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Abstract
The NP-hard Maximum Planar Subgraph problem asks for a planar subgraph H of a given
graph G such that H has maximum edge cardinality. For more than two decades, the only
known non-trivial exact algorithm was based on integer linear programming and Kuratowski’s
famous planarity criterion. We build upon this approach and present new constraint classes –
together with a lifting of the polyhedron – to obtain provably stronger LP-relaxations, and in turn
faster algorithms in practice. The new constraints take Euler’s polyhedron formula as a starting
point and combine it with considering cycles in G. This paper discusses both the theoretical as
well as the practical sides of this strengthening.
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1 Introduction

The NP-hard Maximum Planar Subgraph (MPS) problem is an established question in graph
theory, already discussed in the classical textbook by Garey and Johnson [14,20]. Given a
graph G, we ask for a largest subset F ⊆ E(G) of edges such that F induces a planar graph.
By contrast, the closely related maximal planar subgraph problem asks for a set of edges
that we cannot extend without violating planarity and is trivially solvable in polynomial
time. The inverse measure of MPS that counts the minimum number of edges that must be
removed to obtain a planar subgraph, is called the skewness of G and denoted by skew(G).

There are several reasons why this problem has received a good deal of attention:
Graph theoretically, skewness is a very natural and common measure of non-planarity (like
crossing number or genus). Algorithmically, finding a large planar subgraph is central to the
planarization method [1, 5] that is heavily used in graph drawing: one starts with a large
(favorably maximum) planar subgraph and re-inserts the deleted edges, typically to obtain a
low number of overall crossings. In fact, this gives an approximation of the crossing number
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19:2 Cycles to the Rescue! Novel Constraints to Compute MPS Fast

with ratio roughly O
(
∆ · skew(G)

)
[9], where ∆ is the maximum node degree. Furthermore,

several graph problems become easier when the input’s skewness is small or constant. E.g.,
we can compute a maximum flow in time O

(
skew(G)3 · |V (G)| log |V (G)|

)
[16]1 – the same

runtime complexity as on planar graphs if the skewness is constant.
There are several practical heuristic approaches to tackle the problem [10]. However, MPS

is MaxSNP-hard, i.e., there is an upper bound < 1 on the obtainable approximation ratio
unless P = NP [2], and there are further limits known for specific algorithmic approaches [3,7].
Already a spanning tree gives an approximation ratio of 1/3, the best known ratio is 4/9 [2],
and only recently a practical 13/33-approximation algorithm emerged [3].

Considering exact algorithms, options are scarce. Over two decades ago, an integer linear
program based on Kuratowski’s characterization of planarity was introduced in [23], which
remained the only non-trivial exact algorithm. Only very recently, [8] showed the existence
of potentially feasible alternatives to the Kuratowski-based approach, but the former still
constitutes the practically by far most efficient (and theoretically most thoroughly explored)
model. All known ILP models (including those discussed in this paper) can also directly
solve the weighted MPS, i.e., identify the heaviest planar subgraph w.r.t. given edge weights.

Contribution. In this paper, we strengthen the Kuratowski model by introducing new
constraints and supplementary variables, based on analyzing the cycles occurring in the
solutions; see Section 3. In particular, we show in Section 3.2 that starting with the original
Kuratowski model and considering cycles of growing lengths yields a natural hierarchy of ever
stronger LP-relaxations. In Section 3.3, we establish additional constraint classes using our
cycle variables to further strengthen the LP-relaxations, both theoretically and practically.
We show the latter property in an experimental evaluation in Section 4. We skip the proofs
of some lemmata, in which case we mark the lemma with ‘?’.

2 Preliminaries

Graph Notation. Our non-planar input graph is called G. Generally, we consider an
undirected graph H, with nodes V (H) and edges E(H), which are cardinality-2 subsets
of V (H). We use δH(v) to denote all edges incident to node v in H and define the node
degree degH(v) := |δH(v)|. If H is a subgraph of G, we write H ⊆ G. A (sub)graph is
a cycle if it is connected and all its nodes have degree 2. The girth γ(H) of H is the
length of its smallest cycle. The union of two (non-disjoint) graphs H1, H2 is denoted by
H1tH2 := (V (H1)∪V (H2), E(H1)∪E(H2)). ForW ⊆ V (H) and F ⊆ E(H) we define node-
and edge-induced subgraphs H[W ] := (W, {e ∈ E(H) | e ⊆W}) and H[F ] :=

(⋃
e∈F e, F

)
,

respectively. We further use H − e := H[E(H) \ {e}].
Given a planar drawing D of some planar graph H, the cyclic adjacency order around

each node in D defines an embedding π of H. The disjoint regions bounded by edges in D
correspond to the faces of π; the infinite region, bounded only on the inside, is called outer
face. The degree deg(f) of any face f is the number of half-edges (“sides” of edges) that
occur on the boundary of f ; a bridge occurs twice on the same face.

Linear Programming. A Linear Program (LP) is a vector c ∈ Rd and a set of linear
inequalities (constraints) that define a polyhedron P in Rd; we ask for an element x ∈ P
that maximizes cᵀx. An Integer Linear Program (ILP) additionally requires the components

1 [16] considers the crossing number; the algorithm trivially works also for the stronger parameter skewness.
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of x to be integral. For a given problem, one can establish different ILPs, so-called models.
To solve an ILP model, one uses branch-and-bound, where dual bounds are obtained from
(fractional) solutions to the LP-relaxation, i.e., the ILP without the integrality requirements.
Clearly, strong such LP-bounds are desired. We say a model N is at least as strong as a
model M , if N ’s LP-relaxation gives no worse bounds than M ’s. We say N is stronger than
M if, additionally, there is an instance where N gives a strictly better bound. If, in this case,
N arises from M by adding some constraints C, we say C strengthen M .

It is often beneficial to consider only a relevant subset of constraints in the solving process,
in particular when the class of constraints is (exponentially) large. The procedure is referred
to as separation. We employ it on (fractional) LP-solutions for selected constraint classes.

Kuratowski Model (ε-Model). The following ILP is due to Mutzel [23]. Jünger and Mutzel
showed that both constraint classes below form facets of the planar subgraph polytope [17].
We use solution variables se ∈ {0, 1} (for all e ∈ E(G)) that are 1 if and only if edge e is
deleted, i.e., not in the planar subgraph. (In [23], equivalent variables xe := 1− se are used.)
The objective minimizes the skewness – thus maximizes the planar subgraph – and is given by

min
∑

e∈E(G)
w(e) se.

Thereby, we may consider edge weights w; they are 1 in case of the traditional unweighted
MPS problem. For a given subset F ⊆ E(G) of edges, we define s(F ) :=

∑
e∈F se as a

shorthand. We can always use Euler’s bound on the number of edges in planar graphs:

s
(
E(G)

)
≥ |E(G)| − (3n− 6) + 1G is bipartite(n− 2). (1)

By Kuratowski’s theorem [19], a graph is planar if and only if it neither contains a subdivision
of a K5 nor of a K3,3. Hence, it suffices to ask for any member of the (exponentially large)
set K(G) of all Kuratowski subdivisions that at least one of its edges is deleted:

s
(
E(K)

)
≥ 1 ∀K ∈ K(G). (2)

Clearly, (2) are too many constraints to use all explicitly. Instead, we identify a sufficient
subset of constraints via a (heuristic) separation procedure: we round the fractional solution
and obtain a graph that can be tested for planarity. If it is non-planar, we extract a
Kuratowski subdivision. This method does neither guarantee to always find a violated
constraint if there is any, nor that the identified subdivision in fact corresponds to a violated
Kuratowski constraint. Still, since it has these guarantees on integral solutions, it suffices to
obtain an exact algorithm. Over the years, the performance of this approach was improved
by strong preprocessing [4], finding multiple Kuratowski subdivision in linear time [11], and
strong primal heuristics [10]. We use all these identically in all considered algorithms.

The Kuratowski-model forms the basis of our extensions. As such, we denote it, without
any of the below extensions, by ‘ε-model’.

3 Stronger Constraints Based on Cycles

We now present new constraints for the planar subgraph polytope (or a lifted version thereof).
All but the first class require the introduction of new variables based on cycles, leading to
the cycle model. For each constraint class we first give some motivation and intuition for its
feasibility, before discussing its technical details. We then describe – provided the class is
large – separation routines that quickly identify violated constraints, and usually show that
it strengthens our ILP model.

ESA 2018
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Generalized Euler Constraints. We know from [17] that inequality |E(G)| ≤ 2|V (G)| − 4
is facet-defining for complete biconnected graphs. We are interested in a class of similar
constraints for dense subgraphs with large girth. The following lemma is folklore:
I Lemma 1. A planar graph G has at most

(
|V (G)| − 2

)
γ(G)/

(
γ(G)− 2

)
edges.

Proof. Let n := |V (G)|, m := |E(G)|, and π denote an embedding of G. For any face of
π we require at least γ(G) half-edges. Thus, the number f of faces in π is bounded by
f ≤ 2m/γ(G). Using Euler’s formula, we obtain n−m+ (2m/γ(G)) ≤ 2, the claimed results
follows when solving for m. J

We can thus derive a feasible generalized Euler constraint for any subgraph H ⊆ G:

|E(H)| − s
(
E(H)

)
≤
(
|V (H)| − 2

)
γ(H)/

(
γ(H)− 2

)
∀H ⊆ G (3)

We note that this bound can sometimes be improved: for constraints (3) to be satisfied
with equality it is necessary that V (H) ≡ 2 (mod γ(H) − 2) if γ(H) is odd and V (H) ≡
2
(
mod (γ(H)− 2)/2

)
otherwise [13]. However, we did not implement this in our algorithms.

I Lemma 2.? The generalized Euler constraints (3) strengthen the ε-model.

Proof sketch. K3,3,1 contains a K3,4 that prohibits the otherwise feasible solution 3/2. J

We separate constraints (3) heuristically by seeking dense, high-girth subgraphs using
two different methods. First, using the current fractional solution, we assign weight 1− se to
each edge e and approximate a maximum cut [22, Section 6.3], obtaining a girth-4 subgraph.
If (after postprocessing, see below) this does not yield a violated constraint, we try a second
method: We set a target girth µ and iteratively add edges in ascending order of their LP-value
to an initially empty graph, while updating the shortest paths between all node pairs. Upon
adding an edge e, we check whether e would create a cycle of length < µ, in which case we
discard e instead. We may repeat this process for different values of µ. After each of the above
attempts, we apply a postprocessing: Let H denote a girth-µ subgraph. The contribution
of a node v ∈ V (H) is defined by |δH(v)| −

∑
e∈δH (v) se − µ/(µ− 2). We iteratively remove

nodes with negative contribution from H. In particular, this will remove all degree-1 nodes.

3.1 Cycle Model
We now want to bound the number of edges in the planar subgraph by the number of its
small faces. Even though compelling from a theoretical standpoint, it is infeasible to generate
all potential faces of all planar subgraphs of a given graph (already for bounded length).
However, we know that traversing the border of any face of a spanning subgraph H traverses
at least one cycle if H is not a tree. We will relate the number of small faces in any planar
subgraph of a graph G to the number of small cycles in G. One may also view this as a way
to further generalize Euler constraints: many – in particular sparse – graphs have low girth
only due to very few cycles of small length.

We may assume any (maximal) primal solution to be connected and non-outerplanar as it
could be trivially improved otherwise. Also observe that we cannot require faces to uniquely
map to cycles in general. Consider for example a cycle graph (two faces with the same cycle)
or a non-biconnected graph (each cut-node occurs twice in at least one face; cycles contain
nodes at most once) Note that there are biconnected graphs that have no biconnected MPS.
I Lemma 3. For every connected, planar but non-outerplanar subgraph H of G, there exists
an embedding of H such that we can assign a unique cycle α to every face f where all edges
of α occur on the boundary of f .
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Proof. Let H ⊂ G be as defined in the claim. There exists some biconnected component B?
of H that is neither a cycle nor an edge since H is not outerplanar. Choose an embedding of
H and pick some face of B? as the outer one. For every biconnected component B that is not
just an edge, we iterate over the inner faces of B. Each inner face f of B directly corresponds
to a cycle as a biconnected graph contains neither cut-nodes nor bridges. (Observe that an
inner face of B might in fact be much larger in H since we ignore other components nested
in this face.) Ultimately, we assign the cycle induced by the outer face in H to the (last
remaining) outer face. Since B? is not a cycle we do not assign any cycle twice. J

We denote the number of faces whose degree satisfies some property P by fP .

I Lemma 4. Given a connected, planar graph H on n nodes andm edges, for each embedding
of H with exactly f=d faces of degree d ∈ {3, 4 . . . , 2m}, we have

m = 3n− 6−
∑2m

d=3
(d− 3)f=d. (4)

Proof. Every face in any embedding of H has degree at least 3 and at most 2m. For every
face f of degree d we can add d− 3 edges that split f into d− 2 triangles without violating
planarity. After performing this operation for each face we obtain a planar triangulated
graph, i.e., a graph that has exactly 3n− 6 edges. J

Let Cd(G) denote all cycles of length d in G. We set D ≥ 3 to the maximum cycle length
that we want to investigate; this parameter will control the number of additionally generated
variables. Let C≤D(G) denote the set of cycles with length at most D. For every cycle
α ∈ C≤D(G) we generate a variable cα ∈ {0, 1}.2 We force such a variable to 0 if any edge of
the respective cycle is removed and allow at most two cycles per edge in the MPS:∑

α∈C≤D(G) : e∈E(α)
cα ≤ 2 (1− se) ∀e ∈ E(G) (5)

Note that constraints (5) resemble the requirement for each edge to appear in at most two
faces (subject to Lemma 3). We discuss its correctness below. Let c(d) :=

∑
α∈Cd(G) cα.

I Lemma 5. For every connected, planar but non-outerplanar subgraph H of G, there exists
an embedding π of H and a feasible assignment w.r.t. (5) of cycle variables such that for
each d ≤ D the number f=d of faces with degree d in π is bounded from above by

f≤d ≤
∑d

k=3
c(k), or equivalently f=d ≤

∑d

k=3
c(k)− f<d.

Proof. We assign cycle variables following the proof of Lemma 3. Hence, there is a unique
cycle variable assigned to each face such that the length of the cycle is at most the degree of
its face. The variable assignment is feasible since we pick only edges contained in H and
pick at most two cycles incident with any such edge. J

I Theorem 6. For any maximum planar subgraph of a graph G on n nodes and m edges
there exists a feasible variable assignment that satisfies (5) and the cycle constraint

(D − 1)
(
m− s(E(G))

)
≤ (D + 1)(n− 2) +

∑D

d=3
(D + 1− d)c(d). (6)

2 Intuitively, we want cα = 1 if and only if α is (part of) a face, see below for details. In terms of
correctness, we need not but can actively force these variables to be binary, cf. Section 4.

ESA 2018



19:6 Cycles to the Rescue! Novel Constraints to Compute MPS Fast

Proof. Starting with (4) on any connected, planar subgraph of G that has m − s(E(G))
edges, we relax the equality by using the same coefficient for all faces of large degree as in

m− s(E(G)) ≤ 3n− 6−
∑D

d=3
(d− 3)f=d − (D − 2)f>D.

By replacing f>D in Euler’s formula, (f>D + f≤D) + n−
(
m− s(E(G))

)
= 2, we obtain

(D − 1)
(
m− s(E(G))

)
≤ (D + 1)(n− 2) +

∑D

d=3
(D + 1− d)f=d. (7)

The claimed cycle constraint is finally obtained by applying Lemma 5 to iteratively replace
f=D′ for D′ = D,D − 1, . . . , 4, 3 by the upper bound (note that f<3 = 0), as sketched below
for the (generalized, iteratively re-appearing) rightmost summand of (7):∑D′

d=3
(D′ + 1− d)f=d ≤

∑D′−1

d=3

(
(D′ − 1) + 1− d

)
f=d +

∑D′

d=3
c(d) J

3.2 Relaxations and D-Hierarchy
We now turn our attention to LP-relaxations of the cycle model. We show that there is a
hierarchy of gradually stronger LPs induced by the maximum cycle length D. Let the cycle
model CMD consist of the ε-model, the cycle variables for cycle lengths up to D, and the
corresponding constraints (5),(6). If D = 2 were allowed, CM2 would be exactly the ε-model.
I Lemma 7. For any solution to the relaxation of CMD, it holds that∑D

d=3
(d− 2)c(d) ≤ 2n− 4.

Proof. Assume the contrary,
∑D
d=3(d − 2)c(d) > 2n − 4. It follows that

∑D
d=3 dc(d) >

2n−4+2
∑D
d=3 c(d) and hencem−s(E(G)) > n−2+

∑D
d=3 c(d) by the sum of constraints (5).

Plugging this bound on the number of edges into the cycle constraint (6), we obtain∑D
d=3(d− 2)c(d) < 2n− 4, a contradiction. J

It is not immediately clear, that decreasing the maximum cycle length maintains LP-
feasibility, as some variables are removed and the cycle constraint is replaced. By employing
Lemma 7, we can show the following fact.
I Lemma 8.? Model CMD+1 is at least as strong as CMD.
I Lemma 9. Model CMD+1 is stronger than CMD.

Proof. Consider the complete graph Kk on k ≥ 5 nodes. Pick any number µ ≥ D + 1. We
subdivide every edge of Kk using ξ := bµ/3c additional nodes. The resulting graph Kµ

k

has girth at least µ, i.e., it has no cycles of length ≤ D. We observe that skew(Kµ
n) =

skew(Kk) = k(k − 1)/2− 3k + 6, independent of µ. We show that increasing the maximum
cycle length from D to D + 1 cuts off all previously optimal LP solution.

Since Kµ
k has girth µ there can be at most (|V (Kµ

k )| − 2)µ/(µ− 2) edges in any planar
subgraph. As there are no cycle variables, the cycle constraint (6) approaches this value
from above for increasing D. Any feasible solution that tightly satisfies the cycle constraint
is an optimal one. The Kuratowski constraints (2) on the other hand are already satisfied by
deleting each edge partially with se = 1/(9ξ) ∀e ∈ E(Kµ

n), since each subdivision requires at
least 9ξ edges, still allowing LP-solutions with value k(k − 1)/18. J

Overall, increasing the maximum cycle length strengthens our LP relaxations (leading to
fewer LP-computations), but this comes at the cost of increasing the variable space (leading
to slower LP-computations). It is imperative to find a good trade-off between these two.
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3.3 Strengthening the Cycle Model
We now extend the cycle model further by introducing new constraint classes. Only the first
such extension requires yet additional variables.

Pseudo-Tree Extension. Observe that degree-1 nodes in the solution deteriorate the cycle
constraint’s bound: given a face f that contains a degree-1 node, we can set the variable of
a cycle with length at most deg(f)− 2 to 1. We introduce new variables tv ∈ {0, 1} for all
v ∈ V (G) and tvw ∈ {0, 1} for all v, w ∈ V (G) with {v, w} ∈ E(G). They label nodes and
directed edges (arcs) as pseudo-trees: any node with at most one unlabeled neighbor (in
particular any degree-1 node) is to be labeled. This can be achieved by:

tvw + twv ≤ 1− s{v,w} ∀{v, w} ∈ E (8)∑
w∈N(v)

tvw ≥ tv ∀v ∈ V (G) (9)

tv + degG(v)−
∑

w∈N(v)
twv −

∑
w∈N(v)

svw ≥ 2 ∀v ∈ V (G) (10)

Constraints (8) allow at most one tree-arc for any edge and none for deleted edges. We force
tree nodes to propagate along one outgoing arc by constraints (9). Finally, constraints (10)
label degree-1-nodes and nodes where all (but one) neighbor is labeled. Now, we may subtract∑
v∈V (G) tv nodes (and the same number of edges) from (6) to obtain a stronger bound:

I Corollary 10. The extended cycle constraint, given below, is feasible.

(D − 1)
(
m− s(E(G))

)
≤ (D + 1)(n− 2) +

∑D

d=3
(D + 1− d)c(d)− 2

∑
v∈V (G)

tv (11)

Alternatively, we may use a less sophisticated approach that does not model propagation but
labels only degree-1-nodes. In this case, it suffices to add variables tv ∈ {0, 1}, ∀v ∈ V (G),
and constraints (10), assuming

∑
w∈N(v) twv = 0.

I Lemma 11. ? The pseudo-tree extension, i.e., constraints (8)–(11) together with the
t-variables, strengthens CM3. This already holds for the approach without propagation.

Proof sketch. We use the graph given in Fig. 1a: any MPS of it has a degree-1 node. J

All following constraint classes deal with excluding combinations of cycles and paths that
either induce non-planarity, or result in cycle-variables not assignable to any face in the
planar subgraph (Lemma 5). They are independent of but compatible with the pseudo-tree
extension.

Cycle-Edge Constraints. Considering integral solutions and constraints (5), a cycle cannot
be picked if any of its edges is deleted. W.r.t. fractional solutions we can additionally require

se + cα ≤ 1 ∀α ∈ C≤D, e ∈ E(α). (12)

Although there are only O(D|C≤D|) such constraints, preliminary benchmarks showed that
adding all of them does not pay off. Instead, we straight-forwardly separate them by iterating
over the edges of each cycle that has a non-zero variable.
I Lemma 12.? The cycle-edge constraints (12) strengthen CM3.

Proof sketch. Use a graph (Fig. 1b) that has 3 edges each incident to only 1 triangle. J

ESA 2018
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K8

(a) Pseudo-Tree, Lemma 11

K7

(b) Cycle-Edge, Lemma 12

K8

(c) Two-Cycles-Path, Lemma 14

Figure 1 Graphs in strength proofs. Bold edges in (a) have large weight (or are edge bundles).

Two-Cycles-Path Constraints. Given two cycles α, β, we denote their set of inner nodes
by ν(α, β) := {v ∈ V (α) ∩ V (β) | δα(v) = δβ(v)}. Let ψ(α, β) denote the set of non-empty
paths that connect ν(α, β) to V (α t β) without using any edge in E(α t β).
I Lemma 13. The two-cycles-path constraints, given below, are feasible.

s
(
E(p)

)
≥ cα + cβ − 1 ∀α, β ∈ C≤D; p ∈ ψ(α, β) (13)

Proof. Assume an embedding π of α t β where each of α, β corresponds to a face in π. By
inserting p into π, we either split face α or face β. Hence, even in a supergraph of α t β t p
two such faces cannot exist. Otherwise, if no such π exists, we have 1 ≥ cα + cβ . J

I Lemma 14.? The two-cycles-path constraints (13) strengthen CM4.

Proof sketch. We use the graph of Fig. 1c as input. J

To identify violated two-cycles-path constraints, we consider each edge e. We collect the
set C(e) = {α ∈ C≤D | e ∈ E(α) ∧ cα > 0}, and check, for each pair α, β ∈ C(e), whether its
sum of LP-values is > 1. If so, we compute the set of inner nodes ν := ν(α, β) and cache the
result for future lookup. If ν 6= ∅, we iteratively compute shortest paths following either
of two patterns: the combined approach searches for shortest paths from ν to V (α t β) \ ν,
whereas the separate one searches for paths from v to V (α t β) \ {v}, separately for each
v ∈ ν. Note that the latter variant will always identify a violated constraint, if one exists,
whereas the former ignores paths connecting two inner nodes. After identifying a new path p,
an edge in E(p) with maximal LP-value is discarded and the search at v starts anew.

We point out that there is a natural generalization of this constraint class by using k
instead of only 2 cycles. If the k cycles fully enclose a common node v (like any 2 cycles
enclose their inner nodes), any other path from v to the same block is forbidden.

Cycle-Two-Paths Constraints. We say that two paths p1, p2 are conflicting w.r.t. a cycle α
if and only if they each start and end on nodes of V (α) but are otherwise disjoint from α

and from one another, and p2 connects the components of α[V (α) \ V (p1)].
I Lemma 15. The cycle-two-paths constraints, given below, are feasible.

s
(
E(p1 t p2)

)
≥ cα ∀α ∈ C≤D,∀ conflicting paths p1, p2 w.r.t. α (14)

Proof. Given an embedding π of α, we cannot insert both paths p1, p2 into the same face
of π. Hence, we must split both faces in π. Consequently, no embedding of any supergraph
of α t p1 t p2 exists, where there is a face incident with all of α. J

While this constraint class may be stronger than the two-cycles-path constraints, we did
not implement it: its separation is complex as we ask for two paths depending on each other.
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Kuratowski-Cycle Constraints. Starting with a Kuratowski constraint, we can replace
parts of its edges by cycles that contain them.

I Lemma 16. The Kuratowski-cycle constraints, given below, are feasible.

s({e ∈ E(K) | ∀α ∈ C : e 6∈ E(α)}) ≥
∑

α∈C
cα + 1− |C| ∀K ∈ K, C ⊆ C≤D (15)

Proof. If C = ∅, we simply obtain a Kuratowski constraint. Assuming integrality and
C 6= ∅, the right-hand side is 1 if all cycles in C are picked and ≤ 0 otherwise. In the former
case, the edges of C, together with the remaining edges of K that are not contained in C
contain a Kuratowski subdivision, and we need to remove an edge. J

I Lemma 17.? The Kuratowski-cycle constraints (15) strengthen CM4.

Proof sketch. We use the circulant on 16 nodes with jumps 1, 2, and 8 as input. J

For separation, we identify a Kuratowski subdivision K as for (2). We collect the set S
of cycles with LP-value > 0 incident with K. For each cycle in S, we compute its gain, i.e.,
the increase in violation (or decrease in slack) when adding that cycle to C. While there are
cycles with positive gain, we continue adding a cycle of S with maximal gain to C.

Cycle-Clique Constraints. Two cyclic orders π, π̄ on a set X are conflicting if and only if
π 6= π̄ and π 6= reverse(π̄). The restriction of π to Y ⊆ X is denoted by πY . A cycle α
induces a (up to reversal) unique cyclic order on its nodes V (α). Given two cycles α, β,
let πα, πβ be corresponding cyclic orders, and let W := V (α) ∩ V (β) be the common nodes.
We say that α and β are conflicting if and only if πWα and πWβ are conflicting.

I Lemma 18. The cycle-clique constraints, given below, are feasible.∑
α∈C

cα ≤ 1 ∀C ⊆ C≤D
s.t. all cycles in C are pairwise conflicting (16)

Proof. Consider any pair of conflicting cycles α, β ∈ C with πα, πβ , and W defined as
above. Since cyclic orders on three elements are unique up to reversal, we have |W | ≥ 4. By
transitivity there exists a set of exactly four common nodes X ⊆W , such that πXα and πXβ
are conflicting. The graph on X where we add an edge vw if and only if v is adjacent to w
in πXα or πXβ is the K4. Since the K4 is not outerplanar, there can neither be a face in K4
traversing all of X nor such a face in α t β. J

We create the conflict graph HC that contains a node for every cycle with LP-value > 0,
cache the conflict information for each pair of cycles, and add constraints for maximal cliques
in HC . In a less sophisticated variant, we only add constraints for cliques of size two.

4 Experiments

All algorithms are implemented in C++, compiled with GCC 6.3.0, and use the OGDF
(snapshot 2017-07-23) [6]. We use SCIP 4.0.1 for solving ILPs with CPLEX 12.7.1 as the
underlying LP solver [21]. Each MPS-computation uses a single physical core of a Xeon Gold
6134 CPU (3.2 GHz) with a memory speed of 2666 MHz. We employ a time limit of 20 minutes
and a memory limit of 8 GB per computation. Our instances and results, giving runtime
and skewness (if solved), are available for download at http://tcs.uos.de/research/mps.

ESA 2018
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Instances and Algorithms. Analogously to the study [8], we consider three established
real-world benchmark sets: Rome [12], North [24], and (a subset of) SteinLib [18]. We know
from [7,8] that random regular graphs (which are expander graphs with high probability) are
especially hard to solve exactly. We use the same such instances as [8], but only consider
graphs with ≤ 100 nodes, as no known exact algorithm solves larger instances. There are 20
graphs for each parameterization (|V (G)|,∆) ∈ {10, 20, 30, 50, 100} × {4, 6, 10, 20, 40}, where
∆ < |V (G)| is the node-degree. For tuning of ε (e.g., heap size in separation) we rely on the
values identified in [15]. We use the notation below to encode algorithmic choices.

ε Do not use any extensions but the basic Kuratowski algorithm [23].
e Separate generalized Euler constraints (3).

c{r} Add cycle constraints (5), (6), and variables with the minimal value for D such that
there are variables for at least 100r cycles.

t{0|1} Use the pseudo-tree extension (8)–(11) with (=t1) or without (=t0) propagation.
i Enforce integrality of variables for cycles and pseudo-trees.
s Separate cycle-edge constraints (12).

w{0|1} Separate two-cycles-path constraints (13) using combined (=w0) or separate (=w1)
approach. Also enables separation on cycle-clique constraints (16) for 2-cliques.

k Separate Kuratowski-cycle constraints (15).
q Separate cycle-clique constraints (16).

Note that instead of providing D explicitly, we specify a minimum number r′ of cycle variables
to be generated. We increment D while there are less than r′ cycle variables.

Results. Table 1 shows the success rates (percentage of instances solved to proven optimality)
and average runtime per instance of our algorithmic variants. For non-solved instances we
assume the maximum runtime of 20 minutes – average runtimes are thus comparable only for
algorithms that achieve roughly equal success rates. We group the variants by the number of
used extensions and highlight variants that dominate their group in bold. The latter informs
our choice of which variants to consider in the next group.

The separation of generalized Euler constraints is clearly beneficial only on the North
graphs, but even there its improvements are marginal when compared to the cycle-based
approach. The latter works very well in practice, for all instance sets. In particular (cf.
Fig. 2), on Rome it allows us for the first time to compute the skewness of all instances.
Using variant c10 t0 i w0, we are able to solve all but grafo10958.98.lgr within the 20
minute time frame; this last instance required 103 minutes. North still contains instances too
hard to solve exactly (even when increasing runtime to a few days and memory to 32GB).
Nonetheless, we now solve 3/4 of the previously unsolved North graphs within our strict
limits. The second group of variants in Table 1 demonstrates that all of our extensions of the
cycle model, in particular the pseudo-tree approach, improve upon success rate and runtime
on all instance sets when applied to c10. As shown in the lower sections of the table, this
does not always apply when comparing models that simultaneously use multiple extensions.

Table 2 details the relative improvement for each of the three most promising algorithm
configurations over the state-of-the-art ε-model. We provide the success rate for the instances
not solved by ε and give the average relative speed-up (i.e., the runtime of ε divided by that
of variant X) over the instances solved by both ε and X. This common set is exactly those
solved by ε, except for a single ε-solved North-instance not solved by c10. On Rome, the pure
cycle model c10 without any further extensions achieves the best speed-up; for the seemingly
harder other instance sets, more sophisticated variants are worthwhile. Fig. 2 underlines that
the success rate of the algorithms is strongly correlated to the instance’s skewness.
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Table 1 Overview of performance for algorithmic variants: success rate and avg. runtime.

variant Rome North Expanders SteinLib
succ. [%] time [s] succ. [%] time [s] succ. [%] time [s] succ. [%] time [s]

ε 85.71 198.42 73.76 325.31 34.74 800.38 9.52 1 085.94
e 85.56 199.41 77.78 273.29 35.00 803.91 9.52 1 085.93
c5 98.91 21.60 84.40 201.42 53.95 567.52 31.43 859.40
c10 99.14 18.10 84.63 195.35 54.47 562.81 32.38 853.57
c20 99.14 19.58 83.92 197.86 55.00 573.82 31.43 861.47
c10 i 99.89 5.52 88.89 156.99 56.58 538.81 31.43 841.88
c10 s 99.79 6.66 88.42 165.54 58.68 515.13 35.24 821.00
c10 t0 99.95 3.36 92.43 112.82 57.37 535.46 37.14 789.26
c10 t1 99.92 3.74 93.14 111.94 56.32 539.04 37.14 785.89
c10 w0 99.79 7.07 87.23 165.36 55.53 549.94 31.43 837.52
c10 w1 99.82 6.63 86.52 179.48 55.00 553.38 31.43 833.81
c10 k 99.77 7.26 86.52 178.34 55.26 552.83 33.33 828.81
c10 q 99.73 7.51 85.82 185.84 55.53 550.55 31.43 841.77
c10 t0 i 99.95 3.22 93.14 109.61 57.37 529.93 38.10 782.72
c10 t0 s 99.98 3.08 93.62 95.46 58.95 509.01 39.05 760.70
c10 t0 w0 99.98 2.75 92.43 112.77 57.37 537.61 36.19 808.58
c10 t0 w1 99.98 2.92 92.20 109.37 57.11 537.76 37.14 780.83
c10 t0 k 99.92 3.57 92.67 104.55 56.84 535.97 38.10 785.46
c10 t0 q 99.95 3.58 92.67 109.71 57.37 538.19 37.14 789.05
c10 t1 i 99.96 3.32 92.91 106.39 57.11 533.51 37.14 788.52
c10 t1 s 99.98 2.75 92.43 112.77 58.68 537.61 37.14 808.58
c10 t1 w0 99.98 3.04 92.20 114.28 56.84 537.97 38.10 786.93
c10 t1 w1 99.98 3.19 91.96 113.03 56.84 540.39 37.14 783.09
c10 t1 k 99.92 3.65 92.20 112.61 56.84 538.91 37.14 784.30
c10 t1 q 99.92 3.86 93.14 113.89 56.05 540.23 37.14 788.07
c10 t0 i s 99.94 3.27 92.91 103.17 58.95 506.63 40.00 761.47
c10 t0 s w0 99.98 2.43 93.85 91.66 58.68 508.28 39.05 763.08
c10 t0 s w1 99.98 2.29 92.91 101.17 58.68 507.99 39.05 756.31
c10 t0 s k 99.96 3.03 93.38 98.06 58.68 504.54 39.05 765.08
c10 t0 s q 99.93 3.22 93.62 95.59 58.42 510.38 38.10 763.64
c10 t0 i w0 99.99 2.89 92.67 105.16 57.11 529.95 38.10 798.26
c10 t0 i s w0 99.96 2.72 94.33 93.99 59.47 502.30 39.05 754.46

Table 2 Relative improvement over ε for selected algorithmic variants. We give the the success
rate over the instances unsolved by ε, and the avg. runtime ratio over the commonly solved instances.

variant Rome North Expanders SteinLib
new [%] speed-up new [%] speed-up new [%] speed-up new [%] speed-up

c10 93.98 66.80 42.34 21.45 30.24 13.96 25.26 11.79
c10 t0 i w0 99.92 60.85 72.07 28.59 34.27 12.68 31.58 6.79
c10 t0 i s w0 99.75 59.58 78.38 34.03 37.90 23.21 32.63 5.42

Table 3 Average number of cycle variables and average values for maximum cycle length D.

variant Rome North Expanders SteinLib
min # var D # var D # var D # var D # var

c5 500 9.51 627 7.34 689 5.43 2 075 5.80 881
c10 1 000 10.51 1 168 8.01 1 213 5.73 2 816 6.64 3 658
c20 2 000 11.51 2 175 8.55 2 048 6.47 7 774 7.09 4 785
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(b) Solved North graphs by best upper bound on skewness.

Figure 2 Detailed success rates for selected algorithmic variants.

Table 3 lists the average number of generated cycle variables and the respective average
values for D. We mention that instances with high D values typically generate few cycle
variables, close to the lower bound. However, there is a large deviation in the number
of generated cycle variables in any fixed instance set: some graphs contain less than the
requested number of cycles whereas others already contain roughly 10 000 triangles.

5 Conclusion and Open Questions

For over two decades, the strongest ILP model for MPS has not been improved. In this paper
we presented novel variables and constraints, based on cycles, to extend this model to finally
obtain both a theoretically stronger model, as well as a more efficient algorithm in practice.
We proved that there is a hierarchy of ever stronger LP-relaxations, induced by the maximal
considered cycle length, and a rich set of further strengthening cycle-based constraint classes.
For the first time, we are able to compute the skewness of all Rome graphs, solve 94% of the
North graphs (compared to 74% by the ε-model), and solve 40% instead of only 10% of our
SteinLib instances. Our extensions also help for the notoriously hard expander graphs.

Several of our proofs show the new constraint class’s strength w.r.t. a low-D cycle model.
We conjecture that most classes remain strengthening for high D, but to prove this, one has to
find and argue infinite families of graphs with the LP-properties of our currently hand-crafted
proof graphs. Furthermore, it is natural to ask if and which of the new constraint classes
form facets in the (lifted) planar subgraph polytope.

A problem inherent to our approach arises on inputs of non-homogeneous density: G
may have too dense subgraphs to raise D sufficiently, even when every planar subgraph of G
contains large regions consisting of high-degree faces. Is there a practical way to generalize
the cycle-based approach using an independent maximum cycle length for each edge?
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