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Abstract
Given a graph G and a set of terminals T , a distance emulator of G is another graph H (not
necessarily a subgraph of G) containing T , such that all the pairwise distances in G between
vertices of T are preserved in H. An important open question is to find the smallest possible
distance emulator.

We prove that, given any subset of k terminals in an n-vertex undirected unweighted planar
graph, we can construct in Õ(n) time a distance emulator of size Õ(min(k2,

√
k · n)). This is

optimal up to logarithmic factors. The existence of such distance emulator provides a straight-
forward framework to solve distance-related problems on planar graphs: Replace the input graph
with the distance emulator, and apply whatever algorithm available to the resulting emulator. In
particular, our result implies that, on any unweighted undirected planar graph, one can compute
all-pairs shortest path distances among k terminals in Õ(n) time when k = O(n1/3).
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1 Introduction

The planar graph metric is one of the most well-studied metrics in graph algorithms,
optimizations, and computer science in general. The planar graph metric compression
problem is to compactly represent the distances among a subset T of k vertices, called
terminals, in an n-vertex planar graph G. Without compression (and when G is unweighted)
these distances can be naïvely represented with O(min(k2 logn, n)) bits by either explicitly
storing the k × k distances or alternatively by storing the entire graph (naïvely, this takes
O(n logn) bits, but can be done with O(n) bits [60, 55, 24, 13]).

A natural way to compress G is to replace it by another graph H that contains T
as vertices, and the distances between vertices in T are preserved in H. In other words,
dG(x, y) = dH(x, y) holds for every pair of vertices x and y in T . Such graph H is called a
distance emulator of G with respect to T (or a distance preserver in the case where
H is required to be a subgraph of G). Distance emulators are appealing algorithmically,
since we can readily feed them into our usual graph algorithms. They have been studied as
compact representations of graphs [16, 26, 25, 15, 14, 8], and used as fundamental building
blocks in algorithms and data structures for distance-related problems [16, 28, 31, 1, 2, 3, 42].
Similar concepts like additive and multiplicative spanners [28, 40, 12, 57, 63, 11] and distance
labelings [39, 62, 53, 45, 34, 9, 35, 10] are popular topics with abundant results.

In planar graphs, an extensive study has been done for the case where the emulator H is
required to be a minor of G [40, 21, 30, 11, 32, 23, 38, 37, 51]. Restricting H to be a minor of
G has proven useful when H is only required to approximate the distances between vertices
in T , say, up to a (1 + ε) multiplicative error. For exact distances however, Krauthgamer,
Nguyen, and Zondiner [50] have shown a lower bound of Ω(k2) on the size of H, even when
G is an unweighted grid graph and H is a (possibly weighted) minor emulator.

In general, an emulator H does not have to be a subgraph or a minor of G. In fact, H
can be non-planar even when G is planar. Even in this setting, for weighted planar graphs,
we cannot beat the naïve bound because one can encode an arbitrary k × k binary matrix
using subset distances among 2k vertices in a weighted planar graph [34, 4]. Since we cannot
compress an arbitrary binary k × k matrix into less than k2 bits, we again have an Ω(k2)
lower bound.

What about unweighted planar graphs? Various distance-related problems in unweighted
graphs enjoy algorithms and techniques [28, 49, 12, 57, 63, 64, 61, 22, 65, 29] which outperform
their weighted counterparts. Indeed, for the metric compression problem in unweighted
planar graphs, Abboud, Gawrychowski, Mozes, and Weimann [4] have very recently shown
that we can in fact beat the O(k2) bound. They showed that the distances between any k
terminals can be encoded using Õ(min(k2,

√
k · n)) bits4. The encoding of Abboud et al. is

optimal up to logarithmic factors. However, it is not an emulator! Goranci, Henzinger, and
Peng [37] raised the question of whether such encoding can be achieved by an emulator. We
answer this question in the affirmative.

Our results. We show that the encoding of Abboud et al. can be turned into an emulator,
with no asymptotic overhead. Namely, we prove that any unweighted planar graph has a
near-optimal size distance emulator.

4 The Õ(·) notation hides polylogarithmic factors in n.
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I Theorem 1. Let G be an n-vertex undirected unweighted planar graph, and let T be the
set of k terminals. A directed weighted graph H of size O(min(k2,

√
k · n log3 n)) can be

constructed in O(n log4 n) time as a distance emulator of G with respect to T ; all edge weights
of H are non-negative integers bounded by n.

Our theorem provides a practical framework for solving distance-related problems on
planar graphs: Replace the input graph G (or proper subgraphs of the right choice) with the
corresponding distance emulator H, and invoke whatever algorithm available on H rather
than on G. One concrete example of this is the computation of all-pairs shortest paths among
a subset T of k vertices. The algorithm by Cabello [19] can compute these Θ(k2) distances in
Õ(n4/3 + n2/3k4/3) time. Mozes and Sommer [54] improved the running time to Õ(n2/3k4/3)
when k = Ω(n1/4). Our emulator immediately implies a further improvement of the running
time to Õ(n+ n1/2k3/2) using an extremely simple algorithm: Replace G by the emulator H
and run Dijkstra’s single-source shortest-paths algorithm on H from every vertex of T . This
improves on previous results by a polynomial factor for essentially the entire range of k.

I Corollary 2. Let G be an undirected unweighted planar graph, and let T be a subset of k
terminals in G. One can compute the shortest path distances between all pairs of vertices in
T in O(n log4 n+ n1/2k3/2 log3 n log logn) time.

Techniques. The main novel idea is a graphical encoding of unit-Monge matrices. Our
emulator is obtained by plugging this graphical encoding into the encoding scheme of Abboud
et al. [4]. Their encoding consists of two parts. First, they explicitly store a set of distances
between some pairs of vertices of G (not necessarily of T ). It is trivial to turn this part into an
emulator by adding a single weighted edge between every such pair. Second, they implicitly
store all-pairs distances in a set containing pairs of the form (X,Y ) where X is a prefix of
a cyclic walk around a single face and Y is a subset of vertices of a cyclic walk around a
(possibly different) single face. For each such pair (X,Y ), the X-to-Y distances are efficiently
encoded using only O((|X| + |Y |) · logn) bits (rather than the naïve O(|X| · |Y | · logn)
bits). This encoding follows from the fact that the X × Y distance matrix M is a triangular
unit-Monge matrix.

A matrix is Monge if for any i, j we have that

M [i+ 1, j]−M [i, j] ≤ M [i+ 1, j + 1]−M [i, j + 1].

A Monge matrix is unit-Monge if for any i, j we also have that

M [i+ 1, j]−M [i, j] ∈ {−1, 0, 1}.

A (unit-)Monge matrix is triangular if the above conditions are only required to hold for
i 6= j. In other words, when all four entries M [i, j],M [i + 1, j],M [i, j + 1],M [i + 1, j + 1]
belong to the upper triangle of M or to the lower triangle of M .

The Monge property has been heavily utilized in numerous algorithms for distance
related problems in planar graphs [33, 20, 54, 43, 48, 17, 18, 52] in computational geometry
[46, 36, 6, 7, 5, 47], and in pattern matching [56, 27, 41, 59]. However, prior to the work
of Abboud et al. [4], the stronger unit-Monge property has only been exploited in pattern
matching [59, 58].

The encoding of the X × Y unit-Monge matrix M is immediate: For any i, the sequence
of differences M [i+ 1, j]−M [i, j] is nondecreasing and contains only values from {−1, 0, 1},
so they can be encoded by storing the positions of the first 0 and the first 1. Storing these
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positions for every i takes O(|X| · logn) bits. To encode M , we additionally store M [0, j] for
every j using O(|Y | · logn) bits. This encoding, however, is clearly not an emulator. Our
main technical contribution is in showing that it can be turned into an emulator with no
asymptotic overhead. Namely, in Section 2 we prove the following lemma.

I Lemma 3. Given an n × n unit-Monge or triangular unit-Monge matrix M , one can
construct in O(n logn) time a directed edge-weighted graph (emulator) H with O(n logn)
vertices and edges such that the distance in H between vertex i and vertex j is exactly M [i, j].

In Section 3 we describe how to plug the emulator of Lemma 3 into the encoding scheme
of Abboud et al.[4]. In their paper, the size of the encoding was the only concern and the
construction time was not analyzed. In our case, however, the construction time is crucial
for the application in Corollary 2. We achieve an O(n log4 n) time construction by making a
small modification to their encoding, based on the technique of heavy path decomposition.

Another difference is that in their construction once the encoding is computed, single-
source shortest-paths can be computed on the encoding itself using an algorithm by Fakchar-
oenphol and Rao [33]. More precisely (see [4, Section 5]), using a compressed representation
of unit-Monge matrices, the total size of their encoding is s = O(

√
k · n log2 n) words, running

the Fakcharoenphol and Rao algorithm requires accessing O(s log2 s) elements of the unit-
Monge matrices, and accessing each such element from the compressed representation requires
O(logn/ log logn) time (via a range dominance query, see Section 2)5. Overall, using our
O(n log4 n) construction together with the above single-source shortest-paths computations
from each terminal would result in a time bound of O(n log4 n+ n1/2k3/2 log5 n/ log logn)
in Corollary 2. Our approach on the other hand, runs Dijkstra’s classical algorithm on the
emulator H, leading to a faster (by a (logn/ log logn)2 factor) time bound for Corollary 2.
More precisely, our emulator H is of size O(

√
k · n log3 n), the edge-weights in H are encoded

explicitly (i.e. there is no need for a range dominance query), and the edge-weights are
integers in [1 .. n] so Dijkstra’s algorithm can use an O(log logn) time heap (using such fast
heap is not possible for Fakcharoenphol and Rao’s algorithm). Running Dijkstra therefore
takes O(

√
k · n log3 n log logn) time leading to the bound in Corollary 2.

2 Distance Emulators for Unit-Monge Matrices

2.1 The bipartite case

We next describe an O(n logn) space and time construction of a distance emulator for square
n× n unit-Monge matrices. The construction can be trivially extended to rectangular n×m
unit-Monge matrices (in O(max(n,m) log(max(n,m))) time and space) by duplicating the
last row or column until the matrix becomes square.

We begin by establishing a relation between unit-Monge matrices and right substochastic
binary matrices. A binary matrix P is right substochastic if every row of P contains
at most one nonzero entry. The following lemma can be established similarly to Abboud
et al. [4, Lemma 6.1].6

5 The O(log n/ log log n) factor was overlooked in [4]. It can be obtained by representing the unit-Monge
matrix with a range dominance data structure, such as the one in [44].

6 In Abboud et al. [4, Section 6] a unit-Monge matrix is defined to be one where every two adjacent
elements differ by at most 1, whereas here we only assume this for elements that are adjacent vertically
(that is, in the same column and between adjacent rows).
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Figure 1 Unit-Monge distance matrix M , its corresponding row substochastic matrix P , and the
emulator H for the matrix P . In this example the two vectors given by Lemma 4 are U = [−3−2−10]
and V = [2 2 2 3 4 4 4]. The leftmost vertices in H are row vertices r[x], and the rightmost vertices
in H are column vertices c[y]. All gray directed edges without labels have weight 0, and all black
directed edges without labels have weight 1. For instance, the distance from r[2] to c[1] is equal to
the number of 1s in P dominated by the (2, 1)-entry, which is 5.

I Lemma 4 (Abboud et al. [4, Lemma 6.1]). For any n×m unit-Monge matrix M there is a
right substochastic 2(n− 1)× (m− 1) binary matrix P such that for all x and y,

M [x, y] = U [x] + V [y] +
∑

i≥2x−1
j≥y

P [i, j]

where U is a vector of length n and V is a vector of length m.

Our goal is to construct a small emulator (in terms of number of vertices and edges) for
M . By Lemma 4, it suffices to construct a graph H satisfying

dH [r[x], c[y]] =
∑
i≥x
j≥y

P [i, j],

where x and y range over the rows and columns of P , r[x] is a vertex corresponding to row
x of P , c[y] is a vertex corresponding to column y of P , and the r[x]-to-c[y] distance in H
equals the number of 1s in P dominated by entry P [x, y] (a 2-dimensional range dominance
counting). We assume that P is given as input, which is represented as a vector specifying,
for each row i of P , the index of the (at most) single one entry in that row. We refer to such
a graph H as an emulator for the right substochastic matrix P . To convert an emulator for
P into an emulator for M , add a new vertex r0[x] for each 1 ≤ x < n, and connect it with an
edge of weight U [x] to r[2x− 1]. Similarly, for each 1 ≤ y < m, connect c[y] to a new vertex
c0[y] with an edge of weight V [y]. In addition, add a new vertex c0[m] and connect each r0[x]
to c0[m] by an edge of weight U [x] + V [m]; and add a new vertex r0[n] and connect r0[n] to
each c0[y] by an edge of weight U [n] + V [y]. By Lemma 4, the r0[x]-to-c0[y] distance equals
M [x, y]. We therefore focus for the remainder of this section on constructing an emulator for
the right substochastic matrix P .

Recursive construction. We now describe how to construct an emulator for an n×αn right
substochastic matrix P recursively for arbitrary constant α ≥ 0.

When P has only a single row, we create a row vertex r for the single row and a column
vertex c[y] for each column y. Connect r to c[y] with a directed edge of weight

∑
j≥yP [1, j].

ESA 2018
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r ′[3]
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r ′′[2]

r ′′[3]
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c′[3]

c′′[1]

c′′[2]

c′′[3]

Figure 2 The top-level construction of the emulator. As an example, the edge from c′[2] to c[2]
exists because y′→ = 2 when y = 2, and the weight on the edge is equal to

∑
i>3,j≥2 P [i, j] = 3.

Otherwise, assume P has more than one single row. Divide P into the top bn/2c × αn
submatrix P↑ and the bottom dn/2e × αn submatrix P↓. Since P↑ is right substochastic,
P↑ has at most bn/2c columns that are not entirely zero; similarly P↓ has at most dn/2e
non-zero columns. Let P ′ and P ′′ be the submatrices of P↑ and P↓ respectively, induced
by their non-zero columns as well as their last column (if it’s a zero vector); denote the
number of columns of P ′ and P ′′ as n′ and n′′, respectively. Observe that both P ′ and P ′′
are still right substochastic matrices. Let y′1, . . . , y′n′ be the indices in P↑ (and thus in P )
corresponding to the columns of P ′, and let y′′1 , . . . , y′′n′′ be the indices in P↓ corresponding
to the columns of P ′′. Observe that for any row x, the sum∑

i≥x
j≥y

P↑[i, j]

is the same for all y ∈ (y′`−1 .. y
′
`] for any fixed `.7 This is because all the columns of P↑ in

the range (y′`−1 .. y
′
` − 1] are all zero. A similar observation holds for the matrix P↓. For each

y, we denote by y′→ the (unique) smallest index y′` ∈ {y′1, . . . , y′n′} no smaller than y, and
denote by y′′→ the smallest index y′′` ∈ {y′′1 , . . . , y′′n′′} no smaller than y.

We recursively compute emulators H ′ and H ′′ for P ′ and P ′′ respectively. Denote the
row and column vertices of H ′ as r′[x] and c′[y] where x and y range over the rows and
columns of P ′, respectively; similarly denote the row and column vertices of H ′′ as r′′[x] and
c′′[y] respectively. Take the row vertices of H ′ and H ′′ as the row vertices of H, respecting
the indices of P . For each column y of P we add a column vertex c[y] to H; connect vertex
c′′[y′′→] of H ′′ to c[y] with an edge of weight zero; and connect vertex c′[y′→] of H ′ to c[y]
with an edge of weight∑

i>bn/2c
j≥y

P [i, j].

Thus, since for each pair of indices (x, y) of P one has

dH′ [r[x], c′[y]] =
∑

x≤i≤bn/2c
j≥y

P↑[i, j] and dH′′ [r[x], c′′[y]] =
∑
i≥x
j≥y

P↓[i, j],

7 For simplicity, one assumes y′0 = y′′0 = −∞.
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we have that

dH [r[x], c[y]] =
∑
i≥x
j≥y

P [i, j]

as desired. This completes the description of the construction of the emulator for square
right substochastic matrices. Observe that the obtained emulator is a directed acyclic graph
(dag) with a single path from each row vertex to each column vertex.

Size analysis. We next analyze the size of the emulator. Row vertices are created only
at the base of the recursion and there are n of them in total. The number of edges and
non-row vertices N(n) satisfies the recurrence N(n) ≤ 2N(n/2) +O(αn), so there are overall
O(n logn) vertices and edges in the emulator when the number of columns is linear to the
number of rows n.

Time analysis. As for the construction time, the only operation in the recursive procedure
that does not clearly require constant time is the computation of the edge weights. However,
it is not hard to see that computing all the edge weights of the form

wy :=
∑

i>bn/2c
j≥y

P [i, j]

in a single recursive call can be done in linear time. This is because wy is precisely the weight
of the unique path in the emulator H ′′ from the first row vertex to the y’th column vertex.
We can therefore simply maintain (with no asymptotic overhead), for every recursively built
emulator, the distances from its first row vertex to all its column vertices.

Making weights non-negative. The weight of every edge in our emulator for right sub-
stochastic matrix P is non-negative, but the vectors U and V might contain negative entries;
as a result the obtained emulator for M might contain negative edges even though every
entry in M is non-negative. This can be fixed by a standard reweighting strategy using a
price function. For the sake of computing the price function φ(·), add a super-source s and
connect s to each row vertex r[x] of the emulator of M by an edge of weight zero. Compute
the single-source shortest path tree rooted at s; since our emulator for P is a dag, this can
be done in time linear in the size of the emulator. Take the shortest path distances d(s, ·) as
the price function φ(·), and let the reduced weight wφ(uv) of edge uv be w(uv) + φ(u)− φ(v).
Finally increase the weight of every incoming edge to c[y] by the amount φ(y). Now all
modified weights are non-negative, and all shortest path distances from r[x] to c[y] are
preserved because φ(r[x]) = 0 holds for all row vertices r[x].

2.2 The non-bipartite case
Recall that the matrices that capture pairwise distances among consecutive vertices on the
boundary of a single face in a planar graph are not (unit-)Monge. In Abboud et al. [4]
this is handled by decomposing such a matrix recursively into (unit-)Monge submatrices,
which incurs a logarithmic overhead. We show how to avoid this logarithmic overhead by
constructing emulators for triangular (unit-)Monge matrices. Let v1, v2, . . . , vn be vertices on
the boundary of a single face. LetM be an n×n matrix such thatM [i, j] is the distance from
vi to vj . For any quadruple (i, i′, j, j′) satisfying i < i′ < j < j′, the shortest vi-to-vj path
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must intersect the shortest vi′ -to-vj′ path. Therefore, M [i, j] +M [i′, j′] ≥M [i, j′] +M [i′, j].
Unfortunately, this does not necessarily hold for an arbitrary quadruple. We can, however,
define two n× n unit-Monge matrices Ml and Mu, such that

Ml[i, j] = M [i, j] for all n ≥ i > j ≥ 1, and
Mu[i, j] = M [i, j] for all 1 ≤ i < j ≤ n.

The other elements of Ml and Mu can be (implicitly) filled in so that both matrices are
unit-Monge. We would like to use an emulator for Ml and an emulator for Mu, but we need
to eliminate paths from ri to cj for i < j in Ml, and for i > j in Mu. To this end we modify
the construction of the emulator. For ease of presentation, we describe the construction for
an (n/2)× n right substochastic matrix P in which we want the distance from ci to rj to be
infinite for i > j. It is easy to modify the construction to work for (n/2)× αn matrices, for
2n× αn matrices, or for the case where the infinite distances are for i < j. The elements
of P are classified into two types: an element P [i, j] of P is artificial if i > j and original
otherwise (that is, the i’th row of P begins with a prefix of i− 1 artificial elements followed
by a suffix of original elements). In the following recursive algorithm, the type of elements is
always defined with respect to the full input matrix P (at the top level of the recursion).

We divide the (n/2)× n matrix P into two (n/4)× n matrices P↑ and P↓. Both P↑ and
P↓ have possibly empty prefix of columns containing just artificial elements (category I),
then an infix of columns containing both original and artificial elements (category II), and
finally a suffix of columns containing just original elements (category III). Let P ′ be the
submatrix of P↑ induced by all the columns of category II and by the columns of category
III that are not entirely zero. Define submatrix P ′′ of P↓ similarly. Note that, by definition
of artificial elements (with respect to the original top-level matrix), the number of columns
of category II is bounded by the number of rows in P↑ and P↓. Also, by definition of right
substochastic matrix, the number of columns of category III that are not entirely zero is also
bounded by the number of rows of P↑ and P↓. Hence, both P ′ and P ′′ are (n/4) × (n/2)
matrices for which we can recursively compute emulators H ′ and H ′′, respectively.

We construct the emulator H of P from the emulators H ′ and H ′′ as follows. For each
column y of P we add a vertex c[y] to H. If column y in P↑ consists of just artificial elements
(category I), we do nothing. If column y in P↑ is of category II, then column y is also present
in P ′, so it has a corresponding column vertex c′[y] in H ′. Connect c′[y] to c[y]. If column y
is of category III, connect vertex c′[y′→] of H ′ to c[y] with an edge of weight∑

i>bn/4c
j≥y

P [i, j].

Treat all the columns in P↓ similarly, except when column y is of category III, connect vertex
c′′[y′′→] of H ′′ to c[y] with an edge of weight zero. (For the definition of y′→ and y′′→ see the
proof of the bipartite case.) An easy inductive proof shows that in this construction ri is
connected to cj if and only if i < j.

The size of the emulator again satisfies the recurrence N(n) ≤ 2N(n/2) + O(n), and
therefore is of O(n logn) overall. This concludes the proof of Lemma 3.

3 Distance Emulators for Planar Graphs

In this section we explain how to incorporate the unit-Monge emulators of Lemma 3 into the
construction of planar graph emulators. The construction follows closely to the encoding
scheme of Abboud et al. [4]. The crucial difference is that their unit-Monge matrices
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are represented by a compact non-graphical encoding, which we replace by the distance
emulator of Lemma 3. There are additional differences that stem from the fact that Abboud
et al. concentrated on the size of the encoding, and did not consider the construction
time. To achieve efficient construction time we have to modify the construction slightly.
These modifications are not directly related to the unit-Monge distance emulators. We will
describe the construction algorithm without going into details, which were treated in Abboud
et al. [4]. Instead, we attempt to give some intuition and describe the main components of
the construction and their properties. In the full version of this paper we give a self-contained
detailed description.

Compact representations of distances in planar graphs have been achieved in many
previous works by decomposing the graph using small cycle separators and exploiting the
Monge property (not the unit-Monge property) to compactly store the distances among the
vertices of the separators. The main obstacle in exploiting the unit-Monge property using
this approach is that small cycle separators do not necessarily exist in planar graphs with
face of unbounded size. In weighted graphs this difficulty is overcome by triangulating the
graph with edges with sufficiently large weights that do not affect distances. In unweighted
graphs, however, this does not work.

Slices. To overcome the above difficulty, Abboud et al. showed that any unweighted planar
graph contains a family of nested subgraphs (called components) with some desirable
properties. This nested family can be represented by a tree K, called the component tree,
in which the ancestry relation corresponds to enclosure in G. Each component K in K is
a subgraph of G that is enclosed by a simple cycle ∂K, called the boundary cycle of K.
The root component is the entire graph G, and its boundary cycle is the infinite face of G.
A slice K◦ is defined as the subgraph of G induced by all faces of G that are enclosed by
component K, and not enclosed by any descendant of K in K. The boundary cycle ∂K is
called the external hole or the boundary of K◦. The boundary cycles of the children of
K in K are called the internal holes of K◦. Note that a slice may have many internal holes.
Abboud et al. showed that, for any choice of w ∈ [n], there exists a component tree K such
that the total number of vertices in the boundaries of all the slices is O(n/w) [4, Lemma 3.1].
We present this proof in the full version of this paper.

Regions. Constructing distance emulator for each slice separately is not good enough
naïvely, as there could potentially be Ω(n/w) holes in a slice, and we cannot afford to store
distances between each pair of holes, even if we use the unit-Monge property. To overcome
this, each slice K◦ is further decomposed recursively into smaller subgraphs called regions.
A Jordan cycle separator is a closed curve in the plane that intersects the embedding only
at O(w) vertices. A slice K◦ is recursively decomposed in a process described by a binary
decomposition tree RK ; each node R of the tree RK is a region of K◦, with the root
being the entire slice K◦. There is a unique Jordan cycle separator CR corresponding to each
internal node R of RK . We abuse the terminology by referring to an internal hole of slice
K◦ lying completely inside region R as a hole of R. We say that a Jordan curve CR crosses
a hole H of R if CR intersects both inside and outside of ∂H. All Jordan cycle separators
discussed here are mutually non-crossing (but may share subcurves) and each crosses a hole
at most twice.

We next describe how the separators CR are chosen. Let K be a component, and let K ′
be the child component of K in K with the largest number of vertices. We designate the
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hole ∂K ′ of the slice K◦ as the heavy hole of K◦.8 For any region R of K◦, let R• denote
the union of R and all the subgraphs of G enclosed by the internal holes of R except for the
heavy hole of K◦ (in other words, R• is the region R with all its holes except the heavy hole
“filled in”). For example, given a slice K◦, one has (K◦)• = K \ int(∂H∗), where int(∂H∗) is
the interior of the heavy hole H∗ of K◦ (if any). Abboud et al. [4, Lemma 3.4] proved that
for any region R one of the following must hold (and can be applied in time linear in the size
of R):

One can find a small Jordan cycle separator CR that crosses no holes of R and is balanced
with respect to the number of terminals in R•. That is, CR encloses a constant fraction
of the weight with respect to a weight function assigning each terminal in R unit weight
and each face corresponding to a non-heavy hole of R weight equal to the number of
terminals enclosed (in R•) by that hole. Such a separator is called a good separator.
There exists a hole H such that one can recursively separate R with small Jordan cycle
separators, each of which crosses H exactly twice, crosses no other hole, and is balanced
with respect to the number of vertices of ∂H in the region R. It is further guaranteed that
each resulting region R′ along this recursion satisfies that (R′)• contains at most half
the terminals in R•. The hole H is called a disposable hole, and the recursive process
is called the hole elimination process. The hole elimination process terminates if a
resulting region R′ either contains a constant number of vertices of the disposable hole
∂H, or if (R′)• contains no terminals. Thus, the hole elimination process is represented
by an internal subtree of RK of height O(logn).

We begin with the region consisting of the entire slice K◦. If a good separator is found,
we use it to separate a region R into two subregions, each containing at most a constant
fraction of the terminals in R•. If no good separator is found then we use the hole elimination
process on a disposable hole H. We stop the decomposition as soon as a region contains
at most one hole (other than the heavy hole) or at most one terminal. Thus, the overall
height of RK is O(log k · logn). We mentioned that it is guaranteed that each Jordan cycle
separator used crosses a hole at most twice. This implies that, within each region R, the
vertices of each hole ∂H of K◦ that belong to R can be decomposed into O(log k · logn)
intervals called ∂H-intervals; each Jordan cycle separator increases the number of such
intervals in each subregion by at most one. We refer to those intervals that belong to the
boundary cycle ∂K of K◦ or to the heavy hole ∂H∗ of K◦ as boundary intervals.

3.1 The construction
We are now ready to describe the construction of the distance emulator. We will build the
distance emulator of G from the leaves of the component tree K to the root (which is the
whole graph G). For each component K in K, we will associate an emulator that preserves
the following distances.

terminal-to-terminal distances in K between any two terminals in K.
terminal-to-boundary distances in K between any terminal in K and vertices of boundary
∂K.

We emphasize that the distances being preserved are those in K, not K◦. The distance
emulator for G can be recovered from the emulator associates with the root of the component
tree K.

8 This is the main difference compared with the encoding scheme of Abboud et al. [4]. We will see the
benefit of this technicality in Section 3.3.
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We now describe the construction of the emulator associated with component K, assuming
all the emulators for the children of K in K have been constructed. The emulator of K is
constructed by adding the following edges and unit-Monge emulators from Lemma 3 to the
emulators obtained from the children of K.
1. Add unit-Monge emulators representing the distances in K◦ between all pairs of vertices

on the boundary ∂K of K or on the heavy hole ∂H∗ of K.
2. For each region R in the decomposition tree RK of the slice K◦, add the following edges

and the unit-Monge emulators according to the type of R.
(A) If R is an internal node of RK with separator CR (either good or hole-eliminating):

i. Add an edge between each terminal in R• and each vertex on the separator CR.
The weight of each edge is the distance in R• between the two vertices.

ii. For each of the two subregions R1 and R2 of R, add a unit-Monge emulator
representing the distance in R•i between the separator CR and each boundary
interval of Ri.

iii. If R corresponds to a cycle separator CR eliminating a disposable hole ∂H:
(a) If R is the root of the subtree of RK representing the hole-elimination

process of a hole H, add a unit-Monge emulator representing the distances
between ∂H and each boundary interval of R. The distances are in the
subgraph obtained from R• by removing the subgraph strictly enclosed by
∂H.

(b) For each of the two subregions R1 and R2 of R, add a unit-Monge emulator
representing the distance in R•i between the separator CR and each ∂H-
interval of Ri.

(B) If R is a leaf of RK and all terminals in R• are enclosed by a single non-heavy hole
∂H:
i. Add a unit-Monge emulator representing the distances between ∂H and each
boundary interval of R. The distances are in the subgraph obtained from R• by
removing the subgraph strictly enclosed by ∂H.

(C) If R is a leaf of RK that contains exactly one terminal t:
i. Add an edge between the only terminal t and each vertex on each boundary
interval of R. The weight of each edge is the distance in R• between the two
vertices.

The proof of correctness is essentially the same as that in Abboud et al. [4, Lemma 3.6].

3.2 Space analysis
The O(

√
k · n log3 n) space analysis is essentially the same as in Abboud et al. [4]. The main

difference in the algorithm is the introduction of the heavy hole as part of the boundary of
a slice. This will allow an efficient construction time and does not affect the construction
space because it increases the total size of the boundary by a constant factor.

Since a boundary cycle appears at most twice as a boundary of a slice (once as the
external boundary and once as the heavy hole), the total size for all unit-Monge emulators
for boundary-to-boundary distance (1) is O((n/w) logn).

We next bound the total space for terminal-to-separator distances (type 2(A)i) over all
slices. Whenever a terminal stores its distance to a separator, the total number of terminals
in its region R• decreases by a constant factor within O(logn) levels of the decomposition tree
(either immediately if the separator is a good separator, or within O(logn) levels of the hole
elimination process), so this can happen O(log2 n) times per terminal. Since each separator
has size O(w), the total space for representing distances of type 2(A)i is O(kw log2 n).
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The space required to store a single unit-Monge distance emulator representing distances
between a separator CR and a boundary interval b (type 2(A)ii) is O(|CR|+ |b| log |b|) (The
rows of such an emulator correspond to the vertices of b, and the columns to vertices of CR.
Each row in the corresponding right sub-stochastic matrix has at most a single non-zero
entry). We note the following facts: (i) The size of any separator CR is O(w). (ii) The
depth of the recursion within each slice is O(log2 n). (iii) There are at most k regions at
each level of the recursion. (iv) The total number of boundary intervals in all regions at a
specific recursive level is within a constant factor from the number of regions at that level,
i.e., O(k). Thus, the total size of all boundary intervals at a fixed level of the recursion is
at most O(k) plus the size of the boundary of the slice (boundary intervals are internally
disjoint, and there are O(k) intervals in each region). (v) The total boundary size of all
slices combined is O(n/w). By the above facts, the total space for type 2(A)ii emulators is
O((kw + (k + n/w) logn) log2 n) = O((kw + n/w) log3 n).

Hole-to-boundary distances (types 2(A)iiia and 2(B)i) are stored for at most one hole in
each region along the recursion, and require O(|∂H|+|b| log |b|) space. By the same arguments
as above, and since the total size of hole boundaries ∂H is bounded by the total size of slice
boundaries, the total space for types 2(A)iiia and 2(B)i emulators is O((k + n/w) log3 n).

The space for separator-to-hole emulators (type 2(A)iiib) is bounded by the separator-to-
boundary distances (type 2(A)ii).

To bound the number of terminal-to-boundary edges (type 2(C)i) note that each terminal
stores distances to boundary intervals that are internally disjoint for distinct terminals. Since
the number of boundary terminals in a region is O(logn), the total space for type 2(C)i
distances is O(k logn+ n/w).

The overall space required is thus O((kw + n/w) log3 n); setting w =
√
k · n gives the

bound O(
√
k · n log3 n).

3.3 Time analysis
Recall that Lemma 3 assumes that the input is an n× n unit-Monge matrix represented in
O(n logn) bits as two arrays U and V , as well as an array P , specifying, for each row i of
the right substochastic 2(n− 1)× (n− 1) matrix P , the index of the (at most) single one
entry in that row (see Lemma 4). Lemma 3 will be invoked on various x × x unit-Monge
matrices that represent distances among a set of x vertices on the boundary of a single face
of a planar graph G with n vertices (or sometimes, on two sets of vertices on two distinct
faces).

I Lemma 5. Let G be a planar graph with n nodes. Let f be a face in G. One can compute
the desired representation of the unit-Monge matrix M representing distances among the
vertices of f in O(n) time.

Proof. We tweak the linear-time multiple source shortest paths (MSSP) algorithm of Eisentat
and Klein [29]. Along its execution, the MSSP algorithm maintains the shortest path trees
rooted at each vertex of a single distinguished face f , one after the other. This is done by
transforming the shortest path tree rooted at some vertex vi to the shortest path tree rooted
at the next vertex vi+1 in cyclic order along the distinguished face f . Let di(u) denote the
distance from the current root vi to v. The slack of an arc uw with respect to root vi is
defined as slacki(uw) := c(uw)+di(u)−di(w). Thus, for all arcs in the shortest path tree the
slack is zero, and for all arcs not in the shortest path tree the slack is non-negative. Eisenstat
and Klein show that throughout the entire execution of the algorithm there are O(n) changes
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to the slacks of edges. Their algorithm explicitly maintains and updates the slacks of all
edges as the root moves along the distinguished face. By definition of the matrix P ,

P [i, j] = M [i+ 1, j + 1] +M [i, j]−M [i+ 1, j]−M [i, j + 1].

Consider an edge vjvj+1 along the distinguished face. Its slack with respect to root vi is
1 +M [i, j]−M [i, j + 1]. Its slack with respect to root vi+1 is 1 +M [i+ 1, j]−M [i+ 1, j + 1].
Therefore, P [i, j] = slacki(vjvj+1)− slacki+1(vjvj+1). It follows that one can keep track of
the nonzero entries of P by keeping track of the edges of the distinguished face whose slack
changes. The entries of the arrays U and V can be obtained in total O(n) time since they
only depend on the distances from a single vertex of f . J

We can now analyze the construction time. The boundary-to-boundary distances (type 1)
in a single slice are computed by a constant number of invocations of MSSP (Lemma 5) on
K•. We then compute the emulator for each unit-Monge matrix on x vertices in O(x log x)
time using Lemma 3. For the total MSSP time, we need to bound the total size of the
regions R• on which we invoke Lemma 5. This is where we use the fact that the heavy hole
of a slice K◦ contains at least half the vertices of K. Since K• does not include the heavy
hole of K, the standard heavy path argument implies that the number of slices in which a
vertex v participates in invocations of the MSSP algorithm is at most 1 plus O(logn) (the
number of non-heavy holes v belongs to). Thus, each vertex v participates in invocations
of MSSP for O(logn) slices. In each invocation of MSSP each vertex v is charged O(logn)
time, so the total time for all MSSP invocations is O(n log2 n). To bound the total time
of the invocations of Lemma 3, note that each boundary cycle appears at most twice as a
boundary of a slice (once as the external boundary and once as the heavy hole). Hence, the
total time for all invocations of Lemma 3 is O((n/w) logn). Overall we get that the total
time to compute all the emulators of type 1 is O(n log2 n+ (n/w) logn) = O(n log2 n).

The terminal-to-separator distances (type 2(A)i) are computed by running MSSP twice,
once for the interior of the separator CR in R• and once for the exterior of CR in R•. This
takes O(|R•| log |R•|) time. Then, we can report the distance, within each of these two
subgraphs of R•, from each vertex of CR to any other vertex in O(logn) time. Next, for
each terminal t in R•, we compute the distance from t to all w vertices of CR by running
FR-Dijkstra [33] on the graph consisting of the edges between t and the vertices of CR as
well as the two complete graphs representing the distances among the vertices of CR in the
interior and exterior. This takes O(w log2 w logn) time. The O(w log2 w) term is the running
time of FR-Dijkstra and the additional O(logn) factor is because each distance accesses by
FR-Dijkstra is retrieved on-the-fly from the MSSP data structure.

We analyze separately the total cost of all the MSSP computations and the total cost of
computing the edge weights. For the latter, we have argued in the analysis of the emulator’s
size that each terminal participates in the computation of edges of type 2(A)i in O(log2 n)
regions along the entire construction. Therefore, the total time to compute all such edges is
O(kw log2 w log3 n). For the total MSSP time, we need to bound the total size of the regions
R• on which we run MSSP. This is done in a similar manner to the bound on the time for
MSSP invocations for type 1 above, using the standard heavy path argument. We argued that
the number of slices in which a vertex v participates in invocations of the MSSP algorithm is
at most 1 plus O(logn) (the number of non-heavy holes v belongs to). Thus, each vertex v
participates in invocations of MSSP for O(logn) slices. Since the depth of the decomposition
tree of a slice is O(log2 n), each vertex participates in at most O(log3 n) invocations of MSSP
in the computation of edges of type 2(A)i. Each vertex is charged O(logn) time in each
invocation of MSSP it participates in, so the total time for all invocations of MSSP in the
process of computing edges of type 2(A)i is O(n log4 n).
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To bound the time required to compute the emulators of type 2(A)ii (separator-to-
boundary distances), note that the appropriate unit-Monge matrices can be computed by
MSSP invocations within the same time bounds analyzed for the MSSP invocations for
terminal-to-separator edges above. Hence, we only need to account for the additional time
spent on constructing the emulators by invocations of Lemma 3, which is linear in the total
size of these emulators, which we have already shown above to be O((kw + n/w) log3 n).

The analysis for the time required for the hole-to-boundary emulators (types 2(A)iiia and
2(B)i) uses the same arguments as the analysis for type 2(A)ii. Again, the MSSP time is
O(n log4 n), and the time for invocations of Lemma 3 is linear in the size of these emulators,
which is O((k + n/w) log3 n).

The time to compute the separator-to-hole emulators (type 2(A)iiib) is bounded by the
time to compute the separator-to-boundary emulators (type 2(A)ii).

To compute the terminal-to-boundary edges we again need to invoke MSSP once on R•
for each leaf region R, and then query the distance in O(logn) time per distance. The time
for MSSP is dominated by the MSSP time accounted for in type 2(A)ii emulators, and since
we have shown that the total number of such edges is O(k+n/w), the total time to compute
them is O((k + n/w) logn).

The overall construction time is therefore dominated by the O(n log4 n) term. Combined
with the space analysis of Section 3.2, we establish Theorem 1.
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