤ py ≤ p′y ≤ n, and S be an admissible sequence.
We say that A can reach position (p′,m′) from position (p,m) on input S, if S is contained
in the box [1, p′x)× [1, p′y) but disjoint from the box [1, px)× [1, py), and the algorithm A has
a computation starting in state m and ending in state m′ after processing S.

We say that an algorithm A is order-oblivious if it has the following property: for any pair
of positions (p,m) and (p′,m′) with p ≤ p′, and for any pair of admissible sequences S and
S′ that correspond to two top-right monotone orderings of the same point set, A can reach
(p′,m′) from (p,m) on input S if and only if it can reach (p′,m′) from (p,m) on input S′.
Informally speaking, the state reached by an order-oblivious algorithm only depends on the
set of points it has received as input, but not on their ordering. We may therefore say, e.g.,
that A reaches position (p,m) on a set of points P , without specifying the particular ordering
of P , with the assumption that the ordering is top-right monotone.

We say that an order-oblivious algorithm A is box-coherent if it has the following property:
for any indices i ≤ i′ and j ≤ j′, consider the four points px = (i, j), pp = (i, j′), py = (i′, j)
and pq = (i′, j′) and four corresponding memory states mx, mp, my and mq. Suppose that A
can reach the position (py,my) from (px,mx) on an input X ⊆ [i, i′)× [1, j), and that it can
reach (pp,mp) from (px,mx) on an input Y ⊆ [1, i)× [j, j′). Let Z be a subset of [i, i′)× [j, j′)
such that X ∪Y ∪Z is in general position. Let (pq,mq) be a position reachable from (py,my)
on input Y ∪Z. Then the reachability of (pq,mq) from (pp,mp) on input X ∪Z only depends
on the four states mx,my,mp,mq and the set Z; in particular, it does not depend on the
the set X itself. Symmetrically, if we let (pq,mq) be a position reachable from (pp,mp) on
input X ∪Z then the reachability of (pq,mq) from (py,my) on input Y ∪Z only depends on
the four memory states and the set Z, but does not depend on Y . Informally, box-coherence
means that the memory states mx and my retain enough information about X to determine
the reachable states on inputs of the form X ∪ Z.

We say that a permutation class C is 2D nondeterministically logspace on-line recognizable,
or 2D-NLOL-recognizable for short, if there is a nondeterministic order-oblivious box-coherent
algorithm A that recognizes C in the following setting: as the first part of the input, the
algorithm A receives a number n, which is an upper bound on the largest value in the input
sequence. The algorithm is then given access to O(logn) bits of memory, and it receives a
top-right monotone sequence of points (x1, y1), (x2, y2), . . . , (xk, yk) from [n]× [n], terminated
by a special symbol EOF. Upon receiving the EOF symbol, the algorithm answers whether the
input sequence is shape-isomorphic to a permutation in C. The algorithm can store arbitrary
data of size O(logn) in its memory, but after it reads the value (xi, yi) from the input, it
cannot access any of the previous values. A is nondeterministically recognizing C in the sense
that the input sequence is shape-isomorphic to a permutation in C if and only if at least one
computation of A accepts it. The algorithm A is then called a 2D-NLOL-recognizer of C.
Note that the algorithm A does not have to verify that the input is in general position; in
other words, on inputs that fail this condition, the behavior of A can be arbitrary.
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50:8 Generalized Coloring of Permutations

We let 2D-NLOL denote the set of the 2D-NLOL-recognizable permutation classes. Clearly,
2D-NLOL is contained in NLOL: the left-to-right ordering is a special case of a top-right
monotone ordering, and any 2D-NLOL-recognizer can be trivially transformed into an NLOL-
recognizer. Furthermore, we observe that 2D-NLOL contains any finite permutation class,
as well as the classes Av(12) and Av(21). And like NLOL, 2D-NLOL is closed under many
important operations with permutation classes, including the merge operation.

I Lemma 3. If C and D are 2D-NLOL-recognizable classes, then the following classes are
2D-NLOL-recognizable as well:
(a) The classes C ∩ D and C ∪ D.
(b) The class C−1, which contains the inverses of the permutations of C.
(c) The classes C⊕ and C	, i.e., the sum-closure and skew-closure of C.
(d) The classes C ⊕ D and C 	 D.
(e) The class C � D.

4 Grid-width

Let us introduce a decomposition of permutations and a corresponding width parameter,
which are suited for describing various algorithms using dynamic programming.

An interval family I is a set of pairwise disjoint integer intervals with the natural ordering
I1, . . . , In such that for j < k, Ij < Ik. For two interval families I and J , let I × J denote
the naturally defined set of boxes in the plane. For a point set A in the plane, let x(A)
denote its projection on the x-axis and equivalently y(A) its projection on the y-axis. The
intervalicity of a set A ⊆ [n], denoted by I(A), is the size of the smallest interval family
whose union is equal to A.

A grid tree of a permutation π ∈ Sn is a rooted binary tree T with n leaves, each leaf
being labeled by a distinct point of the permutation diagram {(i, πi); i ∈ [n]}. Let STv denote
the point set of the labels on the leaves in the subtree of T rooted in v. The grid-width of a
vertex v in T is the maximum of the intervalicities I(x(STv )) and I(y(STv )), and the grid-with
of T , denoted by gwT (π), is the maximum grid-width of a vertex of T . Finally, the grid-width
of a permutation π, denoted by gw(π), is the minimum of gwT (π) over all grid trees T of π.

It can be shown, by using the ideas of Ahal and Rabinovich [2], that the grid-width of a
permutation π corresponds, up to a multiplicative constant, to the tree-width of the so-called
adjacency graph Gπ associated with π. This also implies that grid-width admits an efficient
constant-factor approximation.

4.1 GT-recognizable classes
We shall now define a type of class whose recognition problem is tractable on inputs of
bounded grid-width. Informally speaking, a class is GT-recognizable if its members can be
recognized by a dynamic programming algorithm over their grid tree.

First, let us define an efficient way to encode merging of two interval families. A merge
description of interval families I1 and I2 into an interval family I is a pair (f, g), where

f : [|I1|+ |I2|]→ {1, 2} encodes the interleaving of the intervals of I1 and I2, and
g is a monotone function [|J |]→ [|I1|+|I2|] that describes first interval of each consecutive
sequence of intervals that merges to a single interval.

Observe that the knowledge of the merge description together with the interval families
I1 and I2 uniquely determines the resulting interval family I.
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For the following definitions, fix a permutation π of length n with a grid tree T . For any
vertex v, let Iv be the unique minimal interval decomposition of x(STv ) and similarly let Jv
be the unique minimal interval decomposition of y(STv ). Let u be a vertex of T with children
v and w. A merge description of vertex u is then a pair (M1,M2), where

M1 is a merge description of the interval families Iv and Iw into Iu, and
M2 is a merge description of the interval families Jv and Jw into Ju.

It is easy to see that the shape of T (omitting the labels on its leaves) together with
merge descriptions of its inner vertices uniquely determines both the original T and π. For
technical reasons, we now allow grid trees to have unlabeled (empty) leaves, which represent
an empty subpermutation. For an empty leaf v, both interval families Iv and Jv are just
empty sets. We say that T is a merge-labeled tree if every inner vertex is labeled with its
merge description, every non-empty leaf has label ε0 and every empty leaf has label ε1.

We say that a permutation class C is grid tree recognizable, or GT-recognizable for short,
if there is an algorithm A that receives the grid-width g and outputs a tree automaton that
recognizes C over merge-labeled trees of grid-width at most g.

A tree automaton over merge-labeled trees is a tuple A = (Q,∆, F ), where Q is a set
of states, F ⊆ Q is a set of final states, and ∆ is a set of transition rules of the form
(M, q1, q2) → q, for merge description M and states q1, q2 ∈ Q, and of rules of the form
εi → q for i ∈ {0, 1} and q ∈ Q. A run of A on a merge-labeled tree T is simply T labeled
with states from Q such that all the states together with their transitions are consistent with
the rules of ∆. A run is accepting if its state q in the root of T belongs to the set of final
states F .

As with NLOL and 2D-NLOL, the GT-recognizable classes are closed with respect to many
important operations.

I Lemma 4. If C and D are GT-recognizable classes, then the following classes are GT-
recognizable as well:
(a) The classes C ∩ D and C ∪ D.
(b) The classes Cr, Cc and C−1.
(c) The classes C⊕ and C	, i.e., the sum-closure and skew-closure of C.
(d) The classes C ⊕ D and C 	 D.
(e) The class C � D.
Moreover, it can be shown that any class determined by a finite set of minimal forbidden
patterns is GT-recognizable.

Fix an input permutation π. Let A be a 2D-NLOL-recognizer and M its set of memory
states. We call a point set E a grid set if it can be expressed as Ex×Ey for some Ex, Ey ⊆ [n].
A tuple (E, g) is a grid set of positions if E is a grid point set and g : E →M . We say that
(E, g) is consistent if for any two points p = (px, py), r = (rx, ry) ∈ E such that px ≤ rx and
py ≤ ry, A can reach position (p, g(p)) from position (r, g(r)). The first lemma claims that if
we have a box with prescribed states in the lower left and upper right corner, which constitute
a reachable pair, then we can extend it to consistent grid set for arbitrary subgridding of the
box. The second simply states that for a consistent grid set, we can exchange contents of
any box as long as we do not violate reachability locally.

I Lemma 5. Let E = Ex × Ey be a grid set, e1 ≤ e2 the minimal and maximal element of
Ex and f1 ≤ f2 the minimal and maximal element of Ey. Let mx,mq ∈ A be a pair of states
such that (e1, f1) and (e2, f2) are reachable through mx and mq. Then there is a function
g : E →M such that (E, g) is consistent and moreover g(e1, f1) = mx and g(e2, f2) = mq.

ESA 2018



50:10 Generalized Coloring of Permutations

I Lemma 6. Let (E, g) be a grid set consistent over some subpermutation π′ of permuta-
tion π, and p = (p1, p2) and r = (r1, r2) two its points such that E ∩ [p1, p2] × [r1, r2]
contains only the four points (p1, p2), (r1, p2), (p1, r2), (r1, r2). Then replacing the subper-
mutation π′|[p1,r1)×[p2,r2) with a different subpermutation σ of π does not violate the con-
sistency property as long as the reachability is preserved for all the pairs among the points
(p1, p2), (r1, p2), (p1, r2), (r1, r2).

We may now state and prove our main result.

I Theorem 7. If C is a 2D-NLOL-recognizable class and D is a GT-recognizable class such
that every π ∈ D has grid-width bounded by g, then C � D is polynomially recognizable.

Proof. Let the input be a permutation π of length n, let A be the 2D-NLOL-recognizer of C
and B be the tree automaton recognizing D over merge-labeled trees of grid-with at most g.
The general outline of our approach is fairly simple, we want to efficiently emulate B on all
the subpermutations of π with grid-width at most g while at the same time simulating A
on the remaining elements. Throughout this proof we shall use the color red to color the
part belonging to C and blue for the part belonging to D. Let M denote the set of possible
memory states of A during computation on permutation of length n, and let N denote the
set of states of B. Observe that the size of M is at most nc for some constant c and the size
of N is at most f(g) for a computable function f .

We shall define a polynomially bounded number of problems that can be effectively solved
by recursion. A problem is a tuple (I,J ,Q, s), where
I and J are interval families of integers in [n] each of size at most g,
Q : I × J →M4 assigns four memory states of A to each pair of the intervals, and
s ∈ N is a possible state of the automaton B.

There are at most n4g choices for the intervals, at most n4cg2 choices for the memory
states and finally at most f(g) choices for the states of the tree automaton B, which makes
the total number of problems at most f(g)n4g+4g2c.

We then say that a problem (I,J ,Q, s) is feasible if there is a red-blue coloring of the
subset of π that lies in the union of I × [n] and [n]× J with the following properties:

the permutation πB corresponding to the blue elements is contained in I×J and moreover,
for every I = [i1, i2] ∈ I it holds that both (i1, πi1) and (i2, πi2) are colored blue, and
similarly for every J = [j1, j2] ∈ J we have that both (π−1

j1
, j1) and (π−1

j2
, j2) are colored

blue,
πB belongs to D and there exists its grid tree T of grid-width at most g whose root has
its minimal interval decompositions identical to I and J , and moreover, there is a run of
the automaton B over the tree T that assigns the state s to the root of T , and
for any two intervals I = [i1, i2] ∈ I and J = [j1, j2] ∈ J such that Q(I, J) =
(mx,my,mp,mq), the grid set (E, l) that contains the points (i1, j1), (i2 + 1, j1), (i1, j2 +
1), (i2 + 1, j2 + 1) with their respective states mx,my,mp,mq, is consistent over the
elements of πR.

Let m0 ∈M be the initial memory state of A, mF ∈M be a memory state corresponding
to a permutation in C and s ∈ N be a final state of B. We say that a problem (I,
J , Q, s) is initial if I and J contain only single intervals I = [i1, i2] and J = [j1, j2]
and Q(I, J) = (mx,my,mp,mq) such that the positions ((i1, j1),mx), ((i2, j1),my) and
((i1, j2),mp) are reachable from ((0, 0),m0), and ((n + 1, n + 1),mF ) is reachable from
((i2 +1, j2 +1),mq). It follows from the definition that π belongs to C�D if and only if one of
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I1 I2I2

J1

J1

J2

Figure 2 Decomposing problems into subproblems in Feasible. The original problem (left) and
its possible subproblems (center and right).

the initial problems is feasible. Thus, we can decide membership if we compute the feasibility
of all the initial problems since the additional conditions above are easily checkable.

We describe a recursive algorithm Feasible(I, J , Q, s) that takes a problem and either
reports unsuccess or outputs some red-blue coloring of π restricted to I × [n] ∪ [n]× J that
witnesses its feasibility. If we have a problem where both I and J contain only one interval,
and the interval is in fact just a single point, then the feasibility of such problem is easily
decidable. Otherwise, we recursively call Feasible on a pair of subproblems (I1, J1, Q1,
s1) and (I2, J2, Q2, s2) with the following properties:
I1, I2 are two disjoint non-empty interval families whose union is contained in I, and
J1,J2 two disjoint interval families whose union is contained in J ,
Q1 and Q2 are consistent with Q, and
s1, s2 ∈ N are arbitrary.

See Figure 2. There are at most n4g choices for the interval families. In order to bound the
number of states, observe that we have 8g2 positions for the memory states and f(g) states
of B, which gives us at most f(g)2n8g2 choices. This way, we defined at most f(g)2n4g+8cg2

pairs of strictly smaller subproblems and we call Feasible recursively on each of them.
We continue by describing the composition of outputs returned by Feasible on the

subproblems (I1,J1,Q1, s1) and (I2,J2,Q2, s2) into a coloring returned by Feasible on
the problem (I, J , Q, s). If at least one of the recursive calls ends unsuccessfully we move
to the next pair. Suppose that both of them are feasible and we have red-blue colorings
of π restricted to the union of Iα × [n] and [n]× Jα for α ∈ {0, 1}. Since we are trying to
emulate the interval merging of a grid tree, we color all the remaining elements in the union
of I × [n] and [n]× J red. Now we trivially check if the first condition of feasibility holds.
In order to satisfy the second condition, it is sufficient to verify that B contains a transition
((M1,M2), s1, s2)→ s where M1 and M2 are the merge descriptions of the interval families
I1, I2 into I and J1,J2 into J . Note that in our case the union I1 and I2 might not be
equal to I but we simply define the merge descriptions while forgetting the missing elements
(and similarly for J ). This check takes at most h(g) time for some computable function h
depending on D.

Finally, we need to check the third condition of feasibility. Fix some intervals I ∈ I and
J ∈ J with Q = (mx,my,mp,mq). Since we have a coloring of I × [n] and [n]×J , it suffices
to check whether the corresponding grid set is consistent over the elements of πR precisely as
described in the condition. Simulating the nondeterministic recognizer on fixed input can be
done in at most O(nc+1) time, thus making the total time spent checking the third condition
at most O(g2nc+1). If all three verifications succeed we output the created coloring.
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It follows that the total time spent computing Feasible(I, J , Q, s), omitting the
recursive calls, is O(f(g)3h(g)g2n4g+8cg2+c+c2) where c2 is a constant independent of g that
captures the time spent per subproblem on enumerating all the possible subproblem pairs
and testing the first condition. Therefore, the total time required to solve all the problems is
at most O(f ′(g)n12cg2+8g+c+c2) where f ′ is some computable function.

Whenever Feasible outputs a coloring of an initial problem, we verify all the conditions
of feasibility and thus we obtain a coloring that witnesses π ∈ C � D. For the converse,
suppose that π ∈ C � D and we aim to show that we obtain a positive answer on the
membership problem. Fix a red-blue coloring witnessing π ∈ C � D. Due to Lemma 5, there
is a grid set (E, l) with E = [n+1]× [n+1] that is consistent with the accepting computation
of A over πR. We say that a problem (I, J , Q, s) is globally feasible if the problem is feasible,
there is an extension of some feasible coloring to the fixed coloring of the whole π and Q
assigns precisely the memory states prescribed by (E, l). As we mentioned before, if π can
be properly colored then there has to be some initial state that is globally feasible. We aim
to show that for a globally feasible problem (I, J , Q, s), Feasible successfully outputs a
feasible coloring which would therefore imply the correctness of the algorithm.

We prove this by induction on the size of I and J . For any globally feasible problem
with I and J such that both I × J contain a single point, Feasible clearly outputs some
coloring. For a larger globally feasible problem (I, J , Q, s), we first describe how to split
the problem into two specific subproblems that are also globally feasible. The splitting of
the interval families is uniquely determined by the fixed coloring of the whole permutation
together with the first condition of feasibility. Note that the first condition also ensures that
we do not reach leaves of the grid tree corresponding to πB before the interval families get
trivial. Second condition determines the states of the tree automaton and we define Q to be
consistent with the grid set (E, l). It is easy to see that these subproblems are also globally
feasible and thus the subsequent calls of Feasible return two partial colorings.

Finally, it remains to argue that it does not matter which feasible colorings we obtain
from the recursion. Suppose that the subsequent calls of Feasible returned feasible colorings
different from our fixed coloring. However, here we can use the global feasibility together with
Lemma 6 to see that we can replace the subpermutations box by box and the consistency is
preserved. Therefore, the coloring obtained by joining the feasible colorings of the subproblems
satisfies all the conditions and is returned by Feasible. J

5 Hard cases of merge-recognition

Let us mention, without going into details, that we can also provide examples of merges
C � D whose recognition problem is NP-hard, even when the classes C and D are themselves
determined by a single forbidden pattern. Specifically, we can prove the following result.

I Theorem 8. For any simple permutation α of order at least 4, the recognition problem for
the class Av(α)�Av(α) is NP-complete.

6 Concluding remarks and open problems

The complexity of many cases of (C � D)-recognition remains open. One natural question is
to consider the merge of GT-recognizable classes that have bounded grid-width but do not
belong to NLOL. Classes of this type include many important examples, such as the class
Av(2413, 3142) of separable permutations, or the class Av(213) and its symmetries.
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I Open problem 1. What is the complexity of (C�D)-recognition when C and D are any two
(possibly identical) classes from the set {Av(2413, 3142),Av(213),Av(231),Av(132),Av(312)}?

It is also natural to consider ‘unbalanced’ merges, when one of the two classes is very
simple, e.g., the class Av(21) of increasing permutations. Our results imply that (C �Av(21))-
recognition is tractable when C is in NLOL or when C is a GT class of bounded grid-width,
but we know nothing about the remaining cases.

I Open problem 2. For which classes C is the (C �Av(21))-recognition polynomial?
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