
Decremental SPQR-trees for Planar Graphs
Jacob Holm1

University of Copenhagen, Denmark
jaho@di.ku.dk

https://orcid.org/0000-0001-6997-9251

Giuseppe F. Italiano2

University of Rome Tor Vergata, Italy
giuseppe.italiano@uniroma2.it

https://orcid.org/0000-0002-9492-9894

Adam Karczmarz3

University of Warsaw, Poland
a.karczmarz@mimuw.edu.pl

https://orcid.org/0000-0002-2693-8713

Jakub Łącki4

Google Research, USA
jlacki@google.com

https://orcid.org/0000-0001-9347-0041

Eva Rotenberg
Technical University of Denmark, Denmark
erot@dtu.dk

https://orcid.org/0000-0001-5853-7909

Abstract
We present a decremental data structure for maintaining the SPQR-tree of a planar graph subject
to edge contractions and deletions. The update time, amortized over Ω(n) operations, isO(log2 n).
Via SPQR-trees, we give a decremental data structure for maintaining 3-vertex connectivity in
planar graphs. It answers queries in O(1) time and processes edge deletions and contractions in
O(log2 n) amortized time. The previous best supported deletions and insertions in O(

√
n) time.

2012 ACM Subject Classification Theory of computation→ Dynamic graph algorithms, Theory
of computation → Graph algorithms analysis, Theory of computation → Data structures design
and analysis

Keywords and phrases Graph embeddings, data structures, graph algorithms, planar graphs,
SPQR-trees, triconnectivity

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.46

Related Version A full version of the paper is available at [27], http://arxiv.org/abs/1806.
10772.

1 Jacob Holm is supported by Mikkel Thorup’s Advanced Grant DFF-0602-02499B from the Danish
Council for Independent Research under the Sapere Aude research career programme.

2 Giuseppe F. Italiano is partially supported by the Italian Ministry of Education, University and Research
under Project AMANDA (Algorithmics for MAssive and Networked DAta).

3 Adam Karczmarz is supported by the grants 2014/13/B/ST6/01811 and 2017/24/T/ST6/00036 of the
Polish National Science Center.

4 When working on this paper Jakub Łącki was partly supported by the EU FET project MULTIPLEX
no. 317532 and the Google Focused Award on “Algorithms for Large-scale Data Analysis” and Polish
National Science Center grant number 2014/13/B/ST6/01811. Part of this work was done while Jakub
Łącki was visiting the Simons Institute for the Theory of Computing.

© Jacob Holm, Giuseppe F. Italiano, Adam Karczmarz, Jakub Łącki, and Eva Rotenberg;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 46; pp. 46:1–46:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/160477951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jaho@di.ku.dk
https://orcid.org/0000-0001-6997-9251
mailto:giuseppe.italiano@uniroma2.it
https://orcid.org/0000-0002-9492-9894
mailto:a.karczmarz@mimuw.edu.pl
https://orcid.org/0000-0002-2693-8713
mailto:jlacki@google.com
https://orcid.org/0000-0001-9347-0041
mailto:erot@dtu.dk
https://orcid.org/0000-0001-5853-7909
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.46
http://arxiv.org/abs/1806.10772
http://arxiv.org/abs/1806.10772
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

46:2 Decremental SPQR-trees for Planar Graphs

1 Introduction

A graph algorithm is called dynamic if it is able to answer queries about a given property
while the graph is undergoing a sequence of updates, such as edge insertions and deletions. It
is incremental if it handles only insertions, decremental if it handles only deletions, and fully
dynamic if it handles both insertions and deletions. In designing dynamic graph algorithms,
one is typically interested in achieving fast query times (either constant or polylogarithmic),
while minimizing the update times. The ultimate goal is to perform fast both queries and
updates, i.e., to have both query and update times either constant or polylogarithmic. So
far, the quest for obtaining polylogarithmic time algorithms has been successful only in few
cases. Indeed, efficient dynamic algorithms with polylogarithmic time per update are known
only for few problems, such as dynamic connectivity, 2-connectivity, minimum spanning
tree and maximal matchings in undirected graphs (see, e.g., [6, 24, 25, 29, 37, 52, 54, 56]).
On the other hand, some dynamic problems appear to be inherently harder. For example,
the fastest known algorithms for basic dynamic problems, such as reachability, transitive
closure, and dynamic shortest paths, have updates that run in only polynomial time (see,
e.g., [9, 10, 11, 39, 49, 51, 55]).

A similar situation holds for planar graphs where dynamic problems have been studied
extensively, see e.g. [3, 14, 16, 18, 20, 21, 26, 34, 42, 43, 44, 45, 53]. Despite this long-time
effort, the best algorithms known for some basic problems on planar graphs, such as dynamic
shortest paths and dynamic planarity testing, still have polynomial update time bounds.
For instance, for fully dynamic shortest paths on planar graphs the best known bound per
operation is Õ(n2/3) amortized [19, 34, 36, 40] (using Õ-notation to hide polylogarithmic
factors), while for fully dynamic planarity testing the best known bound per operation is
O(
√
n) amortized [16].

In the last years, this exponential gap between polynomial and polylogarithmic bounds
has sparkled some new exciting research. On one hand, it was shown that there are
dynamic graph problems, including fully dynamic shortest paths, fully dynamic single-source
reachability and fully dynamic strong connectivity, for which it may be difficult to achieve
subpolynomial update bounds. This started with the pioneering work by Abboud and
Vassilevska-Williams [2], who proved conditional lower bounds based on popular conjectures.
Very recently, Abboud and Dahlgaard [1] proved polynomial lower bounds for the update
time for dynamic shortest paths also on planar graphs, again based on popular conjectures.

On the other hand, the question of improving the update bounds from polynomial to
polylogarithmic, has, for several other dynamic graph problems, received much attention
in the last years. For instance, there was a very recent improvement from polynomial to
polylogarithmic bounds for decremental single-source reachability (and strongly connected
components) on planar graphs: more precisely, the improvement was from O(

√
n) amor-

tized [42] to O(log2 n log logn) amortized [33] (both amortizations are over sequences of Ω(n)
updates). Other problems that received a lot of attention are fully dynamic connectivity and
minimum spanning tree in general graphs. Up to very recently, the best worst-case bound
for both problems was O(

√
n) per update [15]: since then, much effort has been devoted

towards improving this bound (see e.g., [37, 38, 47, 48, 57]).
In this paper, we follow the ambitious goal of achieving polylogarithmic update bounds

for dynamic graph problems. In particular, we show how to improve the update times from
polynomial to polylogarithmic for another important problem on planar graphs: decremental
3-vertex connectivity. Given a graph G = (V,E) and two vertices x, y ∈ V we say that x and

J. Holm, G. F. Italiano, A. Karczmarz, J. Łącki, and E. Rotenberg 46:3

y are 2-vertex connected (or, as we say in the following, biconnected) if there are at least two
vertex-disjoint paths between x and y in G. We say that x and y are 3-vertex connected (or, as
we say in the following, triconnected) if there are at least three vertex-disjoint paths between
x and y in G. The decremental planar triconnectivity problem consists of maintaining a
planar graph G subject to an arbitrary sequence of edge deletions, edge contractions, and
query operations which test whether two arbitrary input vertices are triconnected. We
remark that decremental triconnectivity on planar graphs is of particular importance. Apart
from being a fundamental graph property, a triconnected planar graph has only one planar
embedding, a property which is heavily used in graph drawing, planarity testing and testing
for isomorphism [31, 32, 35]. Furthermore, our extended repertoire of operations, which
includes edge contractions, contains all operations needed to obtain a graph minor, which is
another important notion for planar graphs.

While polylogarithmic update bounds for decremental 2-edge and 3-edge connectivity,
and for decremental biconnectivity on planar graphs have been known for more than two
decades [20], decremental triconnectivity on planar graphs presents some special challenges.
Indeed, while connectivity cuts for 2-edge and 3-edge connectivity, and for biconnectivity have
simple counterparts in the dual graph or in the vertex-face graph (see Section 2 for a formal
definition of vertex-face graph), triconnectivity cuts (separation pairs, i.e., pairs of vertices
whose removal disconnects the graph) have a much more complicated structure in planar
graphs. Roughly speaking, maintaining 2-edge and 3-edge connectivity cuts in a planar graph
under edge deletions corresponds to maintaining respectively self-loops and cycles of length
2 (pairs of parallel edges) in the dual graph under edge contractions. Similarly, maintaining
biconnectivity and triconnectivity cuts in a planar graph under edge deletions corresponds to
maintaining, respectively, cycles of length 2 and cycles of length 4 in the vertex-face graph.
While detecting cycles of length 2 boils down to finding duplicates in the multiset of all edges,
detecting cycles of length 4 under edge contractions is far more complex. We believe that
this is the reason why designing a fast solution for decremental triconnectivity on planar
graphs has been an elusive goal, and the best bound known of O(

√
n) per update [17] has

been standing for over two decades.

Our results and techniques. Our main result is given in the following theorem.

I Theorem 1. There is a data structure that can be initialized on a planar graph G on n

vertices and O(n) edges in O(n logn) time, and support any sequence of Ω(n) edge deletions
or contractions in total time O(n log2 n), while supporting queries to pairwise triconnectivity
in worst-case constant time per query.

This is an exponential speed-up over the previous O(
√
n) long-standing bound [17]. To

obtain our bounds, we also need to solve decremental biconnectivity on planar graphs in
constant time per query and O(log2 n) amortized time per edge deletion or contraction. (A
better O(logn) amortized bound can be obtained if no contractions are allowed [26].) In the
description we assume that the graph is embedded in the plane (a so-called plane graph).
However, the data structure may handle an arbitrary planar (non-embedded) graph by first
embedding the initial graph in the plane in linear time. This choice of initial embedding has
no effect on either the queries, or on which edge deletions or contractions are possible.

Our results are obtained using two new tools, which may be of independent interest. The
first tool is an algorithm for efficiently detecting and reporting cycles of length 4 as they arise
in a dynamic plane graph subject to edge contractions and insertions. The algorithm works
for a graph with bounded face-degree, i.e, where each face is delimited by at most some

E S A 2 0 1 8

46:4 Decremental SPQR-trees for Planar Graphs

constant number of edges. Specifically, given a plane graph with bounded face-degree subject
to edge-contractions and edge-insertions across a face, we can maintain the set of edges lying
on cycles of length at most 4. The total running time is O(n logn). One of the challenges
that we face is that a plane graph may have as many as Ω(n2) distinct cycles of length 4.
Still, we give a surprisingly simple algorithm for solving this problem. The difficulty of the
algorithm lies in the analysis — in fact, this analysis is the most technically involved part of
this paper.

The second tool is a new data structure that maintains the SPQR-tree [12] of each
biconnected component of a planar graph subject to edge deletions and edge contractions, in
O(log2 n) amortized time per operation. While incremental algorithms for maintaining the
SPQR-tree were known for more than two decades [12, 13], to the best of our knowledge no
decremental algorithm was previously known.

Organization of the paper. The remainder of the paper is organized as follows. In Section 2,
we introduce notation and definitions that we later use. Then, in Section 3 we present a
high-level overview of our results. Finally, in Section 4 we give more details of our algorithm
for maintaining an SPQR-tree under edge deletions and contractions.

Due to space constraints, the algorithm for detecting cycles of length 4 under contractions,
which is a key tool in maintaining an SPQR-tree, is deferred to the full version [27], along
with the detailed discussion of how to use the SPQR-trees to maintain information about
triconnectivity, and a selections of proofs omitted from Section 4.

2 Preliminaries

Throughout the paper we use the term graph to denote an undirected multigraph, that is,
we allow the graphs to have parallel edges and self-loops. Formally, each edge e of such a
graph is a pair ({u,w}, id(e)) consisting of a pair of vertices and a unique integer identifier
used to distinguish between the parallel edges. For simplicity, in the following we skip the
identifier and use just uw to denote one of the edges connecting vertices u and w. If the
graph contains no parallel edges and no self-loops, we call it simple.

Given a graph G, we use V (G) to denote the vertices, and E(G) to denote the edges of
G. For e ∈ E(G), we use G− e to denote the graph obtained from G by removing e. If e
is not a self-loop, we use G/e to denote the graph obtained by contracting e. A cycle C of
length |C| = k in a graph G is a cyclic sequence of edges C = e1, e2 . . . , ek where ei = uiui+1
for 1 ≤ i < k and ek = uku1. Note that this definition allows cycles of length 1 (a self-loop)
or 2 (a pair of parallel edges). A cycle is simple if id(ei) 6= id(ej) and ui 6= uj for i 6= j. We
sometimes abuse notation and treat a cycle as a set of edges or a cyclic sequence of vertices.

The components of a graph G are the minimal subgraphs H ⊆ G such that for every edge
uv ∈ E(G), u ∈ V (H) if and only if v ∈ V (H). The components of a graph partition the
vertices and edges of the graph. A graph G is connected if it consists of a single component.
For a positive integer k, a graph is k-vertex connected if and only if it is connected, has at
least k vertices, and stays connected after removing any set of at most k − 1 vertices. The
local vertex connectivity of a pair of vertices u, v, denoted κ(u, v), is the maximal number
of internally vertex-disjoint u, v-paths. By Menger’s Theorem [46], G is k-vertex connected
if and only if κ(u, v) ≥ k for every pair of non-adjacent vertices u, v. We say that u, v
are (locally) k-vertex connected if κ(u, v) ≥ k. We follow the common practice of using
biconnected as a synonym for 2-vertex connected and triconnected as a synonym for 3-vertex
connected. An articulation point v of G is a vertex whose removal increases the number of

J. Holm, G. F. Italiano, A. Karczmarz, J. Łącki, and E. Rotenberg 46:5

x

y

S

P S

S

P

R

P

R

Figure 1 A biconnected graph and its SPQR-tree. Note that adding the edge xy would collapse
a path of SPQR-nodes into one. Deletion can thus result in the opposite transformation.

components of G. Thus, a graph is biconnected if and only if it is connected and has no
articulation points.

The structure of the biconnected components of a connected graph can be described by a
tree called the block-cutpoint tree [23, p. 36], or BC-tree for short. This tree has a vertex for
each biconnected component (block) and for each articulation point of the graph, and an
edge for each pair of a block and an articulation point that belongs to that block.

We recall that a graph G that is biconnected but not triconnected has at least one
separation pair, i.e., a pair of vertices that can be removed to disconnect G:

I Definition 2 (Hopcroft and Tarjan [30, p. 6]). Let {a, b} be a pair of vertices in a biconnected
multigraph G. Suppose the edges of G are divided into equivalence classes E1, E2, . . . , Ek,
such that two edges which lie on a common path not containing any vertex of {a, b} except
as an end-point are in the same class. The classes Ei are called the separation classes of G
with respect to {a, b}. If there are at least two separation classes, then {a, b} is a separation
pair of G unless (i) there are exactly two separation classes, and one class consists of a single
edge, or (ii) there are exactly three classes, each consisting of a single edge5.

The notion of the block cutpoint tree over biconnected components can be generalised to
an SPQR-tree over triconnected components as follows:

I Definition 3. The SPQR-tree for a biconnected multigraph G = (V,E) with at least 3
edges is a tree with nodes labeled S, P, or R, where each node x has an associated skeleton
graph Γ(x) with the following properties:

For every node x in the SPQR-tree, V (Γ(x)) ⊆ V .
For every edge e ∈ E there is a unique node x in the SPQR-tree such that e ∈ E(Γ(x)).
For every edge (x, y) in the SPQR-tree, V (Γ(x)) ∩ V (Γ(y)) is a separation pair {a, b} in
G, and there is a virtual edge ab in each of Γ(x) and Γ(y) that corresponds to (x, y).
For every node x in the SPQR-tree, every edge in Γ(x) is either in E or a virtual edge.
If x is an S-node, Γ(x) is a simple cycle with at least 3 edges.
If x is a P-node, Γ(x) consists of a pair of vertices with at least 3 parallel edges.
If x is an R-node, Γ(x) is a simple triconnected graph.
No two S-nodes are neighbors, and no two P-nodes are neighbors.

5 These two exceptions actually make it easier to state some properties related to separation pairs.

E S A 2 0 1 8

46:6 Decremental SPQR-trees for Planar Graphs

Figure 2 Left: a plane graph. Right: the corresponding vertex-face graph (red) and the underlying
graph (dashed).

The SPQR-tree for a biconnected graph is unique (see e.g. [12]). The (skeleton graphs
associated with) the SPQR-nodes are sometimes referred to as G’s triconnected components.

Let G be a plane graph (a planar graph embedded in the plane). For each component
H of G, let H∗ denote the dual graph of H, defined as the graph obtained by creating a
vertex for each face in the embedding of H, and an edge e∗ (called the dual edge of e),
connecting the two (not necessarily distinct) faces that e is incident to. Let G∗ denote the
graph obtained from G by taking the dual of each component.

Each face f in a plane graph is bounded by a (not necessarily simple) cycle called the
face cycle for f . We call the length of this cycle the face-degree of f . We call any other cycle
a separating cycle.

Let G be a connected plane multigraph with at least one edge. Define the set E�(G) of
corners6 of G to be the the set of ordered pairs of (not necessarily distinct) edges (e1, e2) such
that e1 immediately precedes e2 in the clockwise order around some vertex, denoted v(e1, e2).
Note that if (e1, e2) ∈ E�(G), then (e∗2, e∗1) ∈ E�(G∗). We denote by G� the vertex-face
graph7 of G (see Figure 2). This is a plane multigraph with vertex set V (G) ∪ V (G∗), and
an edge between v(e1, e2) and v(e∗2, e∗1) for each corner (e1, e2) ∈ E�(G). Abusing notation
slightly, we can write G� as = (V (G) ∪ V (G∗), E�(G)). We use the following well-known
facts about the vertex-face graph:
1. G� is bipartite and plane, with a natural embedding given by the embedding of G.
2. The vertex-face graphs of G and G∗ are the same: G� = (G∗)�.
3. There is a one-to-one correspondence between the edges of G and the faces of G� (in the

natural embedding, each face of G� contains exactly one edge of G interior, see Fig 2).
4. (G�)∗ (also known as the medial graph) is 4-regular.
5. G� is simple if and only if G is loopless and biconnected (See e.g. [8, Theorem 5(i)]).
6. G� is simple, triconnected and has no separating 4-cycles if and only if G is simple and

triconnected (See e.g. [8, Theorem 5(iv)]).

If v is an articulation point in G or has a self-loop, then in any planar embedding of G
there is at least one face f whose face cycle contains v at least twice. Any such f is either
an articulation point or has a self-loop in G∗, and v and f are connected by (at least) two
edges in G�.

The dynamic operations on G correspond to dynamic operations on G∗ and G�. Deleting
a non-bridge edge e of G corresponds to contracting e∗ in G∗, that is, (G − e)∗ = G∗/e∗.
Similarly, contracting an edge e corresponds to deleting e∗ from the dual, so (G/e)∗ = G∗−e∗.

6 For alternative definitions, see e.g. [28] and [50]. The latter uses angles for what we call corners.
7 A.k.a. the vertex-face incidence graph [7], the angle graph [50], and the radial graph [5].

J. Holm, G. F. Italiano, A. Karczmarz, J. Łącki, and E. Rotenberg 46:7

Finally, deleting a non-bridge edge or contracting an edge corresponds to adding and then
immediately contracting an edge across a face of G� (and removing two duplicate edges).

Finally, the useful concept of a separation is well-defined, even for general graphs:

I Definition 4. Given a graph G = (V,E), a separation of G is a pair of vertex sets (V ′, V ′′)
such that the induced subgraphs G′ = G[V ′], G′′ = G[V ′′] contain all edges of G, and V ′ \V ′′
and V ′′ \ V ′ are both nonempty. A separation is balanced if max

{
|V ′| , |V ′′|

}
≤ α |V | for

some fixed constant 1
2 ≤ α < 1. If (V ′, V ′′) is a separation of G, the set S = V ′ ∩ V ′′ is

called a separator of G. A separator S is small if |S| = O(
√
|V |), and it is a cycle separator

if the subgraph of G induced by S is Hamiltonian.

Note that a separation, which is a pair of vertex sets, should not be confused with a
separation pair, which is a pair of vertices (see Definition 2).

3 Overview of Our Approach

The SPQR-tree naturally reflects the triconnected components of the graph, so it is perhaps
not surprising that an SPQR-tree can be augmented to answer pairwise triconnectivity
queries in constant time. The challenge is to update the SPQR-tree under decremental
updates. For this, we need a way to find all new separation pairs that arise. These separation
pairs are related to separating 4-cycles in the vertex-face graph, in which decremental updates
correspond to “collapsing” faces, i.e. the addition and immediate contraction of an edge
across a face. So, the core of our approach is an algorithm for detecting separating 4-cycles
in a particular kind of plane graph subject to valid edge insertions and contractions.

Detecting separating 4-cycles. A 4-cycle is a simple cycle of length 4. We say that a
4-cycle in a plane graph G is a face 4-cycle if it is a cycle bounding a face of G, and a
separating 4-cycle otherwise. There is a one-to-one correspondence between separation pairs
in G and separating 4-cycles in the vertex-face graph G�. (See [27] for details.)

Since no two parallel edges can lie on the same 4-cycle, and no self-loop can be contained
in a 4-cycle, we can assume the input graph is simple. However, when we contract edges,
new parallel edges and self-loops may arise. To handle this, we could detect and remove all
parallel edges, but it turns out that both the algorithm and the analysis become simpler if we
keep (most of) the additional edges, as long as no two parallel edges are consecutive in the
circular ordering around both their endpoints. This is captured by the following definition.

I Definition 5. A plane graph is quasi-simple if the dual of each non-simple component has
minimum degree 3. (In [41] these graphs are called semi-strict.)

Roughly speaking, a quasi-simple graph is obtained from a plane multigraph by merging
parallel edges that lie next to each other in the circular orderings around both their endpoints.

We build a structure for 4-cycle detection by recursively using balanced separators, and
by detecting, for each separator, the cycles that cross the separator. Detecting 4-cycles that
cross a separator is not trivial, and our analysis introduces a complicated potential function
which reflects how well connected the non-separator vertices are with the separator, that is,
how many neighbors on the separator they have. At the same time, we make sure that all
the work done can be paid with the decrease in the potential. Our analysis exploits the fact
that for a subset of vertices S in quasi-simple planar graph, at most O(|S|) vertices have 4
or more neighbors in S. Specifically, this holds when S is the set of separator vertices.

The recursive use of separators can be sketched as follows: Let S be a small balanced
separator in G = (V,E) that induces a separation (V1, V2), that is, V1 ∩ V2 = S and

E S A 2 0 1 8

46:8 Decremental SPQR-trees for Planar Graphs

V1 ∪ V2 = V . Moreover, let n = |V |. We observe that each 4-cycle is fully contained in V1
or V2, or consists of two paths of length 2 that connect vertices of S. This motivates the
following recursive approach. We compute a separator S of O(

√
n) vertices and then find all

paths of length 2 that connect vertices of S. Since the size of S is O(
√
n), there are only

O(n) pairs of vertices of S, and for each pair of vertices, we can easily check if the two-edge
paths connecting them form any separating 4-cycles. It then remains to find the 4-cycles
that are fully contained in either V1 or V2, which can be done recursively. Because S is a
balanced separator, the recursion has O(logn) levels.

This algorithm can be made dynamic under contractions and edge insertions that respect
the embedding of G. Contractions are easy to handle, as they preserve planarity. Moreover,
a separator S of a planar graph can be easily updated under contractions. Namely, whenever
an edge uw is contracted, the resulting vertex belongs to the separator iff any of u and w

did. Insertions that preserve planarity, however, are in general harder to accommodate. To
handle this we introduce a new type of separators that we call face-preserving separators,
which (like cycle-separators) always exist when the face-degree is bounded. These are still
preserved by contractions, but also ensure that any edge across a face can be inserted.

All in all, there are O(logn) levels of size O(n) each, where each level handles insertions
and contractions in constant time, leading to a total of O(n logn) time. (See [27] for details.)

I Theorem 6. Let G be an n-vertex connected quasi-simple plane graph with bounded face
degree. There exists a data structure that maintains G under contractions and embedding-
respecting insertions, and after each update operation reports edges that become members of
some separating 4-cycle. It runs in O(n logn) total time.

Maintaining SPQR-trees. The main challenge in maintaining an SPQR-tree is handling
the case when an edge within a triconnected component is deleted. First of all, the data
structure should be able to detect whether or not the component is still triconnected.

For the skeleton Γ of any R-node in the SPQR-tree of G, we maintain a 4-cycle detection
structure for the corresponding vertex-face graph Γ�. A separating 4-cycle in Γ� corresponds
to a separation pair in Γ, which would witness that Γ is no longer triconnected. The deletion
or contraction of the edge e in the triconnected component Γ of G corresponds to collapsing a
face in Γ� by the insertion and immediate contraction of an edge. By detecting new 4-cycles
in Γ�, we can therefor detect when the corresponding triconnected component falls apart.

However, this is not the only challenge. If Γ does indeed cease to be triconnected, the
SPQR-tree of (Γ − e) (or (Γ/e) when doing a contraction) is a path H. This is where we
need the 4-cycle detection structure to output the edges contained in separating 4-cycles.
Those edges correspond to a set of corners N of G. We use those corners to guide a search,
which identifies the non-largest components of the SPQR-path H. More specifically, if a
vertex v now belongs to two distinct triconnected components, there are two corners in N

that separate the edges incident to v into two groups of edges, each belonging to a distinct
triconnected component. We can afford to build a 4-cycle detection structure for Γ′� for
any non-largest triconnected component Γ′ on the path from scratch. To obtain the data
structure representing the largest component, we delete or contract the edges of the smaller
components from Γ, while updating Γ�. Since an edge only becomes part of a structure
built from scratch when its triconnected component size has been halved, this happens only
O(logn) times per edge. Since the time spent on building 4-cycle detection structures is
O(logn) per contributing edge, the total time becomes O(n log2 n).

Finally, since no two S-nodes can be neighbors and no two P -nodes can be neighbors,
some S- or P -nodes in H may have to be merged with their (at most 2) neighbors of the

J. Holm, G. F. Italiano, A. Karczmarz, J. Łącki, and E. Rotenberg 46:9

same type outside H. To handle this step efficiently, we keep the SPQR-tree rooted in an
arbitrary node. While merging the skeleton graphs of two S- or P -nodes can be done in
constant time, it is more costly to update the parent pointers in the children of the merged
nodes. Hence, we move the children of the node with fewer children to the other node. This
way, each node changes parent at most O(logn) times before it is deleted or split. The total
number of distinct SPQR-nodes that exist throughout the lifetime of the data structure is
O(n), so the total time used for maintaining the parent pointers is O(n logn).

Since SPQR-trees are only defined for biconnected graphs, another challenge is to maintain
SPQR-trees for each biconnected component, even as the decremental update operations
cause the biconnected components to fall apart. We thus maintain also the BC-tree of the
graph (see Section 2). If the BC-tree is rooted arbitrarily at any block, each non-root block
has a unique articulation point separating it from its parent.

To handle updates, we notice that the SPQR-tree points to the fragile places where the
graph is about to cease to be biconnected: An edge deletion in an S-node will break up a
block in the BC-tree into a path, and an edge contraction in a P -node breaks a block in the
BC-tree into a star. Upon such an update, we remove the aforementioned S- or P -node from
the SPQR-tree, breaking it up into an SPQR-forest. Each tree corresponds to a new block
in the BC-tree. They form a path (or a star), and the ordering along the path, as well as the
articulation points, can be read directly from the SPQR-tree. (See Section 4 for details.)

On the other hand, in order to even know which SPQR-tree to modify during an update,
we can search in the BC-tree for the right SPQR-structure in which to perform the operation.

Bi- and triconnectivity. Finally, we use SPQR-trees to facilitate triconnectivity queries.
First of all, vertices need to be biconnected in order to be triconnected. In the rooted BC-tree,
assign each vertex to its root-nearest block. It is enough that each vertex knows the name
of its block, and each block knows the vertex separating it from its parent. Then, any two
vertices are biconnected if and only if they either have the same block, or one is the unique
vertex separating the block of the other from its parent.

For triconnectivity, the maintained information, as well as the query handling, is similar,
using the SPQR-tree in place of the BC-tree. Namely: each non-root node in the SPQR-tree
stores the virtual edge (see Definition 3) that separates it from its parent. Each vertex
knows the root-nearest node containing it, and, if this is an S-node, its at most two children
containing the vertex.

The main challenge is to handle updates. Note that the change to the SPQR-tree may
involve both the split and merge of nodes. In particular, we have one split and up to
several merges when a triconnected component falls apart into an SPQR-path. However,
upon a merge, we can afford to update the information regarding vertices in the non-largest
components, costing only an additive logn to the amortized running time. Similarly, upon a
split, we update any information that relates to vertices in the non-largest components only.

The total running time is thus O(n logn + f(n)), where f(n) is the running time for
maintaining the SPQR-tree. (See [27] for details.)

I Theorem 1. There is a data structure that can be initialized on a planar graph G on n

vertices and O(n) edges in O(n logn) time, and support any sequence of Ω(n) edge deletions
or contractions in total time O(n log2 n), while supporting queries to pairwise triconnectivity
in worst-case constant time per query.

E S A 2 0 1 8

46:10 Decremental SPQR-trees for Planar Graphs

Algorithm 1 Removing an edge e from a P -node x of T .
1: function removeP(e, x, T)
2: remove e from Γ(x)
3: if Γ(x) has two edges then
4: if Γ(x) has no virtual edges then
5: delete T
6: else if Γ(x) has one virtual edge then
7: y := the only neighbor of x
8: ex := the virtual edge in Γ(y) corresponding to x
9: replace ex by the non-virtual edge of Γ(x)

10: remove x from T

11: else if Γ(x) has two virtual edges then
12: {y, z} := neighbors of x in T

13: remove x from T , making y and z neighbors in T

14: if y and z are S-nodes then
15: merge y and z into one node

4 Decremental SPQR-trees

In this section, we use the data structure of Theorem 6 to maintain an SPQR-tree (see
Definition 3) for each biconnected component of G with at least 3 edges under arbitrary edge
deletions and contractions. We start with some useful facts.

I Lemma 7. Let G be a biconnected graph. If a 4-cycle C = (v1, f1, v2, f2) in G� is a
separating cycle, then v1, v2 is a separation pair of G and f1, f2 is a separation pair of G∗.

I Lemma 8. Let G be a loopless biconnected plane graph and u, w be a separation pair in
G. Consider the set of edges Ex incident to x ∈ {u,w}. Then, the edges of Ex belonging to
each separation class of u,w are consecutive in the circular ordering around both u and w.

I Lemma 9. Let G be a triconnected plane graph and e = uw ∈ E(G). Assume that G− e
is not triconnected. Then, the SPQR-tree of G− e is a path H (we call it an SPQR-path).
Moreover, given all edges that lie on 4-cycles in (G− e)�, we can compute all nodes of H
(i.e., their skeleton graphs) except for the largest one in time that is linear in their size.

For a planar graph, there is a nice duality, as proven by Angelini et al. [4, Lemma 1].
Define the dual SPQR-tree as the tree obtained from the SPQR-tree by interchanging S-
and P -nodes, and taking the dual of the skeletons.

I Lemma 10 (Angelini et al [4]). The SPQR-tree of G∗ is the dual SPQR-tree of G.

Let G be a connected plane graph. Since (G�)∗ is 4-regular, G� is quasi-simple and
has bounded face-degree. Furthermore, any edge deletion or contraction in G that leaves
G connected, corresponds to an edge insertion and immediate contraction in G�. Thus
by Theorem 6 we can maintain a data structure for G under connectivity-preserving edge
deletions and contractions, that after each update operation reports the corners that become
part of a separating 4-cycle in G�.

In the algorithm we maintain one SPQR-tree for each biconnected component with at
least 3 edges. We now describe how these trees are updated upon edge deletions. The
procedures, depending on the type of the SPQR-tree node are given as Algorithms 1, 2 and 3.
Note that the lines 4 and 5 in Algorithm 2 only introduce notation, that is the values of the
variables are not computed. (See [27] for a proof of correctness.)

J. Holm, G. F. Italiano, A. Karczmarz, J. Łącki, and E. Rotenberg 46:11

Algorithm 2 Removing an edge e from an
R-node x of T .

1: function removeR(e, x, T)
2: remove e from Γ(x)
3: if Γ(x) has a separation pair then
4: X ′ := SPQR-path representing

Γ(x)
5: xbig := the node of X ′ st. Γ(xbig)

has the most edges
6: compute all nodes of X ′ \ xbig

7: remove and contract edges of
Γ(x) to obtain Γ(xbig)

8: replace x in T by X ′ (connect
each child of x to the cor-
rect node of X ′)

9: for each S- or P -node z ∈ X ′ do
10: for each neighbor z′ /∈ X ′ do
11: if z, z′ are same type then
12: merge z with z′

Algorithm 3 Removing an edge e from an
S-node x of T .

1: function removeS(e, x, T)
2: remove e from Γ(x)
3: remove x from T

4: for each edge e′ in Γ(x) do
5: Make a new BC-node z
6: if e′ is a virtual edge then
7: y := neighbor of x in T corre-

sponding to e′
8: Make the tree containing y the

SPQR-tree for the new BC-node
9: if y is a P -node then

10: removeP(y, e′, T)
11: else
12: removeR(y, e′, T)

We can now prove the main theorem of this section. Note that, as in the block-cutpoint
tree, we root each SPQR-tree in an arbitrary vertex.

I Theorem 11. There is a data structure that can be initialized on a simple planar graph G
on n vertices in O(n logn) time, and supports any sequence of edge deletions or contractions
in total time O(n log2 n), while maintaining an explicit representation of a rooted SPQR-tree
for each biconnected component with at least 3 edges, including all the skeleton graphs for
the triconnected components. Moreover, during updates, the total number of times a node of
an SPQR-tree changes its parent is O(n logn).

Proof. We first partition the graph into biconnected components, and, as sketched in
Section 3, maintain the block-cutpoint tree explicitly. Thus, given two vertices u, v, we can
in O(1) time access the biconnected component containing both of them, along with its
auxiliary data. Now, for each biconnected component Ci, we compute the SPQR-tree T .
This can be done in linear time due to [22]. We also root each SPQR-tree in an arbitrary
node, and keep the trees rooted as they are updated.

For each node x of T we maintain the graph Γ(x). Each virtual edge of Γ(x) has a pointer
to the neighbor of x it represents. Moreover, for each R-node r, we keep a data structure of
Theorem 6 for detecting separating 4-cycles in the vertex-face graph (Γ(r))�. By Lemma 7,
any separating 4-cycle in (Γ(r))� corresponds to a separation pair in Γ(r). Since r is an
R-node, there are no separating 4-cycles to begin with, but some may appear after an update.

Since the total size of the R-components is n, it follows from Theorem 6 that the entire
construction time is O(n logn).

Deletion. When an edge e is removed we find the node x of the SPQR-tree, such that e is
a non-virtual edge in x. Then, we proceed according to Algorithms 1, 2 and 3.

Whenever an edge fg is deleted from an R-node r, we update the corresponding 4-cycle
detection structure for (Γ(r))�. We first insert the dual edge (fg)∗ in the vertex-face graph,
and then contract along that edge. This allows us to detect whether Γ(r) has any separation
pairs after each edge deletion.

E S A 2 0 1 8

46:12 Decremental SPQR-trees for Planar Graphs

Let us now analyze the running time. When processing an edge deletion, the following
changes can take place in a SPQR-tree (all other changes can be handled in O(1) time):

an R-node is split into multiple nodes,
two P -nodes or S-nodes are merged,
an S- or P - node is deleted.

Note, a P - or S-node can never get split. So, though each edge may at first belong to nodes
that are split, once it becomes a part of a P - or S-node, its node only participates in merges.

When two S- or P -nodes are merged, we can merge their skeleton graphs in constant
time. These skeleton graphs have only two common nodes, and their lists of adjacent edges
can be merged in constant time thanks to Lemma 8. When nodes are merged, we also have
to update the parent pointers of their children. To bound the number of these updates, we
merge the node with fewer children into the node with more. Thus, the number of parent
updates caused by these merges is O(n logn), and so is the impact on the running time.

A similar analysis applies to the case when an R-node r is split into an SPQR-path. By
Lemma 9, we can compute all but the largest node of the SPQR-path in linear time. Since
the size of the skeleton graph in each of these nodes is at most half the size of Γ(r), each
edge takes part in this computation at most O(logn) times. For every new R-nodes, we also
initialize their associated data structures for detecting 4-cycles. We charge the running time
of each data structure to this initialization. From Theorem 6 we get that recomputing all
the nodes and data structures takes O(n log2 n) total time.

Taking care of the largest component of the SPQR-path is even easier, as we can simply
reuse the skeleton graph of r and its associated data structure for detecting 4-cycles. To
update the skeleton graph, we use the following lemma.

I Lemma 12. If G is triconnected, e ∈ E(G), and x is an R-node in the SPQR-tree for
G − e, then there exists a sequence of

∣∣E(G)
∣∣ − ∣∣E(Γ(x))

∣∣ edge deletions and contractions
that transform G− e into Γ(x) while keeping the graph connected at all times.

After an R-node r is split into a SPQR-path H we also need to update the parent pointers
in the children of r. However, the number of children to update is at most the number of
edges in the non-largest components of the SPQR-path. As we have argued, the total number
of such edges across all deletions is O(n logn).

Contraction. The contraction of an edge of the plane graph G corresponds to the deletion
of an edge of its dual graph, G∗. By Lemma 10, the SPQR-tree of G∗ is the dual SPQR-tree
of G. Thus, if the edge was in a P -node of the SPQR-tree, its contraction is handled like the
deletion of an edge in a S-node, and vice versa.

If the contracted edge e belongs to an R-node, that R node may expand to a path in the
SPQR-tree (because deletion in G∗ may expand an R-node into a path). In the vertex-face
graph, we may find all edges participating in new separating 4-cycles, corresponding to
separating corners of the graph. To find the new components, we simply apply Lemma 9 to
the dual graph and proceed analogously to a deletion. J

References
1 Amir Abboud and Søren Dahlgaard. Popular conjectures as a barrier for dynamic planar

graph algorithms. In IEEE 57th Annual Symposium on Foundations of Computer Science,
FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages
477–486, 2016. doi:10.1109/FOCS.2016.58.

http://dx.doi.org/10.1109/FOCS.2016.58

J. Holm, G. F. Italiano, A. Karczmarz, J. Łącki, and E. Rotenberg 46:13

2 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In 55th IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 434–443,
2014. doi:10.1109/FOCS.2014.53.

3 Ittai Abraham, Shiri Chechik, and Cyril Gavoille. Fully dynamic approximate distance
oracles for planar graphs via forbidden-set distance labels. In Proceedings of the 44th
Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May
19 - 22, 2012, pages 1199–1218, 2012. doi:10.1145/2213977.2214084.

4 Patrizio Angelini, Thomas Bläsius, and Ignaz Rutter. Testing mutual duality of pla-
nar graphs. Int. J. Comput. Geometry Appl., 24(4):325–346, 2014. doi:10.1142/
S0218195914600103.

5 Dan Archdeacon and R Bruce Richter. The construction and classification of self-dual
spherical polyhedra. J. Comb. Theory, Series B, 54(1):37–63, 1992. doi:10.1016/
0095-8956(92)90065-6.

6 Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal matching in
O(logn) update time. SIAM J. Comput., 44(1):88–113, 2015. doi:10.1137/130914140.

7 Graham R. Brightwell and Edward R. Scheinerman. Representations of planar graphs.
SIAM J. Discrete Math., 6(2):214–229, 1993. doi:10.1137/0406017.

8 Gunnar Brinkmann, Sam Greenberg, Catherine Greenhill, Brendan D. Mckay, Robin
Thomas, and Paul Wollan. Generation of simple quadrangulations of the sphere. Dis-
crete Math., 305(1-3):33–54, 2005. doi:10.1016/j.disc.2005.10.005.

9 Shiri Chechik, Thomas Dueholm Hansen, Giuseppe F. Italiano, Jakub Łącki, and Nikos
Parotsidis. Decremental single-source reachability and strongly connected components in
Õ(m

√
n) total update time. In IEEE 57th Annual Symposium on Foundations of Computer

Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA,
pages 315–324, 2016. doi:10.1109/FOCS.2016.42.

10 Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic all pairs shortest
paths. J. ACM, 51(6):968–992, 2004. doi:10.1145/1039488.1039492.

11 Camil Demetrescu and Giuseppe F. Italiano. Mantaining dynamic matrices for
fully dynamic transitive closure. Algorithmica, 51(4):387–427, 2008. doi:10.1007/
s00453-007-9051-4.

12 Giuseppe Di Battista and Roberto Tamassia. On-line maintenance of triconnected compo-
nents with SPQR-trees. Algorithmica, 15(4):302–318, 1996. doi:10.1007/BF01961541.

13 Giuseppe Di Battista and Roberto Tamassia. On-line planarity testing. SIAM J. Comput.,
25(5):956–997, 1996. doi:10.1137/S0097539794280736.

14 Krzysztof Diks and Piotr Sankowski. Dynamic plane transitive closure. In Algorithms - ESA
2007, 15th Annual European Symposium, Eilat, Israel, October 8-10, 2007, Proceedings,
pages 594–604, 2007. doi:10.1007/978-3-540-75520-3_53.

15 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Sparsification
- a technique for speeding up dynamic graph algorithms. J. ACM, 44(5):669–696, 1997.
doi:10.1145/265910.265914.

16 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. Separator based
sparsification I: Planarity testing and minimum spanning trees. J. Comput. Syst. Sci.,
52(1):3–27, 1996. doi:10.1006/jcss.1996.0002.

17 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. Separator-based
sparsification II: Edge and vertex connectivity. SIAM J. Comput., 28(1):341–381, 1998.
Announced at STOC ’93. doi:10.1137/S0097539794269072.

18 David Eppstein, Giuseppe F. Italiano, Roberto Tamassia, Robert Endre Tarjan, Jeffery
Westbrook, and Moti Yung. Maintenance of a minimum spanning forest in a dynamic
plane graph. J. Algorithms, 13(1):33–54, 1992. doi:10.1016/0196-6774(92)90004-V.

E S A 2 0 1 8

http://dx.doi.org/10.1109/FOCS.2014.53
http://dx.doi.org/10.1145/2213977.2214084
http://dx.doi.org/10.1142/S0218195914600103
http://dx.doi.org/10.1142/S0218195914600103
http://dx.doi.org/10.1016/0095-8956(92)90065-6
http://dx.doi.org/10.1016/0095-8956(92)90065-6
http://dx.doi.org/10.1137/130914140
http://dx.doi.org/10.1137/0406017
http://dx.doi.org/10.1016/j.disc.2005.10.005
http://dx.doi.org/10.1109/FOCS.2016.42
http://dx.doi.org/10.1145/1039488.1039492
http://dx.doi.org/10.1007/s00453-007-9051-4
http://dx.doi.org/10.1007/s00453-007-9051-4
http://dx.doi.org/10.1007/BF01961541
http://dx.doi.org/10.1137/S0097539794280736
http://dx.doi.org/10.1007/978-3-540-75520-3_53
http://dx.doi.org/10.1145/265910.265914
http://dx.doi.org/10.1006/jcss.1996.0002
http://dx.doi.org/10.1137/S0097539794269072
http://dx.doi.org/10.1016/0196-6774(92)90004-V

46:14 Decremental SPQR-trees for Planar Graphs

19 Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative weight edges, shortest
paths, and near linear time. J. Comput. Syst. Sci., 72(5):868–889, 2006. doi:10.1016/j.
jcss.2005.05.007.

20 Dora Giammarresi and Giuseppe F. Italiano. Decremental 2- and 3-connectivity on planar
graphs. Algorithmica, 16(3):263–287, 1996. Announced at SWAT 1992. doi:10.1007/
BF01955676.

21 Jens Gustedt. Efficient union-find for planar graphs and other sparse graph classes. Theor.
Comput. Sci., 203(1):123–141, 1998. doi:10.1016/S0304-3975(97)00291-0.

22 Carsten Gutwenger and Petra Mutzel. A Linear Time Implementation of SPQR-Trees,
pages 77–90. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001. doi:10.1007/
3-540-44541-2_8.

23 Frank Harary. Graph Theory. Addison-Wesley Series in Mathematics. Addison Wesley,
1969.

24 Monika Rauch Henzinger and Mikkel Thorup. Sampling to provide or to bound: With
applications to fully dynamic graph algorithms. Random Struct. Algorithms, 11(4):369–
379, 1997. doi:10.1002/(SICI)1098-2418(199712)11:4<369::AID-RSA5>3.0.CO;2-X.

25 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnec-
tivity. J. ACM, 48(4):723–760, 2001. doi:10.1145/502090.502095.

26 Jacob Holm, Giuseppe F Italiano, Adam Karczmarz, Jakub Lacki, Eva Rotenberg, and
Piotr Sankowski. Contracting a planar graph efficiently. In LIPIcs-Leibniz International
Proceedings in Informatics, volume 87. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

27 Jacob Holm, Giuseppe F. Italiano, Adam Karczmarz, Jakub Łącki, and Eva Rotenberg.
Decremental SPQR-trees for Planar Graphs. ArXiv e-prints, 2018. arXiv:1806.10772.

28 Jacob Holm and Eva Rotenberg. Dynamic planar embeddings of dynamic graphs. Theory
of Computing Systems, Apr 2017. doi:10.1007/s00224-017-9768-7.

29 Jacob Holm, Eva Rotenberg, and Christian Wulff-Nilsen. Faster fully-dynamic mini-
mum spanning forest. In Algorithms - ESA 2015 - 23rd Annual European Symposium,
Patras, Greece, Sept. 14-16, 2015, Proceedings, pages 742–753, 2015. doi:10.1007/
978-3-662-48350-3_62.

30 John E. Hopcroft and Robert Endre Tarjan. Dividing a graph into triconnected components.
SIAM J. Comput., 2(3):135–158, 1973. doi:10.1137/0202012.

31 John E. Hopcroft and Robert Endre Tarjan. A V log V algorithm for isomorphism of
triconnected planar graphs. J. Comput. Syst. Sci., 7(3):323–331, 1973. doi:10.1016/
S0022-0000(73)80013-3.

32 John E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar graphs
(preliminary report). In Proceedings of the 6th Annual ACM Symposium on Theory of
Computing, April 30 - May 2, 1974, Seattle, Washington, USA, pages 172–184, 1974. doi:
10.1145/800119.803896.

33 Giuseppe F. Italiano, Adam Karczmarz, Jakub Łącki, and Piotr Sankowski. Decremental
single-source reachability in planar digraphs. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017, pages 1108–1121, 2017. doi:10.1145/3055399.3055480.

34 Giuseppe F. Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen. Im-
proved algorithms for min cut and max flow in undirected planar graphs. In Proceedings
of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA,
6-8 June 2011, pages 313–322, 2011. doi:10.1145/1993636.1993679.

35 Goossen Kant. Algorithms for drawing planar graphs, 2001.

http://dx.doi.org/10.1016/j.jcss.2005.05.007
http://dx.doi.org/10.1016/j.jcss.2005.05.007
http://dx.doi.org/10.1007/BF01955676
http://dx.doi.org/10.1007/BF01955676
http://dx.doi.org/10.1016/S0304-3975(97)00291-0
http://dx.doi.org/10.1007/3-540-44541-2_8
http://dx.doi.org/10.1007/3-540-44541-2_8
http://dx.doi.org/10.1002/(SICI)1098-2418(199712)11:4<369::AID-RSA5>3.0.CO;2-X
http://dx.doi.org/10.1145/502090.502095
http://arxiv.org/abs/1806.10772
http://dx.doi.org/10.1007/s00224-017-9768-7
http://dx.doi.org/10.1007/978-3-662-48350-3_62
http://dx.doi.org/10.1007/978-3-662-48350-3_62
http://dx.doi.org/10.1137/0202012
http://dx.doi.org/10.1016/S0022-0000(73)80013-3
http://dx.doi.org/10.1016/S0022-0000(73)80013-3
http://dx.doi.org/10.1145/800119.803896
http://dx.doi.org/10.1145/800119.803896
http://dx.doi.org/10.1145/3055399.3055480
http://dx.doi.org/10.1145/1993636.1993679

J. Holm, G. F. Italiano, A. Karczmarz, J. Łącki, and E. Rotenberg 46:15

36 Haim Kaplan, Shay Mozes, Yahav Nussbaum, and Micha Sharir. Submatrix maximum
queries in Monge matrices and Monge partial matrices, and their applications. In Proceed-
ings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2012, Kyoto, Japan, January 17-19, 2012, pages 338–355, 2012. URL: http://portal.
acm.org/citation.cfm?id=2095147&CFID=63838676&CFTOKEN=79617016.

37 Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in poly-
logarithmic worst case time. In Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January
6-8, 2013, pages 1131–1142, 2013. doi:10.1137/1.9781611973105.81.

38 Casper Kejlberg-Rasmussen, Tsvi Kopelowitz, Seth Pettie, and Mikkel Thorup. Faster
worst case deterministic dynamic connectivity. In 24th Annual European Symposium on
Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark, pages 53:1–53:15, 2016.
doi:10.4230/LIPIcs.ESA.2016.53.

39 Valerie King. Fully dynamic algorithms for maintaining all-pairs shortest paths and
transitive closure in digraphs. In 40th Annual Symposium on Foundations of Com-
puter Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA, pages 81–91, 1999.
doi:10.1109/SFFCS.1999.814580.

40 Philip N. Klein. Multiple-source shortest paths in planar graphs. In Proceedings of the
Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancou-
ver, BC, Canada, January 23-25, 2005, pages 146–155, 2005. URL: http://dl.acm.org/
citation.cfm?id=1070432.1070454.

41 Philip N. Klein and Shay Mozes. Optimization algorithms for planar graphs, 2017. URL:
http://planarity.org.

42 Jakub Łącki. Improved deterministic algorithms for decremental reachability and strongly
connected components. ACM Trans. Algorithms, 9(3):27:1–27:15, 2013. doi:10.1145/
2483699.2483707.

43 Jakub Łącki, Jakub Oćwieja, Marcin Pilipczuk, Piotr Sankowski, and Anna Zych. The
power of dynamic distance oracles: Efficient dynamic algorithms for the Steiner tree. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing,
STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 11–20, 2015. doi:10.1145/
2746539.2746615.

44 Jakub Łącki and Piotr Sankowski. Min-cuts and shortest cycles in planar graphs in
O(n log logn) time. In Algorithms - ESA 2011 - 19th Annual European Symposium,
Saarbrücken, Germany, September 5-9, 2011. Proceedings, pages 155–166, 2011. doi:
10.1007/978-3-642-23719-5_14.

45 Jakub Łącki and Piotr Sankowski. Optimal decremental connectivity in planar graphs. In
32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015,
March 4-7, 2015, Garching, Germany, pages 608–621, 2015. doi:10.4230/LIPIcs.STACS.
2015.608.

46 Karl Menger. Zur allgemeinen kurventheorie. Fund. Math., 10:96–115, 1927.
47 Danupon Nanongkai and Thatchaphol Saranurak. Dynamic spanning forest with worst-

case update time: adaptive, Las Vegas, and O(n1/2 - ε)-time. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 1122–1129, 2017. doi:10.1145/3055399.3055447.

48 Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic mini-
mum spanning forest with subpolynomial worst-case update time. In Proceedings of the 58th
Annual Symposium on Foundations of Computer Science, FOCS 2017, 2017. To appear.

49 Liam Roditty and Uri Zwick. Improved dynamic reachability algorithms for directed graphs.
SIAM J. Comput., 37(5):1455–1471, 2008. doi:10.1137/060650271.

E S A 2 0 1 8

http://portal.acm.org/citation.cfm?id=2095147&CFID=63838676&CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095147&CFID=63838676&CFTOKEN=79617016
http://dx.doi.org/10.1137/1.9781611973105.81
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.53
http://dx.doi.org/10.1109/SFFCS.1999.814580
http://dl.acm.org/citation.cfm?id=1070432.1070454
http://dl.acm.org/citation.cfm?id=1070432.1070454
http://planarity.org
http://dx.doi.org/10.1145/2483699.2483707
http://dx.doi.org/10.1145/2483699.2483707
http://dx.doi.org/10.1145/2746539.2746615
http://dx.doi.org/10.1145/2746539.2746615
http://dx.doi.org/10.1007/978-3-642-23719-5_14
http://dx.doi.org/10.1007/978-3-642-23719-5_14
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.608
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.608
http://dx.doi.org/10.1145/3055399.3055447
http://dx.doi.org/10.1137/060650271

46:16 Decremental SPQR-trees for Planar Graphs

50 Pierre Rosenstiehl. Embedding in the plane with orientation constraints: The angle graph.
Annals of the New York Academy of Sciences, 555(1):340–346, 1989. doi:10.1111/j.
1749-6632.1989.tb22470.x.

51 Piotr Sankowski. Dynamic transitive closure via dynamic matrix inverse (extended ab-
stract). In 45th Symposium on Foundations of Computer Science FOCS 2004, 17-19 Oc-
tober 2004, Rome, Italy, Proceedings, pages 509–517, 2004. doi:10.1109/FOCS.2004.25.

52 Shay Solomon. Fully dynamic maximal matching in constant update time. In IEEE 57th
Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,
Hyatt Regency, New Brunswick, New Jersey, USA, pages 325–334, 2016. doi:10.1109/
FOCS.2016.43.

53 Sairam Subramanian. A fully dynamic data structure for reachability in planar digraphs. In
Algorithms - ESA ’93, First Annual European Symposium, Bad Honnef, Germany, Septem-
ber 30 - October 2, 1993, Proceedings, pages 372–383, 1993. doi:10.1007/3-540-57273-2_
72.

54 Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In Proceedings of the
Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Port-
land, OR, USA, pages 343–350, 2000. doi:10.1145/335305.335345.

55 Mikkel Thorup. Worst-case update times for fully-dynamic all-pairs shortest paths. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD,
USA, May 22-24, 2005, pages 112–119, 2005. doi:10.1145/1060590.1060607.

56 Christian Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In Pro-
ceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1757–1769, 2013.
doi:10.1137/1.9781611973105.126.

57 Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with improved worst-case
update time. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 1130–1143, 2017.
doi:10.1145/3055399.3055415.

http://dx.doi.org/10.1111/j.1749-6632.1989.tb22470.x
http://dx.doi.org/10.1111/j.1749-6632.1989.tb22470.x
http://dx.doi.org/10.1109/FOCS.2004.25
http://dx.doi.org/10.1109/FOCS.2016.43
http://dx.doi.org/10.1109/FOCS.2016.43
http://dx.doi.org/10.1007/3-540-57273-2_72
http://dx.doi.org/10.1007/3-540-57273-2_72
http://dx.doi.org/10.1145/335305.335345
http://dx.doi.org/10.1145/1060590.1060607
http://dx.doi.org/10.1137/1.9781611973105.126
http://dx.doi.org/10.1145/3055399.3055415

	Introduction
	Preliminaries
	Overview of Our Approach
	Decremental SPQR-trees

