
Improved Routing on the Delaunay Triangulation
Nicolas Bonichon
Université de Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France

Prosenjit Bose
Carleton University, 1125 Colonel By Dr, Ottawa, ON, Canada

Jean-Lou De Carufel
University of Ottawa, 800 King Edward Ave, Ottawa, ON, Canada

Vincent Despré
Team Gamble, INRIA Nancy, 54600 Villers-lès-Nancy, France

Darryl Hill
Carleton University, 1125 Colonel By Dr, Ottawa, ON, Canada

Michiel Smid
Carleton University, 1125 Colonel By Dr, Ottawa, ON, Canada

Abstract
A geometric graph G = (P,E) is a set of points in the plane and edges between pairs of points,
where the weight of an edge is equal to the Euclidean distance between its two endpoints. In
local routing we find a path through G from a source vertex s to a destination vertex t, using only
knowledge of the current vertex, its incident edges, and the locations of s and t. We present an
algorithm for local routing on the Delaunay triangulation, and show that it finds a path between
a source vertex s and a target vertex t that is not longer than 3.56|st|, improving the previous
bound of 5.9|st|.

2012 ACM Subject Classification Mathematics of computing → Paths and connectivity prob-
lems, Mathematics of computing → Graph algorithms

Keywords and phrases Delaunay, local routing, geometric, graph

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.22

Funding This work was supported by the National Sciences and Engineering Research Council
of Canada (NSERC) and by the French ANR grant ASPAG (ANR-17-CE40-0017)

1 Introduction

A Euclidean geometric graph G = (P,E) is a set P of points embedded in the plane, and a
set E of edges, where each e ∈ E is a pair of points (u, v) in P , and the weight of e is the
Euclidean distance |uv|.

A local routing algorithm A is an algorithm that routes a packet through the geometric
graph G from a source vertex s to a target vertex t using only knowledge of the locations of
s and t, as well as the location of the current vertex and its adjacent vertices. Let P〈s, t〉 be
the path found in G from s to t using A. The routing ratio of A for any two points s and t
in the geometric graph G is the ratio of the length of P〈s, t〉 to the Euclidean distance from
s to t. An algorithm A has a routing ratio c for a class of geometric graphs G, if, for any two
vertices s and t in G ∈ G, |P〈s, t〉| ≤ c · |st|.

A graph G = (P,E) is a c-spanner if for any pair of points u and v in P the shortest path
in G is not longer than c|uv|. The value c is referred to as the stretch factor or spanning

© Nicolas Bonichon, Prosenjit Bose, Jean-Lou De Carufel, Vincent Despré, Darryl Hill, and
Michiel Smid;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 22; pp. 22:1–22:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/160477927?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Improved Delaunay Routing

Table 1 Spanning and Routing Ratios of Delaunay Triangulations. Tight results are shown in
bold.

Graph Spanning Ratio Routing Ratio
TD-Delaunay 2 [8] 5/

√
3 ≈ 2.89 [5]

L1 and L∞-Delaunay
√

4 + 2
√

2 ≈ 2.61 [3]
√

10 ≈ 3.16 [7]
Hexagon-Delaunay 2 [9]
L2-Delaunay 1.998 [13] 3.56 (this paper)

ratio of G. The stretch factor of G is thus a lower bound on the routing ratio of G for any
routing algorithm A, and the routing ratio is an upper bound on the spanning ratio of G.
Geometric spanners are described in detail in the book by Narasimhan and Smid [12].

A notable geometric graph is the Delaunay triangulation. Given a set P of points in the
plane, we construct the Delaunay triangulation of P as follows. For each triple (p, q, r) of
points in P , let C be the circle through p, q, and r. If there are no points of P in the interior
of C, then we connect p, q, and r by edges to form a triangle. In this paper we assume that
P is in general position: no 3 points are colinar and no 4 points are cocircular.

The Delaunay triangulation was first proven to be a spanner by Dobkin et al. [10], who
showed an upper bound of 5.08 on the spanning ratio. This was subsequently improved to
2.42 by Keil and Gutwin [11], and then to 1.998 by Xia [13]. Xia and Zhang proved later
that there exist Delaunay triangulations with spanning ratio greater than 1.59 [14].

Bose and Morin [6] explored some of the theoretical limitations of routing, and provided
some of the first deterministic routing algorithms with constant routing ratio on the Delaunay
triangulation. They denoted the spanning ratio found by Dobkin et al. [10] as cdfs ≈ 5.08.
They showed that it is possible to locally route on the Delaunay triangulation with a routing
ratio of 9 · cdfs ≈ 45.749. Bose et al. [4] further improved this bound to ≈ 15.479. Then,
Bonichon et al. [2] showed that we can locally route on the Delaunay triangulation with a
routing ratio of at most 5.9. In the same paper it was shown that the routing ratio of any
deterministic local algorithm is at least 1.70 for the Delaunay triangulation.

Efforts to evaluate the spanning ratio and routing ratio have been made for Delaunay
triangulations defined on other metrics. We can define these metrics by taking a convex
shape and translating and scaling it until it intersects three vertices but contains no points of
P in its interior. When we use a circle we obtain the L2, or classical Delaunay triangulation.
When the metric is not specified (as in the rest of this paper), then we are referring to the
L2-Delaunay triangulation. The L1-Delaunay triangulation uses an axis aligned square, while
the L∞-Delaunay triangulation uses a square tipped at 45 degrees. By rotating the point set
45 degrees, it is easy to show that the L1 and L∞ triangulations are equivalent. Bonichon et
al. [3] showed that the L1 and L∞ Delaunay triangulations are

√
4 + 2

√
2 ≈ 2.61-spanners,

and they showed that this bound is tight. On this triangulation, Chew [7] proposed a routing
algorithm with routing ratio

√
10. Moreover, the routing ratio of any deterministic local

algorithm is at least 2.70 for this class of graph [1]. The TD-Delaunay triangulation is
constructed using an equilateral triangle. Chew [8] showed that they are 2-spanners. Bose et
al. [5] proposed a routing algorithm of routing ratio

√
5/3 ≈ 2.89 and they show that this

ratio is the best possible. Recently Dennis, Perkovic and Duru [9] showed that the stretch
factor of Hexagon-Delaunay triangulation is 2 and this is tight.

In this paper we present a local routing algorithm, called MixedChordArc, for the L2-
Delaunay triangulation, with a routing ratio of 3.56. This improves the current best routing
ratio of 5.9 [1]. Table 1 shows our result in the context of spanning and routing ratios of
other Delaunay triangulations.

N. Bonichon, P. Bose, J.-L. De Carufel, V. Despré, D. Hill, and M. Smid 22:3

In Section 2 we define a local algorithm that achieves this routing ratio. In Section 3 we
prove the result for a special case, called balanced configurations. In Section 4 we extend the
technique presented in Section 3 to prove the main result in the general case. In Section 5
we present our conclusions and our ideas for future directions for this line of research.

2 The MixedChordArc Algorithm

Let P be a finite set of points in the plane, and let DT (P) be the Delaunay triangulation of
P . We want to route a packet between two vertices of P along edges of DT (P) using only
local knowledge and knowledge of our start and destination vertices.

Let s and t be the start and terminal vertices respectively, and assume, without loss
of generality, that s and t are on the x-axis with s to the left of t. Our general position
assumption ensures that no other vertex lies on st. Consider two triangles T and T ′ whose
interior is cut by st. We say that T is to the left of T ′, and T ′ is to the right of T , if, by
following st starting at s we intersect T before T ′. If uv is the edge shared by T and T ′,
then our general position assumption ensures that u and v are on opposite sides of st.

Let C be a circle that intersects st. We denote by tC the rightmost point of C on st.
Let u and v be two points on C. We denote by AC(u, v) the clockwise arc of C from u to
v, and by BC(u, v) the counter-clockwise arc of C from u to v. We denote the length of a
continuous curve S by |S|.

Let p 6= t be the vertex representing the current location of the packet. We assume s to
be above st, and we assume t to be on the opposite side of st from the current vertex. Let T
be the rightmost triangle with p as a vertex whose interior is cut by st. Let a 6= p be the
vertex of T that is above st, and let b 6= p be the vertex of T that is below st. Let C be the
circumcircle of T .

Here is the algorithm MixedChordArc. First assume that p = s. If |AC(s, tC)| ≤
|BC(s, tC)|, set p = a, otherwise set p = b. See Fig. 1a. If p 6= s, we repeat the following
until p = t.

1. If p is above st:
a. If |AC(p, tC)| ≤ |pb|+ |BC(b, tC)|, set p = a

b. Else set p = b.
2. If p is below st:

a. If |BC(p, tC)| ≤ |pa|+ |AC(a, tC)|, set p = b

b. Else set p = a.

Note that assuming that t is on the opposite side of st from p ensures that when t is a
neighbour of the current vertex, the algorithm will forward the packet directly to t.

The possible choices are illustrated in Fig. 1. Let P〈s, t〉 = (s = p0, p1, ..., pn = t) be
the sequence of vertices produced by the algorithm. In this paper we prove the following
theorem.

I Theorem 1. The MixedChordArc Algorithm finds a path P〈s, t〉 from s to t whose length
|P〈s, t〉| is not more than µ|st|, where µ =

√
2

1−sin(1) < 3.56.

In some cases, the path produced by our algorithm is a balanced configuration. In such
cases, the analysis of the length of P〈s, t〉 is much easier. In Section 3 we define what a
balanced configuration is, and analyze the length of P〈s, t〉 for this specific case. Then, in
Section 4, we analyze the length of P〈s, t〉 for the general case.

ESA 2018

22:4 Improved Delaunay Routing

tC
p, s

a

b

C

(a) From p = s, the blue arc is
shorter than the red arc, so we
forward to a.

p
a

b

tC

C

(b) From p, the blue path is
shorter than the red path, so
we forward to a.

p

tC

a

b
C

(c) From p, the blue path is
shorter than the red path, so
we forward to a.

Figure 1 Illustrating one step of the algorithm.

3 Bounding |P〈s, t〉| in a Balanced Configuration

Let us consider a path P〈s, t〉 of vertices such that p0 = s, pn = t and pi−1pi is an edge of
the rightmost triangle Ti of pi−1 that has a non-empty intersection with st. Let ai and bi

be the other two vertices of Ti, where ai is above st, and bi is below st. Thus pi = ai or
pi = bi. Let s = p0 = a0 = b0 and let t = pn = an = bn. Let Ci be the circumcircle of Ti, let
ri be its radius and let ci be its center. Let C0 be the circle centered at s with radius r0 = 0.
Let T = (T1, T2, ..., Tn), and let C = (C0, C1, ..., Cn) be the sequence of circles starting at
C0, followed by the circumcircles of T . Note that the vertex of Ti that is on the opposite
side of st to pi−1 may not be at the intersection of Ci−1 and Ci. Thus we define a second
intersection point of Ci−1 and Ci as follows (pi−1 being one intersection point). If pi−1 is
above st, then qi is the lowest intersection of Ci and Ci−1 (where "lowest" is defined by the
point having the least y-coordinate). If pi−1 is below st, let qi be the highest intersection
of Ci−1 and Ci (where "highest" is defined by the point having the greatest y-coordinate).
Note that it is possible to have Ci−1 and Ci intersect in two points, and still have qi = pi−1.
See circle C4 in Fig. 2. Observe that if Ti and Ti−1 share an edge, then qi is the vertex of Ti

on the opposite side of st from pi−1. See circles C1, C2, C3, and C5 in Fig. 2. To simplify the
notation, we write ti instead of tCi

, and we write Ai(u, v) and Bi(u, v) instead of ACi
(u, v)

and BCi
(u, v), respectively.

We say that a pair of consecutive circles Ci−1 and Ci is balanced if |Ai(pi−1, ti)| =
|pi−1qi|+ |Bi(qi, ti)| when pi−1 is above st, and if |Bi(pi−1, ti)| = |pi−1qi|+ |Ai(qi, ti)| when
pi−1 is below st. A path P〈s, t〉 on a point set P is a balanced configuration when Ci−1 and
Ci are balanced for all 1 ≤ i ≤ n.

3.1 Analysis Technique
I Lemma 2. Let Ci−1 and Ci be arbitrary circles of C, where 1 ≤ i ≤ n. Then
1. |pi−1bi|+ |Bi(bi, ti)| ≤ |pi−1qi|+ |Bi(qi, ti)| when pi−1 is above st, and
2. |pi−1ai|+ |Ai(ai, ti)| ≤ |pi−1qi|+ |Ai(qi, ti)| when pi−1 is below st.

Proof. By the triangle inequality we have |pi−1bi| ≤ |pi−1qi| + |Bi(qi, bi)|, from which 1
follows. Case 2 is symmetric. J

For the rest of this section, we assume that P〈s, t〉 is a balanced configuration. Consider
the case when pi−1 is above st (the case when pi−1 is below st is symmetric). If qi = bi then
|Ai(pi−1, ti)| = |pi−1bi|+ |Bi(bi, ti)|, and the algorithm proceeds to ai. If qi 6= bi, observe that
|pi−1bi| ≤ |pi−1qi|+ |Bi(qi, bi)| by the triangle inequality (see circles C4 and C5 in Fig. 2).
Thus we have |pi−1bi|+ |Bi(bi, ti)| < |pi−1qi|+ |Bi(qi, ti)| = |Ai(pi−1, ti)|, and the algorithm

N. Bonichon, P. Bose, J.-L. De Carufel, V. Despré, D. Hill, and M. Smid 22:5

q0, p0,
t0, s

p1, a1

C1

C2
C3

C4

p2, a2

p3, a3, q4

b1, b2, b3, q1, q2, q3

b4, p4

a4
q5

b5, p5,
t5, t

t1 t2
t3

t4

C5
a5

Figure 2 Sequence of circles in a balanced configuration and the path in blue. The dotted circles
are circumcircles of triangles intersected by st but not in T .

proceeds to bi. Thus a balanced configuration allows for steps that cross st and steps that do
not cross st. It also allows us to use |Ai(pi−1, ti)| as an upper bound on |pi−1bi|+ |Bi(bi, ti)|
in the case where pi−1pi crosses st.

Let x(v) and y(v) be the x and y-coordinates of a point v, respectively. Let si be a point
on st such that x(si) = x(ti)− 2ri. We define the following potential function that we use to
bound the length of P〈s, t〉.

I Definition 3. If pi−1 is above st, then

Φ(Ci−1, Ci) = |Ai(pi−1, ti)| − |Ai−1(pi−1ti−1)| − λ|si−1si| − (µ− λ)|ti−1ti|.

Otherwise, if pi−1 is below st, then

Φ(Ci−1, Ci) = |Bi(pi−1, ti)| − |Bi−1(pi−1ti−1)| − λ|si−1si| − (µ− λ)|ti−1ti|,

where λ =
(

1+sin(1)
cos(1) − π/2− 1

)
/2 ≈ 0.42 and µ =

√
2

1−sin(1) < 3.56 .

See Fig. 2 and 3 for a complete example and an illustration of the potential functions. See
Fig. 4 for an illustration of Φ(Ci−1, Ci). Three lemmas are used to prove Theorem 1 for
balanced configurations. The proof of Lemma 4 is found in Section 3.3 while the proof of
Lemma 5 is in Section 3.2.

I Lemma 4. Given a pair of balanced circles Ci−1 and Ci,

Φ(Ci−1, Ci) ≤ 0.

I Lemma 5. For any balanced configuration P〈s, t〉,
∑n

i=1 |si−1si| ≤ |st|.

I Lemma 6. For any C, x(ti−1) < x(ti) for all 1 ≤ i ≤ n, and
∑n

i=1 |ti−1ti| ≤ |st|.

Proof. We prove that x(ti−1) < x(ti), that is, ti is right of ti−1 for all 1 ≤ i ≤ n, by
contradiction. Assume that x(ti−1) ≥ x(ti). If qi is to the same side of st as pi−1, then
Ci−1 must contain the vertex of Ti on the opposite side of st. If qi is on the opposite side of

ESA 2018

22:6 Improved Delaunay Routing

s, s0,
s1, t0

p1

C1

C2
C3

C4

p2

p4

p5, tt1 t2
t3

t4

C5

s2 s3
s4

s5

D1

D2

D3

D4

p3

Figure 3 Illustrating the non-zero potential functions Di, 1 ≤ i ≤ 4 of a balanced configuration.

st as pi−1, then Ci−1 contains the vertex of Ti on the same side of st as pi−1. Both cases
contradict the construction of a Delaunay triangulation. This, together with the fact that
t0 = s and tn = t implies the second part of the lemma. J

I Lemma 7. For 1 ≤ i ≤ n, if pi−1 is above st, then
1. a. |Ai(pi−1, ti)| > |pi−1pi|+ |Ai(pi, ti)| if pi is above st, and

b. |Ai(pi−1, ti)| > |pi−1pi|+ |Bi(pi, ti)| if pi is below st

otherwise pi−1 is below st and
2. a. |Bi(pi−1, ti)| > |pi−1pi|+ |Bi(pi, ti)| if pi is below st, and

b. |Bi(pi−1, ti)| > |pi−1pi|+ |Ai(pi, ti)| if pi is above st.

Proof. Case 1a is because |Ai(pi−1, pi)| > |pi−1pi|, and Case 1b is because if pi is below st,
then the algorithm chose to cross st, which implies 1b. Case 2 is symmetric. J

Theorem 1 follows from Lemmas 4, 5, 6, and 7:

Proof. We first analyze the case when pi−1 is above st. Recall that in this case, Φ(Ci−1, Ci)
is defined as

Φ(Ci−1, Ci) = |Ai(pi−1, ti)| − |Ai−1(pi−1ti−1)| − λ|si−1si| − (µ− λ)|ti−1ti|.

If pi is above st (same side of st as pi−1), then |Ai(pi−1, ti)| > |pi−1pi| + |Ai(pi, ti)| by
Lemma 7. In this case, let Di = Ai(pi, ti). If pi is below st, then |Ai(pi−1, ti)| > |pi−1pi|+
|Bi(pi, ti)| by Lemma 7. In this case, let Di = Bi(pi, ti). In both cases we have |Ai(pi−1, ti)| >
|pi−1pi|+ |Di|.

Let Φ′(Ci−1, Ci) be the function defined by

Φ′(Ci−1, Ci) = |pi−1pi|+ |Di| − |Di−1| − λ|si−1si| − (µ− λ)|ti−1ti|.

Observe that Φ′(Ci−1, Ci) ≤ Φ(Ci−1, Ci). By Lemma 4, Φ(Ci−1, Ci) ≤ 0, thus Φ′(Ci−1, Ci) ≤
0. When pi−1 is below st, a symmetric proof again shows us that Φ′(Ci−1, Ci) ≤ 0. Recall

N. Bonichon, P. Bose, J.-L. De Carufel, V. Despré, D. Hill, and M. Smid 22:7

pi−1

Ci−1 Ci

Di−1

Ai(pi−1, ti)

qi

ti−1 ti
sisi−1

Figure 4 Illustrating the function Φ(Ci−1, Ci): blue minus green is charged to red to obtain an
upper bound on the routing ratio.

that p0 = t0 = s, and pn = tn = t, which means |D0| = |Dn| = 0. Therefore we have

n∑
i=1

Φ′(Ci−1, Ci) ≤ 0

from which we get:
n∑

i=1
(|pi−1pi|+ |Di| − |Di−1|) ≤

n∑
i=1

(λ|si−1si|+ (µ− λ)|ti−1ti|)

|P〈s, t〉| − |D0|+ |Dn| ≤ (λ+ µ− λ)|st| (1)
|P〈s, t〉| ≤ µ|st|.

The right hand side of (1) is due to Lemmas 5 and 6. J

Lemma 5 is discussed in the next section. Lemma 4 is discussed in Section 3.3.

3.2 Proof of Lemma 5
Lemma 5 uses the following supporting result:

I Lemma 8. Let Ci−1 and Ci be balanced. Let si−1 be the point on st where x(si−1) =
x(ti−1)− 2ri−1 and let si be the point on st where x(si) = x(ti)− 2ri. Then x(si−1) ≤ x(si).

Proof. See Fig. 5. Let ui−1 be the point on Ci−1 that is diametrically opposed to ti−1 and
let ui be the point on Ci that is diametrically opposed to ti. We will show the case when
pi−1 is above st; the case when it is below st is symmetric. Since Ci−1 and Ci are balanced,
we have that |Ai(pi−1, ti)| = |pi−1qi| + |Bi(qi, ti)| which implies that |Ai(pi−1, ti)| ≤ πri

and |Bi(qi, ti)| ≤ πri. Since |Ai(ui, ti)| = |Bi(ui, ti)| = πri, ui is not on the open interval
Ai(pi−1, ti) or Bi(qi, ti), which implies that either ui is on the arc of Ci between pi−1 and
qi that does not contain ti, or ui = pi−1 = qi. Lemma 6 implies that ti is not inside Ci−1,
which implies that ui must be on or inside Ci−1. Let Oi be the circle centered at ti with
radius |tiui| = 2ri. Thus Oi and Ci are tangent at ui, and Oi intersects st at si. Let Oi−1
be the circle centered at ti−1 with radius 2ri−1. Thus Oi−1 and Ci−1 are tangent at ui−1,
and Oi−1 intersects st at si−1. We prove the lemma by contradiction, thus assume that
x(si) < x(si−1). In the proof of Lemma 6, we showed that x(ti) > x(ti−1). Therefore, it
must be that Oi−1 is in the interior of Oi, and thus they do not intersect. Since ui is on or

ESA 2018

22:8 Improved Delaunay Routing

s t

Ci

ti

ui

pi−1

qi

Ci−1

sisi−1

ti−1

OiOi−1

ui−1

Figure 5 Oi must intersect Oi−1 if Ci−1 and Ci are path balanced, which implies that x(si−1) ≤
x(si).

inside Ci−1, and Oi intersects ui, Oi must intersect Ci−1. But Ci−1 is contained in Oi−1
except for the point ui−1, and Oi−1 is contained in Oi, and thus Oi cannot intersect Ci−1,
which is a contradiction. See Fig. 5. J

We can now prove Lemma 5:

Proof of Lemma 5. Follows from Lemma 8 and the fact that x(s0) = x(s) and x(sn) <
x(t). J

3.3 Proof of Lemma 4
To show that Φ(Ci−1, Ci) ≤ 0 when Ci−1 and Ci are balanced, we set up the following
coordinate system. We show the proof for the case when pi−1 is above st; the case when
pi−1 is below st is symmetric. Let ci−1 and ci lie along the x-axis, and let pi−1 and qi lie
along the y-axis. See Fig. 6. Lemma 4 follows from the following two lemmas:

I Lemma 9. When Ci−1 and Ci are balanced, if y(ti−1) ≤ 0, then Φ(Ci−1, Ci) ≤ 0.

I Lemma 10. When Ci−1 and Ci are balanced, if y(ti−1) > 0, then Φ(Ci−1, Ci) ≤ 0.

The main tool to prove these two lemmas is the following transformation, which is similar
to a transformation used by Xia [13].

I Transformation 11. Fix pi−1 and qi, and translate ci to the left along the x-axis until
ci = ci−1. Moreover keep Ci−1 unchanged and maintain Ci as the circle with center ci with
pi−1 on its boundary.

Observe that, after we have completed Transformation 11, we have Ci = Ci−1 and thus
Φ(Ci−1, Ci) = 0. If we can show that Φ(Ci−1, Ci) is increasing while x(ci) decreases, then it
must be that Φ(Ci−1, Ci) ≤ 0 before Transformation 11. Thus we wish to find the change in
Φ(Ci−1, Ci) with respect to the change in x(ci) during Transformation 11. Formally:

N. Bonichon, P. Bose, J.-L. De Carufel, V. Despré, D. Hill, and M. Smid 22:9

Ci−1

Ci

st

Di−1

pi−1

qi

si

si−1 ci−1 ci

ti−1

ti

Ai(pi−1, ti)

Figure 6 Coordinate system for analyzing Φ(Ci−1, Ci).

I Lemma 12. If dΦ(Ci−1,Ci)
dx(ci) ≤ 0 during Transformation 11, then Φ(Ci−1, Ci) ≤ 0.

Proof. At the end of Transformation 11 we have that Φ(Ci−1, Ci) = 0. If dΦ(Ci−1,Ci)
dx(ci) ≤ 0

then Φ(Ci−1, Ci) is not decreasing during Transformation 11, and thus Φ(Ci−1, Ci) ≤ 0
before Transformation 11. J

The analysis of this function is similar to Xia’s approach [13]. To ensure that this
transformation is well-defined, we require qi to be below st. We observe that Φ(Ci−1, Ci) is
maximized when st is on or above ci−1, and this assumption implies qi is below st (or on st,
in the case where pi−1 = qi). Full details of this analysis, the transformation analysis, and
the proofs for Lemmas 9 and 10 have been left out due to space constraints.

4 Bounding P〈s, t〉 in the General Case

In Section 3, we proved Theorem 1 for the case when the path produced by our algorithm
results in a balanced configuration. In this section, we prove Theorem 1 for the general case.
Given a sequence C of circles that intersect st, no series of transformations were found that
could achieve a balanced configuration, while simultaneously providing a provable upper
bound on the length of |pi−1, pi|. However, we were able to find two sequences of circles to
substitute for C. To represent each Ci in C, we have a potential circle CP

i and a bounding
circle CB

i . Like Ci, both CP
i and CB

i have ti as their rightmost intersection with st. However,
Ci intersects both pi and pi−1, while CB

i is only required to intersect pi−1, and CP
i is only

required to intersect pi. If we look at a bounding circle CB
i and the previous potential

circle CP
i−1, which intersect at pi−1, they are balanced, and we can thus apply the function

Φ(CP
i−1, C

B
i) to relate the lengths of the arcs of these circles to |st|. Finally, when analyzed

properly, they provide an upper bound on the length |pipi−1|.
Formally, let CP

0 be the circle centered at s = p0 with radius rP
0 = 0, and let CP

n

be the circle centered at t with radius rP
n = 0. Assuming we have defined CP

i−1, we will
define CB

i and CP
i . If pi−1 is above st, let CB

i be the circle through pi−1 and ti for
which |ACB

i
(pi−1, ti)| = |pi−1q

′
i| + |BCB

i
(q′i, ti)|, where q′i is the bottommost intersection

of CP
i−1 and CB

i . If pi−1 is below st, let CB
i be the circle through pi−1 and ti for which

|BCB
i

(pi−1, ti)| = |pi−1q
′
i| + |ACB

i
(q′i, ti)|, where q′i is the topmost intersection of CP

i−1 and
CB

i . That is, CP
i−1 and CB

i are balanced. Let rB
i be the radius of CB

i . The potential circle
CP

i is the circle through pi, whose rightmost intersection with st is ti, and whose radius is

ESA 2018

22:10 Improved Delaunay Routing

s t

(a) The sequence of triangles T intersected by st, along with their circumcircles C, and the path P〈s, t〉
found by the algorithm in bold.

t, p6, t6

p1

p2

p3

p4
p5

s, p0

AB
1 (p0, t1)

AB
2 (p1, t2) AB

3 (p2, t3)

BB
4 (p3, t4)

AB
5 (p4, t5)

BB
6 (p5, t6)

DP
1

DP
2

DP
3

DP
4

DP
5

t1 t2
t3

t4 t5

(b) The complete set of bounding arcs and potential arcs used in the function Φ(CP
i−1, C

B
i), used to bound

the routing ratio in the general case.

Figure 7 The initial circumcircles in 7a, and the construction of the potential circles and bounding
circles in the general case in 7b.

given by rP
i = min{ri, r

B
i } (with the exception of rP

n = 0). Let sP
i be the point on st with

x(sP
i) = x(ti)− 2rP

i , and let sB
i be the point on st with x(sB

i) = x(ti)− 2rB
i .

To simplify notation, for points u and v on CP
i , instead of writing ACP

i
(u, v) and BCP

i
(u, v)

to indicate clockwise and counter-clockwise arcs of CP
i from u to v, respectively, we write

AP
i (u, v) and BP

i (u, v). Likewise, for points u and v on CB
i , instead of writing ACB

i
(u, v)

and BCB
i

(u, v), we write AB
i (u, v) and BB

i (u, v).
See Figs. 7a and 7b for an example of the initial sequences T and C and the resulting

bounding and potential arcs that we are interested in.
Since CP

i−1 and CB
i are balanced, Φ can be extended to CP

i−1 and CB
i , and thus we have

Φ(CP
i−1, C

B
i) = |AB

i (pi−1, ti)| − |AP
i−1(pi−1, ti−1)| − λ|sP

i−1s
B
i | − µ|ti−1ti|

when pi−1 is above st and

Φ(CP
i−1, C

B
i) = |BB

i (pi−1, ti)| − |BP
i−1(pi−1, ti−1)| − λ|sP

i−1s
B
i | − µ|ti−1ti|

N. Bonichon, P. Bose, J.-L. De Carufel, V. Despré, D. Hill, and M. Smid 22:11

when pi−1 is below st. Lemma 4 tells us that Φ(CP
i−1, C

B
i) ≤ 0. To prove Theorem 1 in the

general case, it is sufficient to prove the following two lemmas. Lemma 13 is a generalization
of Lemma 5, whereas Lemma 14 is a generalization of Lemma 7.

I Lemma 13.
∑n

i=1 |sP
i−1s

B
i | ≤ |st|.

Proof. Since CP
i−1 and CB

i are balanced, Lemma 8 tells us that x(sP
i−1) ≤ x(sB

i). We know
that x(sP

i) = x(ti) − 2rP
i and x(sB

i) = x(ti) − 2rB
i , thus the fact that rP

i = min{ri, r
B
i }

implies that x(sB
i) ≤ x(sP

i). Thus |sP
i−1s

B
i | ≤ |sP

i−1s
P
i |, and it is sufficient to show that∑n

i=1 |sP
i−1s

P
i | ≤ |st|. The fact that x(sP

i−1) ≤ x(sB
i) implies that x(sP

i−1) ≤ x(sP
i), and CP

0
is the circle centered at s with radius 0, and thus sP

0 = s. Since x(sP
n) ≤ x(t), this completes

the proof. J

Due to space constraints, we omit the proof of the following lemma.

I Lemma 14. For 1 ≤ i ≤ n, if pi−1 is above st, then
1. a. |AB

i (pi−1, ti)| ≥ |pi−1pi|+ |AP
i (pi, ti)| if pi is above st, and

b. |AB
i (pi−1, ti)| ≥ |pi−1pi|+ |BP

i (pi, ti)| if pi is below st

otherwise pi−1 is below st and
2. a. |BB

i (pi−1, ti)| ≥ |pi−1pi|+ |BP
i (pi, ti)| if pi is below st, and

b. |BB
i (pi−1, ti)| ≥ |pi−1pi|+ |AP

i (pi, ti)| if pi is above st.
Theorem 1 follows from Lemmas 4, 6, 13, and 14.

Proof of Theorem 1. If pi is above st, let DP
i = AP

i (pi, ti). If pi is below st, let DP
i =

BP
i (pi, ti). Let Φ′(CP

i−1, C
B
i) = |pi−1pi|+ |DP

i | − |DP
i−1| − λ|sP

i−1s
B
i | − (µ− λ)|ti−1ti|. Lem-

mas 14 and 4 imply that Φ′(CP
i−1, C

B
i) ≤ Φ(CP

i−1, C
B
i) ≤ 0. Using Φ′(CP

i−1, C
B
i) we get:

n∑
i=1

Φ′(Ci−1, Ci) ≤ 0

n∑
i=1

(
|pi−1pi|+ |DP

i | − |DP
i−1|

)
≤

n∑
i=1

(λ|sP
i−1s

B
i |+ (µ− λ)|ti−1ti|)

|P〈s, t〉| − |DP
0 |+ |DP

n | ≤ (λ+ µ− λ)|st| (2)
|P〈s, t〉| ≤ µ|st|.

Line (2) follows from Lemmas 6 and 13. J

We give some insight into the selection of rP
i . Assume that pi−1 is above st (when

pi−1 is below st the explanation is symmetric). The purpose of |AB
i (pi−1, ti)| is to bound

|pi−1pi|+ |AP
i (pi, ti)|, as expressed in Lemma 14. This lemma is also the reason for selecting

the radius of CP
i as rP

i = min{ri, r
B
i }. It would be simpler to let rP

i = rB
i , since then we

would have sP
i = sB

i . However, if we allow rP
i > ri, it can happen that the arc |AB

i+1(pi, ti+1)|
on the next bounding circle is not large enough to cover |pipi+1| + |AP

i+1(pi+1, ti+1)|. See
Fig. 8. Thus Lemma 14 would not hold. To account for this, we ensure that CP

i has radius
at most ri.

5 Conclusion and Future Work

Consider the algorithm presented in Section 2, along with two variations. To keep the
algorithms simple, assume we are at a vertex p above st. Otherwise all assumptions are the
same as in Section 2.

ESA 2018

22:12 Improved Delaunay Routing

CP
i−1

Ci−1 Cipi−1

bi

ti

ai, pi

ti−1

(a) Ci−1, Ci, and CP
i−1.

Notice that rP
i−1 > ri−1.

CP
i−1

Ci−1
Ci

CB
i

pi−1

bi q′i

ti

ai, pi

(b) CB
i and its intersection with

CP
i−1.

CB
i

pi−1

q′i

ti

AP
i (pi, ti)

AB
i (pi−1, ti)

CP
i

ai, pi

CP
i−1

(c) |AB
i (pi−1, ti)| < |pi−1, pi|+

|AP
i (pi, ti)|.

Figure 8 The reasoning behind rP
i = min{ri, r

B
i }. In this diagram, rP

i > ri, and we show why
it is detrimental to our analysis. Notice that |AB

i (pi−1, ti)| < |pi−1, pi|+ |AP
i (pi, ti)|. Thus the arc

AB
i (pi−1, ti) of the bounding circle is not long enough to pay for |pi−1, pi|+ |AP

i (pi, ti)| .

A) BestChord: If |pa|+ |AC(a, tC)| ≤ |pb|+ |AC(b, tC)| then p = a else p = b.
B) MixedChordArc: If |AC(p, tC)| ≤ |pb|+ |AC(b, tC)| then p = a else p = b.
C) MinArc: If |AC(p, tC)| ≤ πr then p = a else p = b.

The algorithm presented in this paper is MixedChordArc. Following the techniques
used in [1] we are able to show that the routing ratio of MinArc is between 3.20 and 3.96.
Since the routing ratio of 3.56 of MixedChordArc is better, we do not present the details of
MinArc.

We suspect that BestChord is an improvement on MixedChordArc. It seems plausible
that we can modify the proofs presented in this paper to obtain the same upper bound
for BestChord as for MixedChordArc, but for now that remains unverified. Whether
or not BestChord is asymptotically superior to MixedChordArc, or whether they are
asymptotically the same is still unknown.

Although we have improved the upper bound of the routing ratio on the L2-Delaunay
triangulation, it is not clear how tight our analysis is. The upper bound on the analysis is
where our potential function is the weakest. A more clever potential function could lower the
routing ratio using a comparable analysis. Or perhaps one of the algorithms above would
respond to a completely different style of analysis.

Furthermore, the lower bound on MixedChordArc is still the same as the lower bound
on routing on the L2-Delaunay triangulation in general, which is approximately 1.70 [1]. So it
seems there is still much room for improvement. The question remains, what other algorithms
or analysis can we use to improve the routing ratio of the Delaunay triangulation? And given
that the upper and lower bounds on the spanning ratio of the L2-Delaunay triangulation
are 1.998 [13] and 1.5932 [14] respectively, is there a separation of the spanning and routing
ratios of the Delaunay triangulation?

References

1 Nicolas Bonichon, Prosenjit Bose, Jean-Lou De Carufel, Ljubomir Perković, and André
van Renssen. Upper and lower bounds for online routing on Delaunay triangulations. In
Nikhil Bansal and Irene Finocchi, editors, Algorithms - ESA 2015, volume 9294 of Lecture
Notes in Computer Science, pages 203–214. Springer Berlin Heidelberg, 2015. doi:10.
1007/978-3-662-48350-3_18.

http://dx.doi.org/10.1007/978-3-662-48350-3_18
http://dx.doi.org/10.1007/978-3-662-48350-3_18

N. Bonichon, P. Bose, J.-L. De Carufel, V. Despré, D. Hill, and M. Smid 22:13

2 Nicolas Bonichon, Prosenjit Bose, Jean-Lou De Carufel, Ljubomir Perković, and André van
Renssen. Upper and lower bounds for online routing on Delaunay triangulations. Discrete
& Computational Geometry, 58(2):482–504, Sep 2017. doi:10.1007/s00454-016-9842-y.

3 Nicolas Bonichon, Cyril Gavoille, Nicolas Hanusse, and Ljubomir Perković. Tight stretch
factors for L1 and L∞ Delaunay triangulations. Computational Geometry, 48(3):237–250,
2015. doi:10.1016/j.comgeo.2014.10.005.

4 Prosenjit Bose, Jean-Lou De Carufel, Stephane Durocher, and Perouz Taslakian. Compet-
itive online routing on Delaunay triangulations. In R. Ravi and Inge Li Gørtz, editors,
Algorithm Theory - SWAT 2014 - 14th Scandinavian Symposium and Workshops, Copen-
hagen, Denmark, July 2-4, 2014. Proceedings, volume 8503 of Lecture Notes in Computer
Science, pages 98–109. Springer, 2014. doi:10.1007/978-3-319-08404-6_9.

5 Prosenjit Bose, Rolf Fagerberg, André van Renssen, and Sander Verdonschot. Competitive
routing in the half-theta-6-graph. In Proceedings of the Twenty-third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’12, pages 1319–1328. SIAM, 2012. URL: http:
//dl.acm.org/citation.cfm?id=2095116.2095220.

6 Prosenjit Bose and Pat Morin. Online routing in triangulations. In Algorithms and Compu-
tation, volume 1741 of Lecture Notes in Computer Science, pages 113–122. Springer Berlin
Heidelberg, 1999. doi:10.1007/3-540-46632-0_12.

7 L. Paul Chew. There is a planar graph almost as good as the complete graph. In Proceedings
of the Second Annual Symposium on Computational Geometry, SCG ’86, pages 169–177,
New York, NY, USA, 1986. ACM. doi:10.1145/10515.10534.

8 L. Paul Chew. There are planar graphs almost as good as the complete graph. Journal
of Computer and System Sciences, 39(2):205–219, 1989. doi:10.1016/0022-0000(89)
90044-5.

9 Michael Dennis, Ljubomir Perković, and Duru Türkoglu. The stretch factor of hexagon-
Delaunay triangulations. CoRR, abs/1711.00068, 2017. arXiv:1711.00068.

10 David P. Dobkin, Steven J. Friedman, and Kenneth J. Supowit. Delaunay graphs are
almost as good as complete graphs. Discrete & Computational Geometry, 5(1):399–407,
1990. doi:10.1007/BF02187801.

11 J. Mark Keil and Carl A. Gutwin. Classes of graphs which approximate the complete
euclidean graph. Discrete & Computational Geometry, 7(1):13–28, 1992. doi:10.1007/
BF02187821.

12 Giri Narasimhan and Michiel Smid. Geometric Spanner Networks. Cambridge University
Press, New York, NY, USA, 2007.

13 Ge Xia. Improved upper bound on the stretch factor of Delaunay triangulations. In
Proceedings of the Twenty-seventh Annual Symposium on Computational Geometry, SoCG
’11, pages 264–273, New York, NY, USA, 2011. ACM. doi:10.1145/1998196.1998235.

14 Ge Xia and Liang Zhang. Toward the tight bound of the stretch factor of Delaunay trian-
gulations. In Proceedings of the Canadian Conference on Computational Geometry, CCCG
’11, 2011.

ESA 2018

http://dx.doi.org/10.1007/s00454-016-9842-y
http://dx.doi.org/10.1016/j.comgeo.2014.10.005
http://dx.doi.org/10.1007/978-3-319-08404-6_9
http://dl.acm.org/citation.cfm?id=2095116.2095220
http://dl.acm.org/citation.cfm?id=2095116.2095220
http://dx.doi.org/10.1007/3-540-46632-0_12
http://dx.doi.org/10.1145/10515.10534
http://dx.doi.org/10.1016/0022-0000(89)90044-5
http://dx.doi.org/10.1016/0022-0000(89)90044-5
http://arxiv.org/abs/1711.00068
http://dx.doi.org/10.1007/BF02187801
http://dx.doi.org/10.1007/BF02187821
http://dx.doi.org/10.1007/BF02187821
http://dx.doi.org/10.1145/1998196.1998235

	Introduction
	The MixedChordArc Algorithm
	Bounding |{P}{langle s,t rangle}| in a Balanced Configuration
	Analysis Technique
	Proof of Lemma 5
	Proof of Lemma 4

	Bounding {P}{langle s,t rangle} in the General Case
	Conclusion and Future Work

