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Abstract
We study the metric facility location problem with client insertions and deletions. This setting
differs from the classic dynamic facility location problem, where the set of clients remains the
same, but the metric space can change over time. We show a deterministic algorithm that
maintains a constant factor approximation to the optimal solution in worst-case time Õ(2O(κ2))
per client insertion or deletion in metric spaces while answering queries about the cost in O(1)
time, where κ denotes the doubling dimension of the metric. For metric spaces with bounded
doubling dimension, the update time is polylogarithmic in the parameters of the problem.
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1 Introduction

In the metric facility location problem, we are given a (possibly infinite) set V of potential
clients or points, a finite set C of (live clients), a finite set J ⊆ V of facilities with an opening
cost fj , for each facility j, and a metric d over V , such that d(i, j) is the cost of assigning
client i to facility j. The goal is to determine a subset J ′ ⊆ J of open facilities and to assign
each client to an open facility such as to minimize the total cost. Obviously it is best to
assign each live client to the closest open facility. Thus, the goal can be written as minimizing
the objective function

∑
j∈J′ fj +

∑
i∈C minj∈J′ d(i, j).

The facility location problem is one of the central problems in combinatorial optimization
and operations research [7], with many real-word applications. Typical examples include
placements of servers in a network, location planning for medical centers, fire stations,
restaurants, etc. From the computational perspective, this problem is NP-hard and it is even
hard to approximate to a factor better than 1.463 [13, 20]. The best-known polynomial-time
algorithm achieves a 1.488-approximation [17].

In many applications of facility location, problem data are continuously changing. This
has lead to the study of this problem in different settings, e.g., online [18, 3, 10, 4, 11, 19, 1],
streaming [15, 12, 16, 6] or dynamic [21, 5, 9, 8]. The focus of this paper is on the dynamic
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39:2 A Tree Structure For Dynamic Facility Location

setting, motivated by mobile network applications, where the set of clients may change over
time, and we need to maintain the set of opened servers so as to obtain a solution of small
cost after each change.

Formally, in the dynamic facility location problem, the set of clients C evolves over time
and queries about both the cost as well as the set of opened facilities can be asked. Specifically,
at each timestep t, either a new client is added to C, a client is removed from C, a query is
made for the approximate cost of an optimal solution (cost query), or a query asks for the
entire current solution (solution query). The goal is to maintain a set of open facilities that
after each client update minimizes the above cost function. Thus, the cost fj of each facility
can be seen as a maintenance cost that has to be paid for each open facility between two
client updates.

Our contribution. In this paper we present a deterministic data-structure that maintains a
O(1)-factor approximation algorithm for the metric facility location problem, while supporting
insertions and deletions of clients in Õ(2O(κ2)) update time, and answering cost queries in
O(1) time, where κ is the doubling dimension1 of the metric space. As the running time
per client update is bounded by Õ(2O(κ2)), the number of changes in the client-facility
assignments is also bounded by this function. For metric spaces with bounded doubling
dimension, such as the Euclidean space, the running time is Õ(1). Formally, we have the
following theorem.

I Theorem 1. There exists a deterministic algorithm for the dynamic facility location problem
where clients and facilities live in a metric space with doubling dimension κ, such that at every
time step the solution has cost at most O(1) times the cost of an optimal solution at that time.
The worst-case update time for client insertion or deletion is O(2O(κ2) ·∆3 · (κ2 + log ∆)),
where ∆ is logarithmic in the paramters of the problem. A cost query can be answered in
constant time and a solution query in time linear in the size of the output.

Comparison with prior work. The closest work related to our problem is the streaming
algorithm for the metric facility location problem with uniform opening costs due to Lam-
mersen and Sohler [16]. Specifically, given a sequence of insert and deletion operations of
points (clients) from {1, . . . ,∆}d, they devise a Monte-Carlo randomized algorithm that
processes an insertion or deletion of a point in Õ(2O(d)) time, using poly-logarithmic space
and maintaining a Õ(2O(d))-factor approximation. Since the d-dimensional Euclidean space
has doubling dimension linear in d, we can also interpret the above result in terms of κ, i.e.,
the same bounds hold with d replaced by κ. An easy inspection of the algorithm in [16]
shows that the queries can also be answered anytime in the update sequence in O(1) time.
Note that this algorithm heavily relies on randomization and the fact that facilities have
uniform opening costs. In comparison our algorithm is (1) deterministic, (2) achieves a
O(1)-factor approximation (independent of doubling dimension) (3) generalizes to any metric
of bounded doubling dimension, and (4) supports non-uniform opening costs. Furthermore,
for the Euclidean plane, i.e. d = 2, there is a randomized streaming algorithm that achieves
a (1 + ε)-approximation with poly-logarithmic space [6]. However, it is not clear whether
this algorithm supports fast queries.

Regarding the dynamic facility location problem, multiple variants can be found in the
literature [21, 5, 9, 8]. All these variants are different from ours as they assume that the

1 The doubling dimension of a metric space (V, d) is bounded by κ if for any x ∈ V and any radius r, any
ball with center x and radius r in (V, d) can be completely covered by 2κ balls of radius r/2.
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facilities and clients remain the same, and only the distance metric between clients and
facilities can change. Additionally, every time a client switches to a different facility, a
switching cost might be incurred and the goal is to minimize the above sum plus all the
switching costs. For the version proposed in [8], there exists a polynomial time constant
factor approximation algorithm [2].

There is also a large body of prior work on online facility location (see, e.g., [18, 3, 10,
4, 11, 19, 1]), where the clients arrive in an online fashion and have to be connected to a
facility, potentially opening new facilities. If earlier decisions cannot be reversed, then no
efficient constant factor approximation algorithm is possible [11]. If earlier decisions are,
however, not permanent, specifically if facilities are only opened for a given amount of time,
i.e. leased, and k different lease lengths are possible [4], the offline version of the problem
has a polynomial time 3-approximation algorithm [19], but the online setting cannot have an
approximation better than Ω(log k), even for randomized algorithms [18]. All of these results
are different from ours: (1) We have only one lease length, namely length 1, as each facility
can be closed or opened after each timestep, (2) we allow client arrival and departure, and
(3) our algorithm processes a client update in O(2O(κ2) ·∆3 · (κ2 + log ∆)) worst-case time
per operation, where ∆ is logarithmic in the parameters of the problem, while the running
time of the online algorithms is at least linear in the number of facilities [18, 3].

Technical contribution. From a technical point of view we modify and significantly extend
a hierarchical partition of a subset of the facilities that was recently introduced for a related
problem, called the dynamic sum-of-radii clustering problem [14]. In that work, a set of
facilities J and a dynamically changing clients C are given and the goal is to output a set
J ′ ⊆ J together with a radius Rj , for each j ∈ J ′, such that the J ′ covers C and the function∑
j∈J′(fj +Rj) is minimized. In [14] a O(22κ)-approximation algorithm with time Õ(26κ)

per client insertion or deletion is presented for metrics with doubling dimension κ. Note
that the function that is minimized is different from the function minimized in the facility
location problem, as the term

∑
i∈C minj∈J′ d(i, j) is replaced by

∑
j∈J′ Rj .

More specifically, the hierarchical decomposition of [14] picks a well-separated subset
of J with “small” cost, assigns one or multiple radii to the selected facilities, and then
hierarchically orders the pairs 〈j, R〉 in a tree structure, where j is a facility and R is a radius,
such that the children of every pair have a smaller radius and the “ball” of the given radius
of a child is fully contained in the “ball” of its parent with its radius. To achieve our result,
in Sections 2 and 3 we extend this decomposition as follows:
1. Abundance condition. Instead of selecting facilities with “small” cost, we introduce the

notion of an “abundance condition”: Facilities that have “enough nearby” clients fulfill
this condition, and we only open such facilities. This leads to following rough notion:
The abundance condition is fulfilled for a facility j and a radius R if the number of clients
within radius R of j is at least fj/R. The fundamental idea is then as follows: (A) We
assign a payment of R to each client within radius R of an open facility j, which implies
that the sum of fj plus the distances of these clients to j is upper bounded by twice the
sum of the payments of these clients. (B) We then show that (i) each client pays for
at most one facility and (ii) the sum of the client payments is linear in the cost of the
optimal solution.

2. Designated facilities. To further reduce the cost of the open facilities, we designate to
each facility j the “cheapest nearby” facility j∗, and if a facility j fulfills all conditions
to be opened, we open the facility j∗ instead. This allows us to modify the (rough)
abundance condition so that it is fulfilled for a facility j and a radius R if the number of

ESA 2018
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clients within radius R of j is at least fj∗/R. This modification increases the distance
of the clients only by a constant factor, but might significantly decrease the cost of the
open facilities. Note that our approach would not achieve a constant factor without
this technique: The hierarchical decomposition is based on a well-separated subset of
facilities whose construction ignores the facility costs. Thus it might happen that the
chosen facilities have high cost, even though there are “cheap” facilities nearby. These
cheap nearby facilities are now captured by the designated facilities.

3. Enabled facilities. The idea of not opening facilities that are “close” to an open facility
can be further combined with the hierarchical decomposition. More specifically, if facility
j with radius R and facility j′ with radius R′ are “close”, only one of them is opened,
namely the lowest-in-the-hierarchy facility that fulfills the abundance condition and has
no nearby facility of smaller radius that is already open. The advantage of this scheme is
that when a facility switches from open to closed or vice versa, we can bound the number
of facilities that are affected by this change by a function that only depends on κ. If we
had chosen to open the facility with larger radius, then the number of facilities that are
affected by opening or closing one facility might have been large, i.e., not bounded by a
function of κ alone.

4. Coloring. Recall that we need to guarantee that each client only pays for one open
facility. To do so, we assign a color to each pair 〈j, r〉 in the hierarchy such that no two
pairs 〈j, r〉 and 〈j′, r〉, where the distance between j and j′ is small, have the same color.
As the metric has bounded doubling dimension, 25κ + 1 colors suffice for this coloring.
Then we require that a facility is opened only if it fulfills the abundance condition, and
no facility of either smaller radius or the same radius but with “smaller” color is already
open. This requires to further relax the notion of “closeness” but reduces the number of
open facilities enough so that each client can be assigned to pay for at most one “close”
open facility and still every open facility has enough clients paying for its cost.

In Section 3, Theorem 24, we show that (a) for clients that are “close” to an open facility
j in the optimal solution the sum of their payments (in our solution) is linear in fj and (b)
for clients that are “far” from an open facility in the optimal solution their payments (in our
solution) are within a constant factor of their distance in the optimal solution. Additionally,
we give a data structure that maintains this solution efficiently under insertions and deletion
of clients (see Section 4). All missing proofs are deferred to the full version.

2 Preprocessing phase

Let W be the diameter of the metric space, i.e., d(i, j) ≤ W , for all i, j ∈ V , let fmax =
maxj∈J{fj} be the maximum facility opening cost, and let fmin = min{fj | j ∈ J, fj > 0} > 0
be the minimum opening cost of any facility with non-zero opening cost. This is w.l.o.g. as
all facilities with 0 opening cost are always kept open. Given the set of clients C ⊆ V , let
OPT = OPT(C) denote the cost of an optimum solution for C. In what follows, for the sake
of exposition, we also let C to refer to the current set of clients.

The algorithm will maintain a number n = 5blog5 |C|c, i.e., the largest power of 5 smaller
than |C|: Initally we set n to 0 and use this value of n during preprocessing. Whenever the
first client is inserted, we set n = 1. Afterwards, whenever the number of clients is a factor 5
larger, resp. smaller, than n, we update n by multiplying, resp. dividing it by 5.
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Now let2 ρmin = dlog5 (fmin/max (|J |, n))e and let ρmax = dlog5 (max (W, fmax))e =
O(logW +log fmax). Note that a change of ρmin will require an update in our data structures,
but this will only happen after Θ(n) many client insertions or deletions. As we will see later,
the cost of this update will be charged against these client updates, and thus does not affect our
running times. A logradius is an integer r such that ρmin ≤ 5r ≤ ρmax. Let ∆ = ρmax−ρmin+1
be the number of different logradii. Note that ∆ = O(logW+log(fmax/fmin)+log |J |+log |C|).
Finally, let c1 = 20, c2 = 35, cX = 2c2 + 2 = 72, c3 = cX + c2 = 107, cY = 2c3 + c2 = 249
and c4 = cY + c2 = 284.

A large part of our data structure is concerned with reducing the number of facilities
that are potentially opened and finding an assignment of each client to at most one open
facility. This is done in multiple ways, as described next. Based on the approach of [14], we
construct a set of pairs Π ⊆ (J × [ρmin, ρmax]), consisting of facility-logradius pairs and a
laminar family of areas. Different from [14], we color pairs in Π, turning them into triplets,
and introduce designated facilities, before defining open, closed and enabled triplets.

Maximal subsets of distant facilities. The first step is to filter out facilities that are close
to other facilities. To achieve this, we greedily construct a set Π of pairs 〈j, r〉 where j is a
facility and r is a logradius, satisfying the following properties:
1. (Covering) For every facility j ∈ J and every logradius r, there exists a facility j′ ∈ Jr

with d(j, j′) ≤ c1 · 5r.
2. (Separating) For all distinct j, j′ ∈ Jr, d(j, j′) > c1 · 5r.
We construct Π as follows: For each logradius r ∈ [ρmin, ρmax], let Jr be a maximal subset
of J such that any two facilities in Jr are at distance strictly larger than c1 · 5r. Set
Π←

⋃
r{〈j, r〉 | j ∈ Jr}. Note that for r = ρmax, the set Jr contains just one facility.

Hierarchical decomposition of Π. We now construct a hierarchical decomposition of Π
and represent it by a tree T , using the following algorithm. Set the root of T to be the
unique pair 〈j, ρmax〉. For each r < ρmax and j ∈ Jr: (1) Set j′ ∈ Jr+1 be the facility closest
to j. (2) Set parent(j, r)← 〈j′, r + 1〉.

By construction, T has height at most ∆ and the parent of a pair 〈j, r〉 is a pair of the
form 〈j′, r + 1〉. The following three lemmata describe the crucial properties of the tree T .

I Lemma 2 (Nesting of balls). Let c∗ be any constant such that c∗ ≥ (5/4)c1. If parent(j, r) =
〈j′, r + 1〉, then d(j, j′) ≤ c1 · 5r+1 and B(j, c∗ · 5r) ⊆ B(j′, c∗ · 5r+1).

I Lemma 3 ([14]). For any point p, radius r and some number α > 0, the set of pairs
Π(p, r) = {〈j, r〉 ∈ Π | d(p, j) < 2αc1 · 5r} has at most 2(α+1)κ elements, where κ is the
doubling dimension of the metric space.

I Lemma 4 ([14]). A node 〈j, r〉 of T has at most 24κ children

Hierarchical decomposition of V into a laminar family of areas. The balls B(j, r) and
B(j′, r) with 〈j, r〉 and 〈j′, r〉 in Π might overlap, which is problematic for the mapping of
clients to facilities. To rectify this problem, we partition V into a laminar family of areas
such that no two same-logradius areas overlap, as follows: For each 〈j, r〉 ∈ Π, initialize
A(j, r)← ∅. Next, for each point p ∈ V : (1) Let r∗ be the smallest such that there exists
pairs 〈j, r∗〉 ∈ Π with p ∈ B(j, c2 · 5r

∗). (2) Among all such pairs, let 〈j∗, r∗〉 denote the

2 Note that ρmin could be negative, but it is well-defined as fmin > 0.
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one minimizing d(p, j∗). (3) Add p to the set A(j∗, r∗) and to every set A(j′, r′) with (j′, r′)
ancestor of (j∗, r∗) in T .

The laminar family of areas fulfills the following lemmata.

I Lemma 5 ([14]). For each 〈j, r〉 ∈ Π, j ∈ A(j, r) ⊆ B(j, c2 · 5r) and if parent(j, r) =
〈j′, r + 1〉, then A(j, r) ⊆ A(j′, r + 1).

I Lemma 6. Let j ∈ J , r ∈ [ρmin, ρmax] and p ∈ B(j, 5r). Then there exists a pair 〈j′, r〉 ∈ Π
such that p ∈ A(j′, r) and d(j, j′) ≤ (c2 + 1) · 5r.

Additionally an even stronger statement regarding the points covered by areas versus points
covered by balls holds:

I Lemma 7. For each logradius r ∈ [ρmin, ρmax],
⋃
〈j,r〉∈Jr

A(j, r) =
⋃
〈j,r〉∈Jr

B(j, c2 · 5r).

Covering balls using unions of areas. To select which facilities with a pair 〈j, r〉 in Π to
open, we introduce below the abundance condition which measures how many clients are
“close” to j. For measuring “closeness”, we would like to say that a client i is close to a
facility j if i ∈ X(j, r) for some definition of X(j, r) that fulfills the crucial property that for
every 〈j, r〉 there exists a pair 〈j′, r〉 ∈ Π such that B(j, 5r) ⊆ X(j′, r). Note that this might
not hold if we use X(j, r) = A(j, r) and it does not follow from Lemma 6 as different points
of B(j, 5r) might belong to different areas A(j′, r), whose facilities might be up to distance
(2c2 + 2) · 5r apart. Thus, for any 〈j, r〉 ∈ Π, we define X(j, r) as follows:

X(j, r) =
⋃
{A(j′, r) | d(j, j′) ≤ cX · 5r}, where cX = 2c2 + 2,

and can now show the desired property for X(j, r):

I Lemma 8. Let j ∈ J with 〈j, r〉 6∈ Π. Then there exists 〈j∗, r〉 ∈ Π with B(j, 5r) ⊆ X(j∗, r).

Proof of Lemma 8. It suffices to show that there exists 〈j∗, r〉 ∈ Π such that for every area
A(j′, r) that intersects with the ball B(j, 5r), we get that A(j′, r) ⊆ X(j, r). First, by the
Covering property, there exists a pair 〈j∗, r〉 ∈ Π such that d(j, j∗) ≤ c1 ·5r. Next, let A(j′, r)
be any area such that A(j′, r)∩B(j, 5r) 6= ∅. By Lemma 6, we get that d(j′, j) ≤ (c2 + 1) · 5r.
It follows that d(j′, j∗) ≤ d(j′, j) + d(j, j∗) ≤ (c1 + c2 + 1) · 5r ≤ cX · 5r, which in tun implies
that A(j′, r) ⊆ X(j∗, r). J

It is crucial for the running time to get a bound on the number of areas used to construct
X(j, r). We do this in the following lemma, which is a simple corollary of Lemma 3.

I Lemma 9. For any 〈j, r〉 ∈ Π, X(j, r) is a union of at most 23κ areas.

We also need to bound how far any two points in X(j, r) can be apart:

I Lemma 10. It holds that X(j, r) ⊆ B(j, c3 · 5r).

To further reduce the set of open facilities, it is necessary to introduce a notion of
“closeness” between facilities that is more relaxed than the definition used for covering, where
we required two facilities to be at least c1 · 5r apart. Now we guarantee that if a facility
is open then no other facility within distance cY · 5r is opened, resulting in the following
definition of Y(j, r) for every 〈j, r〉 ∈ Π:

Y(j, r) =
⋃
{A(j′, r) |d(j, j′) ≤ cY · 5r}, where cY = 2cX + 3c2.
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The constant cY is chosen so that we can make sure that there are never two pairs 〈j, r〉 and
〈j′, r′〉 such that both j and j′ are open and X(j, r) and X(j′, r′) intersect. Thus, a client
can always only belong to at most one set X(j, r), where 〈j, r〉 is open. The facility j will be
the facility that the client is assigned to. The following lemmata follow as before:

I Lemma 11. For any 〈j, r〉 ∈ Π, Y(j, r) is a union of at most 25κ areas.

I Lemma 12. It holds that Y(j, r) ⊆ B(j, c4 · 5r).

I Lemma 13. If 〈j′, r′〉 is an ancestor of 〈j, r〉 in T , then Y(j, r) ⊆ Y(j′, r′).

Coloring of pairs. We are now ready to define a tie-breaking rule based on colors. For any
〈j, r〉 ∈ Π, consider the set Π(j, r) = Jr ∩B(j, c4 · 5r). By Lemma 3 and since c4 < 16c1, it
follows that Π(j, r) contains at most 25κ pairs. We need to guarantee that at most one of
them will ever be opened. Thus we introduce a tie-breaking rule based on colors of pairs.
This guarantees that out of all pairs in Π(j, r) that fulfill the abundance condition only the
one with the “smallest” color is opened.

More formally, we perform a preprocessing step using a greedy approach to color pairs of
same log-radius in Π with 25κ + 1 colors from 0 to 25κ.

Specifically for each log-radius r ∈ [ρmin, ρmax], we greedily color every pair 〈j, r〉 of Jr
by one color s so that no two pairs 〈j, r〉, 〈j′, r〉 ∈ Jr with d(j, j′) ≤ c4 · 5r are colored with
the same color, and we refer to 〈j, r, s〉 as triplet. Let Jr,s := {〈j, r, s′〉 ∈ Jr | s′ = s}.

Designated facilities. Furthermore, even if a triplet 〈j, r, s〉 fulfills the condition to be
opened (which is explained in the next section) it will not be opened, if there is a “cheaper”
facility nearby. More formally, we precompute for each pair 〈j, r〉 in Π the following designated
facility: Let f∗〈j,r〉 be the minimum opening cost of any facility in X(j, r), i.e.,

f∗〈j,r〉 = min
{
fj′
∣∣ j′ ∈ J ∩X(j, r)

}
.

The designated facility j∗〈j,r〉 of 〈j, r〉 is the facility with minimum cost f∗〈j,r〉 in X(j, r) with
ties broken according to the minimum id-number, i.e., j∗〈j,r〉 = min

{
j′
∣∣ j′ ∈ J ∩X(j, r), fj′ =

f∗〈j,r〉
}
.

I Observation 14. For any 〈j, r〉 ∈ Π, d(j, j∗〈j,r〉) ≤ c3 · 5r and f∗〈j,r〉 ≤ fj.

If the triplet 〈j, r, s〉 fulfills the condition to be opened, we open j∗〈j,r〉 instead, or do nothing
if j∗〈j,r〉 is already open. Whenever all triplets for which a facility is designated are closed,
then the facility is closed.

3 Processing updates

After the preprocessing phase we are given a laminar family of triplets, where each triplet
〈j, r, s〉 is formed by an area A(j, r) along with its pre-defined color s. Depending on the set
of clients C, a triplet can be either disabled or enabled and either open or closed, where each
open triplet is also enabled. These properties of triplets are maintained dynamically as the
set C of clients changes. Initially C = ∅ and all triplets are closed and disabled. We now
proceed to the formal definitions.

ESA 2018



39:8 A Tree Structure For Dynamic Facility Location

Open triplets. We open a triplet 〈j, r, s〉 if there are enough clients in the set X(j, r) to
pay the opening cost and it has no strictly smaller-radius or no same-radius and strictly
smaller-color open triplet in its “neighborhood”. A triplet that is not open is closed. Formally
a triplet 〈j, r, s〉 is open if it belongs to the set Jopen

r,s (C), which is defined3 recursively as
follows.

Jopen
r,s (C) =

{
〈j, r, s〉 ∈ Jr,s

∣∣∣ 5r · |C ∩X(j, r)| ≥ f∗〈j,r〉 ∧ ∀〈r′, s′〉 <lex 〈r, s〉 :

Y(j, r) ∩ Jopen
r′,s′ (C) = ∅

}
.

We use Jopen
C =

⋃
r,s J

open
r,s (C) to denote the set of all open clients and IC to denote the set

of all open facilities, i.e., IC = {j∗〈j,r〉 ∈ J | 〈j, r, s〉 ∈ J
open
C }.

We call the following condition for 〈j, r, s〉, used in the definition of Jopen
r,s , the abundance

condition,

5r · |C ∩X(j, r)| ≥ f∗〈j,r〉. (1)

I Lemma 15. If |C| > 0 then there exists at least one open triplet.

When showing the bound on the approximation ratio, we need the property that for each
point i ∈ V there is at most one set X(j, r) associated with an open triplet such that i
belongs to. This is necessary to make sure that each client “pays” for at most one open
facility.

I Lemma 16. Each client i ∈ C belongs to at most one X(j, r) with 〈j, r, s〉 ∈ Jopen
C for some

color s.

Note, however, that is not true that each client i ∈ C is contained in at least one X(j, r)
associated with an open triplet for some r: even though there always exists a X(j, r) fulfilling
the abundance condition and containing i (namely X(jroot, ρmax)), the corresponding triplet
〈jroot, ρmax, s〉 might not be open due to a “nearby” open triplet of smaller logradius. To
deal with this issue we introduce enabled triplets and show that each client in C is contained
in at least one X(j, r) of an enabled triplet.

Enabled triplets. A triplet 〈j, r, s〉 is enabled if it belongs to the set Jenabled
r,s (C), which is

defined4 as follows:

Jenabled
r,s (C) =

{
〈j, r, s〉 ∈ Jr,s

∣∣∣∃〈r′, s′〉 ≤lex 〈r, s〉 : Y(j, r) ∩ Jopen
r′,s′ (C) 6= ∅

}
.

We use Jenabled
C =

⋃
r,s J

enabled
r,s (C) to denote the set of all enabled facilities. The following

observation follows from the definition.

I Observation 17. If a triplet is open, then it is also enabled.

Furthermore, as a corollary of Lemma 13 we have the following lemma.

I Lemma 18. If a triplet is enabled, then all its ancestors in T are also enabled.

3 Remark that to make the formula a bit simpler we slightly abuse notation here – Y(j, r) is a set of areas
(i.e., subsets of the metric space), while Jopen

r′,s′ (C) is a set of triples. Formally the intersection should be
understood as Y(j, r) ∩ {j′ ∈ J | 〈j′, r′, s′〉 ∈ Jopen

r′,s′ (C)}.
4 Similarly to the definition of Jopen

r,s (C) we mean here Y(j, r) ∩ {j′ ∈ J | 〈j′, r′, s′〉 ∈ Jopen
r′,s′ (C)}.
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Since A(jroot, ρmax) = V , every point in V belongs to at least one X(j, r) associated with an
enabled triplet. To guarantee that at least one triplet is enabled, recall that Lemma 15 showed
that if |C| > 0, then there exist an open, and, thus, also enabled triplet (see Observation 17).
Lemma 18 implies that the root of T is enabled, implying the following lemma.

I Lemma 19. If |C| > 0 then every point in V belongs to at least one X(j, r) associated with
an enabled triplet.

The next lemma shows that the definition of enabled implies that any triplet that satisfies
the abundance definition is either open or enabled. This is a crucial observation for the proof
of the approximation ratio, as it will allow us to argue that for any facility that the optimal
solution opens, an enabled triplet must be nearby.

I Lemma 20. If 〈j, r, s〉 satisfies the abundance condition, then it is enabled.

Assignment of clients. We next describe how to assign each client i to an enabled triplet
〈j, r, s〉 and an open facility. If 〈j, r, s〉 is not open, we show how to find a close open triplet
of smallest radius. For this open triplet we know its designed facility that is open. This is
the facility that the client is finally assigned to.

We start with the assignment of i ∈ C to an enabled triplet. To this end, let rarea
i be the

minimum logradius of any enabled triplet such that i belongs to the area associated with the
triplet, i.e., rarea

i = min{r | 〈j, r, s〉 ∈ Jenabled
C , i ∈ A(j, r)}. Note that A(j, r) ⊆ X(j, r), and

let jarea
i be the center of the area with log-radius rarea

i and define 〈jarea
i , rarea

i , sarea
i 〉 to be

the corresponding triplet (recall that same-logradius areas are disjoint).
Once we determined the enabled triplet 〈jarea

i , rarea
i , sarea

i 〉 of i, we assign i to the open
triplet of minimum radius such that the corresponding facility belongs to Y(jarea

i , rarea
i ) and

let jopen
i be the designated open facility of that open triplet. We assign i to it. Formally:

〈raux
i , saux

i , jaux
i 〉 = min

{
〈r′, s′, j′〉

∣∣∣ 〈j′, r′, s′〉 ∈ Jopen
C , 〈r′, s′〉 ≤lex 〈rarea

i , sarea
i 〉,

j′ ∈ Y(jarea
i , rarea

i )
}
,

jopen
i = j∗〈jaux

i
,raux

i
〉.

Finally we denote the set of all clients assigned to facility j by Cj = {i ∈ C | j = jopen
i }. Note

that jopen
i does not have to be the closest open facility, but as the next lemma shows it is

not far away from an open facility.

I Observation 21. Any i ∈ C is within (c2 + c3 + c4) · 5rarea
i of an open facility.

The value rarea
i is crucial for the cost estimate. Thus it is important to characterize this

value even further, as we do in the following lemma.

I Lemma 22. For any i ∈ C, if i ∈ X(j, r) and 〈j, r, s〉 ∈ Jopen
C for some color s, then

rarea
i = r.

Assume we open each facility in IC and each client is assigned to an open facility as described
above or an even closer one, if one exists. As a consequence of the above lemma and the
definition of open facilities we can now bound the total cost of the solution by O(

∑
i∈C 5rarea

i ).

I Lemma 23. It holds that
∑
i∈C d(i, ji) +

∑
j∈IC fj ≤

∑
i∈C(c2 + c3 + c4 + 1) · 5rarea

i .

Now we are ready to prove the bound on the approximation ratio.
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I Theorem 24. For any subset C ⊆ V of clients, assign each client i ∈ C to the facility
jopen
i . Then the cost of this solution is O(1) ·OPT, where OPT is the optimal solution for C.

Proof. Denote by I∗ an arbitrary optimal solution. For each i ∈ C define j∗i to be the
facility i is connected to. Moreover, for each j ∈ J let C∗j be the set of clients connected to j.
Formally, j∗i = min{j ∈ I∗ | d(i, j) = d(i, I∗)}, C∗j = {i ∈ C | j = j∗i }. Consider some j ∈ I∗
and let r ∈ [ρmin, ρmax] be the logradius such that

5r−1 · |C∗j ∩B(j, 5r−1)| < fj ≤ 5r · |C∗j ∩B(j, 5r)|. (2)

Note that r is well-defined as 5ρmax · |C∗j ∩B(j, 5ρmax)| ≥ fmax ≥ fj by the definition of ρmax
and fj ≥ fmin ≥ 5ρmin+log5 n−1 ≥ 5ρmin−1 · |C∗j ∩B(j, 5ρmin−1)| by the definition of ρmin.

To complete the proof we split C∗j into two sets, Clo
j and Chi

j , according to whether
i ∈ B(j, 5r−1) or not, i.e., d(i, j) ≤ 5r−1 or d(i, j) > 5r−1 respectively, and show that∑

i∈Clo
j

5r
area
i < 5 · fj , and (A)

∑
i∈Chi

j

5r
area
i ≤

∑
i∈Chi

j

5 · d(i, j). (B)

Before showing the above inequalities we first argue that they prove the bound on the
approximation ratio. Note that every client belongs to C∗j for some j ∈ I∗. Thus,∑

i∈C
5r

area
i ≤

∑
j∈I∗

5 · fj +
∑
i∈C

5 · d(i, j) ≤ 5 ·OPT.

Using Lemma 23 we get that∑
i∈C

d(i, jopen
i ) +

∑
j∈IC

fj ≤
∑
i∈C

(c2 + c3 + c4 + 1) · 5r
area
i ≤ 5(c2 + c3 + c4 + 1) ·OPT.

We first show (A). Consider i ∈ Clo
j , or equivalently, i ∈ B(j, 5r−1). We claim that rarea

i ≤ r.
Indeed, if 〈j, r, s〉 ∈ Π for some color s, then X(j, r) ⊇ A(j, r) ⊇ B(j, 5r) along with (2) give

5r · |C ∩X(j, r)| ≥ 5r · |C∗j ∩B(j, 5r)| ≥ fj ≥ f∗〈j,r〉,

which in turn implies that 〈j, r, s〉 satisfies the abundance condition and so it is enabled
(Observation 20). By definition of rarea

i , we get rarea
i ≤ r. If 〈j, r, s〉 6∈ Π for any s, then

by Lemma 6, there exists a triplet 〈j′, r, s〉 such that i ∈ A(j′, r). Because d(j′, j) ≤
d(j′, i) + d(i, j) ≤ (c2 + 1) · 5r we have that B(j, 5r) ⊆ X(j′, r). This along with (2) imply
that

5r · |C ∩X(j′, r)| ≥ 5r · |C∗j ∩B(j, 5r)| ≥ fj ≥ f∗〈j′,r〉,

where the last inequality follows by definition of f∗〈j′,r〉. Similarly it follows that 〈j′, r, s〉 is
enabled and rarea

i ≤ r. Recalling that i ∈ B(j, 5r−1) we finally arrive at∑
i∈Clo

j

5r
area
i ≤

∑
i∈Clo

j

5r ≤ 5 · 5r−1 · |C∗j ∩B(j, 5r−1)| ≤ 5 · fj .

We next show (B). First, observe that for any ball B(j, 5r′′), r′′ ≥ r with i ∈ B(j, 5r′′), one
can prove similarly to the above that there exists an enabled triplet 〈j′′, r′′, s〉 such that
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i ∈ A(j′′, r′′). We have that d(j′′, j) ≤ d(j′′, i) + d(i, j) ≤ (c2 + 1) · 5r′′ , thus X(j′′, r′′) ⊇
B(j, 5r′′) ⊇ B(j, 5r). This, together with (2) and f∗〈j′′,r′′〉 ≤ fj give the claim.

Now, consider i ∈ Chi
j . Since d(i, j) > 5r−1, we get that dlog5 d(i, j)e ≥ r and i ∈

B(j, 5dlog5 d(i,j)e). By the discussion above, there exists an enabled triplet 〈j′′, dlog5 d(i, j)e, s〉
such that X(j′′, dlog5 d(i, j)e) ⊇ B(j, 5dlog5 d(i,j)e), implying that rarea

i ≤ dlog5 d(i, j)e and so∑
i∈Chi

j

5r
area
i ≤

∑
i∈Chi

j

5 · d(i, j). J

4 Data Structure

In this section we devise a data structure for the dynamic metric facility location problem
that supports insertions and deletions of clients as well as returning (a) the approximate
cost of the optimal solution or (b) a set of open facilities that achieves this approximate
cost. We achieve this by maintaining the minimum cost solution restricted to pairs in Π. By
Theorem 24 this is a O(1) approximation to the cost of the optimal solution.

From the preprocessing phase the algorithm is given the set Π of facility-radius-color
triplets, as well as the laminar family of areas A with its dependency tree T using the
following representation. (1) A two-dimensional array of size (ρmax − ρmin + 1)× (25κ + 1),
keeping for each logradius r ∈ [ρmin, ρmax] and color s a list of all the facilities of Jr that
share the color s, and (2) the dependency tree T in a tree data structure. Whenever we use
the term subtree, child, or descendant in the following we refer to the dependency tree. (3) For
each triplet v = 〈j, r, s〉 ∈ Π, the list neighbors_above(v) of all triplets 〈j′, r′, s′〉 such that
(a) 〈r′, s′〉 >lex 〈r, s〉 and (b) j ∈ Y(j′, r′). (4) For each triplet v = 〈j, r, s〉 ∈ Π, the value
f∗〈j,r〉, which is the minimum opening cost among all facilities in X(j, r). Using the algorithm
in Subsection 4.1 each list neighbors_above and each value f∗〈j,r〉 can be computed in time
O(2O(κ)∆). Thus, the above data structure can be built in time O(|J | · 2O(κ)∆).

The algorithm will maintain a dynamic data structure, which can be viewed as an
annotated dependency tree that keeps for each node v = 〈j, r, s〉 of T the following information:
1. three bits Ox(v), Ex(v), Ax(v), which indicate whether the triplet 〈j, r, s〉 is open, enabled

and fulfils the abundance condition, respectively,
2. the number narea(v) of current clients that belong to the area A(j, r), i.e., narea(v) =
|C ∩A(j, r)|,

3. the number nx(v) of current clients that belong to X(j, r), i.e., nx(v) = |C ∩X(j, r)|,
4. the number openbelow(v) of all open triplets 〈j′, r′, s′〉 with 〈r′, s′〉 <lex 〈r, s〉 and their

corresponding facilities falling within Y(j, r), i.e.,

openbelow(v) =
∣∣∣{〈j′, r′, s′〉 ∈ Jopen

C
∣∣ 〈r′, s′〉 <lex 〈r, s〉, j′ ∈ Y(j, r)

}∣∣∣,
5. the number nenblbelow(v) of current clients that belong to areas below that are enabled,

i.e.,

nenblbelow(v) =
∣∣∣C ∩⋃{〈j′, r′, s′〉 ∈ Jenbl

C
∣∣A(j′, r′) ⊂ A(j, r)

}∣∣∣,
6. the value c(v) =

∑
{5rarea

i | i ∈ C ∩A(j, r)} (note that with the currently open facilities
the cost accrued for the clients in A(j, r) is O(c(v))),

7. the value y(v), which is the cost of the children of v, i.e., y(v) =
∑
u child of v c(u).
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We next describe the usefulness of the information we keep. Points 1-2 are self-explanatory.
Point 3 provides information to test the abundance condition, and thus update the bits in
Point 1. Point 4 is useful when deciding whether we should open an area or not. Points 5-7
allow us to efficiently update the cost of the solution.

4.1 Finding all balls containing a given point
In this section we describe a crucial subroutine that we use repeatedly when handling updates.
It is given the hierarchy data structure for T , an arbitrary point p ∈ V and some constant
c∗ such that c∗ ≥ (5/4)c1 and returns all balls 〈j, r〉 ∈ Π that are at distance at most c∗ · 5r
from p, i.e., p ∈ B(j, c∗ · 5r). For r ∈ [ρmax, ρmin], let S(r) denote the set of such balls.

The algorithm FindBalls(p, c∗) performs a top-down traversal of the tree starting at
its root 〈j, ρmax〉. Note that by the definition of ρmax, all points belong to B(j, c∗ · 5ρmax)
and S(ρmax) = {〈j, ρmax〉}. For computing S(r), r = (ρmax − 1), it determines all children of
the root to find the pairs 〈j′, r〉 such that the distance of j′ and p is at most c∗ · 5r. This
step is repeated to compute the set S(`) for every level of the hierarchy, until we reach the
bottom-most level. Finally, we let S :=

⋃
{S(r) : r ∈ [ρmin, ρmax]}. A detailed description of

this procedure is deferred to the full version.
We next show that the algorithm correctly computes the set S(r), for every log-radius r.

Define children(S(r)) =
⋃
〈j,r〉∈S(r) children(j, r).

I Lemma 25. For each logradius r ∈ [ρmax, ρmin) assume S(r) is computed correctly. Then
it holds that S(r − 1) ⊆ children(S(r)).

Proof. Assume towards contradiction that there exists 〈j, r − 1〉 ∈ S(r − 1) such that
d(j, p) ≤ c∗ · 5r−1 but 〈j, r − 1〉 6∈ children(S(r)). Let 〈j′, r〉 be the parent of 〈j, r − 1〉 in T .
By Lemma 2, d(j, j′) ≤ c1 · 5r.

Now, since S(r) is correct, it follows that 〈j′, r〉 6∈ S(r), and thus d(p, j′) > c∗ · 5r.
However, by Lemma 2 we get that p ∈ B(j, c∗ ·5r−1) ⊆ B(j′, c∗ ·5r) and thus d(p, j′) ≤ c∗ ·5r,
which is a contradiction. Thus the lemma follows. J

Since cX ≥ (5/4)c1, let c∗ = cX . We now argue about the running time of FindBalls(p, c∗).
Note that for each logradius r, if p ∈ B(j, c∗ · 5r), then d(p, j) ≤ c∗ · 5r. By Lemma 3 and
the fact that c∗ ≤ 4c1 it follows that |S(r)| ≤ 23κ. Additionally, by Lemma 4 each pair in
S(r) has at most 24κ children in T and there are at most ∆ different radii. Thus the running
time of the algorithm and the size of the output set S are both bounded by 27κ ·∆.

I Lemma 26. The running time of FindBalls(p, c∗) and the size of the output set S are
both bounded by 27κ ·∆.

Repeatedly applying the FindBalls subroutine and updating the tree hierarchy in a bottom-
up fashion, we can show that insertions and deletions of clients can be handled in O(2O(κ2) ·
∆3 · (κ2 + log ∆)) time. Additionally note that under client updates, the value of n will
change, which in turn causes ρmin to either increase or decrease by one. This forces us
to either add or delete a bottom-level in the hierarchy, which can be implemented in
O((|J |+ |C|) · 2O(κ2) ·∆3 · (κ2 + log ∆)) time. Since such an update is required only after
Θ(n) operations, we get that the amortized time of our algorithm is still bounded by
O(2O(κ2) · ∆3 · (κ2 + log ∆)). By employing a standard global rebuilding technique we
achieve a worst-case update time, thus proving our main result in Theorem 1. Details on
implementing the above steps are deferred to the full version.
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