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Abstract
The concept of bounded highway dimension was developed to capture observed properties of
road networks. We show that a graph of bounded highway dimension with a distinguished root
vertex can be embedded into a graph of bounded treewidth in such a way that u-to-v distance
is preserved up to an additive error of ε times the u-to-root plus v-to-root distances. We show
that this embedding yields a PTAS for Bounded-Capacity Vehicle Routing in graphs of
bounded highway dimension. In this problem, the input specifies a depot and a set of clients,
each with a location and demand; the output is a set of depot-to-depot tours, where each client
is visited by some tour and each tour covers at most Q units of client demand. Our PTAS can
be extended to handle penalties for unvisited clients.

We extend this embedding result to handle a set S of root vertices. This result implies a
PTAS for Multiple Depot Bounded-Capacity Vehicle Routing: the tours can go from
one depot to another. The embedding result also implies that, for fixed k, there is a PTAS for
k-Center in graphs of bounded highway dimension. In this problem, the goal is to minimize d so
that there exist k vertices (the centers) such that every vertex is within distance d of some center.
Similarly, for fixed k, there is a PTAS for k-Median in graphs of bounded highway dimension.
In this problem, the goal is to minimize the sum of distances to the k centers.
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1 Introduction

The notion of highway dimension was introduced by Abraham et al. [3, 1] to explain the
efficiency of some shortest-path heuristics. The motivation of this parameter comes from
the work of Bast et al. [11, 12] who observed that, on a road network, a shortest path from
a compact region to points that are far enough must go through one of a small number
of nodes. They experimentally showed that the US road network has this property, and
Abraham et al. [3, 1, 2] proved results on the efficiency of shortest-path heuristics on graphs
with bounded highway dimension.

Though several definitions of highway dimension have been proposed, we use the one
given in [20] :

I Definition 1. The highway dimension of a graph G = (V,E) is the smallest integer η such
that for every r ∈ R+ and v ∈ V , there is a set of at most η vertices in Bv(cr) such that
every shortest path of length at least r that has all its vertices in Bv(cr) intersects this set.

Bv(r) = {u ∈ V |d(u, v) ≤ r} denotes here the ball with center v and radius r. This definition
is chosen as it captures this property for a wider range of transportation networks than
[2]. Since the latter implies low doubling dimension, it cannot, for example, represent air
traffic networks, that are star-like at large airports which causes a large doubling dimension.
Nevertheless, as noted in Feldman et al. [20], these networks have a low highway dimension
according to the definition of this paper (see the full version for a further discussion of these
definitions).

New polynomial-time approximation schemes: Abraham et al. note that “conceivably,
better algorithms for other [optimization] problems can be developed and analyzed under
the small highway dimension assumption.” Since road networks are thought to be modeled
by graphs of small highway dimension, NP-hard optimization problems that arise in road
networks are natural candidates for study. Feldmann [19] and Feldmann, Fung, Könemann,
and Post [20] inaugurated this line of research, giving (respectively) a constant-factor
approximation algorithm for one problem and quasi-polynomial-time approximation schemes
for several other problems. In this paper, we give the first polynomial-time approximation
schemes (PTASs) for classical optimization problems in graphs of small highway dimension.

Vehicle routing: Consider Capacitated Vehicle Routing, defined as follows. An
instance consists of a positive integer Q (the capacity), a graph with edge-lengths, a subset
Z of vertices (called clients), a demand function ρ : Z → {1, 2 . . . , Q}, and a distinguished
vertex, called the depot. A solution consists of a set of tours, where each tour is a walk that
starts and ends at the depot, and a function that assigns each client to a tour that passes
through it, such that the total client demand assigned to each tour is at most Q. (If a client
v is assigned to a tour, we say that the tour visits v.) The objective is to minimize the sum
of lengths of the tours.

We emphasize that in this version of Capacitated Vehicle Routing, client demand is
indivisible: a client’s entire demand must be covered by a single tour. For arbitrary metrics,
the problem is APX-hard, even when Q > 0 is fixed [9]. When Q is unbounded, it is NP-hard
to approximate to within a factor of 1.5 even when the metric is that of a star [21]. Since
stars have highway dimension one, this hardness result holds for graphs of bounded highway
dimension. We therefore require Q to be constant. To emphasize this, we sometimes refer to
the problem as Bounded-Capacity Vehicle Routing.
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I Theorem 2. For any ε > 0, η > 0 and Q > 0, there is a polynomial-time algorithm that,
given an instance of Bounded-Capacity Vehicle Routing in which the capacity is Q
and the graph has highway dimension η, finds a solution whose cost is at most 1 + ε times
optimum.

The running time is bounded by a polynomial whose degree depends on ε, η, and Q.
PTASs for vehicle routing were previously known only for Euclidean spaces, although a
quasi-polynomial-time approximation scheme (QPTAS) was known for planar graphs (see
Section 1.2).

Our approach can be modified to handle a generalization in which an instance also
specifies a penalty for each client, to be imposed if the solution omits the client. We also give
a PTAS for a more general version of the problem, Multiple-Depot Bounded-Capacity
Vehicle Routing, in which there are a constant number of depots, and each tour is required
only to start and end at one of the depots.

k-Center and k-Median: Given a graph, the goal in k-Center is to select a set of k
vertices (the centers) so as to minimize the maximum distance of a vertex to the nearest
center. This problem might arise, for example, in selecting locations for k firehouses. The
objective in k-Median is to minimize the average vertex-to-center distance.

For k-Center, when the number k of centers is unbounded, for any δ > 0, it is NP-
hard [22, 28] to obtain a (2 − δ)-approximation, even in the Euclidean plane under L1 or
L∞ metrics1, even in unweighted planar graphs [31], and even in n-vertex graphs with
highway dimension O(log2 n) [19]. We therefore consider bounded k, but even a (2 − ε)-
approximation is W [2]-hard for parameter k [19] in general graphs. Thus, even for bounded
k, it seems necessary to consider restricted inputs. Feldmann [19] gave a polynomial-time
3/2-approximation algorithm for bounded-highway-dimension graphs, and raised the question
of whether a better approximation ratio could be achieved. The following theorem answers
that question (Note that the running time is bounded by a polynomial in n whose degree
does not depend on η, k, or ε).

I Theorem 3. There is a function f1(·, ·, ·) and a constant c such that, for each of the
problems k-Center and k-Median, for any η > 0, k > 0 and ε > 0, there is an algorithm
running in time f1(η, k, ε)nc that, given an instance in which the graph has highway dimension
at most η, finds a solution whose cost is at most 1 + ε times optimum.

1.1 New metric embedding results
The key to achieving the new approximation schemes is a new result on metric embeddings of
bounded-highway-dimension graphs into bounded-treewidth graphs. Treewidth is a measure
of how complicated a graph is, and many NP-hard optimization problems in graphs become
polynomial-time solvable when the input is restricted to graphs of bounded treewidth. The
definition is the following.

A tree decomposition of a graph G is a tree TG whose nodes are bags of vertices that
satisfy the following three criteria: every v ∈ V appears in at least one bag, for every edge
(u, v) ∈ E there is some bag containing both u and v and for every v ∈ V , the bags containing
v form a connected subtree. The width of TG is the size of the largest bag minus one, and
the treewidth of G is the minimum width among all tree decompositions of G.

1 Approximation better than 1.822 is hard under L2, see [18].
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A metric embedding of an (undirected) guest graph G into a host graph H is a mapping
φ(·) from the vertices of G to the vertices of H such that, for every pair of vertices u, v in
G, the φ(u)-to-φ(v) distance in H resembles the u-to-v distance in G. Usually in studying
metric embeddings one seeks an embedding that preserves u-to-v distance up to some factor
(the distortion). That is, the allowed error is proportional to the original distance. In this
work, the allowed error is instead proportional to the distance from a given root vertex (or a
constant number of vertices).

I Theorem 4. There is a function f2(·, ·) such that, for every ε > 0, graph G of highway
dimension η, and vertex s, there exists a graph H and an embedding φ(·) of G into H such
that

H has treewidth at most f2(ε, η), and
for all vertices u and v, dG(u, v) ≤ dH(φ(u), φ(v)) ≤ dG(u, v) + ε(dG(s, u) + dG(s, v)).

As we describe in greater detail in Section 5, our PTAS for Bounded-Capacity Vehicle
Routing first applies Theorem 4 with s being the depot and ε′ = ε/c for a constant c to be
determined, obtaining an embedding of the original graph into the bounded-treewidth graph
H. The embedding induces an instance of Vehicle Routing in H. The algorithm finds an
optimal solution to this instance, and converts it to a solution for the original instance. This
conversion does not increase the cost of the solution. However, we need to show that the
optimal solution in the original instance induces a solution in H of not too much greater
cost. We do this using a lower bound due to Haimovich and Rinnoy Kan [26].

For the multiple-depot version of vehicle routing and for k-Center and k-Median,
Theorem 4 does not suffice. We present a generalization in which there is a set of root
vertices, and the allowed error is proportional to the minimum distance to any root vertex.

I Theorem 5. There is a function f3(·, ·, ·) such that, for every ε > 0, graph G of highway
dimension η and set S of vertices of G, there exists a graph H and an embedding φ(·) of G
into H such that

H has treewidth f3(η, |S|, ε), and
for all u and v, dG(u, v) ≤ dH(φ(u), φ(v)) ≤ (1+O(ε))dG(u, v)+εmin(dG(S, u), dG(S, v))

1.2 Related Work
Metric embeddings of bounded-highway-dimension graphs: Feldmann [19] and Feldmann
et al. [20] inaugurated research into approximation algorithms for NP-hard problems in
bounded-highway-dimension graphs. Feldmann et al. [20] gave quasi-polynomial-time ap-
proximation schemes for Traveling Salesman, Steiner Tree, and Facility Location.
The key to their results is a probabilistic metric embedding of bounded-highway dimension
graphs into graphs of small treewidth. The aspect ratio of a graph with edge-lengths is the
ratio of the maximum vertex-to-vertex distance to the minimum vertex-to-vertex distance.
Feldmann et al. show that, for any ε > 0, for any graph G of highway dimension η, there is a
probabilistic embedding φ(·) of G of expected distortion 1 + ε into a randomly chosen graph
H whose treewidth is polylogarithmic in the aspect ratio of G (and also depends on ε and η).
There are two obstacles to using this embedding in achieving approximation schemes:

The distortion is achieved only in expectation. That is, for each pair u, v of vertices, the
expected φ(u)-to-φ(v) distance in H is at most (1 + ε) times the u-to-v distance in G.
The treewidth depends on the aspect ratio of G, so is only bounded if the aspect ratio is
bounded.
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The first is an obstacle for problems (e.g. k-Center) where individual distances need to
be bounded; this does not apply to problems such as Traveling Salesman or Vehicle
Routing where the objective is a sum of lengths of paths. The second is the reason that
Feldmann et al. obtain only quasi-polynomial-time approximation schemes; it seems to be
an obstacle to obtaining true PTAS. Nevertheless, the techniques introduced by Feldmann et
al. are at the core of our embedding results. We build heavily on their framework.

About Vehicle Routing problem, Haimovich and Rinnoy Kan [26] proved the following
lower bound2:

I Lemma 6. For Capacitated Vehicle Routing with capacity Q, and client set Z,

cost(OPT) ≥ 2
Q

∑
{d(c, s) : c ∈ Z}

Note that the Capacitated Vehicle Routing problem is a generalization of Traveling
Salesman (Q = n, Z = V , and ρ(v) = 1,∀v). Conversely, Haimovich and Rinnoy Kan show
how to use a solution to Traveling Salesman to achieve a constant-factor approximation
for Capacitated Vehicle Routing, where the constant depends on the approximation
ratio for Traveling Salesman.

Since Capacitated Vehicle Routing in general graphs is APX-hard for every fixed
Q ≥ 3 [8, 9], much work has focused on the Euclidean plane. Haimovich and Rinnoy Kan [26]
gave a polynomial-time approximation scheme (PTAS) for the Euclidean plane for the case
when the capacity Q is constant. Asano et al. [9] showed how to improve this algorithm to
get a PTAS when Q is O(logn/ log logn). For general capacities, Das and Mathieu [17] gave
a quasi-polynomial-time approximation scheme for unbounded Q. Building on this work,
Adamaszek, Czumaj, and Lingas [4] gave a PTAS that for any ε > 0 can handle Q up to
2logδ n where δ depends on ε.

Little is known for higher dimensions or other metrics. Kachay gave a PTAS in Rd that
requires Q to be O(log1/d logn) [30], and Hamaguchi and Katoh [27] and Asano, Katoh, and
Kawashima [7] focused on constant-factor approximation algorithms for the case where the
graph is a tree and client demand is divisible. Becker, Klein and Saulpic [14] gave the first
approximation scheme for a non-Euclidean metric: they describe a quasi-polynomial-time
approximation scheme in planar graphs, but only when the capacity Q is polylogarithmic
in the graph size. They introduce the idea of an error that depends on the distance to the
depot, which we also use in the embedding presented in our work here.

For k-Median, constant-factor approximation algorithms have been found for general
metric spaces [15, 32, 29, 6]. The best known approximation ratio for k-Median in general
metrics is 2.675 [15], and it is NP-hard to approximate within a factor of 1 + 2/e [23]. For
k-Median in d-dimensional Euclidean space, PTAS have been found when k is fixed (e.g. [10])
and when d is fixed (e.g. [5]) but there exists no PTAS if k and d are part of the input
[25]. Recently Cohen-Addad et al. [16] gave a local search-based PTAS for k-Median in
edge-weighted planar graphs, and more generally in graphs from any nontrivial minor-closed
graph family.

Outline. Section 2 provides preliminary definitions and presents useful results from Feld-
mann et al. [20]. In Section 3 we give an initial embedding result for graphs of bounded aspect
ratio. Section 4 explains the main embedding result (Theorem 4), and Section 5 describes

2 Although their result addresses the unit-demand case, it generalizes to instances where each non-zero
client demand ρ(v) is at least one.

ESA 2018
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how to use this embedding to achieve a PTAS for Capacitated Vehicle Routing, proving
Theorem 2. We refer the reader to the full version [13] for a discussion of highway dimension,
omitted proofs, the dynamic program for vehicle routing, and a discussion of Theorem 5 and
its application to multi-depot vehicle routing, k-Center, and k- Median.

2 Preliminaries

We use OPT to denote the optimum solution for an optimization problem. For minimization
problems, an α-approximation algorithm returns a solution with cost at most α · cost(OPT ).
An approximation scheme is a family of (1 + ε)-approximation algorithms indexed by ε > 0.
A polynomial-time approximation scheme (PTAS) is an approximation scheme that for each
fixed ε runs in polynomial time.

For an undirected graph G = (V,E), we use dG(u, v) (or d(u, v) when G is unambiguous)
to denote the shortest-path distance between u and v. For any vertex subsets W ⊆ V

and vertex v ∈ V we let d(v,W ) denote minw∈W d(v, w), and we let diam(W ) denote
maxu,v∈W d(u, v).

An embedding of a graph G = (V,E) is a mapping φ from a guest graph G to a host
graph H = (V,EH). For notational simplicity, we identify the vertices of H with points of G
and therefore omit φ.

Let Y ⊆ X be a subset of elements in a metric space (X, d). Y is a δ-covering of X if for
all x ∈ X, d(x, Y ) ≤ δ. Y is a β-packing of X if for all y1, y2 ∈ Y with y1 6= y2, d(y1, y2) ≥ β.
Y is an ε-net if it is both an ε-covering and an ε-packing.

Shortest-Path Covers. Now we introduce a tool for dealing with bounded highway-dimen-
sion graphs. Recall that c is a constant greater than 4.

I Definition 7. For a graph G with vertex set V and r ∈ R+, a shortest-path cover for scale
r SPC(r) ⊆ V is a set of vertices, called hubs, such that every shortest path of length in
(r, cr/2] contains at least one hub. Such a cover is called locally s-sparse for scale r if every
ball of diameter cr contains at most s vertices from SPC(r).

For a graph of highway dimension η, Abraham et al. [1] showed how to find a locally
O(η log η)-sparse shortest-path cover in polynomial time (though they show it for a different
definition of highway dimension (c = 4), the algorithm can be straightforwardly adapted).
This result allows us to use shortest-path covers instead of directly using highway dimension.

Town Decomposition. Feldmann et al.[20] observed that a shortest-path cover for scale
r naturally defines a clustering of the vertices into towns [20]. Informally, a town at scale
r is a subset of vertices that are close to each other and far from other towns and from
the shortest-path cover for scale r. Formally, a town is defined by at least one v ∈ V such
that d(v,SPC(r)) > 2r and is composed of {u ∈ V |d(u, v) ≤ r}. The following lemma of
Feldmann et al. describes key properties of towns.

I Lemma 8 (Lemma 3.2 in [20]). If T is a town at scale r, then
1. diam(T ) ≤ r and
2. d(T, V \ T ) > r

Feldmann et al. define a recursive decomposition of the graph using the concept of towns,
which we adopt for this paper. First, scale all distances so that the shortest point-to-point
distance is a little more than c/2. Then fix a set of scales ri = (c/4)i. We say that a town
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Figure 1 Illustration of Lemma 8.

T at scale ri is on level i. The scaling ensures that SPC(r0) = ∅, and therefore at level 0
every vertex forms a singleton town. The largest level is rmax = dlogc/4 diam(Gscaled)e =
dlogc/4( c2 · θG))e, where θG is the aspect ratio of the input graph. Similarly at this topmost
level, SPC(rmax) = ∅ since there are no shortest paths that need to be covered. The only
town at scale rmax is the town that contains the entire graph. We say that the town at scale
rmax and the singleton towns at scale r0 are trivial towns. Since c is a constant greater than
four, the total number of scales is linear in the input size.

The set T = {T ⊆ V |T is a town on level i ∈ N} of towns at all levels is called the town
decomposition. Because of the properties of Lemma 8, this set forms a laminar family and
therefore has a tree structure. Moreover, the decomposition has the following properties.

I Lemma 9 (Lemma 3.3 in [20]). For every town T in a town decomposition T ,
1. T has either 0 children or at least 2 children, and
2. if T is a town at level i and has child town T ′ at level j, then j < i.

Approximate Core Hubs. For the purpose of approximation algorithms, it suffices to use
not all hubs but a representative subset. For ε > 0, Feldmann et al. show how to compute, for
each town T , a subset XT of T

⋂
∪iSPC(ri), called approximate core hubs. Their properties

are described in Lemma 10. Recall that the doubling dimension of a metric is the smallest θ
such that for every r, every ball of radius 2r can be covered by at most 2θ balls of radius r.

I Lemma 10 (Theorem 4.2 and Lemma 5.1 in [20]). For every town T ∈ T , there exist a set
XT such that:
1. if T1 and T2 are different child towns of T , and u ∈ T1 and v ∈ T2, then there is some

h ∈ XT such that d(P [u, v], h) ≤ εd(u, v), where P [u, v] is the shortest u-to-v path, and
2. the doubling dimension of XT is θ = O(log(ηs log(1/ε)).

Minimality of Shortest-Path Covers. Note that the result of Lemma 10 requires the
shortest-path covers be inclusion-wise minimal. For the embedding we present in Section 4,
however, it is useful to assume that the depot is not a member of any town except for the
trivial topmost town containing all of G and bottommost singleton town containing just the
depot. This assumption can be made safely, as explained in the full version of the paper.

3 Embedding for Graphs of Bounded Aspect-Ratio

Lemma 11 describes an embedding for the case when the graph has bounded aspect-ratio,
ie. the ratio between diameter and smallest distance. This embedding gives only a small
additive error, and will prove to be a useful tool for the following sections. In this section we
show how to construct this embedding.

ESA 2018
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(a) Town decomposition (b) Embed-
dings

(c) Path approxi-
mation

Figure 2 (a) An example of a town decomposition. T1 has diameter at most ε∆ and T2 has
diameter greater than ε∆. (b) Two cases of town embeddings. T1 is embedded as a star with center
vT1 . The embedding of T2 connects all vertices in T2 to all hubs in X̂T2 (depicted as squares). (c)
Hub ĥ ∈ X̂T is close to hub h ∈ XT which itself is close to the shortest u-to-v path.

I Lemma 11. There is a function f(x, y) such that, for any ε > 0 and η > 0, for any graph
G with highway dimension at most η, minimal distance 1 and diameter ∆, there is a graph
H with treewidth at most f(ε, η) and an embedding φ(·) of G into H such that, for all points
u and v,

dG(u, v) ≤ dH(φ(u), φ(v)) ≤ dG(u, v) + 4ε∆

Furthermore, there is a polynomial-time algorithm to construct H and the embedding.

We first present an algorithm to compute the host graph H and a tree decomposition of
H. This algorithm relies on the town decomposition T of G, described in Section 2.

The host graph H is constructed as follows. First, consider a town T that has diameter
d ≤ ε∆ but has no ancestor towns of diameter ε∆ or smaller. We call such a town a maximal
town of diameter at most ε∆. The town T is embedded into a star: choose an arbitrary
vertex vT in T , and for each u ∈ T , include an edge in H between u and vT with length
dG(u, vT ) equal to their distance in G (see Figures 2a and 2b).

Now consider a town T of diameter dT > ε∆. The set of approximate core hubs XT can
be used as portals to preserve distances between vertices lying in different child towns of T .
Specifically, by Lemma 10, for every pair of vertices (u, v) in different child towns of T , XT

contains a vertex that is close to the shortest path between u and v. In order to approximate
the shortest paths, it is therefore sufficient to consider a set of points close to XT . Let X̂T

be an εdT -net of XT . For each ĥ ∈ X̂T and v ∈ T , include an edge in H connecting v to ĥ
with length dH(v, ĥ) = dG(v, ĥ) equal to the v-to-ĥ distance in G (see Figures 2a and 2b).

The tree decomposition D mimics the town decomposition tree: for each town T of
diameter greater than ε∆, there is a bag bT . This bag is connected in D to all of the bags
of child towns of T and contains all of the vertices of the net assigned to T and of the nets
assigned to T ’s ancestors in the town decomposition. Formally, if AT denotes the set of all
towns that contain T , bT =

⋃
T ′∈AT X̂T ′ . Note that if T ′ is the parent of T in the town

decomposition, bT = X̂T ∪ bT ′ . Now for each maximal town T of diameter at most ε∆ with
parent town T ′, the tree decomposition contains a bag b0T connected to a bag buT for each
vertex u ∈ T . We define b0T = {vT } ∪ bT ′ and buT = {u} ∪ b0T .

Following Feldmann et al. [20], the above construction can be shown to be polynomial-time
constructible. The following three lemmas therefore prove Lemma 11.

I Lemma 12. D is a valid tree decomposition of H.
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I Lemma 13. H has a treewidth O(( 1
ε )θ log c

4

1
ε ), where θ is a bound on the doubling dimension

of the sets XT .

Proof. Since the size of the bags is clearly bounded by the depth times the maximal cardinality
of X̂T , it is enough to prove that, for each town T , X̂T is bounded by ( 1

ε )θ, and that the
tree decomposition has a depth O(log c

4

1
ε ). By Lemma 10, the doubling dimension of XT is

bounded by θ. X̂T is a subset of XT , so its doubling dimension is bounded by 2θ (see Gupta
et al. [24]). Furthermore, the aspect ratio of X̂T is 1

ε : the longest distance between members
of X̂T is bounded by the diameter dT of the town, and the smallest distance is at least εdT by
definition of a net. The cardinality of a set with doubling dimension x and aspect ratio γ is
bounded by 2xdlog2 γe (see [24] for a proof), therefore |X̂T | is bounded by ( 1

ε )θ. We prove now
that the tree decomposition has a depth O(log c

4

1
ε ). Let T be a town of diameter dT > ε∆

and let ri be the scale of that town. By Lemma 8, dT ≤ ri, and since ri = ( c4 )i and dT > ε∆,
we can conclude that i > log c

4
ε∆. As the diameter of the graph is ∆, the biggest town has

a diameter at most ∆. It follows that ri ≤ ∆ and therefore i ≤ log c
4

∆. The depth of bT
in the tree decomposition is therefore bounded by log c

4

∆
ε∆ = log c

4

1
ε . Furthermore, the tree

decomposition of a town of diameter at most ε∆ has depth 2. The overall depth is therefore
O(log c

4

1
ε ), concluding the proof. J

I Lemma 14. For all vertices u and v, dG(u, v) ≤ dH(u, v) ≤ dG(u, v) + 4ε∆

Proof. Let u and v be vertices in V , and let T be the town that contains both u and v such
that u and v are in different child towns of T .

If T has diameter dT ≤ ε∆, then let T ′ be the maximal town of diameter at most ε∆ that is
an ancestor of T (possibly T itself). By construction, T ′ was embedded into a star centered at
some vertex vT ′ ∈ T ′, so dH(u, v) ≤ dH(u, vT ′) + dH(vT ′ , v) ≤ dG(u, vT ′) + dG(vT ′ , v) ≤ 2ε∆.

Otherwise if T has diameter dT > ε∆, then by Lemma 10, there is some h ∈ XT such
that dG(P [u, v], h) ≤ εd(u, v). Since X̂T is an εdT cover of XT , there is some ĥ ∈ X̂T such
that d(h, ĥ) ≤ εdT . The host graph H includes edges (u, ĥ) and (ĥ, v), so

dH(u, v) ≤ dH(u, ĥ) +dH(ĥ, v) ≤ dG(u, h) +dG(h, v) + 2εd(u, v) + 2εdT ≤ dG(u, v) + 4ε∆
(see Figure 2c). Finally, since edge lengths in H are given by distances in G, dG(u, v) ≤
dH(u, v) for all u, v ∈ V . J

4 Main Embedding: Proof of Theorem 4

4.1 Embedding Construction
Given the parameter ε̂, our goal for the embedding is that

dG(u, v) ≤ dH(φ(u), φ(v)) ≤ dG(u, v) + ε̂(dG(s, u) + dG(s, v))

With this goal in mind, we define ε = min{1/4, ε̂/k} for an appropriate constant k (chosen
to compensate for the big-O in the following inequality), and prove that

dG(u, v) ≤ dH(φ(u), φ(v)) ≤ dG(u, v) + ε(dG(s, u) + dG(s, v))

Our construction relies on the assumption that the depot s does not appear in any
non-trivial town. We can make this assumption without loss of generality, as discussed in
Section 2.

The root town in the composition, denoted T0, is the town that contains the entire graph.
We say that a town T that is a child of the root town is a top-level town, which means that
the only town that properly contains T is T0.
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(a) Towns (b) Embedding

(c) Tree decomposition

Figure 3 (a) Towns T1 and T2 are top-level towns, with l(T1) = i and l(T2) = i + 1. (b) The
embedding of each top-level town (circles) are connected to a band of log2

1
ε

+ 1 hub sets (squares).
Edges are striped to convey that they connect all vertices of the given hub-set endpoint to all
vertices of the town-embedding endpoint. (c) The vertices of each bag B (circles) are added to each
bag of each descendent top-level-town tree decomposition (triangles).

The assumption that the depot, s, does not appear in any non-trivial town implies that
the top-level town that contains s is the trivial singleton town. This assumption is helpful to
bound the distance between a top-level town T and the depot s: as s /∈ T , Lemma 8 gives
the bound d(T, s) ≥ diam(T ). This bound turns out to be very helpful in the construction
of the host graph.

We use Lemma 11 to construct an embedding for each top-level town. It remains to
connect these embeddings : we cannot approximate XT0 with a net as we did in Lemma 11,
because the diameter of G may be arbitrarily large.

To cope with that issue, we define inductively the hub sets X0
0 , X

1
0 , ... such that Xk

0 is a
net of XT0 ∩Bs(2k). Let X0

0 be an ε-net of XT0 ∩Bs(1) that contains the depot, s, and for
k ≥ 0 let Xk+1

0 be an ε2k+1-net of the set
(
XT0 ∩ (Bs(2k+1)−Bs(2k))

) ⋃
Xk

0 that contains
the depot. This construction ensures that Xk+1

0 ∩ Bs(2k) ⊆ Xk
0 , which will be helpful in

Section 4.3 to find a tree decomposition of the host graph. Note that we can assume s ∈ XT0 ,
since adding it increases the doubling dimension by at most one and thus does not change
the result of Lemma 10.

For a set of vertices X ⊆ V , we define l(X ) = dlog2(maxv∈X d(s, v))e (See Figure 3a).
For every child town T of T0, the host graph connects every vertex v of T to every hub h

in X l(T )
0 , . . . , X

l(T )+log2(1/ε)
0 with an edge of length dG(v, h) (See Figure 3b).

4.2 Proof of Error Bound
In Lemma 16 we prove a bound on the error incurred by the embedding. Our proof makes
use of the following lemma.

I Lemma 15 (see full version). For all k, Xk
0 is an ε2k+1-covering of XT0 ∩Bs(2k).

I Lemma 16. For all vertices u and v,
dG(u, v) ≤ dH(u, v) ≤ dG(u, v) +O(ε)(dG(s, u) + dG(s, v))

Proof. Consider two vertices u and v. Let Tu and Tv denote the top-level towns that contain
u and v, respectively. There are two cases to consider.
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(a) u and v are both connected to ĥ. (b) v is not connected to ĥ.

Figure 4 The shortest path between u and v in G is indicated by the curved, directed lines. The
path in the host graph is represented by the straight lines.

If Tu = Tv, Lemma 8 gives dG(u, v) ≤ diam(Tu) ≤ dG(Tu, V \ Tu), and therefore
diam(Tu) ≤ min{dG(s, u), dG(s, v)}. Because Tu = Tv is a top-level town, its embedding is
given by Lemma 11, which directly gives the desired bound.

Otherwise Tu 6= Tv. Without loss of generality, assume that dG(u, s) ≥ dG(v, s). We
show that there exists some Xk

0 connected to u with a vertex ĥ ∈ Xk
0 close to P [u, v].

By definition of the approximate core hubs, there exists h ∈ XT0 such that d(h, P [u, v]) ≤
εd(u, v). Moreover, h ∈ Bs(2l(Tu)+2):

d(s, h) ≤ d(s, u) + d(u, h) ≤ d(s, u) + (1 + ε)d(u, v)
≤ d(s, u) + (1 + ε) (d(s, u) + d(s, v)) by triangle inequality
≤ d(s, u) + (1 + ε) · 2d(s, u) since d(u, s) ≥ d(v, s)

≤ (3 + 2ε)2l(Tu) ≤ 2l(Tu)+2

Since h ∈ XT0 ∩ Bs(2l(Tu)+2), then by Lemma 15, there is an ĥ ∈ X l(Tu)+2
0 such that

d(ĥ, h) ≤ ε2l(Tu)+3. Since log2
1
ε ≥ 2, u is connected to ĥ in the host graph.

Depending on v, there remain two cases: either v is connected to ĥ (see Figure 4a) or
not (Figure 4b). First, if v is connected to ĥ in the host graph, dH(v, ĥ) = dG(v, ĥ) (and the
same holds for u). The triangle inequality gives therefore,

dH(u, v) ≤ dG(u, ĥ) + dG(v, ĥ) ≤ dG(u, h) + dG(v, h)︸ ︷︷ ︸
≤(1+2ε)dG(u,v) by definition of h

+ 2dG(ĥ, h)︸ ︷︷ ︸
≤2ε2l(Tu)+3=O(ε)d(s,u)

Since dG(u, v) ≤ dG(s, u) + dG(s, v), we infer dH(u, v) ≤ dG(u, v) + O(ε)(dG(s, u) +
dG(s, v)).

Otherwise, v is not connected to ĥ. That means that either l(Tu) + 2 < l(Tv) or
l(Tu) + 2 > l(Tv) + log2

1
ε . We exclude the first case by noting that since the diameter of a

town is less than its distance to the depot, dG(v, s) ≤ dG(u, s) implies that l(Tv) ≤ l(Tu) + 1.
The second case implies that dG(s, u) ≥ O( 1

ε )dG(s, v). Since the host graph connects
the source s to all the vertices, dH(u, v) ≤ dG(s, u) + dG(s, v) ≤ dG(u, v) + 2dG(s, v) ≤
dG(u, v) +O(ε)(dG(s, u) + dG(s, v)). J

4.3 Tree Decomposition
We present here the construction of a bounded-width tree decomposition D of the host graph.

For each k > 0 let Bk =
k+log2(1/ε)⋃
i=k−1

Xi
0. For a top-level town T , the tree decomposition D

connects the decomposition DT given by Lemma 11 to the bag Bl(T ). Moreover, we add all
vertices that appear in Bl(T ) to all bags in the tree DT . Finally, for every k we connect Bk
to both Bk−1 and Bk+1 in D. (See Figure 3b.)
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I Lemma 17 (see full version). D is a valid tree decomposition of the host graph H.

I Lemma 18. For all k, |Xk
0 | ≤ ( 2

ε )θ.

Proof. Since Xk
0 is a subset of XT0 , it has doubling dimension 2θ (see Lemma 10). Since

Xk
0 is a ε2k-net, the smallest distance between two hubs in Xk

0 is at least ε2k. Moreover,
since Xk

0 ⊆ Bs(2k), the longest distance between two hubs is at most 2 · 2k, therefore, Xk
0

has an aspect ratio of at most 2
ε . The bound used in Lemma 13 on the cardinality of a set

using its aspect ratio and its doubling dimension concludes the proof. J

I Lemma 19. The tree decomposition D has bounded width.

Proof. This follows from Lemma 18 together with the fact that a bag Bi is the union of
log2

1
ε + 2 sets Xk

0 . Lemma 13 allows to conclude. J

5 Capacitated Vehicle Routing

5.1 PTAS for Bounded Highway Dimension
The algorithm works as follows. The input graph G is embedded into a host graph H of
bounded treewidth using the embedding given in Theorem 4. The algorithm then optimally
solves the Capacitated Vehicle Routing problem with capacity Q for H, using a classical
dynamic programming approach (described in the full version). The solution for H is then
lifted to a solution in G: for each tour in the solution for H, a tour in G that visits the same
clients in the same order is added to the solution for G.

We show that the embedding given in Theorem 4 is such that an optimal solution in
the host graph H gives a (1 + ε) solution in G. Furthermore, the embedding ensures that
H has small treewidth, allowing Capacitated Vehicle Routing to be solved exactly in
polynomial time using dynamic programming. Putting these together gives Theorem 2.

Given an embedding with the properties described in Theorem 4, all that remains in
proving Theorem 2 is showing how to solve Capacitated Vehicle Routing optimally on
the host graph H and proving that such an optimal solution has a corresponding near-optimal
solution in G. We do so in the following two lemmas (the first is proved in the full version of
the paper)

I Lemma 20. Given a graph with bounded treewidth ω and a capacity Q > 0, Capacitated
Vehicle Routing can be solved optimally in nO(ωQ) time.

I Lemma 21. For an embedding with the properties given by Theorem 4, the cost of an
optimal solution in the host graph H is within a (1 +O(ε))-factor of the cost of the optimal
solution in the guest graph G.

Proof. Let OPTH be the optimal solution in the host graph H and OPTG be the optimal
solution in G. A solution is described by the order in which the clients and the depot are
visited: (u, v) ∈ S indicates that the solution S visits the client v immediately after visiting
u. We want to prove that costG(OPTH) ≤ (1 +O(ε))costG(OPTG).

First, since dG ≤ dH , costG ≤ costH . Second, the solution OPTG is also a solution in
the host graph H, since the vertices of G and H are the same. So, by definition of OPTH ,
costH(OPTH) ≤ costH(OPTG). It is therefore sufficient to prove that costH(OPTG) ≤
(1 +O(ε))costG(OPTG).
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By definition of cost, costH(OPTG) =
∑

(u,v)∈OPTG
dH(u, v). Applying Theorem 4 gives

costH(OPTG) ≤
∑

(u,v)∈OPTG

dG(u, v) +O(ε)(dG(s, u) + dG(s, v))

The right side of the inequality can be rewritten as∑
(u,v)∈OPTG

dG(u, v)

︸ ︷︷ ︸
= costG(OPTG)

+ O(ε)
∑

(u,v)∈OPTG

dG(s, u) + dG(s, v)

︸ ︷︷ ︸
= O(ε)

∑
v∈Z

2dG(s,v) ≤ O(ε)QcostG(OPTG) (∗)

To get the inequalities (∗), it is enough to remark that OPTG visits every client exactly
once and then to apply Lemma 6. As Q is constant, the whole inequality becomes

costH(OPTG) ≤ costG(OPTG) +O(ε)costG(OPTG) = (1 +O(ε))costG(OPTG) J
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