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Abstract
We revisit multipass pairing heaps and path-balanced binary search trees (BSTs), two classical
algorithms for data structure maintenance. The pairing heap is a simple and efficient “self-
adjusting” heap, introduced in 1986 by Fredman, Sedgewick, Sleator, and Tarjan. In the multi-
pass variant (one of the original pairing heap variants described by Fredman et al.) the minimum
item is extracted via repeated pairing rounds in which neighboring siblings are linked.

Path-balanced BSTs, proposed by Sleator (cf. Subramanian, 1996), are a natural alternative
to Splay trees (Sleator and Tarjan, 1983). In a path-balanced BST, whenever an item is accessed,
the search path leading to that item is re-arranged into a balanced tree.

Despite their simplicity, both algorithms turned out to be difficult to analyse. Fredman et al.
showed that operations in multipass pairing heaps take amortized O(logn · log logn/ log log logn)
time. For searching in path-balanced BSTs, Balasubramanian and Raman showed in 1995 the
same amortized time bound of O(logn · log logn/ log log logn), using a different argument.

In this paper we show an explicit connection between the two algorithms and improve both
bounds to O

(
logn · 2log∗ n · log∗ n

)
, respectively O

(
logn · 2log∗ n · (log∗ n)2), where log∗(·) de-

notes the slowly growing iterated logarithm function. These are the first improvements in more
than three, resp. two decades, approaching the information-theoretic lower bound of Ω(logn).
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1 Introduction

Binary search trees (BSTs) and heaps are the canonical comparison-based implementations
of the well-known dictionary and priority queue data types.

In a balanced BST all standard dictionary operations (insert, delete, search) take O(logn)
time, where n is the size of the dictionary. Early research has mostly focused on structures
that are kept (approximately) balanced throughout their usage. (AVL-, red-black-trees, and
randomized treaps are important examples, see e.g., [11, § 6.2.2]). These data structures
re-balance themselves when necessary, guided by auxiliary data stored in every node.

By contrast, Splay trees (Sleator, Tarjan, 1983 [17]) achieve O(logn) amortized time
per operation without any explicit balancing strategy and with no bookkeeping whatsoever.
Instead, Splay trees re-adjust the search path after every access, in a way that depends only
on the shape of the search path, ignoring the global structure of the tree. Besides the O(logn)
amortized time, Splay trees are known to satisfy stronger, adaptive properties (see [9, 3] for
surveys). They are, in fact, conjectured to be optimal on every sequence of operations (up to
a constant factor); this is the famous “dynamic optimality conjecture” [17]. Splay trees and
data structures of a similar flavor (i.e., local restructuring, adaptivity, no auxiliary data) are
called “self-adjusting”.

The efficiency of Splay trees is intriguing and counter-intuitive. They re-arrange the
search path by a sequence of double rotations (“zig-zig” and “zig-zag”), bringing the accessed
item to the root. It is not hard to see that this transformation results in “approximate
depth-halving” for the nodes on the search path; the connection between this depth-halving
and the overall efficiency of Splay trees is, however, far from obvious.

An arguably more natural approach for BST re-adjustment would be to turn the search
path, after every search, into a balanced tree.5 This strategy combines the idea of self-
adjusting trees with the more familiar idea of balancedness. Indeed, this algorithm was
proposed early on by Sleator (see e.g., [19, 1]). We refer to BSTs maintained in this way as
path-balanced BSTs (see Figure 1).

Path-balanced BSTs turn out to be surprisingly difficult to analyse. In 1995, Balasub-
ramanian and Raman [1] showed the upper bound of O(logn · log logn/ log log logn) on the
cost of operations in path-balanced BSTs. This bound has not been improved since. Thus,
path-balanced BSTs are not known to match the O(logn) amortized cost (let alone the
stronger adaptive properties) of Splay. This is surprising, because broad classes of BSTs
are known to match several guarantees of Splay trees [19, 2], path-balanced BSTs, however,
fall outside these classes.6 Without evidence to the contrary, one may even conjecture
path-balanced BSTs to achieve dynamic optimality; yet our current upper bounds do not
even match those of a static balanced tree. This points to a large gap in our understanding
of a natural heuristic in the fundamental BST model.

5 The restriction to touch only the search path is natural, as the cost of doing this is proportional to the
search cost. (A BST can be changed into any other BST with a linear number of rotations [16].)

6 Intuitively, path-balance is different, and more difficult to analyse than Splay, because it may increase
the depth of a node by an additive O(logn), whereas Splay may increase the depth of a node by at
most 2. In a precise sense, path-balance is not a local transformation (see [2]).

http://dx.doi.org/10.4230/LIPIcs.ESA.2018.24
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Figure 1 Access in a path-balanced BST. Search path (f, a, e, d, b, c) from root f to accessed
item c is re-arranged into a balanced tree with subtrees (denoted by capital letters) re-attached.

In this paper we show that the amortized time of an access7 in a path-balanced BST is
O
(

logn · (log∗ n)2 · 2log∗ n
)
. The result, probably not tight, comes close to the information-

theoretic lower bound of Ω(logn). Closing the gap remains a challenging open problem.

Priority queues support the operations insert, delete-min, and possibly meld, decrease-
key and others. Pairing heaps, a popular priority queue implementation, were proposed
in the 1980s by Fredman, Sedgewick, Sleator, and Tarjan [5] as a simpler, self-adjusting
alternative to Fibonacci heaps [6]. Pairing heaps maintain a multi-ary tree whose nodes
(each with an associated key) are in heap order. Similarly to Splay trees, pairing heaps only
perform key-comparisons and simple local transformations on the underlying tree, with no
auxiliary data stored. Fredman et al. showed that in the standard pairing heap all priority
queue operations take O(logn) time. They also proposed a number of variants, including the
particularly natural multipass pairing heap. In multipass pairing heaps, the crucial delete-min
operation is implemented as follows. After the root of the heap (i.e., the minimum) is deleted,
repeated pairing rounds are performed on the new top-level roots, reducing their number until
a single root remains. In each pairing round, neighboring pairs of nodes are linked. Linking
two nodes makes the one with the larger key the leftmost child of the other (Figure 2).

Pairing heaps perform well in practice [18, 14, 12]. However, Fredman [4] showed that all
of their standard variants (including the multipass described above) fall short of matching the
theoretical guarantees of Fibonacci heaps (in particular, assuming O(logn) cost for delete-
min, the average cost of decrease-key may be Ω(log logn), in contrast to the O(1) guarantee
for Fibonacci heaps). The exact complexity of the standard pairing heap on sequences of
intermixed delete-min, insert, and decrease-key operations remains an intriguing open problem,
with significant progress through the years (see e.g., [8, 15]). However, for the multipass
variant, even the basic question of whether deleting the minimum takes O(logn) amortized
time remains open, the best upper bound to date being the O(logn · log logn/ log log logn)
originally shown by Fredman et al. Similarly to the case of path-balanced BSTs, we have
thus a basic combinatorial transformation on trees, whose complexity is not well-understood.

In this paper we show that in multipass pairing heaps delete-min8 takes amortized time
O
(
logn · log∗ n · 2log∗ n), the first improvement since the original paper of Fredman et al.

The improvement is, from a practical perspective, not significant. Nonetheless, it reduces the
gap to the theoretical optimum from (≈ log(2) n) to less than log(k) n for any fixed k.

7 We only focus on successful search operations (i.e., accesses). The results can be extended to other
operations at the cost of technicalities. For simplicity, we assume that the keys in the tree are unique.

8 To keep the presentation simpler, we only focus on delete-min operations, omitting the extension of the
result to other operations.
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Figure 2 Delete-min in a multipass pairing heap. (above) state after deleting the root, with list
of siblings; (below) state after three pairing rounds, with links (2, 5), (4, 1), (3, 7), (2, 1), (3, 6), (1, 3).
(left) multi-ary view; (right) binary view. Numbers denote keys, capital letters denote subtrees.

The reader may notice that the old bounds for multipass pairing heaps and path-balanced
BSTs are the same. The two data structures are, indeed, quite similar: if one views multipass
pairing heaps as binary trees (see e.g., [10, § 2.3.2]), the multipass re-adjustement is equivalent
to balancing the right-spine of a binary tree.9 The multipass analysis, however, does not
immediately transfer to path-balanced BSTs; the fact that the BST search path may be
arbitrary (not necessarily right-leaning) complicates the argument for path-balanced BSTs.

Our analysis of multipass pairing heaps (§ 2) is based on a new, fine-grained scaling of
the sum-of-logs potential function used by Sleator and Tarjan in the analysis of Splay trees,
and by Fredman et al. in the analysis of pairing heaps. At a high level, we argue that certain
link operations are information-theoretically efficient, and that such links happen sufficiently
often. The subsequent, rather intricate analysis notwithstanding, we believe that the ideas
of the proof may have further applications in the analysis of data structures.

In § 3 we show our result for path-balanced BSTs. Informally, we decompose the path-
balancing operation into several stages, each of which resembles the multipass transformation,
allowing us to adapt and reuse the result of § 2. For lack of space, we omit several proofs
(marked ?) in this version of the paper and refer to the longer preprint10 for details and
additional illustrations.

2 Multipass pairing heaps

A pairing heap is a multi-ary heap, storing a key in each node, with the regular (min)heap-
condition: the key of a node is smaller than the keys of its children. Priority queue operations
are implemented using the unit-cost linking step. Given nodes x, y, link(x, y) “hangs” the
node with the larger key as the leftmost child of the other. The operations insert, meld, and
decrease-key can be implemented in a straightforward way using a single link (we refer to [5]
for details). The only nontrivial operation is delete-min. Here, after deleting the root, we are
left with a number of top-level nodes, which we combine into a single tree via a sequence
of links. In multipass pairing heaps we achieve this by performing repeated pairing rounds,
until a single top-level node remains (i.e., the new root of the heap). A single pairing round

9 We note that the previous analysis of path-balanced BSTs [1] did not use this correspondence. By
connecting the two data structures, we also simplify (to some extent) the proof of [1].

10 https://arxiv.org/abs/1806.08692

https://arxiv.org/abs/1806.08692
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Figure 3 Left: link(x, y) in binary tree view. Dots (...) indicate the sequence of nodes that have
already been linked in the current round, subtree C contains the yet-to-be-linked nodes. Arrows
indicate possible switching depending on the outcome of the comparison between x and y. The
roots of A,B, and C are denoted xA, xB , and xC . Right: i-th link in a round (between xi and yi).
The subtree rooted at the right child of yi is denoted Ci; observe that Ci contains Ci+1.

is as follows. Let x1, . . . , x` be the top-level nodes, ordered left-to-right, before the round.
For all 1 ≤ i ≤ b`/2c we perform link(x2i−1, x2i). Observe that if ` is odd, then the rightmost
node is unaffected in the current round. The number of rounds is dlog(k)e, where k is the
number of children of the (deleted) root.11 (See Figure 2.)

We now analyse delete-min operations implemented by multipass pairing heaps. Let k
be the number of children of the deleted root, defined to be the real cost of the operation
(observe that the number of links is exactly k − 1). Let n be the size of the heap before the
operation. We use the binary tree view of multi-ary heaps, where the leftmost child and next
sibling pointers are interpreted as left child and right child. A single link operation is shown
in Figure 3. Let a, b, c denote the sizes of subtrees A, B, and C, respectively.

We define a potential function that refines the Sleator-Tarjan “sum-of-logs” potential [17].
Let Φ =

∑
x∈T φ(x), over all nodes x of the heap T , where

φ(x) = H(x)
log2 (2 +H(x))

, and H(x) = log
(
s(p(x))
s(x)

)
,

where s(x) denotes the size of the subtree rooted at x, and p(x) is the parent of x.12 Note
that both subtrees and parents are meant in the binary tree view.

For convenience, define the functions

f(x) = log x/ log2 (2 + log x), and g(x) = x/ log2 (2 + x).

With this notation, f(x) = g(log (x)), and φ(x) = f

(
s(p(x))
s(x)

)
. Clearly, both f(x) and g(x)

are positive, monotone increasing, and concave, for all x ≥ 1, respectively, x ≥ 0.
By simple arithmetic, the increase in potential due to a single link (as in Figure 3) is:

∆Φ = f

(
a+ b+ 1

a

)
+ f

(
a+ b+ 1

b

)
+ f

(
a+ b+ c+ 2
a+ b+ 1

)
+ f

(
a+ b+ c+ 2

c

)
−f
(
a+ b+ c+ 2

a

)
− f

(
a+ b+ c+ 2
b+ c+ 1

)
− f

(
b+ c+ 1

b

)
− f

(
b+ c+ 1

c

)
. (1)

11The function log(·) is base 2 everywhere, the base e logarithm is written as ln(·).
12Using φ(x) = H(X) instead, would essentially recover the original “sum-of-logs” potential. Such an
“edge-based” potential function was used earlier, e.g., in [7, 13].
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For a suitably large constant γ (for concreteness let γ = 3000), we consider the quantities
γ2a, γb, and c, i.e., the scaled sizes of the subtrees A, B, and C. We distinguish different
kinds of links, depending on the ordering of the three quantities (breaking ties arbitrarily).
We first look at the cases when γ2a or γb is the largest (called respectively type-(1) and
type-(2) links), and show that the possible increase in potential due to such links is small.
In particular, for type-(1) links, ∆Φ is dominated by a term f(a/c), and for type-(2) links
the positive and negative contributions cancel out, leaving ∆Φ = O(1). The proofs (omitted
here) use standard (although somewhat delicate) analysis.

I Lemma 1 (?). A type-(1) link (γ2a ≥ max {γb, c}) increases the potential Φ by at most
2 · g

(
log (a/c) +O(1)

)
, where the O(1) term is a constant independent of a, b, c, n, and k.

I Lemma 2 (?). A type-(2) link (γb ≥ max {γ2a, c}) increases Φ by at most O(1).

The case when c is the greatest of the three quantities (called type-(3) link) is the most
favorable. Here, the potential of xA, xB before the linking is (roughly) the logarithm of s(xC)
(very large) divided by s(xA), s(xB); after the linking, the potential becomes (essentially)
the logarithm of the ratio between s(xA) and s(xB) (much smaller), resulting in a significant
saving in potential. We use this saving to “pay” for the operations. First we make the
following, easier claim.

I Lemma 3 (?). A type-(3) link (c ≥ max {γ2a, γb}) can not increase Φ.

It remains to balance the decrease in potential due to type-(3) links and the increase in
potential due to all other links. First, we show that almost all links are type-(3).

I Lemma 4. There are at most O(logn) type-(1) and type-(2) links within a pairing round.

Proof. Let ai, bi, ci denote the subtree-sizes corresponding to the i-th link from left to right,
see Figure 3(right). Let the subsequences ait , bit , cit , t = 1, . . . ,m be the subtree-sizes
corresponding to type-(1) and type-(2) links. Observe that ci1 ≥ · · · ≥ cim . If the i-th link is
of type-(1) or type-(2), then ci−1 = 2 + ai + bi + ci ≥ (1 + 1/γ2) · ci, since in each of these
cases ai ≥ 1/γ2ci or bi ≥ 1/γ2ci. Since ci1 ≤ n, and cim ≥ 1 the claim follows. J

I Lemma 5. All type-(1) and type-(2) links within a single pairing round increase the
potential by at most O(logn).

Proof. Look at a single round of pairing. Let ait , bit , cit (t = 1, . . . ,m) be as in the proof of
Lemma 4 and recall that m = O(logn). If the it-th link is type-(1), then by Lemma 1, the
increase in potential is at most 2 · g

(
log (ait/cit) +O(1)

)
.

Otherwise, if the it-th link is type-(2), then by Lemma 2, the increase in potential is at
most O(1), which we can write as 2 · g(c′), for a suitable constant c′.

Let qt denote log (ait/cit) +O(1), or c′, corresponding to the it-th link (according to its
type). We have

∑
qi ≤ α · logn (for a fixed constant α ≥ 1), since the sum of the log (ai/ci)

terms telescopes, and the additive O(1) (or c′) terms appear at most m = O(logn) times.
The total increase in potential is at most ∆Φ = 2 ·

∑m
t=1 g(qt). By the concavity of g(·),

∆Φ is maximized if all of the arguments of g(·) are equal. We thus obtain a bound on the
total increase in potential in the pairing round.

∆Φ ≤ 2m · g
(
α · logn
m

)
= 2α logn

log2 (2 + α · (logn)/m)
= O (logn) . J

The last proof yields, in fact, the following stronger claim.
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I Lemma 6. All type-(1) and type-(2) links within the last (log logn) pairing rounds increase
the potential by at most O(logn).

Proof. Observe that for j < log logn, the j-th to the last pairing round has at most
m ≤ 2j < logn links. Thus, as in Lemma 5, we obtain:

∆Φ ≤ 2α logn
log2 (2 + α · (logn)/m)

≤ 2α logn
log2 (α · (logn)/2j)

= 2α logn
((log logn+ logα)− j)2 .

Note that the second inequality holds since 2j < logn. The sum of this expression over
all (log logn) levels j is O(logn). (Using the fact that

∑
k 1/k2 converges to a constant.) J

Now we estimate more carefully the decrease in potential due to type-(3) links. Let xA and
xB be nodes as denoted in Figure 3. We want to express the potential-change in terms of
HA = H(xA) and HB = H(xB) (before the link operation). Recall that HA = log

(
a+b+c+2

a

)
and HB = log

(
b+c+1
b

)
.

Among type-(3) links (c ≥ max {γ2a, γb}) we distinguish two subtypes: type-(3A) (γ2a ≥
γb), and type-(3B) (γb ≥ γ2a). We have the following two (symmetric) observations:

I Lemma 7 (?). A type-(3A) link (c ≥ γ2a ≥ γb) decreases the potential by at least

Ω(1) · HA

log2 (2 +HB)
−O(1).

It follows that for some constant d1, if HA ≥ d1 · log2 (2 +HB), then ∆Φ ≤ −1.

I Lemma 8 (?). A type-(3B) link (c ≥ γb ≥ γ2a) decreases the potential by at least

Ω(1) · HB

log2 (2 +HA)
−O(1).

It follows that for some constant d2, if HB ≥ d2 · log2 (2 +HA), then ∆Φ ≤ −1.

I Corollary 9. There exists a constant d (= max(d1, d2)) such that all type-(3A) links with
HA ≥ d · log2 (2 +HB) and all type-(3B) links with HB ≥ d · log2 (2 +HA) decrease the
potential by at least 1.

We now define the category of a node with respect to its H(·) value. Intuitively, nodes of
the same category are those that, when linked, release the most potential. Let us denote
h(x) = d · log2 (2 + x). Using the notation of function composition, let

h(0)(x) = x, h(i)(x) = h
(
h(i−1)(x)

)
.

The category of a node is based on the values h(i)(logn), i = 1, . . . , log∗ n. Note that
h(0)(logn) = logn, h(1)(logn) = d · log2 (2 + logn), . . . , h(log∗ n)(logn) = O(1), where the
O(1) depends on d, since (using the star notation) h∗(n) ≤

(
log3)∗ (n)+O(1) = log∗ n+O(1).

I Definition 10 (Category). Let u be a node. For i = 1, . . . , log∗ n, we let cat(u) = i if:

H(u.left) ∈ (h(i)(logn), h(i−1)(logn)].

If H(u.left) ≤ h(log∗ n)(logn) we say that u is of category 0.

The following crucial observations connect categories and savings in potential.

ESA 2018
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I Lemma 11. Let link(u, v) be type-(3). If cat(u) = cat(v) 6= 0, then the link decreases the
potential by at least 1.

Proof. Note that if i = cat(u) = cat(v) 6= 0 then

H(u.left) ≥ h(i) (logn) ≥ d · log2 (2 +H(v.left)),

H(v.left) ≥ h(i) (logn) ≥ d · log2 (2 +H(u.left)).

Thus, by Corollary 9, the claim follows. J

I Lemma 12. In each pairing round there are at most O(logn) nodes of category 0.

Proof. Let x be of category 0, then H(x.left) = O(1). Denoting a = s(x.left), c = s(x.right),
we get H(x.left) = log a+c+1

a = O(1). Therefore, a = Ω(c), an occurrence that can happen
at most O(logn) times in each round (by the same argument as in Lemma 4). J

I Lemma 13. Let w denote the “winner” of linking x and y (neither of category 0), i.e., w
is the one with the smaller key. Then cat(w) ≥ max{cat(x), cat(y)}.

Proof. Let y = x.right, a = s(x.left), b = s(y.left), c = s(y.right) as in Figure 3. We have
that H(x.left) = log a+b+c+2

a , H(y.left) = log b+c+1
b , and H(link(x, y).left) = log a+b+c+2

a+b+1 .
Clearly a+b+c+2

a+b+1 ≤ min{a+b+c+2
a , b+c+1

b }, finishing the proof. J

As seen in Figure 2, a delete-min operation transforms the “spine” of the heap (in binary
view) into a balanced tree. We denote this tree by T . Each level of T corresponds to a pairing
round; specifically, level i of T consists of nodes at distance i from the leaves, containing the
losers of the i-th pairing round. The following lemma captures the potential reduction that
yields the main result.

I Lemma 14. Let T ′ be a subtree of T of depth log∗ n, whose leaves correspond to 2log∗ n

consecutive link operations. If T ′ contains only type-(3) links and no links involving nodes of
category 0, then the total decrease in potential caused by the links of T ′ is at least 1.

Proof. Assume towards contradiction that there is no link between two nodes of the same
category in T ′. By Lemma 13 in each round the minimal overall category increases by at
least 1, leaving us with two nodes of maximal category in the last round, a contradiction. By
Lemma 11, a link between nodes of equal category decreases the potential by at least 1. J

I Theorem 15. The amortized time of delete-min in multipass pairing heaps is O(logn ·
log∗ n · 2log∗ n).

Proof. Let the real cost (number of link operations) be k. Note that there are at most
dlog ke pairing rounds.

Thus, if k ≤ logn · log∗ n · 2log∗ n, then there are at most log logn+ log log∗ n+ log∗ n+ 1
rounds. Using Lemma 5 we get that the first log log∗ n + log∗ n + 1 = O(log∗ n) pairing
rounds increase the potential by at most O(logn · log∗ n). Also, as shown in Lemma 6, the
total increase in potential for the last log logn levels is O(logn). Thus, the total potential
increase is at most O(logn) + O(logn · log∗ n).

To analyse the case k > logn · log∗ n · 2log∗ n, we use the potential decrease of type-(3)
links. First, we look at the first log∗ n pairing rounds.

By Lemma 14, the links in every complete subtree of T of depth log∗ n, in which there
are only type-(3) links and no category-0 nodes, decrease the potential by at least 1.
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In the first log∗ n levels of T we can find k
2log∗ n disjoint subtrees of this size. In these

levels there are at most O(log∗ n · logn) type-(1),(2) links, or links containing category-0
nodes (Lemmas 4 and 12). Thus, at least k

2log∗ n −O (log∗ n · logn) of the subtrees answer
the conditions of Lemma 14, decreasing the potential by at least k

2log∗ n −O (log∗ n · logn).
Also, the total increase in potential caused by type-(1),(2) links is at most O(logn · log∗ n)
(Lemma 5). Therefore, the first log∗ n levels give us a decrease in potential of at least

k
2log∗ n −O (log∗ n · logn).

Note that by using the same argument on the next log∗ n levels, we get a decrease in
potential of at least k′

2log∗ n−O (log∗ n · logn), where k′ is the number of links in level log∗ n+1.
Thus, levels which contain Ω

(
logn · log∗ n · 2log∗ n) links only decrease the potential.

We repeat this argument until we reach a level in T containing k̃ ≤ logn · log∗ n · 2log∗ n

links. Now, applying the same argument as for the first case, we get that the total increase in
potential for the last log k̃ levels (starting from the level of k̃ links) is at most O(logn · log∗ n).

Summarizing, the total amortized time (in both cases) is at most

k +O(logn · log∗ n)−
(

k

2log∗ n − log∗ n · logn
)
.

Scaling the potential by 2log∗ n, we get that the amortized time is O(logn · log∗ n ·2log∗ n). J

3 Path-balanced binary search trees

Consider the operation of accessing a node x in a BST T with n nodes (we refer interchangeably
to a node and its key). Let Px denote the search path to x (i.e., the path from the root of
T to x). The path-balance method re-arranges Px into a complete balanced BST (with all
levels complete, except possibly the lowest). Subtrees hanging off Px are re-attached in the
unique way given by the key-order (Figure 1). There are multiple ways to implement this
transformation such that the number of pointer moves and pointer changes is linear in the
length of the search path. For instance, we may first rotate the search path into a monotone
path, then apply a multipass transformation (described next) to this monotone path.

Multipass transformation. A multipass transformation of a monotone path P (of which
the deepest node might not be a leaf) converts P into a balanced tree (in which the last level
may be incomplete) by a sequence of pairing rounds. In each pairing round we rotate every
other edge in a prefix of P (i.e., a subpath of the shallowest nodes on P). Each rotation
pushes one node off P. We denote by Pi the path remaining of P after i pairing rounds.
The pairing rounds are defined as follows. We assume that the path consists of right child
pointers; in the case it consists of left child pointers everything is symmetric.

Let `(P) denote the length of P (i.e., the number of nodes on P). In the first round we
do just enough rotations so that the length of the path after the round (i.e., P1) is one less
than a power of 2. Specifically, we do α rotations where α is the smallest integer such that
`(P1) = `(P) − α = 2j − 1. In the second round we do 2j−1 − 1 rotations on P1, and in
round i > 1 we do 2j−i+1 − 1 rotations on Pi−1. We maintain the invariant that after i+ 1
rounds all the nodes that were pushed off P (excluding those that were pushed off P at the
first round) are arranged in balanced binary trees of height (i− 1), hanging as children of
the nodes of Pi+1.

The proof of the following theorem is analogous to the proof of Theorem 15 (one can
verify that all steps of the proof still hold for the slightly modified pairing rounds of the
multipass transformation, replacing rotations by links).
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I Theorem 16. For every monotone path P with `(P) = k, the change in Φ caused by applying
a multipass transformation on P is bounded by ∆Φ ≤ c(n, k) := − k

2log∗ n +O(logn · log∗ n),
where n is the size of the subtree of the root of P.

Warm-up: a simplified path-balance. We first look at an easier-to-analyse variant of path-
balance, where, instead of a complete balanced tree, we build an almost balanced tree out of
the search path Px, as follows: we first make the accessed item x the root, then turn the
parts of Px containing items smaller (resp. larger) than x into balanced subtrees rooted at
the left (resp. right) child of x. The depth of this tree is at most one larger than the depth
of a complete balanced tree built from Px.

For the purpose of the analysis, we view the simplified path-balance transformation as a
two-step process. The actual implementation may be different but the analysis applies as
long as the transformation takes time O (`(Px)).

Step 1. Rotate the accessed element x all the way to the root. (Observe that after this
step, Px is split into two monotone paths, P<x to the left of x consisting only of “right child”
pointers, and P>x to the right of x, consisting only of “left child” pointers.)

Step 2. Apply a multipass transformation to P>x and to P<x.
We show that the amortized time of an access using simplified path-balance is O(logn ·

log∗ n · 2log∗ n). We use the same potential function as in § 2, and we assume the two-step
implementation described above. We first state an easy observation.

I Lemma 17. Let P be a path in T rooted at a node r, then Φ (P) = O(log s(r)), where
Φ(P) =

∑
x∈P φ(x) and s(r) is the size of the subtree of r.

Proof. Denote ` = `(P). Let a1 ≤ ... ≤ a` = s(r) be the subtree-sizes of the nodes on P
from the deepest node to r. Then

Φ(P) =
`−1∑
k=1

f

(
ak+1

ak

)
=

`−1∑
k=1

g

(
log ak+1

ak

)
≤ ` · g

(
log s(r)

`

)
= O(log s(r)),

due to g’s concavity and since the terms log ak+1
ak

sum to log s(r)− log a1 ≤ log s(r). J

We proceed with the analysis. We argue that rotating x to the root (Step 1) increases Φ
by at most O(logn). To see this, observe first, that the potential of nodes hanged on the
nodes of Px excluding x, can only decrease. This is because their subtree remains the same,
whereas the subtree of their parent (a node on the search path) can only lose elements. The
two children of x may increase the potential by at most O(logn).

For nodes on the search path, we look at the potential after the transformation. We have
two separate paths, and by Lemma 17 the potential of each path is bounded by O(logn).
This concludes the analysis for Step 1.

In Step 2, as we apply the multipass transformation to both P<x and P>x, Theorem 16
applies. Thus, ∆Φ is at most c(s(x.left), `(P<x)) + c(s(x.right), `(P>x)) where c(n, k) is
defined in Theorem 16. The claim on the amortized running time follows by scaling ∆Φ by
2log∗ n and adding it to the actual cost (the length of Px). This concludes the proof.

Analysis of path-balance. The original path-balance heuristic (where we insist on building
a complete balanced tree) is trickier to analyse. Here, instead of moving the accessed item x

to the root, we move the median item m of the search path Px to the root. Here, “median”
is meant with respect to the ordering of keys; m is, in general, not the node with median
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depth on Px. It is instructive to prove the earlier O(logn · log logn/ log log logn) result first,
by re-using parts of the Fredman et al. proof for multipass. We defer this to the full version
of the paper. In the remainder of this section we prove the new, stronger result.

I Theorem 18. The amortized time of search in a path-balanced BST of size n is
O
(

logn · (log∗ n)2 · 2log∗ n
)
.

For the purpose of the analysis, we view the path-balance transformation as a sequence
of recursive calls on search paths in some subtree of T . The total real cost is proportional
to the original length of the search path to x which we denote by k. We define a threshold
τ = logn, and distinguish between recursive calls on paths shorter than τ (“short paths”)
and recursive calls on paths longer than τ (“long paths”).

A long path Px is processed as follows. Rotate the median m of the nodes on Px to the
root, splitting Px into two paths of equal lengths. One of these paths contains the path from
m to x in Px, and the other path, which is monotone, contains either the elements smaller
than m on Px or the elements larger than m on Px (depending on whether x is in the right
or left subtree of m). In the sequel we assume without loss of generality that the monotone
part contains all elements larger than m and denote it by P>m. Let Qx denote the other
(non-monotone) path that ends with x. We perform a multipass transformation on P>m,
and make a recursive call on Qx (i.e., Qx becomes the P x of the next recursive call).

A short path Px is transformed into a balanced binary tree in two phases, as follows.
In the first phase, rotate up the median m1 of Px = P1 until it becomes the root of the
subtree rooted at the shallowest node of P1. This decomposes P1 into a monotone path and
a general path P2, one starting at the left child of m1 and the other at the right child of
m1. We repeat this recursively with the median m2 of P2, and so on, until we get a general
path P` of length 1. After this transformation, the medians mj form a path, each mj having
the next median mj+1 as one child and a monotone path as the other child. The lengths of
these monotone paths decrease exponentially by a factor of 2. In the second phase we apply
a multipass transformation on each monotone path, obtaining a complete balanced tree.

Before we analyse each case, we argue that Theorem 16 also holds with a modified
potential Φ (defined below). As we only use the new potential from now on, there is no risk
of confusion. The modification consists in changing the exponent of the logarithmic term in
the denominator from 2 to 3, and changing the additive constant inside the log(·) to make
sure Φ is still increasing everywhere.

Formally, Φ =
∑
x∈T φ(x), where φ(x) = H(x)

log3 (4+H(x)) , and H(x) = log s(p(x))
s(x) . As earlier,

s(x) is the size of the subtree rooted at x, and p(x) is the parent of x.
It can be shown that the entire analysis in § 2 extends to this new potential. Therefore,

Theorem 16 holds also for the modified potential function Φ. Now, the analysis of transforming
long paths is straightforward. For short paths, we need two new observations.

I Lemma 19. The total increase in potential for performing multipass transformation on a
path P of length k < logn where n is the size of the subtree of the root of P, is at most

log k∑
j=1

O(logn)
(log logn+ 1− j)3 .

The proof is identical to that of Lemma 6. As before, the sum can be bounded as O(logn),
but here we use the quantity explicitly inside another sum where the exponent 3 in the
denominator will be crucial. The next observation can be shown in a way similar to Lemma 17.
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I Lemma 20 (?). Given a search path P of length k < logn, the total increase in Φ due to
recursively rotating all medians m1,m2, . . . of P to the root is O(logn).

We are ready to prove Theorem 18. We split the proof into three cases according to the
length of the search path, denoted by k.

Short paths (k ≤ τ = logn). Notice that log k ≤ log logn. Recall that in the first phase,
we repeatedly rotate up the medians, decomposing the path into monotone paths of lengths
1, 2, 4, . . . , 2j , where j < log logn. By Lemma 20 the total increase in potential due to this
transformation is at most O(logn).

In the second phase, we do a multipass transformation on each of these monotone paths.
By Lemma 19, a multipass transformation on a monotone path of length 2j increases Φ by at
most

∑j
i=1 α · logn/(log logn+ 1− i)3, for some fixed α. Thus, the j < log logn multipass

transformations increase the potential by at most

log logn∑
j=1

j∑
i=1

α · logn
(log logn+ 1− i)3 =

log logn∑
s=1

α · logn
s2 = O(logn).

The first equality holds since the term α·logn
s3 appears in the above sum exactly s times

(1 ≤ s ≤ log logn). Thus, the total increase in Φ is, in this case, O(logn).

Longish paths (τ < k ≤ logn · log∗ n · 2log∗ n). Notice that log k ≤ log logn+ 2 · log∗ n.
We perform 2 · log∗ n recursive calls and a final call on a search path of length k′ ≤ τ . The

final call increases Φ by at most O(logn), by the analysis in the previous case. The recursive
calls consist of rotating the current median up to the root and applying the multipass
transformation on a monotone path. As before, rotating the median up increases Φ by
at most O(logn). Also, each multipass transformation is performed on a path of length
≤ logn · log∗ n · 2log∗ n. By Theorem 16, the increase in potential is at most O(logn · log∗ n).
Therefore, the 2 · log∗ n recursive calls increase Φ by at most O

(
logn · (log∗ n)2

)
, which also

bounds the total increase in Φ.

Long paths (k = Ω
(
logn · log∗ n · 2log∗ n

)
). We look at the potential change due to

the first recursive call. Again, rotating the median m to the root increases Φ by at most
O(logn). The path splits into P>m and Qx, of which P>m is monotone. By Theorem 16,
the multipass transformation on P>m decreases Φ by k/2

2log∗ (n) −O (log∗ (n) · logn).
By the same argument, Φ decreases during all of the subsequent recursive calls on paths

of size Ω
(
logn · log∗ n · 2log∗ n).

We continue until we have a recursive call on a path of size at most
(
logn · log∗ n · 2log∗ n),

which, by the previous case, increases Φ by at most O
(

logn · (log∗ n)2
)
. Thus, we obtain

that the total decrease in Φ in this case is at least k/2
2log∗ (n) −O

(
logn · (log∗ n)2

)
.

Combining the three cases, after scaling the potential by 2 · 2log∗ n, we conclude that the
amortized time of the access is k+ 2 · 2log∗ n ·∆Φ = O

(
logn · 2log∗ n · (log∗ n)2

)
, as required.
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