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Abstract
Given a fixed graph H, the H-free editing problem asks whether we can edit at most k edges to
make a graph contain no induced copy of H. We obtain a polynomial kernel for this problem
when H is a diamond. The incompressibility dichotomy for H being a 3-connected graph and the
classical complexity dichotomy suggest that except for H being a complete/empty graph, H-free
editing problems admit polynomial kernels only for a few small graphs H. Therefore, we believe
that our result is an essential step toward a complete dichotomy on the compressibility of H-free
editing. Additionally, we give a cubic-vertex kernel for the diamond-free edge deletion problem,
which is far simpler than the previous kernel of the same size for the problem.
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1 Introduction

A graph modification problem asks whether one can apply at most k modifications to a
graph to make it satisfy certain properties. By modifications we usually mean additions
and/or deletions, and they can be applied to vertices or edges. Although other modifications
are also considered, most results in literature are on vertex deletion and the following three
edge modifications: edge deletion, edge completion, and edge editing (deletion/completion).

As usual, we use n to denote the number of vertices of the input graph. For each graph
modification problem, one may ask three questions: (1) Is it NP-complete? (2) Can it be
solved in time f(k) · nO(1) for some function f , and if yes, what is the (asymptotically) best
f? (3) Does it have a polynomial kernel? The first question concerns classic complexity, while
the other two are about parameterized complexity [9, 6]. With parameter k, a problem is
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10:2 A Polynomial Kernel for Diamond-Free Editing

fixed-parameter tractable (FPT) if it can be solved in time f(k) ·nO(1) for some function f . On
the other hand, given an instance (G, k), a kernelization algorithm produces in polynomial
time an equivalent instance (G′, k′) – (G, k) is a yes-instance if and only if (G′, k′) is a
yes-instance – such that k′ ≤ k. It is a polynomial kernel if the size of G′ is bounded from
above by a polynomial function of k.

For hereditary properties, a classic result of Lewis and Yannakakis [13] states that all
the vertex deletion problems are either NP-hard or trivial. In contrast, the picture for edge
modification problems is far murkier. Earlier efforts for edge deletion problems [15, 7], though
having produced fruitful concrete results, shed little light on a systematic answer, and it was
noted that such a generalization is difficult to obtain.

A basic and ostensibly simple case of graph modification problems is to make the graph
H-free, where H is a fixed graph on at least two vertices. (We say that a graph is H-free if
it does not contain H as an induced subgraph.) For this special case, all the three questions
have been satisfactorily answered for vertex deletion problems, at least in the asymptotic
sense. All of them are NP-complete and FPT– indeed, H-free vertex deletion problems
admit simple |V (H)|k · nO(1)-time algorithms [2]. On the other hand, the reduction of Lewis
and Yannakakis [13] excludes subexponential-time algorithms (2o(k) · nO(1)-time algorithms)
assuming the exponential time hypothesis (ETH) [11]. Further, as observed by Flum and
Grohe [9], the sunflower lemma of Erdős and Rado [8] can be used to produce polynomial
kernels for H-free vertex deletion problems.

Even restricted to this very simple case, edge modification problems remain elusive.
Significant efforts have been devoted to an ongoing program that tries to answer these
questions in a systematic way, and promising progress has been reported in literature.
Recently, Aravind et al. [1] gave a complete answer to the first question: The H-free editing
problem is NP-complete if and only if H contains at least three vertices. They also excluded
subexponential-time algorithms for the NP-complete H-free edge modification problems,
assuming ETH. Noting that H-free edge modification problems can always be solved in
2O(k) · nO(1) time [2], we are left with the third problem, the existence of polynomial kernels.

Some of the H-free graph classes are important for their own structural reasons, e.g.,
most notably, cluster graphs and cographs, which are P3-free graphs and P4-free graphs
respectively; hence the edge modification problems toward them have been well-studied
[5, 10]. (Note that edge modification problems to P2-free graphs, i.e., independent sets,
are trivial.) Given the simplicity of H-free edge modification problems, and the naive FPT
algorithms for them, it may sound shocking that many of them do not admit polynomial
kernels. Indeed, the earliest incompressibility results of graph modification problems, by
Kratsch and Wahlström [12], are on H-free edge modification problems. Guillemot et al. [10]
excluded polynomial kernels for H-free edge deletion problems when H is a path of length at
least seven or a cycle of length at least four. An influential result of Cai and Cai [3] furnishes
a dichotomy on the compressibility of H-free edge modification problems when H is a path,
a cycle, or a 3-connected graph.

We tend to believe that H-free edge modification problems admitting polynomial kernels
are the exceptions. Our exploration suggests that graphs on four vertices play the pivotal
roles if we want to fully map the territory. Let H be the complement graph of H. Then the
H-free edge deletion problem is equivalent to the H-free edge completion problem, while the
edge editing problems are the same for H-free and H-free graphs. We are thus focused on
the four-vertex graphs (Figure 1); see Table 1 for a summary of compressibility results of
H-free edge modification problems when H is one of them. We conjecture that H-free edge
modification problems, when H being claw or paw, admit polynomial kernels.
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(a) P4 (b) C4 (c) K4 (d) claw (e) paw (f) diamond

Figure 1 Graphs on four vertices (their complements are omitted).

Table 1 The compressibility results of H-free edge modification problems for H being four-vertex
graphs. Every result holds for the complement H; e.g., the answers are also no when H is 2K2.

H deletion completion editing

K4 O(k4) [4] trivial O(k4) [4]
P4 O(k3) [10] O(k3) [10] O(k3) [10]
diamond O(k3) [14] trivial O(k8) [this paper]

claw unkown unkown unkown
paw unkown unkown unkown

C4 no [10] no [10] no [10]

We show a polynomial kernel for the diamond-free editing problem. Our observations
also lead to a cubic-vertex kernel for the diamond-free edge deletion problem, which is far
simpler than the previous kernel of the same size [14].

Our key observations are on maximal cliques. A graph G is diamond-free if and only if
every two maximal cliques of G share at most one vertex. We say that a maximal clique is
of type i if it shares an edge with another maximal clique, or type ii otherwise. It is not hard
to see that to make a graph diamond-free, we should never delete edges from a sufficiently
large clique. We thus put the maximal cliques of G into three categories, small type i, big
type i, and type ii. It turns out that a vertex participates in a diamond if and only if it is in
a maximal clique of type i, and the small type-i maximal cliques are crucial for the problem.

The first phase of our algorithm comprises two routine reduction rules. If a (non-)edge
participates in k + 1 or more diamonds that pairwise share only this (non-)edge, then it has
to be in a solution. (This is exactly the reason why no edge is deleted from a “large” clique.)
If there exists such an edge/non-edge, we delete/add it. We may henceforth assume that
these two simple rules have been exhaustively applied. We are able to show that the ends
of an edge added by a minimum solution must be from some small type-i maximal cliques.
The situation for deleted edges is slightly more complex. The two ends of a deleted edge are
either in a small type-i maximal clique, or in a type-ii maximal clique. In the second case,
the maximal clique has to intersect some small type-i maximal clique.

The second phase of our algorithm uses three nontrivial reduction rules to delete irrelevant
vertices. To analyze the size of the kernel, we bound the number of vertices that are (a) in
small type-i maximal cliques only, (b) in big type-i maximal cliques but not in any small
type-i maximal clique, and (c) only in type-ii maximal cliques. First, we show an upper
bound on the number of type-i maximal cliques. This immediately bounds the number of
vertices in part (a), because each small type-i maximal clique has a bounded size. For part
(b), the focus now is to bound the sizes of big maximal cliques of type i. We introduce
another reduction rule to delete certain “private vertices” from them. On the other hand, the
pattern of vertices shared by big maximal cliques is very limited. We are thus able to bound
the number of vertices in part (b), and we are left with part (c). We correlate a maximal
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10:4 A Polynomial Kernel for Diamond-Free Editing

clique K of type ii with small maximal cliques of type i: we would touch K only because
it had become type i after some operation, and this operation has to be an edge addition.
Recall that an edge can only be added between two vertices in part (a). For each pair of
them, we can build a blocker of O(k2) vertices from part (c). One more reduction rule is
introduced to remove all vertices behind the blockers. Together with the bound of vertices in
part (a), this bounds the number of vertices in part (c). They together give our main result.

I Theorem 1. The diamond-free editing problem has a kernel of O(k8) vertices.

2 Maximal cliques

All graphs discussed in this paper are undirected and simple. A graph G is given by its
vertex set V (G) and edge set E(G). The neighborhood of a vertex v in a graph G, denoted by
NG(v), consists of all the vertices adjacent to v in G. We extend this to a set S ⊆ V (G) of
vertices by defining the neighborhood NG(S) of S as (

⋃
v∈S NG(v)) \ S. For a set U ⊆ V (G)

of vertices, we denote by G[U ] the subgraph induced by U , whose vertex set is U and whose
edge set comprises all edges of G with both ends in U . We use G− v, where v is a vertex of
G, as a shorthand for G[V (G) \ {v}]. In a diamond, we refer to the edge between the two
degree-three vertices as the cross edge, and the only non-edge the missing edge.

For a set E+ of edges, we denoted by G + E+ the graph obtained by adding edges in E+
to G,– its vertex set is still V (G) and its edge set becomes E(G) ∪ E+. The graph G− E−
is defined analogously. Throughout the paper we always tacitly assume E+ ∩ E(G) = ∅ and
E− ⊆ E(G); hence E+ and E− are disjoint. A solution of an instance (G, k) consists of a set
E+ of added edges and a set E− of deleted edges such that G + E+−E− is diamond-free and
|E+ ∪E−| ≤ k. We use E± as a shorthand for E+ ∪E−, and there should be no ambiguities:
E+ = E± \E(G) and E− = E±∩E(G). We also use G4E± as a shorthand for G+E+−E−.

We start from two routine reduction rules for edge editing problems. The correctness of
them is straightforward: If we do not add/delete uv, then we have to delete/add at least
k + 1 edges.

I Rule 1. If there exist a non-edge uv and 2k + 2 distinct vertices x1, y1, . . . , xk+1, yk+1 in
N(u) ∩N(v) such that xiyi ∈ E(G) for 1 ≤ i ≤ k + 1, then add uv and decrease k by one.

I Rule 2. If there exist an edge uv and 2k + 2 distinct vertices x1, y1, . . . , xk+1, yk+1 in
N(u) ∩N(v) such that xiyi 6∈ E(G) for 1 ≤ i ≤ k + 1, then delete uv and decrease k by one.

Whether Rule 1 (resp., Rule 2) is applicable to uv can be decided by finding a maximum
matching in G[N(u) ∩N(v)] (resp., the complement graph of G[N(u) ∩N(v)]). Therefore,
Rules 1 and 2 can be applied in polynomial time. We call an instance (G, k) reduced if neither
Rule 1 nor 2 is applicable to it. In the rest, we will focus on reduced instances. A similar
idea as the two rules enables us to exclude some (non-)edges from consideration.

I Proposition 2. A (non-)edge uv cannot be in a solution E± of a yes-instance (G, k), if
(i) uv ∈ E(G) and there are k + 1 pairwise adjacent vertices in N(u) ∩N(v); or
(ii) uv 6∈ E(G) and there are k + 1 pairwise nonadjacent vertices in N(u) ∩N(v).

I Proposition 3. Let (G, k) be a reduced yes-instance. For any (non-)edge uv in a solution
of (G, k), the cardinality of N(u) ∩N(v) is at most 3k.

Proof. We consider only uv ∈ E−, and the argument for uv ∈ E+ is similar and omitted.
Let W = N(u) ∩ N(v); we find a maximum matching in the complement graph of G[W ],
and let W ′ be the ends of the edges in the matching. Since Rule 2 is not applicable (to uv),
|W ′| ≤ 2k. There cannot be non-edges between vertices in W \W ′; then by Proposition 2(i),
the size of W \W ′ is at most k. Therefore, |W | ≤ 3k. J
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Our algorithm will be mostly concerned with maximal cliques. According to Proposi-
tion 2(i), a maximal clique on k + 3 or more vertices cannot be touched by a minimum
solution “from inside,” but it may be touched “from outside”. We call a maximal clique big
if it contains at least 3k + 2 vertices, and small otherwise.

I Lemma 4. Let (G, k) be a reduced instance.
(i) Two big maximal cliques of G share at most one vertex.
(ii) If (G, k) is a yes-instance, then a big maximal clique of G remains a maximal clique

after applying a solution to (G, k).

Proof. Let K1 and K2 be two big maximal cliques of G. Suppose first that some vertex
u ∈ K1 \K2 is adjacent to more than 2k + 1 vertices in K2. Since K2 is a maximal clique, we
can find v ∈ K2 \K1 nonadjacent to u, but then Rule 1 would be applicable (to uv). Hence,
every vertex in K1 \K2 has at most 2k +1 neighbors in K2, which implies |K1∩K2| ≤ 2k +1.
By assumption, |K1| ≥ 3k + 2 and |K2| ≥ 3k + 2. For each vertex in K1 \K2, we can find
k + 1 non-neighbors in K2 \ K1. Therefore, we can greedily find k + 1 pairs of distinct
vertices {x1, y1}, . . ., {xk+1, yk+1} such that for all 1 ≤ i ≤ k + 1, (a) xi ∈ K1 \ K2 and
yi ∈ K2 \K1; and (b) xiyi 6∈ E(G). Rule 2 would be applicable (to any edge in G[K1 ∩K2])
if |K1 ∩K2| ≥ 2. Therefore, |K1 ∩K2| ≤ 1, and this concludes the proof for assertion (i).

Let E± be a solution to (G, k) and G∗ = G4E±. By Proposition 2(i), a big maximal
clique K in G remains a clique in G∗. Let v ∈ V (G) \K and let u ∈ K \NG(v). Since Rule 1
is not applicable to uv, there are at most 2k + 1 neighbors of v in K. Since |K| ≥ 3k + 2, at
least one vertex in K remains nonadjacent to v in G∗ because |E+| ≤ k. Therefore, K is a
maximal clique in G∗ as well. J

It is well known that a graph is diamond-free if and only if every pair of adjacent vertices
is contained in exactly one maximal clique. (Proposition 5 implies this fact.) We say that a
maximal clique is of type i if it shares two or more vertices with some other maximal clique,
and type ii otherwise. We can then rephrase the first sentence of this paragraph as: A graph
is diamond-free if and only if it has no type-i maximal clique.

We use Kb(G), Ks(G), and K2(G) to denote, respectively, the set of big maximal cliques
of type i, the set of small maximal cliques of type i, and the set of maximal cliques of type ii,
of G. A maximal clique in G is in precisely one of them.

I Proposition 5. (i) A maximal clique is of type i if and only if it contains both ends of the
cross edge of a diamond. (ii) A vertex is in a maximal clique of type i if and only if it is
contained in an induced diamond.

Proof. The following argument proves assert (i), and it also works for assert (ii).
Let u, v, x, y be four vertices inducing a diamond in G with cross edge uv. We can find

two maximal cliques K1, K2 containing u, v, x and u, v, y respectively. For any maximal
clique K containing u, v, at least one of K1, K2 is different from K, hence K is of type i.

We now consider the “only if” direction. Let K1 be a maximal clique of type i; by
definition, there is another maximal clique K2 such that |K1 ∩ K2| ≥ 2. For any vertex
x ∈ K1 \K2 and any vertex u ∈ K1 ∩K2, we can find another vertex v ∈ K1 ∩K2 different
from u and a vertex y ∈ K2 \K1 not adjacent to x (because K2 is maximal). Clearly, these
four vertices induce a diamond with cross edge uv. J

The following two statements help us understand edges added by a minimum solution.

ESA 2018



10:6 A Polynomial Kernel for Diamond-Free Editing

I Proposition 6. Let G be a diamond-free graph, and let U ⊆ V (G) such that every vertex
in V (G) \ U is adjacent to at most one vertex of U . If G[U ]4E± is diamond-free for a set
E+ of non-edges in G[U ] and a set E− of edges in G[U ], then so is G4E±.

Proof. Suppose for contradiction that G∗ = G4E± contains a diamond; let D be a set of
vertices inducing a diamond in G∗. Since G[D] is not a diamond, at least one (non-)edge of
this diamond belongs to E±, and is between vertices of U . On the other hand, G[U ]4E±
remains diamond-free, hence D 6⊆ U . Therefore, |D ∩ U | is either two or three, but then a
vertex in D \ U is adjacent to at least two vertices of D ∩ U in G, a contradiction. J

I Lemma 7. Let E± be a minimum solution to a reduced yes-instance (G, k). Every vertex
incident to some edge in E+ is contained in some small maximal clique of type i in G.

Proof. Let G∗ = G4E±, where uv is an edge in E+, and let U be a maximal clique of G∗

containing u, v. We argue first that v is in some induced diamond in G[U ].
Suppose for contradiction that v participates in no diamond in G[U ]. Let X = NG(v)∩U .

The subgraph G[X] is a disjoint union of cliques: An induced path of length two would
make a diamond with v. Let {A1, . . . , Ap} be those nontrivial cliques (containing more
than one vertex) in G[X]; let B be the other vertices of X; and let C = U \NG[v]. Then
{A1, . . . , Ap, B, C} is a partition of the set U \ {v}. Note that p or |B| may be 0, but |C| > 0
because u ∈ C. To arrive at a contradiction, we will construct a solution E′± for G[U ] whose
size is smaller than the number of non-edges in G[U ]. Assume such an E′± exists and let
G′ be the graph obtained from G∗ by replacing G∗[U ] with G[U ]4E′±. Since U is a type-ii
maximal clique of G∗, for each x ∈ V (G)\U we have |NG∗(x)∩U | ≤ 1. By Proposition 6, G′

is diamond-free. This would however imply a strictly smaller solution than E±, contradicting
that E± is a minimum solution of (G, k). Now we show how to construct E′±.

Case 1, |B| ≥ |C|. We set E′+ = ∅ and E′− the set of edges in G[C]. No edge in E′−
is incident to v or N(v), and hence N(v) ∩ U is still a disjoint union of cliques in G′. On
the other hand, no vertex x ∈ C is in any diamond in G′[U ] because NG′(x) ∩ U is an
independent set. Thus, G′[U ] is diamond-free. Since B is an independent set of G, and v is
nonadjacent to C, we have |E+ ∩ U2| ≥

(|B|
2
)

+ |C| ≥
(|C|

2
)

+ |C| > |E′−| = |E′+ ∪ E′−|.
Case 2, |B| < |C|. We set E′+ to be the set of non-edges in G[B ∪ C], and E′− the set of

edges between B∪C and U\(B ∪ C). To see that G′[U ] is diamond-free, note that its maximal
cliques are B∪C and {v}∪Ai for 1 ≤ i ≤ p, whose intersection is either {v} or empty. We then
calculate the cardinality of E+ ∩U2, which comprises three parts, those among B ∪C, which
is exactly E′+, those between C and v, and those between C and Ai’s. Since v does not belong
to any diamond in G[U ], each vertex in C is adjacent to at most one vertex of Ai, 1 ≤ i ≤ p.
In other words, for each x ∈ C and each 1 ≤ i ≤ p, the number of non-edges between x and Ai

is at least one. Therefore |E+∩U2| ≥ |E′+|+|C|+|C|×p > |E′+|+|B|+|C|×p ≥ |E′+|+|E′−|.
Now that v is in some induced diamond in G[U ], we can find a maximal clique K of G

containing v and another two vertices of this diamond. Since U is not a clique in G, we have
K 6= U . And |K ∩ U | ≥ 3 implies that K cannot induce a maximal clique of G∗. Hence by
Lemma 4(ii), it is small. This concludes the proof of the lemma. J

After delimiting the ends of the edges added by a minimum solution, we now turn to
the ends of those edges deleted by a minimum solution. The next lemma states that some
maximal cliques in G remain maximal cliques after applying the solution.

I Lemma 8. Let E± be a minimum solution to an instance (G, k), and let K be a maximal
clique of type ii in G. If E+ contains neither (i) an edge between u ∈ K and v ∈ N(K), nor
(ii) two edges between vertices of K and the same vertex in V (G) \K, then K remains a
maximal clique (of type ii) in G4E±.
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v1v0
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u1

u2

u3

u4

Figure 2 An example with k = 4, of which a minimum solution is {+u2v2,−u1v2,−v0v1,−u3v9}.
(Note that u1v2 and v0v1 are not in any diamond of G.) It has six maximal cliques, K1 =
{v0, v1, v2, u1}, K2 = {v2, v3, v4, v5, v6}, K3 = {u2, v3, v4, v5, v6}, K4 = {u3, v7, v8}, K5 =
{u3, u4, v9}, while K6 comprises of u1, u2, u3, u4 and other ten unlabeled vertices. Four of these
maximal cliques, K2, K3, K5, and K6, are of type i, of which only K6 is big, the other two of type
ii. All 14 labeled vertices are vulnerable, and the other 8 unlabeled vertices are guarded.

Proof. Let G∗ = G4E±. Since K is a type-ii maximal clique of G, each vertex v ∈ V (G)\K

has at most one neighbor in K. By the assumption that E+ contains neither (i) nor (ii),
this remains true in G + E+ and G∗. On the other hand, E− cannot contain edges of G[K];
otherwise, by Proposition 6, G∗ remains diamond-free after replacing G∗[K] by G[K], which
implies a strictly smaller solution than E±. Therefore, K is a maximal clique in G∗. J

The next corollary follows from Lemma 7 and Lemma 8.

I Corollary 9. Let E± be a minimum solution to a reduced yes-instance (G, k), and let K

be a maximal clique of G containing both ends of an edge in E−. Then either K ∈ Ks(G),
or K ∈ K2(G) and K intersects one clique in Ks(G).

Lemma 7 and Corollary 9 motivate the following definitions. A vertex v is vulnerable
in graph G if (1) there exists some K ∈ Ks(G) containing v; or (2) there are intersecting
maximal cliques K1 ∈ Ks(G) and K2 ∈ K2(G) such that v ∈ K2. A vertex is guarded if it
is not vulnerable. Lemma 7 and Corollary 9 can be summarized as: No (non-)edge in a
minimum solution can be incident to a guarded vertex. See Figure 2 for an illustration.

3 The kernel

We partition the vertex set of a reduced graph into five parts, and deal with them separately.
(i) vertices in small maximal cliques of type i (all of them are vulnerable);
(ii) vulnerable vertices in big maximal cliques of type i but not in the previous part;
(iii) other vulnerable vertices (not in any maximal cliques of type i);
(iv) guarded vertices in (big) maximal cliques of type i; and
(v) other guarded vertices (not in any maximal cliques of type i).
Note that for this purpose we do not need to enumerate the maximal cliques. The key
observation is that we can easily find the cross edges of all diamonds by enumeration, from
which we can identify all vertices and edges in maximal cliques of type i. We use the
procedure partition presented in Algorithm 1, which computes this partition in three steps:
It first finds all vertices in a maximal clique of type i, from which it identifies those in a
small maximal clique of type i, and finally it uses them to get all vulnerable vertices.

ESA 2018



10:8 A Polynomial Kernel for Diamond-Free Editing

Algorithm 1 The procedure partition.
Input: a reduced instance (G, k).
Output: vertices in the five parts have (i) mark “small,” (ii) marks “vulnerable” and
“type i,” (iii) mark “vulnerable,” (iv) mark “type i,” and (v) no mark, respectively.

1. for each edge uv ∈ E(G) where N(u) ∩N(v) does not induce a clique do
1.1. mark uv “cross edge”;
1.2. mark u, v and all vertices in N(u) ∩N(v) as “type i”;
1.3. mark all edges between these vertices as “type i”;

\\a vertex is in a maximal clique of type i if and only if it is marked “type i.”
2. for each marked vertex v do
2.1. if G[N(v)] is not a cluster (a disjoint union of cliques) do mark v “small”;
2.2. else if a clique in N(v) of size ≤ 3k contains a cross edge do mark v “small”;
3. for each unmarked edge uv ∈ E(G) do
3.1. find the maximal clique K containing u and v;
3.2. if K contains any vertex marked “small” then mark vertices in K “vulnerable”;
3.3. mark every edge in K “checked.”

It is easy to check that procedure partition runs in polynomial time. We now show its
correctness.

I Lemma 10. Procedure partition is correct.

Proof. An edge uv ∈ E(G) is a cross edge if and only if N(u) ∩ N(v) does not induce a
clique; this justifies step 1.1. Steps 1.2 and 1.3 follow from Proposition 5(i).

Step 2 considers all vertices in maximal cliques of type i. If some component of G[N(v)]
is not a clique, we can find a path xyz of length two. There are two different maximal cliques
containing v, x, y and v, y, z respectively. Both are of type i, and hence by Lemma 4(i), at
least one of them is small. Step 2.2 also follows from Proposition 5(i). If a vertex v is not
marked in step 2, then every maximal clique containing v is either big or of type ii. Therefore,
all vertices in small maximal cliques of type i have been correctly identified in step 2.

Step 3 finds other vulnerable vertices. By definition, such a vertex is in some maximal
clique of type ii. If a type-ii maximal clique consists of an isolated vertex, it is guarded and
not marked in step 3. We may hence consider only nontrivial maximal cliques. All edges in
a type-ii maximal clique remain unmarked. Note that any two vertices of a type-ii maximal
clique determines this clique: It is the only maximal clique that contains these two vertices.
Vertices in the clique are vulnerable if and only if it contains a vertex marked “small.” We
only need to check the clique K once, so we mark them to avoid unnecessary repetition in
step 3.3. After step 3, all type-ii maximal cliques have been checked. J

3.1 Maximal cliques of type i
We start from the vertices in some small type-i maximal cliques, and denote them by S(G),
i.e., S(G) =

⋃
K∈Ks(G)

K. Noting that the final graph has no small type-i maximal cliques, we

can bound the size of S(G) by relating vertices in it to edges in a minimum solution.

I Lemma 11. If (G, k) is a reduced yes-instance, then |S(G)| ≤ 18k3 + 2k.

Proof. Let E± be a minimum solution of (G, k). Let X =
⋃

xy∈E±
{x, y} and Y =⋃

xy∈E±
NG(x) ∩ NG(y), i.e., all vertices incident to a (non-)edge in the solution and

respectively, all vertices that is a common neighbor of the two ends of a (non-)edge in
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the solution. Note that |X| ≤ 2k, and by Proposition 3, |Y | ≤ 3k · |E±| ≤ 3k2. Since
|S(G) ∩ (X ∪ Y )| ≤ |X ∪ Y | ≤ 3k2 + 2k, it suffices to bound S(G) \ (X ∪ Y ). A vertex
v ∈ S(G) \ (X ∪ Y ) cannot be contained in two type-i maximal cliques of G if they share
more than one vertex: Otherwise, there is a diamond (as in Proposition 5(ii)) in NG[v], but
then v has to be in X ∪ Y , a contradiction.

Let us now consider the set of small type-i maximal cliques of G that contain vertices
from S(G) \ (X ∪ Y ), which we denote by K′. We argue by contradiction that any pair of
cliques in K′ shares at most one vertex. Suppose otherwise, there are two maximal cliques
K1, K2 ∈ K′ with |K1 ∩K2| ≥ 2. We have seen that K1 ∩K2 is disjoint from S(G) \ (X ∪Y ).
Now let u ∈ K1 \K2 and v ∈ K2 \K1 be two vertices in S(G) \ (X ∪ Y ). Then there is
a diamond with u and two vertices in K1 ∩ K2 and one vertex in K2 \ K1. But by the
assumption u 6∈ X ∪ Y , we cannot add or delete any edge incident to u; on the other hand,
v 6∈ X ∪ Y forbids the deletion of other three edges, a contradiction.

Let v ∈ S(G) \ (X ∪ Y ), and let K be a clique in K′ containing v. By definition, there
exists a diamond in which (1) v is a degree-two vertex; (2) the two degree-three vertices are
in K; and (3) the other degree-two vertex is not in K. Since v is not in X ∩Y , one of the two
edges of this diamond that are incident to the other degree-two vertex has to be in E−. In
other words, K contains for some edge xy ∈ E−, one in {x, y} and a common neighbor of x, y.
By Proposition 3, for each edge xy ∈ E−, there are at most 3k vertices in NG(x)∩NG(y); for
each z ∈ NG(x) ∩NG(y), there can be at most one clique in K′ containing x, z and at most
one clique in K′ containing y, z. Therefore, there can be at most 3k · 2 · |E−| ≤ 6k2 cliques
in K′. By definition, each clique in it is small and has at most 3k + 1 vertices, of which at
least two are not in S(G) \ (X ∪ Y ). Hence |S(G) \ (X ∪ Y )| ≤ (3k − 1) · 6k2 = 18k3 − 6k2.

Putting the two parts together, we have |S(G)| ≤ 18k3 + 2k. J

Next, we consider the big type-i maximal cliques, and bound first the number of them.

I Lemma 12. If (G, k) is a reduced yes-instance, then |Kb(G)| ≤ 6k2.

Proof. By Lemma 4, the only way to transform a big maximal clique of type i into one
of type ii is deleting edges incident to it. For an edge e = uv ∈ E−, denote by Ke the
set of big type-i maximal cliques containing one in {u, v}, and one vertex in N(u) ∩N(v).
Note that Kb(G) =

⋃
e∈E−

Ke. By Proposition 3, Ke has at most 6k maximal cliques. Then
|Kb(G)| ≤ 6k · |E−| = 6k2. J

To bound the size of big type-i maximal clique, we introduce another reduction rule.

I Rule 3. Let K ∈ Kb(G) with |K| ≥ 3k + 3. If K contains a guarded vertex x that does
not occur in any other type-i maximal clique of G, delete it.

I Lemma 13. Rule 3 is safe: A reduced instance (G, k) is a yes-instance if and only if
(G− x, k) is a yes-instance.

Proof. It is easy to see that (G − x, k) is a reduced instance, and every solution of (G, k)
confined to G− x is a solution of (G− x, k). For the “if” direction, let E± be a minimum
solution of (G − x, k), and let G∗ = G4E±. Note that (G − x)4E± = G∗ − x, and it is
diamond-free. No edge in E± is incident to x, and hence NG(x) = NG∗(x), which we simply
denote by N(x). By Proposition 5(ii), it suffices to prove that each maximal clique of G∗

containing x is of type ii. For this purpose, we show that each component of G[N(x)] is
either a single vertex or a type-ii maximal clique in G∗ − x.

Note that K \ {x} is a big maximal clique in G− x: It is a clique of size at least 3k + 2,
and its maximality follows from Lemma 4(i). Hence, by Lemma 4(ii), K \ {x} is a maximal
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clique (of type ii) in G∗ − x. Since x is a guarded vertex that does not occur in any other
type-i maximal clique, every other maximal clique K ′ containing x in G is of type ii, and it
cannot intersect any small type-i maximal clique. Therefore, by Lemma 7, no edge added by
E+ can be incident to any vertex in N(x). From Lemma 8 we can conclude that K ′ \ {x}
either contains only a vertex or is a maximal clique (of type ii) in G∗ − x.

Since no edge added by E+ is between two vertices in N(x) and since x is a guarded
vertex, each component of G[N(x)] is either K \ {x} or K ′ \ {x}, hence is either a single
vertex or a type-ii maximal clique in G∗ − x. This concludes the proof. J

I Lemma 14. Let (G, k) be a reduced yes-instance. If Rule 3 is not applicable, then for each
K ∈ Kb(G), we have that |K| = O(k3).

Proof. Without loss of generality, assume that |K| ≥ 3k + 3. Since Rule 3 is not applicable,
every vertex in K is either a vulnerable vertex, or a guarded vertex in more than one big
type-i maximal clique. Let U1 and U2 be the set of vulnerable vertices in K ∩ S(G) and
K \ S(G) respectively. By the definition, each vertex in U2 is adjacent to some vertex
in S(G) \ U1 by an edge of type-ii maximal clique. For each vertex v ∈ S(G) \ U1, the
cardinality of U2∩N(v) is at most one; otherwise, there is a type-i maximal clique containing
U2 ∩N(v) and v which by Lemma 4(i) is small, contradicting to U2 ⊆ K \ S(G). Therefore,
|U2| ≤ |S(G) \U1|, and by Lemma 11, K contains at most 18k3 + 2k vulnerable vertices. By
Lemma 4(i), every pair of big type-i maximal cliques shares at most one vertex. Hence, by
Lemma 12, K contains at most 6k2 guarded vertices that appear in some other big maximal
cliques of type i. Putting them together we get |K| ≤ 18k3 + 2k + 6k2. J

The next corollary follows immediately from Lemmas 12 and 14.

I Corollary 15. Let (G, k) be a reduced yes-instance. If Rule 3 is not applicable, then the
number of vertices that are contained in some cliques in Kb(G) is O(k5).

3.2 Maximal cliques of type ii
We have bounded the number of vertices in all maximal cliques of type i, and it remains
to bound the number of vertices that occur only in maximal cliques of type ii. Let T (G)
denote these vertices, i.e., T (G) = V (G) \

⋃
K∈Ks(G)∪Kb(G)

K. It may not be surprising that

we can delete all the guarded vertices in them.

I Rule 4. If there is a guarded vertex x not in any type-i maximal clique of G, delete it.

I Lemma 16. Rule 4 is safe: A reduced instance (G, k) is a yes-instance if and only if
(G− x, k) is a yes-instance.

Proof. It is easy to see that (G − x, k) is a reduced instance, and every solution of (G, k)
confined to G− x is a solution of (G− x, k). For the other direction, let E± be a minimum
solution of (G − x, k), and it is sufficient to show that x is not part of any diamond in
G∗ = G4E±. Note that x is a vertex which is part of only type-ii maximal cliques in G and
not adjacent to any vertex in small type-i maximal cliques in G. Therefore, by Lemma 7,
none of the vertices in N(x) is incident to any edges of E+. If x is part of a diamond in
G∗, then it is formed by a deletion of an edge in G[N [x]] by E−. But this is not possible
by Corollary 9, as none of the edges in G[N [x]] is part of any type-ii maximal clique which
intersects with a small type-i maximal clique in G− x. J



Y. Cao, A. Rai, R. B. Sandeep, and J. Ye 10:11

If Rule 4 is not applicable, then all vertices in T (G) are vulnerable. As demonstrated
in Figure 2, an edge may be deleted from a maximal clique of type ii. In that example,
neither end of the deleted edge v0v1 is in any maximal clique of type i. This can happen
only after some modification happens in the neighborhood of this vertex – u2v2 added in the
example. According to Proposition 2, however, this would not happen when |K| ≥ k + 3.
In other words, to make sure a large clique in K2(G) is immutable to future modifications,
it suffices to keep k + 3 of its vertices. This motivates the following reduction rule, whose
statement is however more complex than previous ones. The main trouble here is that we are
not allowed to delete all but k + 3 guarded vertices from a clique in K2(G), because it may
be required for another clique in K2(G). For a pair of vertices u, v, we denote by N(u, v) the
set of common neighbors of u and v not in S(G), i.e., N(u, v) = (N(u) ∩N(v)) \ S(G).

I Proposition 17. Let u, v be two vertices in G. If uv 6∈ E(G), then N(u, v) form an
independent set. Moreover, if uv ∈ E+ for a solution E± of (G, k), then |N(u, v)| ≤ k.

Proof. If G[N(u, v)] has an edge xy, then {u, v, x, y} forms a diamond. There are two type-i
maximal cliques containing {x, y, u} and {x, y, v} respectively. By Lemma 4(i), at least one of
them is small, contradicting to x, y /∈ S(G). The second claim follows from Proposition 2. J

Our last rule would keep at most k + 1 from such sets. To avoid unnecessary clutters, we
simply say we mark k + 1 vertices in N(u, v), even if its size is smaller than k + 1; in which
case, we mark all of them.

I Rule 5. For each pair of vertices u, v ∈ S(G), arbitrarily mark k + 1 vertices in N(u, v).
If |N(u, v)| ≤ k, then for each vertex w ∈ N(u, v), arbitrarily mark k + 1 vertices in N(u, w)
and k + 1 vertices in N(v, w). If there is an unmarked vertex x in T (G), delete it.

I Lemma 18. Rule 5 is safe: A reduced instance (G, k) is a yes-instance if and only if
(G− x, k) is a yes-instance.

Proof. It is easy to see that (G − x, k) is a reduced instance, and every solution of (G, k)
confined to G− x is a solution of (G− x, k). For the “if” direction, let E± be a minimum
solution of (G − x, k), and let G∗ = G4E±. We show that each maximal clique of G∗

containing x is a maximal clique of G and is of type ii in G∗. Since Proposition 5(ii) implies
that deleting a vertex not in any type-i maximal clique does not alter type-i maximal cliques,
we have S(G′) = S(G).

Let K be a maximal clique of G containing x; note that K is a maximal clique of type ii
in G, as x ∈ T (G). We argue that |NG∗(y) ∩K| ≤ 1 for every y ∈ V (G) \K. Since K is a
maximal clique of type ii in G, we have (1) |NG(y) ∩K| is either 0 or 1; and (2) for every
pair of vertices u, v ∈ K, N(u, v) ⊆ NG(u) ∩NG(v) = K.

Suppose first that there are at least two edges between y and K in E+. Let u, v ∈ K be
two vertices such that yu, yv ∈ E+. Then by Lemma 7, u, v ∈ S(G′), and hence u, v ∈ S(G).
Clearly, x 6= u, x 6= v and x is an unmarked vertex in N(u, v). Further, there are k + 1
marked vertices in N(u, v). It follows that |K \ {x}| ≥ k + 3, and E− does not have any edge
in G′[K \ {x}] by Proposition 2(i). Therefore, for each marked vertex z ∈ N(u, v) that is not
adjacent to y, the set {u, v, y, z} induces a diamond in G′ + {yu, yv}. The only edge we can
edit is yz, but |NG(y) ∩K| ≤ 1, and there are at least k + 2 edges between y and K, which
is impossible.

Hence, at most one edge can be added between y and K by E+. If |NG(y) ∩K| = 0, or
|NG(y) ∩K| = 1 but the only edge between y and K is deleted, then it is trivial that y is
adjacent to at most one vertex of K in G∗. Suppose that NG∗(y) ∩K = {u, v} while only u
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is in NG(y); note that yu 6∈ E− and yv ∈ E+. By Lemma 7, y, v ∈ S(G′), and hence in S(G).
According to Proposition 17, there are at most k vertices in N(v, y) in G′. If u /∈ S(G), then
it has been marked; hence x 6= u. Also, x 6= v as x ∈ T (G). By the rule, no matter whether
u is in S(G) or not, we should have marked vertices in N(u, v). Since x ∈ N(u, v) but is not
marked, we have |N(u, v)| > k + 1. Let z be any marked vertex in N(u, v); it is not in NG(y)
by assumption. But then {u, v, y, z} induces a diamond in G′ + yv, in which we have to add
the missing edge yz, which requires |E+| > k, a contradiction.

We have thus concluded |NG∗(y)∩K| ≤ 1 for each vertex y in V (G)\K. By Proposition 6,
K \ {x} remains a clique in G∗ − x, otherwise we can find a strictly smaller solution. Then
K is a maximal clique of type ii in G∗. On the other hand, according to Proposition 17, no
edge is added between two vertices of NG(x). Therefore, N(x) induces exactly the same
subgraph in G and G∗. Hence, any maximal clique of G∗ containing x is a maximal clique of
G as well, hence of type ii in G∗. This concludes the proof of the lemma. J

Now Theorem 1 follows by counting numbers of different kinds of vertices.

Proof of Theorem 1. We show first that Rules 3–5 can be applied in polynomial time. For
a guarded vertex x, N(x) induces a cluster graph and each maximal clique in the cluster
graph together with x forms the maximal cliques of G containing x. Recall that a maximal
clique is of type i if and only if it contains both ends of a cross edge. Since the procedure
partition finds all guarded vertices (no mark) and cross edges, we can find for each guarded
vertex all type-i maximal cliques and type-ii maximal cliques containing it in polynomial
time. Therefore, both Rules 3 and Rule 4 can be applied in polynomial time. Moreover, the
procedure partition finds all vertices in S(G) (mark “small”) and T (G) (no mark “type
i”), and hence Rule 5 can be applied in polynomial time.

We claim that if none of Rules 3–5 is applicable to a reduced yes-instance (G, k), then
|V (G)| = O(k8). By Lemma 11, the number of vertices in small type-i maximal cliques is
|S(G)| = O(k3). By Corollary 15, we have O(k5) vertices in big type-i maximal cliques. For
each pair of vertices u, v in S(G), we mark at most k +1 common neighbors of them. For each
common neighbor w of u, v, we mark at most 2k+2 vertices: k+1 vertices in N(u, w) and k+1
vertices in N(v, w). Hence |T (G)| = O(k8), and |V (G)| = O(k3)+O(k5)+O(k8) = O(k8). J

4 A cubic kernel for diamond-free edge deletion

We use four simple reduction rules to get a cubic kernel for diamond-free edge deletion. The
details of this section are omitted due to space limit.

1. If there exist an edge uv and 2k + 2 distinct vertices x1, y1, . . . , xk+1, yk+1 in N(u)∩N(v)
such that xiyi 6∈ E(G) for 1 ≤ i ≤ k + 1, then delete uv and decrease k by one.

2. Mark an edge uv “permanent” if there are 2k + 2 distinct vertices x1, y1, . . . , xk+1, yk+1
in N(u) ∩N(v) such that xiyi ∈ E(G) for all 1 ≤ i ≤ k + 1. If there exists a diamond
consisting of only permanent edges, return a trivial no-instance.

3. If there is a vertex x not in any small maximal clique, delete it.
4. Delete all edges and vertices not in any maximal clique of type i.

I Lemma 19. Let (G, k) be a yes-instance of the diamond-free edge deletion problem. If
none of the reduction rules is applicable, then |V (G)| = O(k3).
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