Improved Routing on the Delaunay Triangulation

Nicolas Bonichon
Université de Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France
Prosenjit Bose
Carleton University, 1125 Colonel By Dr, Ottawa, ON, Canada
Jean-Lou De Carufel
University of Ottawa, 800 King Edward Ave, Ottawa, ON, Canada
Vincent Despré
Team Gamble, INRIA Nancy, 54600 Villers-lès-Nancy, France
Darryl Hill
Carleton University, 1125 Colonel By Dr, Ottawa, ON, Canada
Michiel Smid
Carleton University, 1125 Colonel By Dr, Ottawa, ON, Canada

Abstract

A geometric graph $G=(P, E)$ is a set of points in the plane and edges between pairs of points, where the weight of an edge is equal to the Euclidean distance between its two endpoints. In local routing we find a path through G from a source vertex s to a destination vertex t, using only knowledge of the current vertex, its incident edges, and the locations of s and t. We present an algorithm for local routing on the Delaunay triangulation, and show that it finds a path between a source vertex s and a target vertex t that is not longer than 3.56|st|, improving the previous bound of $5.9|s t|$

2012 ACM Subject Classification Mathematics of computing \rightarrow Paths and connectivity problems, Mathematics of computing \rightarrow Graph algorithms

Keywords and phrases Delaunay, local routing, geometric, graph

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.22

Funding This work was supported by the National Sciences and Engineering Research Council of Canada (NSERC) and by the French ANR grant ASPAG (ANR-17-CE40-0017)

1 Introduction

A Euclidean geometric graph $G=(P, E)$ is a set P of points embedded in the plane, and a set E of edges, where each $e \in E$ is a pair of points (u, v) in P, and the weight of e is the Euclidean distance |uv|.

A local routing algorithm A is an algorithm that routes a packet through the geometric graph G from a source vertex s to a target vertex t using only knowledge of the locations of s and t, as well as the location of the current vertex and its adjacent vertices. Let $\mathcal{P}\langle s, t\rangle$ be the path found in G from s to t using A. The routing ratio of A for any two points s and t in the geometric graph G is the ratio of the length of $\mathcal{P}\langle s, t\rangle$ to the Euclidean distance from s to t. An algorithm A has a routing ratio c for a class of geometric graphs \mathcal{G}, if, for any two vertices s and t in $G \in \mathcal{G},|\mathcal{P}\langle s, t\rangle| \leq c \cdot|s t|$.

A graph $G=(P, E)$ is a c-spanner if for any pair of points u and v in P the shortest path in G is not longer than $c|u v|$. The value c is referred to as the stretch factor or spanning

© Nicolas Bonichon, Prosenjit Bose, Jean-Lou De Carufel, Vincent Despré, Darryl Hill, and Michiel Smid;

Table 1 Spanning and Routing Ratios of Delaunay Triangulations. Tight results are shown in bold.

Graph	Spanning Ratio	Routing Ratio
$T D$-Delaunay	$\mathbf{2}[8]$	$\mathbf{5} / \sqrt{\mathbf{3}} \approx \mathbf{2 . 8 9}[5]$
L_{1} and L_{∞}-Delaunay	$\sqrt{\mathbf{4 + 2} \sqrt{\mathbf{2}}} \approx \mathbf{2 . 6 1}[3]$	$\sqrt{10} \approx 3.16[7]$
Hexagon-Delaunay	$\mathbf{2}[9]$	
L_{2}-Delaunay	$1.998[13]$	3.56 (this paper)

ratio of G. The stretch factor of G is thus a lower bound on the routing ratio of G for any routing algorithm A, and the routing ratio is an upper bound on the spanning ratio of G. Geometric spanners are described in detail in the book by Narasimhan and Smid [12].

A notable geometric graph is the Delaunay triangulation. Given a set P of points in the plane, we construct the Delaunay triangulation of P as follows. For each triple (p, q, r) of points in P, let C be the circle through p, q, and r. If there are no points of P in the interior of C, then we connect p, q, and r by edges to form a triangle. In this paper we assume that P is in general position: no 3 points are colinar and no 4 points are cocircular.

The Delaunay triangulation was first proven to be a spanner by Dobkin et al. [10], who showed an upper bound of 5.08 on the spanning ratio. This was subsequently improved to 2.42 by Keil and Gutwin [11], and then to 1.998 by Xia [13]. Xia and Zhang proved later that there exist Delaunay triangulations with spanning ratio greater than 1.59 [14].

Bose and Morin [6] explored some of the theoretical limitations of routing, and provided some of the first deterministic routing algorithms with constant routing ratio on the Delaunay triangulation. They denoted the spanning ratio found by Dobkin et al. [10] as $c_{d f s} \approx 5.08$. They showed that it is possible to locally route on the Delaunay triangulation with a routing ratio of $9 \cdot c_{d f s} \approx 45.749$. Bose et al. [4] further improved this bound to ≈ 15.479. Then, Bonichon et al. [2] showed that we can locally route on the Delaunay triangulation with a routing ratio of at most 5.9. In the same paper it was shown that the routing ratio of any deterministic local algorithm is at least 1.70 for the Delaunay triangulation.

Efforts to evaluate the spanning ratio and routing ratio have been made for Delaunay triangulations defined on other metrics. We can define these metrics by taking a convex shape and translating and scaling it until it intersects three vertices but contains no points of P in its interior. When we use a circle we obtain the L_{2}, or classical Delaunay triangulation. When the metric is not specified (as in the rest of this paper), then we are referring to the L_{2}-Delaunay triangulation. The L_{1}-Delaunay triangulation uses an axis aligned square, while the L_{∞}-Delaunay triangulation uses a square tipped at 45 degrees. By rotating the point set 45 degrees, it is easy to show that the L_{1} and L_{∞} triangulations are equivalent. Bonichon et al. [3] showed that the L_{1} and L_{∞} Delaunay triangulations are $\sqrt{4+2 \sqrt{2}} \approx 2.61$-spanners, and they showed that this bound is tight. On this triangulation, Chew [7] proposed a routing algorithm with routing ratio $\sqrt{10}$. Moreover, the routing ratio of any deterministic local algorithm is at least 2.70 for this class of graph [1]. The TD-Delaunay triangulation is constructed using an equilateral triangle. Chew [8] showed that they are 2-spanners. Bose et al. [5] proposed a routing algorithm of routing ratio $\sqrt{5 / 3} \approx 2.89$ and they show that this ratio is the best possible. Recently Dennis, Perkovic and Duru [9] showed that the stretch factor of Hexagon-Delaunay triangulation is 2 and this is tight.

In this paper we present a local routing algorithm, called MixedChordArc, for the $L_{2^{-}}$ Delaunay triangulation, with a routing ratio of 3.56 . This improves the current best routing ratio of 5.9 [1]. Table 1 shows our result in the context of spanning and routing ratios of other Delaunay triangulations.

In Section 2 we define a local algorithm that achieves this routing ratio. In Section 3 we prove the result for a special case, called balanced configurations. In Section 4 we extend the technique presented in Section 3 to prove the main result in the general case. In Section 5 we present our conclusions and our ideas for future directions for this line of research.

2 The MixedChordArc Algorithm

Let P be a finite set of points in the plane, and let $D T(P)$ be the Delaunay triangulation of P. We want to route a packet between two vertices of P along edges of $D T(P)$ using only local knowledge and knowledge of our start and destination vertices.

Let s and t be the start and terminal vertices respectively, and assume, without loss of generality, that s and t are on the x-axis with s to the left of t. Our general position assumption ensures that no other vertex lies on st. Consider two triangles T and T^{\prime} whose interior is cut by st. We say that T is to the left of T^{\prime}, and T^{\prime} is to the right of T, if, by following st starting at s we intersect T before T^{\prime}. If $u v$ is the edge shared by T and T^{\prime}, then our general position assumption ensures that u and v are on opposite sides of st.

Let C be a circle that intersects st. We denote by t_{C} the rightmost point of C on st. Let u and v be two points on C. We denote by $\mathcal{A}_{C}(u, v)$ the clockwise arc of C from u to v, and by $\mathcal{B}_{C}(u, v)$ the counter-clockwise arc of C from u to v. We denote the length of a continuous curve S by $|S|$.

Let $p \neq t$ be the vertex representing the current location of the packet. We assume s to be above st, and we assume t to be on the opposite side of st from the current vertex. Let T be the rightmost triangle with p as a vertex whose interior is cut by st. Let $a \neq p$ be the vertex of T that is above $s t$, and let $b \neq p$ be the vertex of T that is below st. Let C be the circumcircle of T.

Here is the algorithm MixedChordArc. First assume that $p=s$. If $\left|\mathcal{A}_{C}\left(s, t_{C}\right)\right| \leq$ $\left|\mathcal{B}_{C}\left(s, t_{C}\right)\right|$, set $p=a$, otherwise set $p=b$. See Fig. 1a. If $p \neq s$, we repeat the following until $p=t$.

1. If p is above $s t$:
a. If $\left|\mathcal{A}_{C}\left(p, t_{C}\right)\right| \leq|p b|+\left|\mathcal{B}_{C}\left(b, t_{C}\right)\right|$, set $p=a$
b. Else set $p=b$.
2. If p is below st:
a. If $\left|\mathcal{B}_{C}\left(p, t_{C}\right)\right| \leq|p a|+\left|\mathcal{A}_{C}\left(a, t_{C}\right)\right|$, set $p=b$
b. Else set $p=a$.

Note that assuming that t is on the opposite side of $s t$ from p ensures that when t is a neighbour of the current vertex, the algorithm will forward the packet directly to t.

The possible choices are illustrated in Fig. 1. Let $\mathcal{P}\langle s, t\rangle=\left(s=p_{0}, p_{1}, \ldots, p_{n}=t\right)$ be the sequence of vertices produced by the algorithm. In this paper we prove the following theorem.

- Theorem 1. The MixedChordArc Algorithm finds a path $\mathcal{P}\langle s, t\rangle$ from s to t whose length $|\mathcal{P}\langle s, t\rangle|$ is not more than $\mu|s t|$, where $\mu=\sqrt{\frac{2}{1-\sin (1)}}<3.56$.

In some cases, the path produced by our algorithm is a balanced configuration. In such cases, the analysis of the length of $\mathcal{P}\langle s, t\rangle$ is much easier. In Section 3 we define what a balanced configuration is, and analyze the length of $\mathcal{P}\langle s, t\rangle$ for this specific case. Then, in Section 4, we analyze the length of $\mathcal{P}\langle s, t\rangle$ for the general case.

(a) From $p=s$, the blue arc is shorter than the red arc, so we forward to a.

(b) From p, the blue path is shorter than the red path, so we forward to a.

(c) From p, the blue path is shorter than the red path, so we forward to a.

Figure 1 Illustrating one step of the algorithm.

3 Bounding $|\mathcal{P}\langle s, t\rangle|$ in a Balanced Configuration

Let us consider a path $\mathcal{P}\langle s, t\rangle$ of vertices such that $p_{0}=s, p_{n}=t$ and $p_{i-1} p_{i}$ is an edge of the rightmost triangle T_{i} of p_{i-1} that has a non-empty intersection with st. Let a_{i} and b_{i} be the other two vertices of T_{i}, where a_{i} is above st, and b_{i} is below st. Thus $p_{i}=a_{i}$ or $p_{i}=b_{i}$. Let $s=p_{0}=a_{0}=b_{0}$ and let $t=p_{n}=a_{n}=b_{n}$. Let C_{i} be the circumcircle of T_{i}, let r_{i} be its radius and let c_{i} be its center. Let C_{0} be the circle centered at s with radius $r_{0}=0$. Let $\mathcal{T}=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$, and let $\mathcal{C}=\left(C_{0}, C_{1}, \ldots, C_{n}\right)$ be the sequence of circles starting at C_{0}, followed by the circumcircles of \mathcal{T}. Note that the vertex of T_{i} that is on the opposite side of st to p_{i-1} may not be at the intersection of C_{i-1} and C_{i}. Thus we define a second intersection point of C_{i-1} and C_{i} as follows (p_{i-1} being one intersection point). If p_{i-1} is above $s t$, then q_{i} is the lowest intersection of C_{i} and C_{i-1} (where "lowest" is defined by the point having the least y-coordinate). If p_{i-1} is below $s t$, let q_{i} be the highest intersection of C_{i-1} and C_{i} (where "highest" is defined by the point having the greatest y-coordinate). Note that it is possible to have C_{i-1} and C_{i} intersect in two points, and still have $q_{i}=p_{i-1}$. See circle C_{4} in Fig. 2. Observe that if T_{i} and T_{i-1} share an edge, then q_{i} is the vertex of T_{i} on the opposite side of st from p_{i-1}. See circles C_{1}, C_{2}, C_{3}, and C_{5} in Fig. 2. To simplify the notation, we write t_{i} instead of $t_{C_{i}}$, and we write $\mathcal{A}_{i}(u, v)$ and $\mathcal{B}_{i}(u, v)$ instead of $\mathcal{A}_{C_{i}}(u, v)$ and $\mathcal{B}_{C_{i}}(u, v)$, respectively.

We say that a pair of consecutive circles C_{i-1} and C_{i} is balanced if $\left|\mathcal{A}_{i}\left(p_{i-1}, t_{i}\right)\right|=$ $\left|p_{i-1} q_{i}\right|+\left|\mathcal{B}_{i}\left(q_{i}, t_{i}\right)\right|$ when p_{i-1} is above $s t$, and if $\left|\mathcal{B}_{i}\left(p_{i-1}, t_{i}\right)\right|=\left|p_{i-1} q_{i}\right|+\left|\mathcal{A}_{i}\left(q_{i}, t_{i}\right)\right|$ when p_{i-1} is below st. A path $\mathcal{P}\langle s, t\rangle$ on a point set P is a balanced configuration when C_{i-1} and C_{i} are balanced for all $1 \leq i \leq n$.

3.1 Analysis Technique

- Lemma 2. Let C_{i-1} and C_{i} be arbitrary circles of \mathcal{C}, where $1 \leq i \leq n$. Then

1. $\left|p_{i-1} b_{i}\right|+\left|\mathcal{B}_{i}\left(b_{i}, t_{i}\right)\right| \leq\left|p_{i-1} q_{i}\right|+\left|\mathcal{B}_{i}\left(q_{i}, t_{i}\right)\right|$ when p_{i-1} is above st, and
2. $\left|p_{i-1} a_{i}\right|+\left|\mathcal{A}_{i}\left(a_{i}, t_{i}\right)\right| \leq\left|p_{i-1} q_{i}\right|+\left|\mathcal{A}_{i}\left(q_{i}, t_{i}\right)\right|$ when p_{i-1} is below st.

Proof. By the triangle inequality we have $\left|p_{i-1} b_{i}\right| \leq\left|p_{i-1} q_{i}\right|+\left|\mathcal{B}_{i}\left(q_{i}, b_{i}\right)\right|$, from which 1 follows. Case 2 is symmetric.

For the rest of this section, we assume that $\mathcal{P}\langle s, t\rangle$ is a balanced configuration. Consider the case when p_{i-1} is above st (the case when p_{i-1} is below st is symmetric). If $q_{i}=b_{i}$ then $\left|\mathcal{A}_{i}\left(p_{i-1}, t_{i}\right)\right|=\left|p_{i-1} b_{i}\right|+\left|\mathcal{B}_{i}\left(b_{i}, t_{i}\right)\right|$, and the algorithm proceeds to a_{i}. If $q_{i} \neq b_{i}$, observe that $\left|p_{i-1} b_{i}\right| \leq\left|p_{i-1} q_{i}\right|+\left|\mathcal{B}_{i}\left(q_{i}, b_{i}\right)\right|$ by the triangle inequality (see circles C_{4} and C_{5} in Fig. 2). Thus we have $\left|p_{i-1} b_{i}\right|+\left|\mathcal{B}_{i}\left(b_{i}, t_{i}\right)\right|<\left|p_{i-1} q_{i}\right|+\left|\mathcal{B}_{i}\left(q_{i}, t_{i}\right)\right|=\left|\mathcal{A}_{i}\left(p_{i-1}, t_{i}\right)\right|$, and the algorithm

Figure 2 Sequence of circles in a balanced configuration and the path in blue. The dotted circles are circumcircles of triangles intersected by st but not in \mathcal{T}.
proceeds to b_{i}. Thus a balanced configuration allows for steps that cross st and steps that do not cross st. It also allows us to use $\left|\mathcal{A}_{i}\left(p_{i-1}, t_{i}\right)\right|$ as an upper bound on $\left|p_{i-1} b_{i}\right|+\left|\mathcal{B}_{i}\left(b_{i}, t_{i}\right)\right|$ in the case where $p_{i-1} p_{i}$ crosses st.

Let $x(v)$ and $y(v)$ be the x and y-coordinates of a point v, respectively. Let s_{i} be a point on st such that $x\left(s_{i}\right)=x\left(t_{i}\right)-2 r_{i}$. We define the following potential function that we use to bound the length of $\mathcal{P}\langle s, t\rangle$.

- Definition 3. If p_{i-1} is above $s t$, then

$$
\Phi\left(C_{i-1}, C_{i}\right)=\left|\mathcal{A}_{i}\left(p_{i-1}, t_{i}\right)\right|-\left|\mathcal{A}_{i-1}\left(p_{i-1} t_{i-1}\right)\right|-\lambda\left|s_{i-1} s_{i}\right|-(\mu-\lambda)\left|t_{i-1} t_{i}\right| .
$$

Otherwise, if p_{i-1} is below $s t$, then

$$
\Phi\left(C_{i-1}, C_{i}\right)=\left|\mathcal{B}_{i}\left(p_{i-1}, t_{i}\right)\right|-\left|\mathcal{B}_{i-1}\left(p_{i-1} t_{i-1}\right)\right|-\lambda\left|s_{i-1} s_{i}\right|-(\mu-\lambda)\left|t_{i-1} t_{i}\right|,
$$

where $\lambda=\left(\frac{1+\sin (1)}{\cos (1)}-\pi / 2-1\right) / 2 \approx 0.42$ and $\mu=\sqrt{\frac{2}{1-\sin (1)}}<3.56$.
See Fig. 2 and 3 for a complete example and an illustration of the potential functions. See Fig. 4 for an illustration of $\Phi\left(C_{i-1}, C_{i}\right)$. Three lemmas are used to prove Theorem 1 for balanced configurations. The proof of Lemma 4 is found in Section 3.3 while the proof of Lemma 5 is in Section 3.2.

- Lemma 4. Given a pair of balanced circles C_{i-1} and C_{i},

$$
\Phi\left(C_{i-1}, C_{i}\right) \leq 0
$$

- Lemma 5. For any balanced configuration $\mathcal{P}\langle s, t\rangle, \sum_{i=1}^{n}\left|s_{i-1} s_{i}\right| \leq|s t|$.
- Lemma 6. For any $\mathcal{C}, x\left(t_{i-1}\right)<x\left(t_{i}\right)$ for all $1 \leq i \leq n$, and $\sum_{i=1}^{n}\left|t_{i-1} t_{i}\right| \leq|s t|$.

Proof. We prove that $x\left(t_{i-1}\right)<x\left(t_{i}\right)$, that is, t_{i} is right of t_{i-1} for all $1 \leq i \leq n$, by contradiction. Assume that $x\left(t_{i-1}\right) \geq x\left(t_{i}\right)$. If q_{i} is to the same side of st as p_{i-1}, then C_{i-1} must contain the vertex of T_{i} on the opposite side of $s t$. If q_{i} is on the opposite side of

Figure 3 Illustrating the non-zero potential functions $\mathcal{D}_{i}, 1 \leq i \leq 4$ of a balanced configuration.
st as p_{i-1}, then C_{i-1} contains the vertex of T_{i} on the same side of st as p_{i-1}. Both cases contradict the construction of a Delaunay triangulation. This, together with the fact that $t_{0}=s$ and $t_{n}=t$ implies the second part of the lemma.

- Lemma 7. For $1 \leq i \leq n$, if p_{i-1} is above st, then

1. a. $\left|\mathcal{A}_{i}\left(p_{i-1}, t_{i}\right)\right|>\left|p_{i-1} p_{i}\right|+\left|\mathcal{A}_{i}\left(p_{i}, t_{i}\right)\right|$ if p_{i} is above st, and
b. $\left|\mathcal{A}_{i}\left(p_{i-1}, t_{i}\right)\right|>\left|p_{i-1} p_{i}\right|+\left|\mathcal{B}_{i}\left(p_{i}, t_{i}\right)\right|$ if p_{i} is below st
otherwise p_{i-1} is below st and
2. a. $\left|\mathcal{B}_{i}\left(p_{i-1}, t_{i}\right)\right|>\left|p_{i-1} p_{i}\right|+\left|\mathcal{B}_{i}\left(p_{i}, t_{i}\right)\right|$ if p_{i} is below st, and
b. $\left|\mathcal{B}_{i}\left(p_{i-1}, t_{i}\right)\right|>\left|p_{i-1} p_{i}\right|+\left|\mathcal{A}_{i}\left(p_{i}, t_{i}\right)\right|$ if p_{i} is above st.

Proof. Case 1a is because $\left|\mathcal{A}_{i}\left(p_{i-1}, p_{i}\right)\right|>\left|p_{i-1} p_{i}\right|$, and Case 1 b is because if p_{i} is below $s t$, then the algorithm chose to cross st, which implies 1b. Case 2 is symmetric.

Theorem 1 follows from Lemmas 4, 5, 6, and 7:

Proof. We first analyze the case when p_{i-1} is above st. Recall that in this case, $\Phi\left(C_{i-1}, C_{i}\right)$ is defined as

$$
\Phi\left(C_{i-1}, C_{i}\right)=\left|\mathcal{A}_{i}\left(p_{i-1}, t_{i}\right)\right|-\left|\mathcal{A}_{i-1}\left(p_{i-1} t_{i-1}\right)\right|-\lambda\left|s_{i-1} s_{i}\right|-(\mu-\lambda)\left|t_{i-1} t_{i}\right|
$$

If p_{i} is above $s t$ (same side of st as $\left.p_{i-1}\right)$, then $\left|\mathcal{A}_{i}\left(p_{i-1}, t_{i}\right)\right|>\left|p_{i-1} p_{i}\right|+\left|\mathcal{A}_{i}\left(p_{i}, t_{i}\right)\right|$ by Lemma 7. In this case, let $\mathcal{D}_{i}=\mathcal{A}_{i}\left(p_{i}, t_{i}\right)$. If p_{i} is below $s t$, then $\left|\mathcal{A}_{i}\left(p_{i-1}, t_{i}\right)\right|>\left|p_{i-1} p_{i}\right|+$ $\left|\mathcal{B}_{i}\left(p_{i}, t_{i}\right)\right|$ by Lemma 7 . In this case, let $\mathcal{D}_{i}=\mathcal{B}_{i}\left(p_{i}, t_{i}\right)$. In both cases we have $\left|\mathcal{A}_{i}\left(p_{i-1}, t_{i}\right)\right|>$ $\left|p_{i-1} p_{i}\right|+\left|\mathcal{D}_{i}\right|$.

Let $\Phi^{\prime}\left(C_{i-1}, C_{i}\right)$ be the function defined by

$$
\Phi^{\prime}\left(C_{i-1}, C_{i}\right)=\left|p_{i-1} p_{i}\right|+\left|\mathcal{D}_{i}\right|-\left|\mathcal{D}_{i-1}\right|-\lambda\left|s_{i-1} s_{i}\right|-(\mu-\lambda)\left|t_{i-1} t_{i}\right| .
$$

Observe that $\Phi^{\prime}\left(C_{i-1}, C_{i}\right) \leq \Phi\left(C_{i-1}, C_{i}\right)$. By Lemma $4, \Phi\left(C_{i-1}, C_{i}\right) \leq 0$, thus $\Phi^{\prime}\left(C_{i-1}, C_{i}\right) \leq$ 0 . When p_{i-1} is below st, a symmetric proof again shows us that $\Phi^{\prime}\left(C_{i-1}, C_{i}\right) \leq 0$. Recall

Figure 4 Illustrating the function $\Phi\left(C_{i-1}, C_{i}\right)$: blue minus green is charged to red to obtain an upper bound on the routing ratio.
that $p_{0}=t_{0}=s$, and $p_{n}=t_{n}=t$, which means $\left|\mathcal{D}_{0}\right|=\left|\mathcal{D}_{n}\right|=0$. Therefore we have

$$
\sum_{i=1}^{n} \Phi^{\prime}\left(C_{i-1}, C_{i}\right) \leq 0
$$

from which we get:

$$
\begin{align*}
\sum_{i=1}^{n}\left(\left|p_{i-1} p_{i}\right|+\left|\mathcal{D}_{i}\right|-\left|\mathcal{D}_{i-1}\right|\right) & \leq \sum_{i=1}^{n}\left(\lambda\left|s_{i-1} s_{i}\right|+(\mu-\lambda)\left|t_{i-1} t_{i}\right|\right) \\
|\mathcal{P}\langle s, t\rangle|-\left|\mathcal{D}_{0}\right|+\left|\mathcal{D}_{n}\right| & \leq(\lambda+\mu-\lambda)|s t| \tag{1}\\
|\mathcal{P}\langle s, t\rangle| & \leq \mu|s t| .
\end{align*}
$$

The right hand side of (1) is due to Lemmas 5 and 6 .
Lemma 5 is discussed in the next section. Lemma 4 is discussed in Section 3.3.

3.2 Proof of Lemma 5

Lemma 5 uses the following supporting result:

- Lemma 8. Let C_{i-1} and C_{i} be balanced. Let s_{i-1} be the point on st where $x\left(s_{i-1}\right)=$ $x\left(t_{i-1}\right)-2 r_{i-1}$ and let s_{i} be the point on st where $x\left(s_{i}\right)=x\left(t_{i}\right)-2 r_{i}$. Then $x\left(s_{i-1}\right) \leq x\left(s_{i}\right)$.

Proof. See Fig. 5. Let u_{i-1} be the point on C_{i-1} that is diametrically opposed to t_{i-1} and let u_{i} be the point on C_{i} that is diametrically opposed to t_{i}. We will show the case when p_{i-1} is above $s t$; the case when it is below $s t$ is symmetric. Since C_{i-1} and C_{i} are balanced, we have that $\left|\mathcal{A}_{i}\left(p_{i-1}, t_{i}\right)\right|=\left|p_{i-1} q_{i}\right|+\left|\mathcal{B}_{i}\left(q_{i}, t_{i}\right)\right|$ which implies that $\left|\mathcal{A}_{i}\left(p_{i-1}, t_{i}\right)\right| \leq \pi r_{i}$ and $\left|\mathcal{B}_{i}\left(q_{i}, t_{i}\right)\right| \leq \pi r_{i}$. Since $\left|\mathcal{A}_{i}\left(u_{i}, t_{i}\right)\right|=\left|\mathcal{B}_{i}\left(u_{i}, t_{i}\right)\right|=\pi r_{i}, u_{i}$ is not on the open interval $\mathcal{A}_{i}\left(p_{i-1}, t_{i}\right)$ or $\mathcal{B}_{i}\left(q_{i}, t_{i}\right)$, which implies that either u_{i} is on the arc of C_{i} between p_{i-1} and q_{i} that does not contain t_{i}, or $u_{i}=p_{i-1}=q_{i}$. Lemma 6 implies that t_{i} is not inside C_{i-1}, which implies that u_{i} must be on or inside C_{i-1}. Let O_{i} be the circle centered at t_{i} with radius $\left|t_{i} u_{i}\right|=2 r_{i}$. Thus O_{i} and C_{i} are tangent at u_{i}, and O_{i} intersects st at s_{i}. Let O_{i-1} be the circle centered at t_{i-1} with radius $2 r_{i-1}$. Thus O_{i-1} and C_{i-1} are tangent at u_{i-1}, and O_{i-1} intersects st at s_{i-1}. We prove the lemma by contradiction, thus assume that $x\left(s_{i}\right)<x\left(s_{i-1}\right)$. In the proof of Lemma 6, we showed that $x\left(t_{i}\right)>x\left(t_{i-1}\right)$. Therefore, it must be that O_{i-1} is in the interior of O_{i}, and thus they do not intersect. Since u_{i} is on or

Figure $5 O_{i}$ must intersect O_{i-1} if C_{i-1} and C_{i} are path balanced, which implies that $x\left(s_{i-1}\right) \leq$ $x\left(s_{i}\right)$.
inside C_{i-1}, and O_{i} intersects u_{i}, O_{i} must intersect C_{i-1}. But C_{i-1} is contained in O_{i-1} except for the point u_{i-1}, and O_{i-1} is contained in O_{i}, and thus O_{i} cannot intersect C_{i-1}, which is a contradiction. See Fig. 5.

We can now prove Lemma 5:
Proof of Lemma 5. Follows from Lemma 8 and the fact that $x\left(s_{0}\right)=x(s)$ and $x\left(s_{n}\right)<$ $x(t)$.

3.3 Proof of Lemma 4

To show that $\Phi\left(C_{i-1}, C_{i}\right) \leq 0$ when C_{i-1} and C_{i} are balanced, we set up the following coordinate system. We show the proof for the case when p_{i-1} is above $s t$; the case when p_{i-1} is below st is symmetric. Let c_{i-1} and c_{i} lie along the x-axis, and let p_{i-1} and q_{i} lie along the y-axis. See Fig. 6. Lemma 4 follows from the following two lemmas:

- Lemma 9. When C_{i-1} and C_{i} are balanced, if $y\left(t_{i-1}\right) \leq 0$, then $\Phi\left(C_{i-1}, C_{i}\right) \leq 0$.
- Lemma 10. When C_{i-1} and C_{i} are balanced, if $y\left(t_{i-1}\right)>0$, then $\Phi\left(C_{i-1}, C_{i}\right) \leq 0$.

The main tool to prove these two lemmas is the following transformation, which is similar to a transformation used by Xia [13].

- Transformation 11. Fix p_{i-1} and q_{i}, and translate c_{i} to the left along the x-axis until $c_{i}=c_{i-1}$. Moreover keep C_{i-1} unchanged and maintain C_{i} as the circle with center c_{i} with p_{i-1} on its boundary.

Observe that, after we have completed Transformation 11, we have $C_{i}=C_{i-1}$ and thus $\Phi\left(C_{i-1}, C_{i}\right)=0$. If we can show that $\Phi\left(C_{i-1}, C_{i}\right)$ is increasing while $x\left(c_{i}\right)$ decreases, then it must be that $\Phi\left(C_{i-1}, C_{i}\right) \leq 0$ before Transformation 11. Thus we wish to find the change in $\Phi\left(C_{i-1}, C_{i}\right)$ with respect to the change in $x\left(c_{i}\right)$ during Transformation 11. Formally:

Figure 6 Coordinate system for analyzing $\Phi\left(C_{i-1}, C_{i}\right)$.

- Lemma 12. If $\frac{d \Phi\left(C_{i-1}, C_{i}\right)}{d x\left(c_{i}\right)} \leq 0$ during Transformation 11, then $\Phi\left(C_{i-1}, C_{i}\right) \leq 0$.

Proof. At the end of Transformation 11 we have that $\Phi\left(C_{i-1}, C_{i}\right)=0$. If $\frac{d \Phi\left(C_{i-1}, C_{i}\right)}{d x\left(c_{i}\right)} \leq 0$ then $\Phi\left(C_{i-1}, C_{i}\right)$ is not decreasing during Transformation 11, and thus $\Phi\left(C_{i-1}, C_{i}\right) \leq 0$ before Transformation 11.

The analysis of this function is similar to Xia's approach [13]. To ensure that this transformation is well-defined, we require q_{i} to be below st. We observe that $\Phi\left(C_{i-1}, C_{i}\right)$ is maximized when $s t$ is on or above c_{i-1}, and this assumption implies q_{i} is below (or on $s t$, in the case where $p_{i-1}=q_{i}$). Full details of this analysis, the transformation analysis, and the proofs for Lemmas 9 and 10 have been left out due to space constraints.

4 Bounding $\mathcal{P}\langle s, t\rangle$ in the General Case

In Section 3, we proved Theorem 1 for the case when the path produced by our algorithm results in a balanced configuration. In this section, we prove Theorem 1 for the general case. Given a sequence \mathcal{C} of circles that intersect st, no series of transformations were found that could achieve a balanced configuration, while simultaneously providing a provable upper bound on the length of $\left|p_{i-1}, p_{i}\right|$. However, we were able to find two sequences of circles to substitute for \mathcal{C}. To represent each C_{i} in \mathcal{C}, we have a potential circle C_{i}^{P} and a bounding circle C_{i}^{B}. Like C_{i}, both C_{i}^{P} and C_{i}^{B} have t_{i} as their rightmost intersection with st. However, C_{i} intersects both p_{i} and p_{i-1}, while C_{i}^{B} is only required to intersect p_{i-1}, and C_{i}^{P} is only required to intersect p_{i}. If we look at a bounding circle C_{i}^{B} and the previous potential circle C_{i-1}^{P}, which intersect at p_{i-1}, they are balanced, and we can thus apply the function $\Phi\left(C_{i-1}^{P}, C_{i}^{B}\right)$ to relate the lengths of the arcs of these circles to $|s t|$. Finally, when analyzed properly, they provide an upper bound on the length $\left|p_{i} p_{i-1}\right|$.

Formally, let C_{0}^{P} be the circle centered at $s=p_{0}$ with radius $r_{0}^{P}=0$, and let C_{n}^{P} be the circle centered at t with radius $r_{n}^{P}=0$. Assuming we have defined C_{i-1}^{P}, we will define C_{i}^{B} and C_{i}^{P}. If p_{i-1} is above st, let C_{i}^{B} be the circle through p_{i-1} and t_{i} for which $\left|\mathcal{A}_{C_{i}^{B}}\left(p_{i-1}, t_{i}\right)\right|=\left|p_{i-1} q_{i}^{\prime}\right|+\left|\mathcal{B}_{C_{i}^{B}}\left(q_{i}^{\prime}, t_{i}\right)\right|$, where q_{i}^{\prime} is the bottommost intersection of C_{i-1}^{P} and C_{i}^{B}. If p_{i-1} is below st, let C_{i}^{B} be the circle through p_{i-1} and t_{i} for which $\left|\mathcal{B}_{C_{i}^{B}}\left(p_{i-1}, t_{i}\right)\right|=\left|p_{i-1} q_{i}^{\prime}\right|+\left|\mathcal{A}_{C_{i}^{B}}\left(q_{i}^{\prime}, t_{i}\right)\right|$, where q_{i}^{\prime} is the topmost intersection of C_{i-1}^{P} and C_{i}^{B}. That is, C_{i-1}^{P} and C_{i}^{B} are balanced. Let r_{i}^{B} be the radius of C_{i}^{B}. The potential circle C_{i}^{P} is the circle through p_{i}, whose rightmost intersection with st is t_{i}, and whose radius is

(a) The sequence of triangles \mathcal{T} intersected by $s t$, along with their circumcircles \mathcal{C}, and the path $\mathcal{P}\langle s, t\rangle$ found by the algorithm in bold.

(b) The complete set of bounding arcs and potential arcs used in the function $\Phi\left(C_{i-1}^{P}, C_{i}^{B}\right)$, used to bound the routing ratio in the general case.

Figure 7 The initial circumcircles in 7a, and the construction of the potential circles and bounding circles in the general case in 7 b .
given by $r_{i}^{P}=\min \left\{r_{i}, r_{i}^{B}\right\}$ (with the exception of $r_{n}^{P}=0$). Let s_{i}^{P} be the point on $s t$ with $x\left(s_{i}^{P}\right)=x\left(t_{i}\right)-2 r_{i}^{P}$, and let s_{i}^{B} be the point on st with $x\left(s_{i}^{B}\right)=x\left(t_{i}\right)-2 r_{i}^{B}$.

To simplify notation, for points u and v on C_{i}^{P}, instead of writing $\mathcal{A}_{C_{i}^{P}}(u, v)$ and $\mathcal{B}_{C_{i}^{P}}(u, v)$ to indicate clockwise and counter-clockwise arcs of C_{i}^{P} from u to v, respectively, we write $\mathcal{A}_{i}^{P}(u, v)$ and $\mathcal{B}_{i}^{P}(u, v)$. Likewise, for points u and v on C_{i}^{B}, instead of writing $\mathcal{A}_{C_{i}^{B}}(u, v)$ and $\mathcal{B}_{C_{i}^{B}}(u, v)$, we write $\mathcal{A}_{i}^{B}(u, v)$ and $\mathcal{B}_{i}^{B}(u, v)$.

See Figs. 7a and 7b for an example of the initial sequences \mathcal{T} and \mathcal{C} and the resulting bounding and potential arcs that we are interested in.

Since C_{i-1}^{P} and C_{i}^{B} are balanced, Φ can be extended to C_{i-1}^{P} and C_{i}^{B}, and thus we have

$$
\Phi\left(C_{i-1}^{P}, C_{i}^{B}\right)=\left|\mathcal{A}_{i}^{B}\left(p_{i-1}, t_{i}\right)\right|-\left|\mathcal{A}_{i-1}^{P}\left(p_{i-1}, t_{i-1}\right)\right|-\lambda\left|s_{i-1}^{P} s_{i}^{B}\right|-\mu\left|t_{i-1} t_{i}\right|
$$

when p_{i-1} is above st and

$$
\Phi\left(C_{i-1}^{P}, C_{i}^{B}\right)=\left|\mathcal{B}_{i}^{B}\left(p_{i-1}, t_{i}\right)\right|-\left|\mathcal{B}_{i-1}^{P}\left(p_{i-1}, t_{i-1}\right)\right|-\lambda\left|s_{i-1}^{P} s_{i}^{B}\right|-\mu\left|t_{i-1} t_{i}\right|
$$

when p_{i-1} is below st. Lemma 4 tells us that $\Phi\left(C_{i-1}^{P}, C_{i}^{B}\right) \leq 0$. To prove Theorem 1 in the general case, it is sufficient to prove the following two lemmas. Lemma 13 is a generalization of Lemma 5, whereas Lemma 14 is a generalization of Lemma 7 .

- Lemma 13. $\sum_{i=1}^{n}\left|s_{i-1}^{P} s_{i}^{B}\right| \leq|s t|$.

Proof. Since C_{i-1}^{P} and C_{i}^{B} are balanced, Lemma 8 tells us that $x\left(s_{i-1}^{P}\right) \leq x\left(s_{i}^{B}\right)$. We know that $x\left(s_{i}^{P}\right)=x\left(t_{i}\right)-2 r_{i}^{P}$ and $x\left(s_{i}^{B}\right)=x\left(t_{i}\right)-2 r_{i}^{B}$, thus the fact that $r_{i}^{P}=\min \left\{r_{i}, r_{i}^{B}\right\}$ implies that $x\left(s_{i}^{B}\right) \leq x\left(s_{i}^{P}\right)$. Thus $\left|s_{i-1}^{P} s_{i}^{B}\right| \leq\left|s_{i-1}^{P} s_{i}^{P}\right|$, and it is sufficient to show that $\sum_{i=1}^{n}\left|s_{i-1}^{P} s_{i}^{P}\right| \leq|s t|$. The fact that $x\left(s_{i-1}^{P}\right) \leq x\left(s_{i}^{B}\right)$ implies that $x\left(s_{i-1}^{P}\right) \leq x\left(s_{i}^{P}\right)$, and C_{0}^{P} is the circle centered at s with radius 0 , and thus $s_{0}^{P}=s$. Since $x\left(s_{n}^{P}\right) \leq x(t)$, this completes the proof.

Due to space constraints, we omit the proof of the following lemma.

- Lemma 14. For $1 \leq i \leq n$, if p_{i-1} is above st, then

1. a. $\left|\mathcal{A}_{i}^{B}\left(p_{i-1}, t_{i}\right)\right| \geq\left|p_{i-1} p_{i}\right|+\left|\mathcal{A}_{i}^{P}\left(p_{i}, t_{i}\right)\right|$ if p_{i} is above st, and
b. $\left|\mathcal{A}_{i}^{B}\left(p_{i-1}, t_{i}\right)\right| \geq\left|p_{i-1} p_{i}\right|+\left|\mathcal{B}_{i}^{P}\left(p_{i}, t_{i}\right)\right|$ if p_{i} is below st otherwise p_{i-1} is below st and
2. a. $\left|\mathcal{B}_{i}^{B}\left(p_{i-1}, t_{i}\right)\right| \geq\left|p_{i-1} p_{i}\right|+\left|\mathcal{B}_{i}^{P}\left(p_{i}, t_{i}\right)\right|$ if p_{i} is below st, and
b. $\left|\mathcal{B}_{i}^{B}\left(p_{i-1}, t_{i}\right)\right| \geq\left|p_{i-1} p_{i}\right|+\left|\mathcal{A}_{i}^{P}\left(p_{i}, t_{i}\right)\right|$ if p_{i} is above st.

Theorem 1 follows from Lemmas $4,6,13$, and 14 .
Proof of Theorem 1. If p_{i} is above st, let $\mathcal{D}_{i}^{P}=\mathcal{A}_{i}^{P}\left(p_{i}, t_{i}\right)$. If p_{i} is below st, let $\mathcal{D}_{i}^{P}=$ $\mathcal{B}_{i}^{P}\left(p_{i}, t_{i}\right)$. Let $\Phi^{\prime}\left(C_{i-1}^{P}, C_{i}^{B}\right)=\left|p_{i-1} p_{i}\right|+\left|\mathcal{D}_{i}^{P}\right|-\left|\mathcal{D}_{i-1}^{P}\right|-\lambda\left|s_{i-1}^{P} s_{i}^{B}\right|-(\mu-\lambda)\left|t_{i-1} t_{i}\right|$. Lemmas 14 and 4 imply that $\Phi^{\prime}\left(C_{i-1}^{P}, C_{i}^{B}\right) \leq \Phi\left(C_{i-1}^{P}, C_{i}^{B}\right) \leq 0$. Using $\Phi^{\prime}\left(C_{i-1}^{P}, C_{i}^{B}\right)$ we get:

$$
\begin{align*}
\sum_{i=1}^{n} \Phi^{\prime}\left(C_{i-1}, C_{i}\right) & \leq 0 \\
\sum_{i=1}^{n}\left(\left|p_{i-1} p_{i}\right|+\left|\mathcal{D}_{i}^{P}\right|-\left|\mathcal{D}_{i-1}^{P}\right|\right) & \leq \sum_{i=1}^{n}\left(\lambda\left|s_{i-1}^{P} s_{i}^{B}\right|+(\mu-\lambda)\left|t_{i-1} t_{i}\right|\right) \\
|\mathcal{P}\langle s, t\rangle|-\left|\mathcal{D}_{0}^{P}\right|+\left|\mathcal{D}_{n}^{P}\right| & \leq(\lambda+\mu-\lambda)|s t| \tag{2}\\
|\mathcal{P}\langle s, t\rangle| & \leq \mu|s t|
\end{align*}
$$

Line (2) follows from Lemmas 6 and 13.
We give some insight into the selection of r_{i}^{P}. Assume that p_{i-1} is above st (when p_{i-1} is below st the explanation is symmetric). The purpose of $\left|\mathcal{A}_{i}^{B}\left(p_{i-1}, t_{i}\right)\right|$ is to bound $\left|p_{i-1} p_{i}\right|+\left|\mathcal{A}_{i}^{P}\left(p_{i}, t_{i}\right)\right|$, as expressed in Lemma 14. This lemma is also the reason for selecting the radius of C_{i}^{P} as $r_{i}^{P}=\min \left\{r_{i}, r_{i}^{B}\right\}$. It would be simpler to let $r_{i}^{P}=r_{i}^{B}$, since then we would have $s_{i}^{P}=s_{i}^{B}$. However, if we allow $r_{i}^{P}>r_{i}$, it can happen that the arc $\left|\mathcal{A}_{i+1}^{B}\left(p_{i}, t_{i+1}\right)\right|$ on the next bounding circle is not large enough to cover $\left|p_{i} p_{i+1}\right|+\left|\mathcal{A}_{i+1}^{P}\left(p_{i+1}, t_{i+1}\right)\right|$. See Fig. 8. Thus Lemma 14 would not hold. To account for this, we ensure that C_{i}^{P} has radius at most r_{i}.

5 Conclusion and Future Work

Consider the algorithm presented in Section 2, along with two variations. To keep the algorithms simple, assume we are at a vertex p above st. Otherwise all assumptions are the same as in Section 2.

(a) C_{i-1}, C_{i}, and C_{i-1}^{P}.

Notice that $r_{i-1}^{P}>r_{i-1}$.

(b) C_{i}^{B} and its intersection with

(c) $\left|\mathcal{A}_{i}^{B}\left(p_{i-1}, t_{i}\right)\right|<\left|p_{i-1}, p_{i}\right|+$ $\left|\mathcal{A}_{i}^{P}\left(p_{i}, t_{i}\right)\right|$.

Figure 8 The reasoning behind $r_{i}^{P}=\min \left\{r_{i}, r_{i}^{B}\right\}$. In this diagram, $r_{i}^{P}>r_{i}$, and we show why it is detrimental to our analysis. Notice that $\left|\mathcal{A}_{i}^{B}\left(p_{i-1}, t_{i}\right)\right|<\left|p_{i-1}, p_{i}\right|+\left|\mathcal{A}_{i}^{P}\left(p_{i}, t_{i}\right)\right|$. Thus the arc $\mathcal{A}_{i}^{B}\left(p_{i-1}, t_{i}\right)$ of the bounding circle is not long enough to pay for $\left|p_{i-1}, p_{i}\right|+\left|\mathcal{A}_{i}^{P}\left(p_{i}, t_{i}\right)\right|$.
A) BestChord: If $|p a|+\left|\mathcal{A}_{C}\left(a, t_{C}\right)\right| \leq|p b|+\left|\mathcal{A}_{C}\left(b, t_{C}\right)\right|$ then $p=a$ else $p=b$.
B) MixedChordArc: If $\left|\mathcal{A}_{C}\left(p, t_{C}\right)\right| \leq|p b|+\left|\mathcal{A}_{C}\left(b, t_{C}\right)\right|$ then $p=a$ else $p=b$.
C) MinArc:

If $\left|\mathcal{A}_{C}\left(p, t_{C}\right)\right| \leq \pi r$ then $p=a$ else $p=b$.
The algorithm presented in this paper is MixedChordArc. Following the techniques used in [1] we are able to show that the routing ratio of MinArc is between 3.20 and 3.96. Since the routing ratio of 3.56 of MixedChordArc is better, we do not present the details of MinArc.

We suspect that BestChord is an improvement on MixedChordArc. It seems plausible that we can modify the proofs presented in this paper to obtain the same upper bound for BestChord as for MixedChordArc, but for now that remains unverified. Whether or not BestChord is asymptotically superior to MixedChordArc, or whether they are asymptotically the same is still unknown.

Although we have improved the upper bound of the routing ratio on the L_{2}-Delaunay triangulation, it is not clear how tight our analysis is. The upper bound on the analysis is where our potential function is the weakest. A more clever potential function could lower the routing ratio using a comparable analysis. Or perhaps one of the algorithms above would respond to a completely different style of analysis.

Furthermore, the lower bound on MixedChordArc is still the same as the lower bound on routing on the L_{2}-Delaunay triangulation in general, which is approximately 1.70 [1]. So it seems there is still much room for improvement. The question remains, what other algorithms or analysis can we use to improve the routing ratio of the Delaunay triangulation? And given that the upper and lower bounds on the spanning ratio of the L_{2}-Delaunay triangulation are 1.998 [13] and 1.5932 [14] respectively, is there a separation of the spanning and routing ratios of the Delaunay triangulation?

References

1 Nicolas Bonichon, Prosenjit Bose, Jean-Lou De Carufel, Ljubomir Perković, and André van Renssen. Upper and lower bounds for online routing on Delaunay triangulations. In Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA 2015, volume 9294 of Lecture Notes in Computer Science, pages 203-214. Springer Berlin Heidelberg, 2015. doi:10. 1007/978-3-662-48350-3_18.

2 Nicolas Bonichon, Prosenjit Bose, Jean-Lou De Carufel, Ljubomir Perković, and André van Renssen. Upper and lower bounds for online routing on Delaunay triangulations. Discrete ళ Computational Geometry, 58(2):482-504, Sep 2017. doi:10.1007/s00454-016-9842-y.
3 Nicolas Bonichon, Cyril Gavoille, Nicolas Hanusse, and Ljubomir Perković. Tight stretch factors for L_{1} and L_{∞} Delaunay triangulations. Computational Geometry, 48(3):237-250, 2015. doi:10.1016/j.comgeo.2014.10.005.

4 Prosenjit Bose, Jean-Lou De Carufel, Stephane Durocher, and Perouz Taslakian. Competitive online routing on Delaunay triangulations. In R. Ravi and Inge Li Gørtz, editors, Algorithm Theory - SWAT 2014-14th Scandinavian Symposium and Workshops, Copenhagen, Denmark, July 2-4, 2014. Proceedings, volume 8503 of Lecture Notes in Computer Science, pages 98-109. Springer, 2014. doi:10.1007/978-3-319-08404-6_9.
5 Prosenjit Bose, Rolf Fagerberg, André van Renssen, and Sander Verdonschot. Competitive routing in the half-theta-6-graph. In Proceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '12, pages 1319-1328. SIAM, 2012. URL: http: //dl.acm.org/citation.cfm?id=2095116. 2095220.
6 Prosenjit Bose and Pat Morin. Online routing in triangulations. In Algorithms and Computation, volume 1741 of Lecture Notes in Computer Science, pages 113-122. Springer Berlin Heidelberg, 1999. doi:10.1007/3-540-46632-0_12.
7 L. Paul Chew. There is a planar graph almost as good as the complete graph. In Proceedings of the Second Annual Symposium on Computational Geometry, SCG '86, pages 169-177, New York, NY, USA, 1986. ACM. doi:10.1145/10515.10534.
8 L. Paul Chew. There are planar graphs almost as good as the complete graph. Journal of Computer and System Sciences, 39(2):205-219, 1989. doi:10.1016/0022-0000(89) 90044-5.
9 Michael Dennis, Ljubomir Perković, and Duru Türkoglu. The stretch factor of hexagonDelaunay triangulations. CoRR, abs/1711.00068, 2017. arXiv:1711.00068.
10 David P. Dobkin, Steven J. Friedman, and Kenneth J. Supowit. Delaunay graphs are almost as good as complete graphs. Discrete \S Computational Geometry, 5(1):399-407, 1990. doi:10.1007/BF02187801.

11 J. Mark Keil and Carl A. Gutwin. Classes of graphs which approximate the complete euclidean graph. Discrete छ Computational Geometry, 7(1):13-28, 1992. doi:10.1007/ BF02187821.
12 Giri Narasimhan and Michiel Smid. Geometric Spanner Networks. Cambridge University Press, New York, NY, USA, 2007.
13 Ge Xia. Improved upper bound on the stretch factor of Delaunay triangulations. In Proceedings of the Twenty-seventh Annual Symposium on Computational Geometry, SoCG '11, pages 264-273, New York, NY, USA, 2011. ACM. doi:10.1145/1998196.1998235.
14 Ge Xia and Liang Zhang. Toward the tight bound of the stretch factor of Delaunay triangulations. In Proceedings of the Canadian Conference on Computational Geometry, CCCG '11, 2011.

