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Abstract
Cops and Robbers is a classic pursuit-evasion game played between a group of g cops and one
robber on an undirected N -vertex graph G. We prove that the complexity of deciding the winner
in the game under optimal play requires Ω

(
Ng−o(1)) time on instances with O(N log2N) edges,

conditioned on the Strong Exponential Time Hypothesis. Moreover, the problem of calculating
the minimum number of cops needed to win the game is 2Ω(√N), conditioned on the weaker
Exponential Time Hypothesis. Our conditional lower bound comes very close to a conditional
upper bound: if Meyniel’s conjecture holds then the cop number can be decided in 2O(

√
N logN)

time.
In recent years, the Strong Exponential Time Hypothesis has been used to obtain many lower

bounds on classic combinatorial problems, such as graph diameter, LCS, EDIT-DISTANCE, and
REGEXP matching. To our knowledge, these are the first conditional (S)ETH-hard lower bounds
on a strategic game.
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1 Introduction

The game of Cops and Robbers is a two-player perfect information game played on a graph.
One player is the cop player, who is identified with a set of g cops3 occupying vertices of the
graph. The other player is the robber player, who is identified with a single robber occupying
some vertex of the graph. The game begins by the cop player placing the set of cops on the
graph. Once she has decided the locations of the cops, it is the turn of the robber player to
do the same.

Then, taking turns and initiated by the cop player, the players are allowed to move their
pieces along the edges of the graph, where a turn of a player consists of moving all pieces the

1 Supported by NSF grants CCF-1514383 and CCF-1637546.
2 Partially supported by ERC Grant No. 336495 (ACDC).
3 We decided to denote the number of cops by g as opposed to the “standard” k to avoid confusion later
with the parameter k for k-CNF.
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9:2 Fine-grained Lower Bounds on Cops and Robbers

player is identified with to an adjacent vertex. We assume that the graph is reflexive, i.e.,
a player is allowed to let a piece stay in the vertex it is currently occupying. The goal of
the cop player is to capture the robber, i.e., move at least one cop to the vertex occupied by
the robber. Conversely, the goal of the robber is to avoid being captured indefinitely. We
say that a graph G is g-cop-win if there is a strategy for g cops to guarantee capture of the
robber. Furthermore, we call the smallest integer g such that G is a g-cop-win graph the cop
number of G and denote it by c(G). Notice that any graph with n vertices is n-cop-win.

In this paper, we study the computational complexity of determining the cop number of
a given input graph. It is known from previous work by Berarducci and Intrigila [5] that,
for a fixed g, one can check in polynomial time whether c(G) ≤ g. On the other hand, it
was recently shown by Kinnersley that, for a non-fixed g, i.e., that can be a function of n,
deciding whether c(G) ≤ g is EXPTIME-complete [22].

Perhaps the most famous and intriguing problem in the field of cops and robbers is
Meyniel’s conjecture, that states that O(

√
n) cops always suffice to capture the robber in

any n-vertex graph [17]. Towards proving this conjecture, it is known that there exist graphs
with cop number Θ(

√
n) [26], and that n/2(1+o(1))

√
logn cops always suffice to capture the

robber; see Scott and Sudakov [30], or Lu and Peng [24] for a similar bound. Combining
this upper bound with an nO(g) algorithm for checking whether the cop number is at most
g [5], the cop number can always be computed in nn/2(1+o(1))

√
log n time. Moreover, assuming

that Meyniel’s conjecture is true, this upper bound reduces to nO(
√
n). Hence, under this

assumption 2Ω(
√
n logn) is the best lower bound that we can hope to achieve.

But how close to this bound is it possible to get? While the result by Kinnersley
shows EXPTIME-completeness, it gives relatively loose guarantees on the actual value
in the exponent of the runtime. Since the completeness proof goes through a series of
reductions [22, 31] and the size of the input graph grows (polynomially) in these reductions,
the lower bound by Kinnersley “only” gives a 2n1/5 lower bound.4

Our work can be seen as a step towards finding the right asymptotic bound in the
exponent. Furthermore, our construction is quite simple and, in particular, gives rise to very
concise and easy to understand strategies for the players. To state our main results, we recall
the satisfiability problem and the definitions of the exponential time hypotheses below.

I Definition 1. Let ck be the smallest value such that instances of k-CNF-SAT with m

clauses and n variables can be solved in 2(ck+o(1))n poly(m) time. The Exponential Time
Hypothesis (ETH) is that ck > 0 for all k ≥ 3. The Strong Exponential Time Hypothesis is
that limk→∞ ck = 1, i.e., k-CNF-SAT requires 2(1−o(1))n time for any non-constant k = k(n).

Conditioning on the Exponential Time Hypothesis and the Strong Exponential Time
Hypothesis, we prove the following theorems. We want to emphasize that Theorem 2 is
optimal up to a constant factor in the exponent and Theorem 3 and Theorem 4 are optimal
up to a logN factor in the exponent, in the case of Theorem 3 under the assumption of
Meyniel’s conjecture. Furthermore, a potentially interesting detail of Theorem 2 is that it
works for any g ≥ 2, i.e., not only when g grows large.

4 Suppose an ABF game [31] is played on a CNF formula with ` variables and O(`) clauses. Kinnersley [22]
reduces this to a lazy cops and robbers with protection game on O(`2) vertices, O(`3) edges, and `+O(1)
cops. Given any such game with n vertices, m edges, and g cops, Kinnersley [22] reduces it to an
equivalent cops and robbers with protection game on O(gn+m) vertices, O(n(g2 +m)) edges, and g
cops. Mamino’s reduction [25] from cops and robbers with protection to standard cops and robbers
transforms a game with parameters n,m, g to O(g2n), O(g4m), g. Composing all three reductions, we
arrive at a standard cops and robbers instance with N = O(`5) vertices, O(`9) edges, and `+O(1) cops.
If we need 2Ω(`) time to decide the winner of the original ABF game, then this gives, at the best, a
2Ω(N1/5) lower bound on deciding the cop number of an N -vertex graph.
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I Theorem 2. Fix an integer g ≥ 2 and any δ > 0. Conditioned on the Strong Exponential
Time Hypothesis, the problem of deciding whether an N -vertex, M -edge graph has cop number
at most g cannot be solved in O(Mg−δ) time.

In an informal sense, Theorem 2 can be interpreted as the statement that exploring almost
all of the O(Mg+1), resp. O(Mg+2), possible game configurations and transitions between
these configurations in a cops and robbers game with g, resp. g + 1, cops is unavoidable in
order to determine whether the cop number is at most g or at least g + 1.

I Theorem 3. Conditioned on the Exponential Time Hypothesis, the problem of calculating
the cop number of an N -vertex graph cannot be solved in 2o(

√
N) time.

As mentioned above, if Meyniel’s conjecture is true, the lower bound given in Theorem 3
cannot be improved by more than a log-factor in the exponent. However, if Meyniel’s
conjecture turns out to be false and there is an infinite graph family requiring Ω(X(N)) cops
to capture the robber, for some function X(N) = ω(

√
N), there is well-founded hope that

our approach can be used to show that the problem of calculating the cop number of an
N -vertex cannot be solved in 2o(X(n)), thereby staying in the realm of being only a log-factor
away from the optimum. The reason for this hope is that the graphs we construct in order
to infer our lower bound contain components that are essentially the hard instances for the
Ω(
√
N) lower bound on the cop number. Of course, it cannot be taken for granted that all

proof details still work out if we replace these components with the hard instances for a
larger lower bound on the cop number, but the simplicity of our construction suggests that
this might indeed be the case.

I Theorem 4. Let g : N→ R be any function such that g(x) = o(
√
x) and g(x+1) ≤ g(x)+1

for all positive integers x. Conditioned on the Exponential Time Hypothesis, the problem of
deciding whether the cop number of an N -vertex graph is at most g(N) cannot be solved in
2o(g(N)) time.

Informally, Theorem 4 states that also for all (“natural”) functions between constant
functions and Θ(

√
N), deciding whether the cop number of a graph is bounded by the

function takes time exponential in the function. Similarly to the case of Theorem 3, in case
Meyniel’s conjecture turns out to be false, the range of functions for which Theorem 4 applies
might be increased to include functions from ω(

√
N) by adapting our graph construction in

a straightforward way.
To the best of our knowledge, this is the first work to apply the (Strong) Exponential

Time Hypothesis on a strategic game. In previous works, (S)ETH has been applied to,
e.g., some well known combinatorial problems such as graph diameter [29], LCS [9, 10],
EDIT-DISTANCE [3], and REGEXP matching [4, 11].

2 Related Work

The study of the game of Cops and Robbers was initiated by Quilliot [27] in 1978 and
introduced independently a few years later by Nowakowski and Winkler [7]. Nowakowski
and Winkler provided a full characterization of graphs where one cop can capture a robber
which was later extended to the case of many cops by Clarke and MacGillivray [14]. One
of the core questions related to the game is the cop number of a graph, which denotes the
minimum number of cops required to capture the robber. A very early result by Aigner and
Fromme states that 3 cops suffice to capture a robber on planar graphs and in the same
work, they showed that any graph with girth at least 5 and minimum degree at least δ has a
cop number of at least δ [2].

ESA 2018



9:4 Fine-grained Lower Bounds on Cops and Robbers

Later, Prałat showed that there are incidence graphs of projective planes that satisfy
these properties for δ = Ω(

√
n) yielding the state-of-the-art lower bound for the cop number

of any graph [26]. Given that Meyniel’s [17] conjectured O(
√
n) upper bound holds, this

bound is tight. The current best upper bound of n/2(1+o(1))
√

logn [30] is far away from this
though and improving it is perhaps the most crucial open problem in the field.

Beyond the existential question of determining the maximum cop number, there is the
computational question. On the positive side, for fixed g, determining whether the cop
number is at most g can be computed in polynomial time [5]. To the best of our knowledge,
the current best algorithm runs in O(n2g+3) time [6]. Many years later, this was contrasted
by a negative result showing that for a non-fixed g, i.e., g can be a function of the number
of vertices n, this question becomes NP-hard [16]. A bit later, it was shown by Mamino
that this question is hard for PSPACE [25]. An interesting detail on this work is that it
goes through a reduction to a variant called “Cops and Robbers with Protection”. In this
variant, edges are divided into protected and unprotected edges. The crux of the game is
that the capture only occurs if a cop moves to the vertex occupied by the robber through an
unprotected edge. In a recent breakthrough, Kinnersley managed to show that the stardard
variant of the problem is actually EXPTIME-complete [22].

Even though the progress on the specific question of finding the cop number is fairly
recent, other related questions in various graph classes have been studied long ago. For
example, in the end of seventies and beginning of eighties, Adachi et al. studied a variant of
the game where one cop is trying to prevent any of multiple robbers from reaching a “hole”
in the graph [21, 1]. In their variant, the initial positions are fixed and the cop and exactly
one robber have to move in each turn. They showed EXPTIME-completeness. For a survey
of earlier complexity results, we refer to a survey by Johnson [20]

Goldstein and Reingold [18] studied a version of the game in which the cops and robbers
have prescribed initial positions and the goal of the robber is to reach a specific vertex. They
showed that in undirected graphs this variant of the game is EXPTIME-complete. In the
same work, they showed that the directed version of the game, without fixing the initial
positions, is also EXPTIME-complete.

For the curious reader, we point out that many of the results listed here are based on
reductions to the ABF-problem that was shown to be EXPTIME-complete by Stockmeyer
and Chandra [31]. Furthermore, for a great survey on the results of the game we refer the
reader to the book by Bonato and Nowakowski [7].

3 Preliminaries

Let us give some definitions that are used throughout the paper.

I Definition 5 (k-CNF-SAT). The input to the k-CNF-SAT problem is a conjunction of one
or more clauses, where each clause consists of a disjunction of at most k literals. The goal
is to determine whether the formula is satisfiable, i.e., if there is a truth assignment of the
variables such that the input formula evaluates to true.

Especially, we wish to specify what we mean by a partial assignment of variables in a logical
formula consisting only of literals, disjunctions, and conjunctions. In a partial assignment, a
subset of the variables is set to true/false and some may be left unassigned. A disjunctive
clause x1 ∨ x2 ∨ · · · ∨ x`, for ` ≥ 1 is satisfied by a partial assignment if at least one literal
in the clause has an assigned truth value and is true. We point out that this means that
a disjunctive clause that contains both a variable and its negation can still be unsatisfied
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by a partial assignment. Throughout the paper, we denote the number of variables in a
k-CNF-SAT instance by n, the number of vertices in a graph by N , the number of cops by g,
and we reserve the letter k as the parameter for k-CNF-SAT.

4 The Construction

Fix a number g ≥ 2 of cops and an integer k ≥ 3. The technique we use to derive our
main results is a reduction from k-CNF-SAT to the problem of deciding whether a graph is
g-cop-win. To this end, we will start this section by describing how we transform any k-CNF
formula with n variables and m clauses into an input graph for the Cops and Robbers game
with g cops. Then we will prove that our graph construction has the property that the cops
can win the game in the constructed graph iff the k-CNF formula is satisfiable. We will
conclude the section by using this property to infer our lower bounds.

In the following we give an informal high-level overview of our construction. We say that
vertex v covers a set of vertices S if v is adjacent to all vertices in S. Vertex v always covers
itself. The constructed graph consists of two zones: one that is designed for the cops from
which they can cover the whole graph if the k-CNF formula is satisfiable, and one for the
robber in which he can evade capture indefinitely if the formula is unsatisfiable.

The cops’ zone consists of g2dn/ge vertices, which represent certain partial assignments
to groups of dn/ge variables in the CNF formula. By occupying g non-conflicting partial
assignments, the cops can collectively represent a total assignment to the variables. If this
total assignment is satisfying, then it should cover every vertex in the robber area, leaving
the robber nowhere to go. (Each vertex in the robber’s zone is associated with a clause,
which is covered by the cops if their collective assignment satisfies the clause.) On the other
hand, if no satisfying assignment exists, then the robber must always be able to move to
some vertex not covered by any cop.

If the cops and robbers agreed to stay in their own zones then the construction of the
robber’s zone could be very simple: m vertices (one for each clause) arranged in a clique
suffices. Of course, both the robber and the cops are free to roam over the whole graph, so
we need to add extra mechanisms to dissuade the robber from entering the cops’ zone, and
protect the robber against any cops entering the robber’s zone. To protect the robber, we
make the subgraph induced by the robber’s zone a girth-6 graph,5 which means that any cop
that enters the robber’s zone can never cover more than one neighbor of the robber, leaving
many options for the robber to escape. The mechanism to dissuade the robber from entering
the cops’ zone is more subtle; it ensures that any robber that does this loses in two turns,
regardless of whether the k-CNF formula is satisfiable or not.

Because we are interested in lower bounds as a function of input size, it is important
to keep the graph as sparse as possible. Many transformations on cops and robbers games
(e.g., [22, 23, 25]) create very dense graphs, sometimes having Ω(n2) edges. Parts of our
construction could be simplified by introducing large cliques, but this would weaken the
resulting (conditional) lower bounds. This concludes the informal overview; in the following,
we will give a formal description of our graph construction.

Let φ = C1 ∧ · · · ∧Cm be a k-CNF formula over the variable set V = {v1, . . . , vn}, where
the ith clause is Ci = xi,1 ∨ · · · ∨ xi,k and each xi,j is a variable or its negation. The variable
set is partitioned into g ≥ 2 groups V1, . . . ,Vg of at most dn/ge variables each. For reasons
that will become clear later, it is desirable that the formula has the property that any partial

5 “Girth” is the length of the shortest cycle.

ESA 2018
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C1 C2 C3

(v1 ∨ v2 ∨ v3) ∧ (¬v3 ∨ v4) ∧ (v2 ∨ ¬v4)
∧ (v1 ∨ ¬v1 ∨ v2 ∨ ¬v2) ∧ (v3 ∨ ¬v3 ∨ v4 ∨ ¬v4)

︸ ︷︷
︸

︸ ︷︷
︸ φ

C4 ∧ C5

︸
︷︷

︸φ′

C4 C5

C1 C2 C3

v1

¬v1
¬v2v2 v4 ¬v4

v3

¬v3
u∗

Figure 1 A schematic and simplified illustration of our graph construction in the case of two cops
and a k-CNF formula φ with four variables and three clauses. Notice that vertex u∗ is not connected
to the two extra clauses C4 and C5. Each vertex in the figure labeled with Ci for some i corresponds
to the set of vertices in B with clause-type i. The small vertices correspond to the partial truth
assignments and are connected to the clause vertices that they satisfy (i.e., the corresponding literal
is contained in these clauses). Notice that C4 and C5 are only covered by the cops if they occupy a
set of vertices that corresponds to assigning a value to all variables. The edges between vertices in
the Ci, i.e., between vertices in B, are not shown in Figure 1. For an illustration of these edges, see
Figure 2.

satisfying truth assignment must set at least one variable in each group. To this end, we
supplement φ with g extra clauses. Define φ′ as follows.

φ′ = C1 ∧ · · · ∧ Cm ∧ Cm+1 ∧ · · · ∧ Cm+g

where Cm+i =
∨
v∈Vi

(v ∨ ¬v)

Observe that φ′ is satisfiable iff φ is since any total assignment to V automatically satisfies
each of the clauses Cm+1, . . . , Cm+g. Define m = m+ g.

The next step is to convert φ′ to the graph G on which the Cops and Robbers game will
be played. See Figure 1 for a simplified illustration of a graph constructed from a k-CNF-SAT
instance.

Vertices

The vertex set V (G) is A1 ∪ · · · ∪ Ag ∪ B ∪ {u?}, where there is a vertex u ∈ Ai for each
truth assignment ψu : Vi → {T,F} to the ith variable group. The set B consists of Θ(m2)
vertices, each of which is associated with one of the m clauses in φ′. If u ∈ B, clause(u) ∈ [m]
indicates the clause index associated with u, and we say that u has clause-type clause(u).
The role of u? will be revealed shortly. In total, |V (G)| = O(g2n/g +m2).

Edges

The edge set E(G) includes edges of three types:
Satisfaction Edges. Edges join partial assignments to clauses iff the partial assignment

satisfies the clause:

{{u, u′} | u ∈ Ai, u′ ∈ B, clause(u′) = q, and ψu satisfies Cq} ⊂ E(G)
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Special u? Edges. In some ways, u? functions like an assignment that magically satisfies all
clauses Ci where i ∈ [m], but none where i ∈ [m]\[m]. It is also adjacent to all vertices
in A1, . . . , Ag.

{{u?, u} | Either u ∈ A1 ∪ · · · ∪Ag or u ∈ B and clause(u) ∈ [m]} ⊂ E(G),

High Girth Subgraph. The subgraph of G induced by B has Θ(|B|3/2) = Θ(m3) edges and
girth at least 6. Moreover, for each u ∈ B and each q ∈ [m],

|{u′ ∈ B | {u, u′} ∈ E(G) and clause(u′) = q}| ≥ 1 .

I.e., each B-vertex has at least one neighbor of each clause-type.

It is not immediate from the description that the subgraph induced by B actually exists.
We construct such a graph and clause-assignment now. Let p be the first prime greater than
m, so p = Θ(m), by Bertrand’s postulate [13]. Define line(s, t) to be the line in Z2

p with slope
s and offset t:

line(s, t) = {(i, j) ∈ Z2
p | i · s+ t ≡ j (mod p)}.

The set B consists of 2p2 vertices {wi,j , ls,t | (i, j), (s, t) ∈ Z2
p}, where wi,j represents the

point (i, j) and ls,t represents line(s, t). The subgraph induced by B is simply the point-line
incidence graph, i.e.,

{wi,j , ls,t} ∈ E(G)⇔ (i, j) ∈ line(s, t) .

We restate some properties of this graph that were shown in previous work [8]. See [12, 15,
28, 33, 32, 26] for other constructions with essentially the same properties.

I Lemma 6. Consider the p2 points and p2 lines indexed by Z2
p.

1. The intersection of two lines contains at most one point.
2. Two points are contained in at most one common line.
3. For any point (i, j) and any slope s, there exists some line(s, t) containing (i, j).
4. For any line(s, t) and index i, there is some point (i, j) ∈ line(s, t).

Properties (1) and (2) of Lemma 6 imply that the subgraph induced by B has no 4-cycles.
Since it is clearly bipartite, it must have girth (at least) 6. We use properties (3) and (4) of
Lemma 6 to design a good clause-assignment function clause : B → [m]. In particular,

For points, clause(wi,j) = i+ 1
For lines, clause(ls,t) = s+ 1

Since p ≥ m, it follows that for each clause index q ∈ [m], every point wi,j has at least one
neighboring line with clause-type q, and every line ls,t has at least one neighboring point
with clause-type q. See Figure 2 for an illustration.

This concludes the description of graph G. It is straightforward to construct G in time
linear in the number of edges, which is O(m2g2n/g +m3). The following lemma shows that
the construction indeed satisfies its purpose, i.e., the constructed graph G is g-cop-win if
and only if the k-CNF formula φ is satisfiable.

I Lemma 7. In the Cops and Robbers game on G with g cops, the cops have a winning
strategy iff φ is satisfiable.

ESA 2018



9:8 Fine-grained Lower Bounds on Cops and Robbers

(a) The subgraph B can be seen as a set of vertices/-
points and lines on a plane. In the figure, the points
associated with the same clause are illustrated by
the same color. Lines with slope 1 and offsets 0 and
3 are illustrated by solid red and black lines, respect-
ively. Line with slope 2 and offset 0 is illustrated by
a dashed line. The two unique intersections of the
non-parallel lines are emphasized with black boxes.

`1

`2

`3

`4

`5

P L

u1

u2

u3

`6

(b) Concretely, the subgraph B is a bipartite graph
with points on one side (left) and the lines on the
other. Since every two lines have at most one in-
tersection point, at most one neighbor of a point
vertex u3 can be covered by any other point vertex
(see black boxes in the figure). Hence, 5 cops are
needed to cover the neighbors of u3. The same line
of reasoning holds for any line vertex.

Figure 2 The subgraph depicted as a set of points and lines on a plane and as a bipartite
graph. Notice that any cycle starting from a point vertex must pass through at least 3 line vertices.
Therefore, the girth of the graph is at least 6. This is illustrated by the dashed edges incident on
vertices u1, u2, and u3 on the right. Notice that the pictures above are not inferred from each other.

Proof. Suppose ψ : V → {T,F} is a satisfying total assignment, decomposed into partial
assignments ψu1 , . . . , ψug , where ψui is associated with ui ∈ Ai. In their initial move, the
cops position themselves on u1, . . . , ug. At this point they cover all vertices in B ∪ {u?}, but
leave the remaining vertices in A1 ∪ · · · ∪Ag uncovered. Without loss of generality we can
assume that the robber begins at a vertex in A1\{u1}. In the next move, the cops stay put,
except for the cop on u2, which moves to u?. At this point all B-vertices with clause-types
in [m] are covered by the cop on u?, and those with clause-type m+ 1 are covered by the
cop on u1. The robber, being in A1, can move once more or stay put, but is immediately
caught by the cop on u1 or u? in the next turn.

Now consider the case where φ is unsatisfiable. We show that the robber has a winning
strategy such that it never leaves the set B. Consider any moment in the middle of the game,
after the cops have moved to vertices w1, . . . , wg. The robber is located at some w′ ∈ B and
may be forced to move if w′ is in the neighborhood of w1, . . . , wg. Let z ≥ 0 be the number
of cops that are located at some vertex in B. First consider the case that at least z+ 1 of the
Ai do not contain any cop, and without loss of generality, let A1, . . . , Az+1 contain no cop.
By the properties of G, the robber is adjacent to a set of vertices S = {w′1, . . . , w′z+1} ⊂ B,
where clause(w′i) = m+ i. None of the S-vertices are covered by the g − z cops stationed
in Az+2 ∪ · · · ∪ Ag ∪ {u?}. Since the subgraph induced by B has girth at least 6, each
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of the remaining z cops can cover at most one S-vertex, hence at least one S-vertex is
not covered by any cop, and the robber can move there without being captured. Now
consider the other case, i.e., that exactly z of the Ai, say A1, . . . , Az, do not contain any
cop. Then the g − z sets Az+1, . . . , Ag contain exactly one cop each. Assume without loss
of generality that wz+1 ∈ Az+1, . . . , wg ∈ Ag, and let ψ′ be the partial assignment obtained
by combining the partial assignments ψwz+1 , . . . , ψwg . Since φ is unsatisfiable, there is a
clause from φ not satisfied by ψ′, say clause Cq. Similarly to the previous case, by the
properties of G, the robber is adjacent to a set of z + 1 vertices S = {w′1, . . . , w′z, w′} ⊂ B,
where clause(w′i) = m+ i and clause(w′) = q. Again, none of the S-vertices is covered by
the g − z cops stationed in Az+1 ∪ · · · ∪ Ag and the remaining z cops can cover at most z
S-vertices. Now, with the same argumentation as in the previous case, it follows that there
is an S-vertex the robber can move to without being captured.

The arguments above apply to any stage in the middle of the game; the same arguments
show that if φ is unsatisfiable, the robber has a safe first move, after the cops choose their
initial positions. J

We also obtain the following curious observation from our construction. Later, we use
the observation to slightly strengthen our results, but we also believe that it is a property of
the construction that is of independent interest.

I Observation 8. Recall the vertex set of G is V (G) = A1 ∪ · · · ∪Ag ∪B ∪ {u?}. Then the
cop number of G is either g or g + 1.

Proof. If there are g + 1 cops, they can position themselves on vertices u1, . . . , ug, u
? with

ui ∈ Ai. Then, since u? is connected to all vertices in A1 ∪ · · · ∪ Ag ∪ B except those in
B with clause-type in [m]\[m], and for each i, the cop in ui covers all vertices in B with
clause-type m+ i, the cops cover the entire graph and hence can capture the robber in the
following turn. If, on the other hand, there are at most g − 1 cops, then the robber has
a simple winning strategy by always moving to a vertex in B with clause-type in [m]\[m]
that is not covered by any cop. By analogous arguments to the ones used in the proof of
Lemma 7, such a vertex always exists. J

5 Hardness of Finding the Cop Number

Quickly before going into the proofs of our main theorems, we point out a small technical
detail. The input k-CNF-SAT instance that we reduce to the Cops and Robbers instance may
contain a very large number of clauses. This would then imply that our graph constuction
has many edges, up to around m̂4 edges, where m̂ is the number of input clauses. This would
in turn result in a running time for our construction that is too large for our purposes. We
can work around this problem by using the sparsification lemma [19], which, for any chosen
ε > 0, reduces an arbitrary k-CNF-SAT instance to 2εn k-CNF-SAT instances with at most
c(k, ε) · n clauses each, where c(k, ε) is a function independent of n.

Next, we prove Theorem 2, i.e., that under the Strong Exponential Time Hypothesis, the
time needed to decide whether the cop number is at most some fixed g grows exponentially
as a function of g. A proof sketch goes as follows. We are given a k-CNF-SAT instance
with n variables and O(n) clauses. We obtain a graph with roughly 2n/g vertices and
edges from our construction. Being able to solve our cop number decision problem in
Mg−δ =

(
2n/g

)g−δ � 2n time yields a contradiction to the Strong Exponential Time
Hypothesis.
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I Theorem 2. Fix an integer g ≥ 2 and any δ > 0. Conditioned on the Strong Exponential
Time Hypothesis, the problem of deciding whether an N -vertex, M -edge graph has cop number
at most g cannot be solved in O(Mg−δ) time.

Proof. Let φ̂ be an instance of k-CNF-SAT with m̂ clauses and n variables, and let ε > 0.
Using the sparsification lemma, in poly(n) · 2εn time we can reduce φ̂ to 2εn instances of
k-CNF-SAT, each having at most m = c(k, ε) · n clauses. Let φ be one of those instances,
and let G be the graph obtained by applying our graph construction to φ. G is an N -vertex,
M -edge graph, where N = Θ(g2n/g +m2) = Θ(2n/g) and M = O(m2 ·N) = O(N log2N).
Thus, if we can decide in O(Mg−δ) = O(poly(m)Ng−δ) time whether G has cop number
g, we can determine the satisfiability of φ̂ in poly(m)2εn ·Ng−δ = poly(n)2n(ε+1−δ/g) time,
by Lemma 7. The calculations above do not depend on the value of k, so setting ε < δ/g

contradicts the Strong Exponential Time Hypothesis. J

Next, we provide the proof for Theorem 3. We note that this result can also be obtained
from extending the proof of Theorem 4 to functions g(x) = Θ(x) (which requires some extra
care), but this special case is much cleaner to prove and has all the same ingredients. The
main difference is in the simplicity of calculations. The difference to the proof of Theorem 2
is that since g is a function of n, we can set g = n and the graph becomes much smaller
in terms of the number of variables of the input k-CNF formula. As a consequence, the
dominating part of the constructed graph G w.r.t size is now B (and not the Ai, as in the
proof of Theorem 2).

I Theorem 3. Conditioned on the Exponential Time Hypothesis, the problem of calculating
the cop number of an N -vertex graph cannot be solved in 2o(

√
N) time.

Proof. Fix an arbitrarily small constant ε and an integer k ≥ 3. Let φ̂ be an instance
of k-CNF-SAT with m̂ clauses and n variables, and φ be one of the 2εn instances with
m = c(k, ε)n clauses generated from the sparsification lemma. Use our graph construction
to create a graph G from φ for a Cops and Robbers game with g = n cops. G has
N = Θ(g2n/g + (n + m)2) = Θ(m2) vertices and O(m2g2n/g + m3) = O(m3) edges. If we
can determine the cop number of G in 2o(

√
N) = 2o(m) = 2o(n) time, we can determine the

satisfiability of φ̂ in poly(n)2εn · 2o(n) = poly(n)2(ε+o(1))n time, by Lemma 7. Since ε can be
made arbitrarily small, this contradicts the Exponential Time Hypothesis. J

As our last technical contribution, we show that one can replace the
√
N in the exponent

in Theorem 3 with essentially any reasonable function in N that is asymptotically smaller
than

√
N and obtain a lower bound for deciding whether the cop number of an input

graph is bounded by this function. Basically, the statement of this theorem, combined with
Observation 8 is that even when we know that the cop number is either g(N) or g(N) + 1,
the decision problem is hard.

I Theorem 4. Let g : N→ R be any function such that g(x) = o(
√
x) and g(x+1) ≤ g(x)+1

for all positive integers x. Conditioned on the Exponential Time Hypothesis, the problem of
deciding whether the cop number of an N -vertex graph is at most g(N) cannot be solved in
2o(g(N)) time.

Proof. Let ε, k, φ̂, m̂, n, φ andm be as in the proof of Theorem 3. Use our graph construction
to create a graph G from φ for a Cops and Robbers game with n cops and denote the number
of vertices of G by N . Check whether g(N) < n + 1. Observe that since g(x) = o(

√
x)

and N = O(n2), there is some constant n0 such that g(N) < n+ 1 for all possible k-CNF
formulae φ with n ≥ n0 variables. Hence, if g(N) ≥ n+ 1, n is constant and we can decide
in constant time whether φ is satisfiable.
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Now consider the other case, i.e., g(N) < n+ 1. As we want to use the Exponential Time
Hypothesis in order to infer a conditional lower bound on the time it takes to determine
whether the cop number of an N -vertex graph is at most g(N), we would like the constructed
graph G to have the property that φ is satisfiable iff G has cop number at most g(N). With
the current construction of G we only have a similar property, namely, that φ is satisfiable
iff G has cop number at most n, due to Lemma 7. But since g(N) < n+ 1, we can change G
slightly, adding more and more vertices to G in a way that does not change the cop number
of G, and in the end obtain a graph G′ with the desired property. More specifically, we
obtain G′ from G by appending a path of r vertices to some arbitrarily chosen vertex u of G,
where r is the smallest non-negative integer such that g(N + r) ≥ n.

Set N ′ = N + r. Due to the properties of our function g, we know that g(N ′) < n+ 1.
Note that the cop number of G′ is the same as the cop number of G: In the case that φ
is unsatisfiable, our robber strategy still works with the same arguments as in G. In the
case that φ is satisfiable, the cops can simply perform the same strategy as in G, where they
assume that the robber is in u if the robber is actually in one of the newly appended vertices.
With this strategy, after 2 turns per player, the cops have captured the robber or at least
one cop ends up at u while the robber is in one of the new vertices, in which case the robber
can be captured by letting the cop traverse the appended path to the other end.

From the discussion above it follows that φ is satisfiable iff G′ has cop number at most
g(N ′). Hence, if the problem of deciding whether the cop number of an N -vertex graph is
at most g(N) can be solved in 2o(g(N)) = 2o(n) time, we can determine the satisfiability of
φ̂ in poly(n)2εn · 2o(n) = poly(n)2(ε+o(1))n time. Since ε can be made arbitrarily small, this
contradicts the Exponential Time Hypothesis. J
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