
Two-Dimensional Maximal Repetitions
Amihood Amir1

Bar Ilan University, Ramat-Gan, 52900, Israel
amir@esc.biu.ac.il

Gad M. Landau2

University of Haifa, Haifa 31905, Israel, and
NYU Tandon School of Engineering, New York University,
Six MetroTech Center, Brooklyn, NY 11201, USA
landau@univ.haifa.ac.il

Shoshana Marcus
Kingsborough Community College of the City University of New York
2001 Oriental Boulevard, Brooklyn, NY 11235, USA
shoshana.marcus@kbcc.cuny.edu

Dina Sokol3

Brooklyn College of the City University of New York
2900 Bedford Avenue, Brooklyn, NY, 11210, USA
sokol@sci.brooklyn.cuny.edu

Abstract
Maximal repetitions or runs in strings have a wide array of applications and thus have been
extensively studied. In this paper, we extend this notion to 2-dimensions, precisely defining a
maximal 2D repetition. We provide initial bounds on the number of maximal 2D repetitions
that can occur in a matrix. The main contribution of this paper is the presentation of the first
algorithm for locating all maximal 2D repetitions in a matrix. The algorithm is efficient and
straightforward, with runtime O(n2 logn log logn+ρ logn), where n2 is the size of the input, and
ρ is the number of 2D repetitions in the output.

2012 ACM Subject Classification Mathematics of computing → Combinatorics on words, The-
ory of computation → Design and analysis of algorithms

Keywords and phrases pattern matching algorithms, repetitions, periodicity, two-dimensional

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.2

1 Introduction

Repetitions in strings constitute one of the most fundamental areas of string combinatorics.
They are exploited in the design of efficient algorithms for string matching, data compression,
and analysis of biological sequences. Maximal repetitions are important structures, as they
encode all of the repetitions in the string in a concise way. Once the set of maximal repetitions
is known, repetitions of any other type (such as squares and cubes) can be extracted from it.

1 Partially supported by the Israel Science Foundation grant 571/14 and Grant No. 2014028 from the
United States-Israel Binational Science Foundation (BSF).

2 Partially supported by the Israel Science Foundation grant 571/14 and Grant No. 2014028 from the
United States-Israel Binational Science Foundation (BSF).

3 Partially supported by Grant No. 2014028 from the United States-Israel Binational Science Foundation
(BSF).

© Amihood Amir, Gad M. Landau, Shoshana Marcus, and Dina Sokol;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 2; pp. 2:1–2:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/160477907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:amir@esc.biu.ac.il
mailto:landau@univ.haifa.ac.il
mailto:shoshana.marcus@kbcc.cuny.edu
mailto:sokol@sci.brooklyn.cuny.edu
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2 Two-Dimensional Maximal Repetitions

Driven by the many applications to pattern recognition, low level image processing,
computer vision and multimedia, the past decades have seen the extension of clever string
searching techniques and combinatorial properties to two-dimensional arrays. However, the
notion of maximal two-dimensional repetitions has not been explored, neither from the
combinatorial perspective nor from the algorithmic perspective. Thus, in this project we
propose to fill this void. We define a maximal 2D repetition to be a submatrix that can be
decomposed into repeating non-overlapping occurrences of the same subblock horizontally
and vertically that is maximally extended in all directions.

A range of motivating applications exist that can spur the exploration of maximal
repetitions in matrices. In one-dimension, algorithms that compute all the maximal repetitions
in a text have application to data compression. The discovery of repetitive structures in the
two-dimensional sense can lead to improvements in the compression schemes used for images
and video. Just as properties of repetitions have enabled the speeding up of one-dimensional
pattern searching algorithms and are relied on by space-efficient one-dimensional pattern
matching algorithms, discovering properties of two-dimensional repetitions should create new
possibilities and opportunities to speed up two-dimensional string matching algorithms and
to design algorithms that use less working space in memory.

As Crochemore et al. have pointed out [9], “the difficulties in extending string-matching
techniques to image pattern matching methods are essentially due to different and more
complex structures of 2D-periodicities.”

In this paper we define two-dimensional maximal repetitions for matrices, prove upper
bounds on the number of maximal repetitions that can occur in a matrix, and develop an
efficient algorithm for locating them. We begin by putting our work in context of related
work in Section 2. In Section 3 we precisely define a 2D maximal repetition. Then, in Section
4, we prove that there are at most O(n3) maximal 2D repetitions in an n × n matrix. In
Section 5 we develop an algorithm to find all the maximal 2D repetitions in an n× n matrix
in close to linear time.

2 Related Work

A string r is periodic if its longest prefix that is also a suffix is at least half the length of
r. A string s is primitive if it cannot be expressed in the form s = uj , for some integer
j > 1 and some prefix u of s. A periodic string r can be expressed as uju′ for one unique
primitive u, which is called the period of r. Every non-primitive string is periodic but not
every periodic string is non-primitive. For example, abc, abcab are both primitive and
non-periodic, abcabc is non-primitive (and hence periodic), while abcabca is primitive and
periodic with period abc.

In a string s, a maximal repetition, or run, is a periodic substring r with period u in
which an extension by one letter to the right or to the left yields a string with a longer
period than |u| [16]. The maximal repetitions in a string can overlap, be embedded one
within another, or begin at the same position. Thus, it was remarkable when Kolpakov and
Kucherov proved that a string of length n can contain only O(n) runs [16]. More recently,
Bannai et al. proved that the number of runs is strictly less than n [6].

A square is a particular type of repetition. In one-dimension, a square is a string which
consists of precisely two consecutive occurrences of a substring. Apostolico and Brimkov
[3] extend the notion of a square to two dimensions, to form a 2D tandem. They define
a 2D tandem as a configuration consisting of two occurrences of the same primitive block
that share a side or a corner. A primitive array is one that cannot be partitioned into

A. Amir, G.M. Landau, S. Marcus, and D. Sokol 2:3

non-overlapping replicas of some block W [3]. Apostolico and Brimkov prove combinatorially
that an n× n matrix can contain Θ(n4) corner-sharing tandems and Θ(n3 logn) side-sharing
tandems [3]. They develop an O(n3 logn) algorithm for finding side-sharing tandems in an
n× n matrix, which can be used to derive an O(n4) algorithm for locating all corner-sharing
tandems [4].4 In this paper we extend Apostolico and Brimkov’s concept of a side-sharing
2D tandem to many copies to form maximal tandems horizontally and vertically.

A combinatoric construct that is related to repetitions is that of periodicities, i.e. highly
repetetive subblocks. The different kinds of two-dimensional periodicities in matrices have
been studied by Amir and Benson [1] in terms of self-overlap. Their definition of line and
radiant periodicity do not result in 2D repetitions since only the overlapping portion repeats.
The lattice periodicity of Amir and Benson is most similar to a 2D repetition. It is also similar
in concept to the bi-periodic infinite pictures studied by Bacquey [5]. Bacquey provides
interesting combinatoric properties of the primitive roots of bi-periodic infinite pictures.
The current paper is more restrictive in terms of lattice periodicity in that the primitive
root always has to occur immediately adjacent to its neighbor to the right or beneath it,
forming a lattice with all right angles. Apostolico and Brimkov [3], at the beginning of the
above-mentioned paper on tandems, define exactly this kind of repetition.

The right-angle lattice periodicity is also used by Gamard and Richomme [11] where the
primitive roots of 2D arrays are studied. A matrix is defined as primitive if it cannot be
broken down to a repeating factor vertically and/or horizontally. Gamard et al. [12] show
that every matrix has one unique primitive root. They present several 2D generalizations of
the Lyndon-Schutzenberger periodicity theorem for words. However, all exponents in their
periodic matrices are integers, i.e. only whole copies of the primitive root are allowed in a
repetitive matrix.

In this paper we discuss periodicity where partial copies are allowed at the ends of the
matrix, i.e. we use real exponents. Our goal is to find maximal rectangular submatrices that
are repetitions in a given matrix. In the next section we precisely define a 2D repetition and
a maximal 2D repetition in a matrix.

3 Definition of 2D Maximal Repetition

3.1 1D Maximal Repetitions
In one-dimensional data, a maximal repetition is a substring that is a repetition such that its
extension by one character to the right or to the left yields a word with a larger period [16].

I Definition 1. Let T be a 1D repetition of length t with period U of length u. The exponent
e of T is the rational number that satisfies e = t

u .

I Lemma 2. Let T be a 1D repetition of length t with period U of size u. Let the exponent
e be the number of adjacent times U occurs in T such that Ue = T and u · e = t. Then T is
maximal iff it is a substring in which extending one character to the right or left yields a
string T ′ of size t+ 1 with period U ′ of size u′ and exponent e′ such that e′ < e.

Proof. The proof has been omitted due to lack of space. J

4 They consider this optimal based on the largest number of such repetitions that can occur in a matrix.
However, this is not optimal for a matrix with few 2D tandems. A truly optimal algorithm would find
all 2D tandems in O(n2 + occ) time, where occ is the number of 2D tandems in the matrix.

ESA 2018

2:4 Two-Dimensional Maximal Repetitions

Table 1 Non-primitive matrices.

X
X

X X
X X
X X

3.2 2D Maximal Repetitions
We say that U is a horizontal prefix (resp. suffix) in matrix M if U is an initial (resp. ending)
sequence of contiguous columns in M . A horizontal border of matrixM is a proper horizontal
prefix that is also a horizontal suffix of M . We say that B is the longest horizontal border of
M if it is the horizontal border of M that spans the largest number of columns among the
horizontal borders of M .

I Definition 3. The horizontal period, or h-period, of an m× n matrix M is n− b where b
is the number of columns contained in the longest horizontal border of M .

I Definition 4. [8, 17] An m × n matrix M with h-period p is horizontally periodic, or
h-periodic, if p ≤ bn

2 c.

The vertical period of a matrix and vertical periodicity are defined analogously.

I Definition 5. [3] A matrix M is a two-dimensional repetition if M is h-periodic and
v-periodic.

Consider an m × n matrix M and rational numbers x > 0, y > 0. Mx,y is the matrix
constructed by repeating M x times vertically and y times horizontally, yielding an bxmc ×
bync matrix.

For example,

M =
[
a b c d

e f g h

]

M1.5,2.25 =

a b c d a b c d a

e f g h e f g h e

a b c d a b c d a

 M2,1.5 =

a b c d a b

e f g h e f

a b c d a b

e f g h e f

I Definition 6. [3, 12] A matrix M is primitive if it cannot be partitioned into more than
one non-overlapping complete occurrences of some block W . M is non-primitive if M can be
expressed as M = W r,s for integers r, s such that either r > 1 or s > 1 or both r and s are
strictly greater than 1.

Table 1 shows the different basic configurations of a non-primitive matrix. As in the string
terminology, a periodic matrix can be either primitive or non-primitive. In the example,
M1.5,2.25 is both periodic and primitive, while M2,1.5 is periodic and non-primitive.

I Definition 7. The primitive root W of a matrix M is a primitive submatrix such that
M = W r,s for rational numbers r, s. M begins with W at its upper left corner and can be
partitioned into non-overlapping replicas of W , possibly including partial occurrences of W
at its right and / or lower ends.

I Lemma 8. Every matrix M has a unique primitive root W such that M = W r,s for
rational numbers r, s.

A. Amir, G.M. Landau, S. Marcus, and D. Sokol 2:5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 a a a b a a b a a a a b a a b b a a

2 b a a a a a a a b b a b a b a a b a

3 a b a a a a a a a a b a b a a a a a

4 a b a b a b a b b b b b b a a a b b

5 b a a a a a a a b a a a a b b b a b

6 a b a b a b a b b b a b a a a a a b

7 b a b b b b b b a a b a b a a a a a

8 b a a a a a a b a b b b b a a a b a

9 b a a b a b a a b a a a a b b b a b

10 a b a a a a b a a b a b a a a a a b

11 a a a b a b a b b a b a b a a a a a

12 b b b b b b a a b b b b b b b b b b

13 a a a a a a b b a a a a a a a a a a

14 b a a a a a b b b b a b a a a a b a

15 a a a a a b a a a b b a b a a a a a

16 a a a a b b b b b b a a b b b b a b

17 a b a b a a a b b a a b a b a a a b

18 a a a a a b b b a b b b a b a a b a

M1
r

W

Y

X

X

Y

X

Y

Y

Y

X

W

Z

W

Y

W

W

X

W

M1
c B A A C A A C A B B A D A B C C B A

Figure 1 A matrix M with many maximal 2D repetitions highlighted. The first row of M1
c is

depicted below M and the first column of M1
r is depicted on the right.

Proof. The proof has been omitted due to lack of space. J

I Definition 9. Let R be a 2D repetition of size r1×r2 with primitive rootW of size w1×w2.
The exponent of R is a tuple (e1, e2) in which e1 and e2 are rational numbers that satisfy
e1 = r1

w1
and e2 = r2

w2
.

In a 2D repetition R =

W ... W W ′

...
W ... W W ′

W ′′ ... W ′′ W ′′′

there are at least two W -blocks horizontally and vertically. That is, the primitive root W
repeats both to the right and underneath its initial occurrence in R.

We introduce the idea of a maximal two-dimensional repetition. A 2D repetition R

with root W is maximal if it cannot be extended by one row or one column to obtain a
2D repetition with the same primitive root W . Figure 1 depicts a matrix with many 2D
maximal repetitions highlighted.

I Lemma 10. A 2D repetition R of size r1 × r2 with root W of size w1 × w2 and exponent
(e1, e2) is maximal iff extending R by one row or column in either direction yields a matrix
R′ of size r′1 × r′2 with primitive root W ′ of size w′1 × w′2 and exponent (e′1, e′2) such that
e′2 < e2 or e′1 < e1.

Proof. The proof has been omitted due to lack of space. J

4 Bounds on the Number of 2D Maximal Repetitions

I Lemma 11. There are O(n3) maximal 2D repetitions in an n× n matrix.

ESA 2018

2:6 Two-Dimensional Maximal Repetitions

Proof. In each row there are O(n) maximal 1D repetitions [16]. For each possible height
0 < h ≤ n, we can linearize the 2D submatrix beginning in each row with height h and width
n, by naming metacharacters of subcolumns of height h. This linearization yields a string of
length n with O(n) runs. Thus, beginning in each row, for each height, we have O(n) 2D
h-periodic horizontally maximal repetitions, resulting in O(n3) over all rows. The number of
2D maximal repetitions is no more than the number of h-periodic submatrices, since all 2D
maximal repetitions are h-periodic. J

5 Algorithm to Find 2D Maximal Repetitions

In this section we develop an efficient algorithm to identify all maximal 2D repetitions in
an n× n matrix M . The naive algorithm can examine each of the O(n4) submatrices in M .
For each submatrix S, we can check whether S can possibly be the primitive root of a 2D
repetition by attempting to extend it as far as possible. This would take O(n6) time for all
submatrices S. Using LCA queries within each row or column to extend S would speed up
the algorithm to O(n5) time. The last step that remains is to filter out repetitions that were
located more than once, which can complete the process in O(n5) time. The remainder of
this section presents a more efficient O(n2 logn log logn+ ρ logn) algorithm for finding all ρ
maximal 2D repetitions that occur in M .

Algorithm Overview:
Step 1 Preprocess the matrix and set up data structures that are used later on by algorithm.
Step 2 Search in each row of the matrix for h-periodic submatrices of height 2i, for every

1 ≤ i ≤ logn, that begin in that row.
Step 3 Locate all maximal 2D repetitions of height 2i ≤ r < 2i+1, for every 1 ≤ i ≤ logn,

whose prefix 2i rows are v-periodic.
Step 4 Identify the maximal 2D repetitions of height 2i < r < 2i+1, for every 1 ≤ i ≤ logn,

whose v-period is not apparent in the first 2i rows.

5.1 Step 1: Preprocessing the matrix
There are three steps to the preprocessing stage of our algorithm:
1. Naming

We use Karp-Miller-Rosenberg (KMR) naming [14] on matrix M . One-dimensional KMR
naming works with a string, naming each substring whose length is a power of 2. In
two-dimensions, we name subcolumns of an n× n matrix M spanning a number of rows
that are powers of 2, i.e., r = 2i, 1 ≤ i ≤ logn. We construct logn matrices of names
called M i

c , for each 1 ≤ i ≤ logn, by naming subcolumns of heigth 2i. Similarly, we
construct a second set of logn matrices of names which we callM j

r , for each 1 ≤ j ≤ logn,
by naming subrows of M whose widths are 2j . Throughout the rest of this paper, i is
used as the exponent when denoting a number of rows, e.g. height 2i, while j is used in
reference to columns, e.g. width 2j .

2. Substring Periodicity Queries
A Substring Periodicity Query (SPQ) is as follows: given a string T of length n and two
indices, 1 ≤ i < j ≤ n, return the period length of T [i..j], when T [i..j] is a repetition.
Kociumaka et al. [15] presented an algorithm that processes a string in linear time
and space to support O(1) time Substring Periodicity Queries, which they call 2-Period
Queries. (Similar time and space complexities are presented by Bannai et al. [7].) We
preprocess each column of M j

r , for each 1 ≤ j ≤ logn, in linear time following the
algorithm of Kociumaka et al. [15] to support O(1) time SPQ.

A. Amir, G.M. Landau, S. Marcus, and D. Sokol 2:7

3. Vertical Squares Preprocessing
We build and decorate suffix trees of each column in each of M j

r , 1 ≤ j ≤ logn, using
the approach of Gusfield and Stoye [13]. The decorated suffix tree marks the endpoints
of tandem repeats, either at a node or along an edge. In each decorated suffix tree,
we add a link at each node that points to its closest ancestor that is marked or has a
marked edge leading into it. We also add links from each marked node to its closest
marked ancestor. We then preprocess each decorated suffix tree to admit O(log logn)
time weighted ancestor queries, where the weight of a node corresponds to the string
length it encodes in the suffix tree [2].

Time Complexity for Preprocessing: Subcolumns and subrows can be named with gener-
alized suffix trees of the matrix columns and of the matrix rows for each of the logn matrices
of names. This takes O(n2 logn) time, since the naming can be done during Ukkonen’s suffix
tree construction process [18]. We build a suffix tree of the matrix and preprocess it in linear
time to admit O(1) time LCA queries later on. The preprocessing of Kociumaka et al. [15]
for SPQ runs in linear time per column of each matrix of names, a total of O(n2 logn) time
and space. Suffix trees of each column in each of M j

r , 1 ≤ j ≤ logn, are constructed in linear
O(n2) time and space for each column, overall O(n2 logn), and the preprocessing of Amir et
al. [2] for weighted ancestor queries is also linear in time and space. In total, the complexity
of preprocessing is O(n2 logn) time and space.

5.1.1 Queries Used in Algorithm
Once the preprocessing is performed, we can make use of three kinds of efficient queries later
on in our algorithm.

Query 1: Vertical Periodicity Query. Given an h-periodic submatrix S within matrix M ,
what is the vertical period of S?

A Vertical Periodicity Query can be answered in constant time by a SPQ in a column
of one of the matrices of names M j

r , 1 ≤ j ≤ logn. If S has width 2j , we use M j
r . Suppose

S begins in row α and ends in row β of M . We ask a SPQ in the column of M j
r in which

S begins with indices α and β that indicate the starting and ending rows of S in M . If S
has width c such that 2j < c < 2j+1, it is sufficient to ask a SPQ on the first 2j columns of
S. Since S is h-periodic, all of its remaining columns must appear in the first 2j columns,
and they do not affect the vertical periodicity of S. For example, in Figure 1, the Vertical
Periodicity Query (on 2 columns) will answer 4 for the 8x3 highlighted submatrix at position
(3, 14) and the Vertical Periodicity Query will answer 7 for the 14x3 highlighted submatrix
at position (3, 14).

Query 2: Vertical Extension Query. Given a submatrix R that is a 2D repetition of height
r, and an integer x < r, can R be extended vertically by x rows?

A Vertical Extension Query can be answered in O(1) time as follows. We can compute
the v-period v of R using Query 1. Let Ra be the submatrix R extended above by x rows.
We do not know if Ra is h-periodic so we do not use Query 1. Let the width c of R satisfy
2j ≤ c < 2j+1. To compute the v-periodic of Ra, we use two SPQs in O(1) time: one query
for a prefix of size 2j and another query for a suffix of size 2j in a column of M j

r . If both
answers to the SPQs are equivalent to v, then the answer to the Vertical Extension Query is
yes, meaning that the repetition R can be extended above by x rows. Otherwise, we perform
the same computation for Rb, the submatrix R extended below by x rows. If the answers to

ESA 2018

2:8 Two-Dimensional Maximal Repetitions

both SPQs for Rb are equivalent to v, the answer to the Vertical Extension Query is yes.
Otherwise, the answer to the vertical extension query is no, meaning that the repetition R
cannot be extended by x rows up or down. For example, in Figure 1, a Vertical Extension
Query by 6 rows on the 8x3 2D repetition beginning at position (3, 14) answers no even
though it results in a 2D repetition since the vertical period grows with the vertical extension.

Query 3: Vertical Squares Query. Given a column c in M j
r , 1 ≤ j ≤ logn, a position

1 ≤ p ≤ n within the column, and 1 ≤ i ≤ logn, locate each vertical square beginning at
position (c, p) with height 2i < r < 2i+1.

We use the data structure of the Vertical Squares Preprocessing described in Step 3 of
the preprocessing. To answer the query we ask an O(log logn) time weighted ancestor query
on suffix p of column c in M j

r with weight 2i+1 − 1. The returned node’s link to the closest
marked ancestor yields such a square if one exists. Later, in Lemma 20 we prove that there
are at most two answers to this query, hence, one additional link may need to be followed.

5.2 Step 2: Populate the Set H

In this section, we find h-periodic submatrices of height 2i in the input matrix. A 1D search,
e.g. [16, 6], for runs across each row in M i

c yields a set of h-periodic submatrices. These
submatrices are necessarily maximal in their widths but not their heights since the height is
fixed at 2i for some i. Since a 1D row of length n can contain O(n) repetitions [16], each row
in M i

c can contain O(n) h-periodic submatrices. Thus, each matrix of names can contain
O(n2) h-periodic submatrices, yielding a total of O(n2 logn) h-periodic submatrices over the
logn matrices of names. These submatrices may or may not be v-periodic. However, we will
use them as a starting point for our search.

I Definition 12. Let H denote the set of all horizontally maximal h-periodic submatrices of
height 2i, for all 1 ≤ i ≤ logn.

I Lemma 13. The procedure described in the previous paragraph finds every horizontally
maximal h-periodic submatrix with height 2i, for each 1 ≤ i ≤ logn, in input matrix M , i.e.
we can find the complete set H, in O(n2 logn) time.

Proof. Let I be a horizontally maximal h-periodic submatrix of height 2i, 1 ≤ i ≤ logn, in
M . There must be a subrow of M i

c that corresponds exactly to I. By the correctness of
the 1D search algorithm for runs across the rows of M i

c, I will be found as a maximal 1D
run. The algorithms of [16, 6] run in linear time on each of the O(n) rows of length n in the
O(logn) texts, resulting in O(n2 logn) time overall. J

In Step 3 and and Step 4 we use the set H as the starting point for our search for all 2D
maximal repetitions. We prove that each 2D maximal repetition in the desired output has
a representative in the set H that shares its h-period. Thus, our algorithm processes each
element in H, extending it possibly in several ways, yielding different size repetitions.

I Lemma 14. Each maximal 2D repetition R of height 2i ≤ r < 2i+1, 1 ≤ i ≤ logn, has a
representative R′ ∈ H that overlaps R by 2i rows and shares a corner on the left with R. R
also has a representative R′′ ∈ H that overlaps R by 2i rows and shares a corner on the right
with R.

A. Amir, G.M. Landau, S. Marcus, and D. Sokol 2:9

Proof. Let R be a maximal 2D repetition of height r. If r = 2i, 1 ≤ i ≤ logn, then R ∈ H
and R is its own representative. Now suppose 2i < r < 2i+1. Let R̂ denote the prefix 2i rows
of R. Let Ř denote the suffix 2i rows of R. If either R̂ ∈ H or Ř ∈ H then a corner on each
side is shared with a member of H and we do not need to consider other scenarios.

Now suppose R̂ /∈ H and Ř /∈ H. This implies that both R̂ and Ř are not horizontally
maximal. Suppose both R̂ and Ř need to be extended on the left to attain horizontal
maximality. This implies that R needs to be extended on the left to attain horizontal
maximality. This contradicts the fact that R is a maximal 2D repetition. Thus, R shares
either its upper or lower left corner with a member of H. The same argument can be used
for the existence of a representative in H that shares a right corner with R. J

I Corollary 15. Each maximal 2D repetition R shares either its upper left corner or its
lower left corner with some element of H.

I Corollary 16. Let A be the set of all horizontal prefixes in H. Every maximal 2D repetition
in M is the result of a vertical extension on some element of A.

I Lemma 17. Let R be a maximal 2D repetition of height 2i ≤ r < 2i+1, 1 ≤ i ≤ logn, with
representatives R′ ∈ H and R′′ ∈ H. R′ and R′′ both have the same h-period as R.

Proof. Let h be the h-period of R. Let h′ be the h-period of R′. Suppose h′ > h. This is
impossible since R cannot include fewer rows than R′. Suppose h′ < h. This means that the
Least Common Multiple (LCM) of the periods of the rows in R is larger than the LCM of
the periods of the rows in R′. This is only possible if some row in R that is not part of R′
has a period larger than that of any row in R′. This implies that some row in R does not
occur in R′. This is impossible since we know that more than half of the vertical repetition
in R occurs in R′, and all the rows of R must occur in R′ as well. Thus h′ = h. The same
argument can be made for the h-period of R′′. J

Following Corollary 16, our algorithm will iterate through the elements in H and attempt
to extend them downward and upward5. Since we know that the repetitions in H are maximal
in width, it is not necessary to check horizontal maximality. However, it is possible that by
reducing the width, an element in H can be extended to a taller height. (See the three 2D
maximal repetitions beginning at position (13, 2) in Figure 1.) Hence, the task of extension
is non-trivial. It is further complicated by the fact that we do not know the v-period of the
elements in H. In fact, some elements in H may not be v-periodic and yet may possibly be
extendable into v-periodic matrices. (See the 14x3 2D maximal repetition at position (3, 14)
and the 11x4 2D maximal repetition at (3, 3) in Figure 1.) Thus, we consider these two cases
separately in the following two subsections. In Section 5.3, we consider the representatives in
H that are v-periodic and identify all 2D maximal repetitions of height 2i ≤ r < 2i+1 whose
prefix 2i rows are v-periodic. Then, in Section 5.4, we locate the maximal 2D repetitions
of height 2i < r < 2i+1 whose prefix 2i rows do not contain two complete copies of their
v-periods.

5.3 Step 3: Extending 2D Repetitions Vertically
We begin by performing a Vertical Periodicity Query on each element in H. If the element is
v-periodic then it is processed in Step 3.

5 The rest of the paper discusses the downward direction, the upward direction is analogous.

ESA 2018

2:10 Two-Dimensional Maximal Repetitions

Algorithm 1 Find Maximal Height.
Input: 2D repetition R of height 2i ≤ r < 2i+1

Output: maximal height r with width of R
. perform binary search to extend R

j ← i− 1 . we will try to extend by 2j rows
while j > −1 do . last extension should be by 1 row

if Vertical Extension Query(R,2j) then
r ← r + 2j . R is extended by 2j rows

end if
j ← j − 1 . decrementing j by 1 in effect halves the size of the extension

end while

Let R′ denote an element in H that is both h-periodic and v-periodic. Algorithm 1
attempts to add rows to R′ while maintaining its full width. A binary search procedure
performs this extension by performing a sequence of Vertical Extension Queries. Once we
have determined the maximal height for the full width, it is necessary to attempt to extend
narrower widths. The following lemma shows that when there are several 2D maximal
repetitions with the same primitive root that share a corner we get a progression of increasing
heights and corresponding decreasing widths. For example, position (13, 2) of Figure 1
depicts several 2D repetitions with the same primitive root all starting at the same position.

I Lemma 18. Let R be a maximal 2D repetition beginning at position (i, j) with dimensions
r1 × r2 and primitive root w of size w1 × w2. For any other maximal 2D repetition R′

beginning at (i, j) with dimensions r′1× r′2 and the same primitive root w, r′1 > r1 if and only
if r′2 < r2.

Proof. The proof follows from the definition of maximality. J

This monotonicity property gives us the ability to use the modified binary search presented
in Algorithm 1 on the potential heights of a 2D repetition. To illustrate Algorithm 1, we
can consider the 13x4 maximal 2D repetition at position (2, 10) in Figure 1. We begin with
the representative in H which has 23 = 8 rows. We first try to extend downwards by 4 rows
and succeed. Then we try to extend downwards by 2 more rows and fail. Finally, we try to
extend downwards by 1 additional row and succeed, resulting in a maximal 2D repetition of
height 13.

Algorithm 2 is the outer loop; its job is to compute the widths for which it needs
Algorithm 1 to compute the corresponding maximal heights. For each repetition R of height
2i < r < 2i+1, Algorithm 2 first checks whether it can be extended to the full height of 2i+1.
If it can, then this particular output will be found in another iteration, and the representative
has been completed being processed. Otherwise, Algorithm 1 is called. Let r′ denote the
maximal height returned by Algorithm 1 for some repetition R. The full width of R cannot
be extended even one row past r′ since the last Vertical Extension Query failed at the end of
Algorithm 1. Hence, a Longest Common Prefix (LCP) query in M between the substring of
row r′ + 1 directly below R and the row that is a v-period above it will determine the next
width to extend. If the LCP suffices to admit two horizontal copies of the primitive root,
we attempt to extend further downwards with Algorithm 1, passing a 2D repetition whose
width is the answer to the LCP query and whose height is r′ + 1. This process continues
until either the width is too narrow or the height becomes 2i+1.

A. Amir, G.M. Landau, S. Marcus, and D. Sokol 2:11

Algorithm 2 Find Maximal Repetitions with v-periodic prefix 2i rows.
Input: set H of h-periodic submatrices, each with height 2i

Output: maximal 2D repetitions with height 2i ≤ r ≤ 2i+1 that are v-periodic in their
prefix 2i rows
for all R ∈ H do . R has height r = 2i, width c, and h-period h

Ask Vertical Periodicity Query on R to get vertical period v of R
if v ≤ r

2 then . R is v-periodic
repeat

d← 2i+1 − r . d is distance to height 2i+1

if Vertical Extension Query(R, d) then
break . Don’t process R if it extends to height 2i+1.

end if
Call Algorithm 1 to compute maximal height r′ for R
r ← r′

Output R with new height
. see if can extend R further downwards by decreasing its width

`← LCP between row r − v + 1 in R and row r + 1 below R

if ` ≥ 2h then
c← `

r ← r + 1
end if

until ` < 2h or r ≥ 2i+1

. continue looking for taller and narrower 2D repetitions as long as width is
h-periodic and height is less than 2i+1

end if
end for

5.4 Step 4: Unknown Vertical Period

In this section we process all elements of H to discover v-periods that were previously
unknown. This can happen in one of two ways in a 2D repetition of height 2i < r < 2i+1,
1 ≤ i ≤ logn.
1. The first 2i rows of a repetition are not v-periodic. For example, abaababa with i = 2,

and each character of the string is a metacharacter representing a subrow in M . (See the
11x4 maximal repetition at position (3, 3) in Figure 1.)

2. The first 2i rows are v-periodic, but there is another v-period that comes into existence
when rows are added. For example, aabaaabaabaaab with i = 3 and each character of
the string is a metacharacter representing a subrow in M . In the first 2i rows of this
submatrix, we have the periodic string aabaaaba with period aaba. The first 14 rows are
also periodic with period aabaaab of size 7. (See the two maximal repetitions at position
(3, 14) in Figure 1.)

The following two lemmas identify the key characteristics of a 2D repetition of height
2i < r < 2i+1, 1 ≤ i ≤ logn, and v-period v such that v is not a vertical period in the first
2i rows of R, i.e., v > 2i−1.

I Lemma 19. In a 2D repetition R of height 2i < r < 2i+1 whose 2i prefix rows are not
v-periodic, the exponent e of the v-period v is between 2 and 4, i.e., 2 ≤ e < 4.

ESA 2018

2:12 Two-Dimensional Maximal Repetitions

Proof. Let |v| be the size of v. We know |v| > 1
2 2i = 2i−1 since the first 2i rows of R are not

periodic in v. Thus, |v| ≥ 2i−1 + 1. We know that the height of R is at most 2i+1 − 1. The
longest possible height of R divided by its shortest possible root yields the largest possible
exponent for the v-period.

e ≤ 2i+1 − 1
2i−1 + 1 <

2i+1

2i−1 = 4.

By the definition of an exponent for a period, e ≥ 2. Overall, 2 ≤ e < 4. J

I Lemma 20. Let I be an h-periodic matrix of height 2i < r < 2i+1. No more than 2
v-periods v can occur at the beginning of I such that the first 2i rows of I are not periodic
in v.

Proof. Suppose v1 and v2 are the smallest v-periods in I such that v1 > 2i−1 and v2 > 2i−1.
Suppose I has a third v-period v3 in which the first 2i rows are not periodic in v3. Then
v3 ≥ v1 + v2 [10]. Thus, v3 > 2i. This implies that v3 cannot occur twice in I of height
r < 2i+1 and I cannot be v-periodic in v3. Thus, a third v-period of height larger than 2i−1

cannot exist in I. J

By Lemmas 19 and 20, we know that we are looking for 2D repetitions that contain
either 2 or 3 complete copies of their v-periods and that each element of H will extend to
at most 2 new v-periods. Hence, we are looking for at most two squares that begin with I
and have height 2i < r < 2i+1. Suppose I has width c such that 2j ≤ c < 2j+1 and that I
begins in row α. We ask a Vertical Squares Query on the column at which I begins in M j

r ,
α, and i. Once we identify the 1 or 2 v-periods, if they occur, we revert back to Step 3 of
the algorithm (when the v-period is known) and use the procedure described in Algorithm 2
to find the set of maximal 2D repetitions corresponding to each v-period we have identified.

5.5 Algorithm Correctness and Time Complexity
I Theorem 21. Let M be an n× n matrix. Our algorithm finds all maximal 2D repetitions
that occur in M .

Proof. By Lemma 14 every repetition in the output has a representative in H. It remains
to show that we hit upon every repetition R in the output with some vertical extension of
an element R′ ∈ H that is a prefix or suffix of R. By Corollary 15, we know that R′ shares
a corner on the left with R. If R and R′ have the same primitive root (Step 3), then by
Lemma 18 the successive binary searches will hit upon every output. Now suppose that R′
has a different primitive root than R. R′ and R must have the same h-period, by Lemma 17,
so R′ and R must have different v-periods. By Lemma 20, there can be no more than two
possible v-periods to try extending with a binary search. One of the extensions must be R,
by Corollary 16. Hence, our algorithm identifies all maximal 2D repetitions in M . J

I Theorem 22. Let M be an n× n matrix. Our algorithm finds all maximal 2D repetitions
in M in O(n2 logn log logn+ ρ logn) time, where ρ is the number of maximal 2D repetitions
that occur in M .

Proof. Step 1 of the Algorithm Outline, the preprocessing, was shown in Section 5.1 to be
done in O(n2 logn) time. For Step 2, a linear time 1D search (e.g., [16, 6]) for runs across
each row in M i

c yields the set H in O(n2 logn) time and space.
In Step 3, we iterate through the O(n2 logn) elements in H and perform a constant time

Vertical Periodicity Query on each element. Then, Algorithm 2 is called on each v-periodic

A. Amir, G.M. Landau, S. Marcus, and D. Sokol 2:13

element. Algorithm 2 performs a Vertical Extension Query and LCP query in constant time.
It also calls Algorithm 1 for each representative for each width that is necessary to check.
Algorithm 1 runs in O(i) = O(logn) time. However, the only widths that are checked are
those that will certainly produce output. Therefore, we can charge the time spent running
Algorithm 1 to the output it generates, yielding O(ρ logn) where ρ equals the number of
repetitions reported. Each repetition is reported at most twice since it can be found once by
the upward and downward extensions. For Step 4, we find the 1 or 2 v-periods of interest in
O(log logn) time using the Vertical Squares Query and again use Algorithm 2 to find the
corresponding maximal 2D repetitions in O(n2 logn+ ρ logn) time. Hence, the total time
complexity of our algorithm is O(n2 logn log logn+ ρ logn). J

References

1 A. Amir and G. Benson. Two-dimensional periodicity in rectangular arrays. SIAM J.
Comput., 27(1):90–106, 1998. doi:10.1137/S0097539795298321.

2 A. Amir, G. M. Landau, M. Lewenstein, and D. Sokol. Dynamic text and static pattern
matching. ACM Trans. Algorithms, 3(2):19, 2007. doi:10.1145/1240233.1240242.

3 A. Apostolico and V. E. Brimkov. Fibonacci arrays and their two-dimensional repetitions.
Theor. Comput. Sci., 237(1-2):263–273, 2000. doi:10.1016/S0304-3975(98)00182-0.

4 A. Apostolico and V. E. Brimkov. Optimal discovery of repetitions in 2d. Discrete Applied
Mathematics, 151(1-3):5–20, 2005. doi:10.1016/j.dam.2005.02.019.

5 N. Bacquey. Primitive roots of bi-periodic infinite pictures. In Words 2015, 2015.
6 H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta. A new characteri-

zation of maximal repetitions by Lyndon trees. In Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, Jan-
uary 4-6, 2015, pages 562–571, 2015. doi:10.1137/1.9781611973730.38.

7 H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta. The "runs" theorem.
SIAM J. Comput., 46(5):1501–1514, 2017. doi:10.1137/15M1011032.

8 M. Crochemore, L. Gasieniec, R. Hariharan, S. Muthukrishnan, and W. Rytter. A constant
time optimal parallel algorithm for two-dimensional pattern matching. SIAM J. Comput.,
27(3):668–681, 1998. doi:10.1137/S0097539795280068.

9 M. Crochemore, L. Ilie, and W. Rytter. Repetitions in strings: Algorithms and combina-
torics. Theor. Comput. Sci., 410(50):5227–5235, 2009. doi:10.1016/j.tcs.2009.08.024.

10 M. Crochemore and W. Rytter. Sqares, cubes, and time-space efficient string searching.
Algorithmica, 13(5):405–425, 1995. doi:10.1007/BF01190846.

11 G. Gamard and G. Richomme. Coverability in two dimensions. In A. H. Dediu, E. Formenti,
C. Martín-Vide, and B. Truthe, editors, Language and Automata Theory and Applications
- 9th International Conference, LATA 2015, Nice, France, March 2-6, 2015, Proceedings,
volume 8977 of Lecture Notes in Computer Science, pages 402–413. Springer, 2015. doi:
10.1007/978-3-319-15579-1_31.

12 G. Gamard, G. Richomme, J. Shallit, and T. J. Smith. Periodicity in rectangular arrays.
Inf. Process. Lett., 118:58–63, 2017. doi:10.1016/j.ipl.2016.09.011.

13 D. Gusfield and J. Stoye. Linear time algorithms for finding and representing all the tandem
repeats in a string. J. Comput. Syst. Sci., 69(4):525–546, 2004. doi:10.1016/j.jcss.2004.
03.004.

14 R. M. Karp, R. E. Miller, and A. L. Rosenberg. Rapid identification of repeated patterns in
strings, trees and arrays. In Proceedings of the 4th Annual ACM Symposium on Theory of
Computing, May 1-3, 1972, Denver, Colorado, USA, pages 125–136, 1972. doi:10.1145/
800152.804905.

ESA 2018

http://dx.doi.org/10.1137/S0097539795298321
http://dx.doi.org/10.1145/1240233.1240242
http://dx.doi.org/10.1016/S0304-3975(98)00182-0
http://dx.doi.org/10.1016/j.dam.2005.02.019
http://dx.doi.org/10.1137/1.9781611973730.38
http://dx.doi.org/10.1137/15M1011032
http://dx.doi.org/10.1137/S0097539795280068
http://dx.doi.org/10.1016/j.tcs.2009.08.024
http://dx.doi.org/10.1007/BF01190846
http://dx.doi.org/10.1007/978-3-319-15579-1_31
http://dx.doi.org/10.1007/978-3-319-15579-1_31
http://dx.doi.org/10.1016/j.ipl.2016.09.011
http://dx.doi.org/10.1016/j.jcss.2004.03.004
http://dx.doi.org/10.1016/j.jcss.2004.03.004
http://dx.doi.org/10.1145/800152.804905
http://dx.doi.org/10.1145/800152.804905

2:14 Two-Dimensional Maximal Repetitions

15 T. Kociumaka, J. Radoszewski, W. Rytter, and T. Walen. Internal pattern matching
queries in a text and applications. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015,
pages 532–551, 2015. doi:10.1137/1.9781611973730.36.

16 R. M. Kolpakov and G. Kucherov. Finding maximal repetitions in a word in linear time. In
40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October,
1999, New York, NY, USA, pages 596–604. IEEE Computer Society, 1999. doi:10.1109/
SFFCS.1999.814634.

17 S. Marcus and D. Sokol. 2d Lyndon words and applications. Algorithmica, 77(1):116–133,
2017. doi:10.1007/s00453-015-0065-z.

18 E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995. doi:
10.1007/BF01206331.

http://dx.doi.org/10.1137/1.9781611973730.36
http://dx.doi.org/10.1109/SFFCS.1999.814634
http://dx.doi.org/10.1109/SFFCS.1999.814634
http://dx.doi.org/10.1007/s00453-015-0065-z
http://dx.doi.org/10.1007/BF01206331
http://dx.doi.org/10.1007/BF01206331

	Introduction
	Related Work
	Definition of 2D Maximal Repetition
	1D Maximal Repetitions
	2D Maximal Repetitions

	Bounds on the Number of 2D Maximal Repetitions
	Algorithm to Find 2D Maximal Repetitions
	Step 1: Preprocessing the matrix
	Queries Used in Algorithm

	Step 2: Populate the Set H
	Step 3: Extending 2D Repetitions Vertically
	Step 4: Unknown Vertical Period
	Algorithm Correctness and Time Complexity

