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—— Abstract

In this paper, we study the mixing time of two widely used Markov chain algorithms for the
six-vertex model, Glauber dynamics and the directed-loop algorithm, on the square lattice Z2.
We prove, for the first time that, on finite regions of the square lattice these Markov chains
are torpidly mixing under parameter settings in the ferroelectric phase and the anti-ferroelectric
phase.
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1 Introduction

Introduced by Linus Pauling [23] in 1935 to describe the properties of ice, the siz-vertex
model or the ice-type model was originally studied in statistical mechanics as an abstraction
of crystal lattices with hydrogen bonds. During the following decades, it has attracted
enormous interest in many disciplines of science, and become one of the most fundamental
models defined on the square lattice. In particular, the discovery of integrability of the
six-vertex models with periodic boundary conditions was considered a milestone in statistical
physics [16, 14, 15, 29, 10].

For computational expediency and modeling purposes, physicists almost entirely focused
on planar lattice models. On the square lattice Z2, every vertex is connected by an edge to
four “nearest neighbors”. States of the six-vertex model on Z? are orientations of the edges
on the lattice satisfying the ice-rule — every vertex has two incoming edges and two outgoing
edges, i.e., they are Fulerian orientations. The name of six-vertex model comes from the fact
that there are six ways of arranging directions of the edges around a vertex (see Figure 1).

In general, each of the six local arrangements will have a weight, denoted by w1, ..., ws,
using the ordering of Figure 1. The total weight of a state is the product of all vertex
weights in the state. If there is no ambient electric field, by physical considerations, then
the total weight of a state should remain unchanged when flipping all arrows [3]. Thus one
may assume without loss of generality that w; = wy = a, w3 = wy = b, ws = wg = ¢. This
complementary invariance is known as arrow reversal symmetry or zero field assumption. In
this paper, we assume a, b, c > 0, as is the case in classical physics. We study the six-vertex
model restricted to a finite region of the square lattice with various boundary conditions
customarily studied in statistical physics literature. On a finite subset A C Z?2, denote the
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Figure 1 Valid configurations of the six-vertex model.

set of valid configurations (i.e. Eulerian orientations) by 2. The probability that the system
is in a state 7 € € is given by the Gibbs distribution

p(r) = (a

ni+nz pns +na

Cn5+n6)

where n; is the number of vertices in type ¢ (1 < ¢ < 6) on A in the state 7, and the partition
function Z is a normalizing constant which is the sum of the weights of all states.

In 1967, Elliot Lieb [16] famously showed that, for parameters (a,b,¢) = (1,1,1) on the
square lattice graph, as the side N of the square approaches oo, the value of the “partition
function per vertex” W = ZLN? approaches (%)3/2 ~ 1.5396007 ... (this is called Lieb’s
square ice constant). This result is called an exact solution of the model, and is considered
a triumph. After that, exact solutions for other parameter settings have been obtained
in the limiting sense [14, 15, 29, 10]. Readers are referred to [7] for known results in the
computational complexity of (both exactly and approximately) computing the partition
function Z of the six-vertex model on general 4-regular graphs.

In statistical physics, Markov chain Monte Carlo (MCMC) is the most popular tool to
numerically study the properties of the six-vertex model. A partial list includes [25, 31, 2,
9, 30, 1, 19]. In the literature, two Markov chain algorithms are mainly used. The first
one is Glauber dynamics. It can be shown that there is a correspondence between Eulerian
orientations of the edges and proper three-colorings of the faces on a rectangle region of
the square lattice. (See Chapter 8 of [3] for a proof). Therefore, the Glauber dynamics for
the three-coloring problem on square lattice regions (which changes a local color at each
step) can be employed to sample Eulerian orientations. In fact, this simple Markov chain is
used in numerical studies (e.g. in [9, 1, 19] for the density profile) of the six-vertex model
under various boundary conditions. The second one is the directed-loop algorithm. Invented
by Rahman and Stillinger [25] and widely adopted in the literature (e.g., [31, 2, 30]), the
transitions of this algorithm are composed of creating, shifting, and merging of two “defects”
on the edges. An interesting aspect is that this process depicts the Bjerrum defects happening
in real ice [2]. More detailed descriptions of the two Markov chain algorithms can be found
in Section 2.

With the heavy usage of MCMC in statistical mechanics for the six-vertex model, the
efficiency of Markov chain algorithms was inevitably brought into focus by physicists. Many
of them (e.g. [2, 30, 19]) reported that Glauber dynamics and the directed-loop algorithms
of the six-vertex model experienced significant slowdown and are even “impractical” for
simulation purposes when the parameter settings are in the ordered phases (see Figure 2a, in
the regions FE & AFE). Despite the concern and numerical experience for the convergence
rate of these algorithms, there is no previous provable result except for one point (that
corresponds to the unweighted case) in the parameter space. This is in stark contrast
to the popular studies on the mixing rate of Markov chains for the ferromagnetic Ising
model [20, 21, 8, 17] and hardcore gas model on lattice regions [5, 26, 4].
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Prior to [7], to our best knowledge, the only provable result in the complexity of approxi-
mate sampling and counting for the six-vertex model is at the single, unweighted, parameter
setting (a,b,c) = (1,1,1) where the partition function counts Eulerian orientations. In the
unweighted case, all known results are positive. Mihail and Winkler’s pioneering work [22]
gave the first fully polynomial randomized approximation scheme (FPRAS) for the number
of Eulerian orientations on a general graph (not necessarily 4-regular). Luby, Randall, and
Sinclair showed that Glauber dynamics with extra moves is rapidly mixing on rectangular
regions of the square lattice with fixed boundary conditions [18]. Randall and Tetali proved
the rapid mixing of the Glauber dynamics (without extra moves) with fixed boundary condi-
tions by a comparison technique applied to this Markov chain and the Luby-Randall-Sinclair
chain [27]. Goldberg, Martin, and Paterson extended further the rapid mixing of Glauber
dynamics to the free-boundary case [11]. The unweighted setting is the single green point
depicted in the blue region of Figure 2b.

In [7], Cai, Liu, and Lu showed that under parameter settings (a,b,c) with a? < b2 + ¢?,
b2 < a? + %, and ¢® < a? + b? (the blue region in Figure 2b), the directed-loop algorithm
mixes in polynomial time with regard to the size of input for any general 4-regular graph,
resulting in an FPRAS for the partition function of the six-vertex model. Moreover, it is
shown that in the ordered phases (FE & AFE in Figure 2a), the partition function on a
general graph is not efficiently approximable unless NP=RP. Although the rapid mixing
property for the directed-loop algorithm on general 4-regular graphs implies the same on the
lattice region, the hardness result for general 4-regular graphs has no implications on the
mixing rate of Markov chains for the six-vertex model on the square lattice in the ordered
phases (FE & AFE).

In this paper, we give the first provable negative results on mixing rates of the two Markov
chains for the six-vertex model under parameter settings in the ferroelectric phases and the
anti-ferroelectric phase. Our results conform to the phase transition phenomena in physics.
Here we briefly describe the phenomenon of phase transition of the zero-field six-vertex model
(see Baxter’s book [3] for more details). On the square lattice in the thermodynamic limit:
(1) When a > b + ¢ (FE: ferroelectric phase) any finite region tends to be frozen into one
of the two configurations where either all arrows point up or to the right (Figure 1-1), or
all point down or to the left (Figure 1-2). (2) Symmetrically when b > a + ¢ (also FE) all
arrows point down or to the right (Figure 1-3), or all point up or to the left (Figure 1-4). (3)
When ¢ > a + b (AFE: anti-ferroelectric phase) configurations in Figure 1-5 and Figure 1-6
alternate. (4) When ¢ < a+b, b < a+ ¢, and a < b+ ¢, the system is disordered (DO:
disordered phase) in the sense that all correlations decay to zero with increasing distance; in
particular on the dashed curve ¢? = a? + b2 the model can be solved by Pfaffians exactly [10],
and the correlations decay inverse polynomially, rather than exponentially, in distance. See
Figure 2a.

Let A be a square region on the square lattice. We show the following two theorems.

» Theorem 1.1 (Ferroelectric phase). The directed-loop algorithm for the siz-vertex model
under parameter settings (a,b,c) with a > b+ c orb > a+ ¢ (i.e. the whole FE) mizes
torpidly on A with periodic boundary conditions.

» Remark. We note that for periodic boundary conditions Glauber dynamics is not irreducible,
so we do not consider that.

» Theorem 1.2 (Anti-ferroelectric phase). Both Glauber dynamics and the directed-loop
algorithm for the siz-vertex model under parameter settings (a,b,c) with ¢ > 2.639 max(a, b)
(in AFE) miz torpidly on A with free boundary conditions and periodic boundary conditions.
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(a) Phase diagram of the six-vertex model. (b) Mixing time of Markov chains for the six-vertex
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Figure 2

Parameter settings covered by the above two theorems are depicted as the grey region in
Figure 2b. Given that the F' model in statistical mechanics is a special case of the six-vertex
model when @ = b =1 [14], Theorem 1.2 holds for the F' model with ¢ > 2.639.

Our proofs build on the equivalence between small conductance and torpid mixing by
Jerrum and Sinclair [28]. When arguing Markov chains for the six-vertex model in the
anti-ferroelectric phase have small conductance, we switch our view between finite regions of
the square lattice and their medial graphs. This transposition allows us to adopt a Peierls
argument which has been used in statistical physics to prove the existence of phase transitions
(e.g., [24, 6]), and in theoretical computer science to prove the torpid mixing of Markov
chains (e.g., [26, 4]).

In the proof of Theorem 1.2, we introduce a version of the fault line argument for the
six-vertex model. Fault line arguments are introduced by Dana Randall [26] for the lattice
hardcore gas and latter adapted in [13] for the lattice ferromagnetic Ising, which proves
torpid mixing of Markov chains via topological obstructions. The constant 2.639 comes from
an upper bound for the connective constant for the square lattice self-avoiding walks [12].

2 Preliminaries

2.1 Markov chains
2.1.1 Glauber dynamics

Denote by A,, a square lattice region where there are n vertices of degree 4 on each row and
each column. A, is in periodic boundary condition if it forms a two-dimensional torus; the
free boundary condition can be formulated in the following way: there are n + 2 vertices
on each row and each column, where the “boundary vertices” are of degree 1 and don’t
need to satisfy the ice-rule (and don’t take weights) in a valid six-vertex configuration. For
convenience, we assume there are “virtual edges” connecting every two boundary vertices
with unit distance on Z2. A virtual edge does not have orientations, serving only the purpose
that every unit square inside the (n + 1) x (n + 1) region is closed.
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Let 2 be the set of all valid configurations of the six-vertex model (Eulerian orientations)
on A,,. The Glauber-dynamics Markov chain, which we will denote by M, has state space
. To move from one configuration to another, this chain selects a unit square (a face) s on
A, (together with the virtual edges) uniformly at random. If all the non-virtual edges along
the unit square s are oriented consistently (clockwise or counter-clockwise), the chain picks
a direction d (clockwise or counter-clockwise) and reorients the non-virtual edges along s
according to the Gibbs measure.

One can easily check that such transitions take valid configurations to valid configurations.
Actually, this Markov chain is equivalent to that in [11] for sampling three-colorings on the
faces of A,,. The ergodicity of that chain translates straightforwardly to the ergodicity of Mg
(with free boundary conditions) thanks to the equivalence between Eulerian orientations and
three-colorings on Z2. Besides, the heat-bath move indicates that the stationary distribution
of M is the Gibbs distribution for the six-vertex model.

2.1.2 Directed-loop algorithm

The directed-loop algorithm Markov chain, denoted by Mp, is formally defined in [7] for
general 4-regular graphs, so here we only describe M p at a high level.

The state space of Mp is not only €2, the “perfect” Eulerian orientations, but also the
set of all “near-perfect” Eulerian orientations, denoted by . For example, in Figure 3 the
state 7, is in  and all other five states are in €’. We think of each edge in A,, as the two
half-edges cut in the middle, and each of the half edge can be oriented independently. We
say an orientation of all the half-edges is perfect (in ) if every pair of half-edges is oriented
consistently and the ice-rule is satisfied at every vertex (except for boundary vertices under
free boundary conditions); an orientation is near-perfect (in ') if there are exactly two pairs
of half-edges p; and ps not oriented consistently and the ice-rule is satisfied at every vertex
(except for boundary vertices under free boundary conditions), with the restriction that if
two half-edges in p; are oriented toward each other then in ps the two half-edges must be
oriented against each other and vice versa.

The transitions in M p are Metropolis moves among “neighboring” states. An () state
and an () state 7/ are neighboring if 7/ can be transformed from 7 by picking two half-edges
e1, €2 incident to a vertex v with one pointing inwards v and the other pointing outwards v
(or two half-edges e1, e2 on the boundary with one pointing towards the boundary and the
other pointing against the boundary), and reverse the direction of e; and ey together. For
instance, in Figure 3 {7, 71} and {7y, 1.} are two pairs of neighboring states. An ' state
71 and another ' state 75 are neighboring if 7} can be transformed from 7| by “shifting”
one pair of conflicting half-edges one step away, while fixing the other pair of conflicting
half-edges. For example, in Figure 3 71, and 75 are neighboring to each other. Mp can be
proved to be ergodic and converges to the Gibbs measure on Q U Q) with both free boundary
conditions and periodic boundary conditions [7].

2.2 Mixing time

The mixing time tn;x measures the time required by a Markov chain to evolve to be close to
its stationary distribution, in terms of total variation distance. (The definition of mixing
time can be found in [13].) We say a Markov chain is torpid mixing if the mixing time is
exponentially large in the input size. A common technique to bound the mixing time is via
bounding conductance, defined by Jerrum and Sinclair [28].
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Let 7 denote the stationary distribution of an ergodic and time reversible (7(z)P(z,y) =
7(y)P(y,z) for any z,y € Q) Markov chain M on a finite state space €, with transition
probabilities P(z,y), ,y € Q. The conductance of M is defined by

¢ =P(M)= min Q(?’ 39)

sca T ’

0<m(S)<3
where Q(S, S) denotes the sum of Q(z,y) = n(x)P(x,y) over edges in the transition graph
of Mwithz € S,andye S=0Q\S5.
In order to show a Markov chain mixes torpidly, we only need to prove that the conductance
is (inverse) exponentially small due to the following bound [13]:

tmix = ¢ L > L
mix — “mix 4 - 4@'

As is usually assumed, Markov chains studied in this paper are all lazy (P(z,z) = % for any
x € ) and transition probabilities (P(z,y) for ,y € Q) between neighboring states (where
P(z,y) > 0) are at least inverse polynomially large. Therefore, armed with the above bound,
we can prove the torpid mixing of a Markov chain if we can establish the following;:

1. Partition the state space €2 into three subsets Qperr U QmippLe U QriguT as a disjoint
union.

2. Show that for any state 7, € Qpgpr and 7. € Qrigur, P(7, 7) = 0. Under the assumption
that the Markov chain is irreducible (i.e., the transition graph is strongly connected),
this indicates that in order to go from states in QpgpT to states in QriguT, the Markov
process has to go through the “middle states” QumippLE.

3. Demonstrate that 7(QuippLe) is exponentially small (compared with min(7(QLgrT),
m(QrignT))) in the input size. This means that starting from any state in Qpgpr, the
probability of going through QumippLe (and consequently to any state in Qrigur and
reach stationarity) is exponentially small. Hence the conclusion of torpid mixing.

3 Ferroelectric phase

In this section we prove Theorem 1.1 that Mp in the directed-loop algorithm for the
six-vertex model in the ferroelectric phase is torpid mixing on A, with periodic boundary
conditions.

For any parameter setting (a, b, ¢) in the ferroelectric phase, either a > b+ cor b > a + c.
By symmetry, without loss of generality, suppose a > b+ ¢. This implies that vertex
configurations as shown in Figure 1-1 and Figure 1-2 have higher weights than others. Under
the periodic boundary condition, there is a state 7, in which every vertical edge points
upwards and every horizontal edge points to the right (Figure 3a), i.e., every vertex on A,, is
in local configuration shown in Figure 1-1. The total weight of 7, is a™ as there are n>
vertices on A,,.

For M p, the three-way partition of the state space QU Q' is as follows. Denote by T; the
states that can be reached from 7, in at most ¢ steps of transitions where 7 is a nonnegative
integer. Write 8E = Ti\n—l for i Z 1. Let QLEFT = Tn—la QMIDDLE = 8Tn, and QRIGHT =
(Q U Q/) \ (QLEFT U QMIDDLE)- It is obvious that QU Q' = Qrert U QMmippLE U QricHT IS 2
partition of the state space. Clearly 7, € QpgpT, thus the total weight of Qpgpr is no less
than a”z, the weight of 7.

Before proving the total weight of QyppLe is exponentially small compared with that of
QrerT or QriguT, let us look at what is in T; with 0 <4 <mn. Tp is just {7y, }. 9T consists
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Figure 3 Some states in the state space of Mp.

of all the states evolved from 7, by picking a vertex v on A, and two incident half-edges
(one pointing towards v and the other away from v), and then reversing the orientations on
these two edges. After such a transition, two pairs of conflicting half-edges are created, so
8T1 - Q.

For example, the states shown in Figure 3b (state 715) and Figure 3c (state 71.) are in
OT;. The weight of 71 is @™ ~'b and that of 71 is a™ ~lc. For every state in 9T, obtained by
transitions from 7., there is exactly one vertex v* on A, no longer in the local configuration
Figure 1-1. (Of course no vertex can be in state Figure 1-2.) Actually, depending on whether
the two pairs of conflicting half-edges are: (1) both vertical, (2) both horizontal, or (3) one
horizontal and the other vertical, the vertex v* is in configuration shown in (1) Figure 1-3,
(2) Figure 1-4, or (3) Figure 1-5/6, respectively. Therefore, every state in 977 has weight
a™ ~1b in case (1) and case (2) or a”’ ¢ in case (3).

Transitions from states in 077 to states in 07 are composed of “shifting” one of the
two conflicting pairs of half-edges to a neighboring edge on A,. For example, the state
in Figure 3d is in 075. This process will result in exactly two vertices on A,, not in local
configuration Figure 1-1 (nor in Figure 1-2). As a consequence, the weight of any state in 075

. 2_ 2_ 2_ R . 2_
is among a™ —2b%, a™ ~2bec, and a™ ~2c2. The state shown in Figure 3d has weight a™ —2¢2.

This line of argument can be extended for 9T; for 1 < i < n, in any state of which there
are exactly 4 vertices on A, not in local configuration Figure 1-1 (nor in Figure 1-2). When
two conflicting pairs of half-edges are created in 077, one of them is above or to the right of
another (or both). Denote the former by p,,, (the green pair in Figure 3) and the latter by
par (the red pair in Figure 3). Observe that as the Markov chain evolves, by a single step,
from a state in OT; to another in 9T;41 (where 1 < i < mn— 1), either p,, is “pushed” up or to
the right, or pg; down or to the left. For example, from Figure 3c to Figure 3d, p,, is pushed
to the right. By induction, py, is always above or to the right of pg (when i < n). A direct
consequence is that there can be no state containing a closed circuit formed by the reversed
edges (with regard to 7,) in 9T; until ¢ = n. Therefore, the edges reversed in any state in
OT; (1 <i < n) can be seen as either a self-avoiding walk between the middle points of the
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Figure 4 Some states in the state space of Mg.

two pairs of conflicting half-edges (e.g. Figure 3e) or a self-avoiding circuit (e.g. Figure 3f).
In fact, when the reversed edges form a circuit, the circuit must “go straightforward” at each
step. This circuit is a circle parallel or perpendicular to the torus equatorial plane. The
weight of any state in 97; is a™ =ik with i = j + k, where the values of j and k depend
on how many “turnarounds” are there in the self-avoiding walk.

Therefore, the total weight of states in 97}, is at most n? - a”Q’”(b +¢)", where n? is an
upper bound on all the possible starting points for self-avoiding walks, and each monomial
in (b4 ¢)" is from a unique self-avoiding walk. Combining with the fact that total weight of
QrerT is at least a”’ (the weight of 7,,) and is at most that of Qrigur (because there is a
weight-preserving injective map from Qpgpr to Qrigur by reversing orientations of all the

2 n<—n n
edges), we know that the conductance of Mp is at most nZa” T(bte)” _ 2 (%)n This is

amn

exponentially small in n since a > b+ ¢ are fixed constants in the ferroelectric phase.

4  Anti-ferroelectric phase

In this section, we prove the following theorem which is part of Theorem 1.2. After proving
Theorem 4.1, we state the ideas needed to extend it to Theorem 1.2, the full proof of which
is omitted due to space limit.

As we did in the ferroelectric phase, the intuition behind our proof for the anti-ferroelectric
phase is to find a partition 2 = Qrgrr U QMvippLe U Qriguar of the state space of Mg, i.e.,
all the Eulerian orientations on A,,. However, the strategy is different from that used in
Section 3 — here the subset QnppLE is determined in terms of a topological obstruction.

» Theorem 4.1 (Anti-ferroelectric phase). Glauber dynamics for the siz-vertex model under
parameter settings (a, b, ¢) with ¢ > 2.639max(a,b) miz torpidly on A, with free boundary
conditions.

Observe that there are two states in 2 with maximum weights: 7¢ (Figure 4a) and 7
(Figure 4b) where every vertex is in local configuration Figure 1-5 or Figure 1-6, and thus
has vertex weight c. Since 7¢ and 7 are total reversals of each other in edge orientations,
for any edge in any state 7 € €, it is oriented either as in 7¢ or as in 7. Let us call an edge
to be green if it is oriented as is in 7¢ and red otherwise. Observe that in order to satisfy the
ice-rule (2-in-2-out), the number of green (and thus also two red) edges incident to any vertex
(except for the boundary vertices) is always even (0,2, or 4), and if there are two green (or
red) edges they must be rotationally adjacent to each other. See Figure 4c¢ for an example.
Also note that the four edges along a unit square on Z? are all red edges or all green edges if
and only if they are oriented consistently, hence flippable by a single move of M.
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(a) A closed curve C. (b) An impossible configuration.

Figure 5

We say a simple path from a horizontal edge on the left boundary of A,, to a horizontal
edge on the right boundary of A,, is a horizontal green (or red) bridge if the path consists of
only green (or red, respectively) edges; a vertical green (or red) bridge is defined similarly. A
state 7 € ) has a green cross if it has both a green horizontal bridge and a green vertical
bridge; a red cross is defined similarly. Let Cg C 2 denote the states having a green cross
and CR the states having a red cross. In the following lemma, we prove that Cq N Cg = ().

» Lemma 4.2. A green cross and a red cross cannot coexist.

Proof. It suffices to show that a green horizontal bridge precludes a red vertical bridge.

Consider a virtual point vy, sitting to the left of A,, connected by an edge to every (external)
vertices of A,, on the left boundary, and another virtual point vg connected by an edge to
every vertex of A, on the right boundary. Connect vy, and vg by an edge below A,,.

If there is a green horizontal bridge, then by definition there is a continuous closed curve
C formed by the bridge and some edges we added (Figure 5a). According to the Jordan

Curve Theorem, C separates the plane into two disjoint regions, the inside and the outside.

Vertices of A,, that are on the bottom boundary are inside; vertices on the top boundary are
outside. Therefore, in order to have a red vertical bridge, there must be a simple red path
going across C. That is to say, a red vertical bridge must cross the green horizontal bridge.

However, this is impossible. Clearly, being of different colors, a red bridge and a green
bridge cannot share any edge. Since the local configuration shown in Figure 5b means that
the four edges incident to a vertex (4, j) on A, are all pointing inwards (when i + j is even)
or all pointing outwards (when i + j is odd), it is not allowed in any valid states of six-vertex
configurations. Similarly, the local configuration of a vertex surrounded by two red horizontal
edges and two green vertical edges (a 90 degree rotation of Figure 5b) is also not allowed. <«

Next we characterize the states in Q \ (Cg U Cr). Define a shifted lattice! L to be
Z* + (%, 3) where two points (a,b) and (c,d) in L are neighbors if |a — ¢| = [b—d| =1 (a, b,
¢, and d are all half integers), i.e., they are at the center of a square in Z? and are connected
by “diagonal” edges of length /2. An example of L and its relationship with Z? is shown
in Figure 6a. L is not connected — it is composed of two sub-lattices Ly and Ly (depicted
with different colors in Figure 6b). Denote by L,, the restriction of L on the finite region
inside A,,. Note that in graph theoretical terms, the square lattice A,, is planar and 4-regular,
and thus can be seen as the medial graph of two planar graphs. In fact, they are Ly and L
(restricted onto L,,).

From now on, we use A,-vertices/edges as an abbreviation for vertices/edges in A,; and
we use L,-vertices/edges and other similar notations whenever it has a clear meaning in

1 Strictly speaking, a lattice is a discrete subgroup of R™. A shifted copy of a lattice does not contain 0.
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T
(a) L (b) Lo and Ly (c) 7 and L,

Figure 6

the context. For any state 7 € €2, there is a subset L, of L,-edges associated with 7. Each
Ly-edge e “goes diagonally through” exactly one A,-vertex, denoted by v.. We say e is in
L, if and only if the four A,-edges incident to v, are 2-green-2-red and e separates the two
green edges from the two red edges (Remember that in this case edges in the same color must
be rotationally adjacent to each other). See Figure 6¢ for an instance of a state 7 and its
associated L,. In the following we abuse the notation and use L, as its induced subgraph of
L. This view was adopted by [6] for establishing the existence of the spontaneous staggered
polarization in the anti-ferroelectric phase of the six-vertex model.

For any 7 € Q2 and L., we make the following observations:

There is always an even number of L, -edges meeting at any L,-vertex, except for the

L,-vertices on the boundary. Because this number is equal to the number of times for

the color change on the four A,-edges surrounding the L,-vertex, if we start from any

one of the four A,-edges and go rotationally over the four A,-edges, which is even.

For any A,, vertex, there can be at most one L -edge going through which is either in Lg

orin Ly.

If 7 € Q is the state by a total edge reversal of 7, then Lz = L.

For a state 7 € Q, we say 7 has a horizontal (or vertical) fault line if there is a self-
avoiding path in L, connecting a L,-vertex on the left (top, respectively) boundary of L,
to a Ly-vertex on the right (bottom, respectively) boundary of L,. See Figure 7c for an
example where a state has both a horizontal fault line and a vertical fault line. Denote by
Crr, the set of states containing a horizontal fault line or a vertical fault line. Since a fault
line separates green edges from red edges, a vertical (horizontal) fault line precludes any
horizontal (vertical, respectively) monochromatic bridge (the proof is basically the same
as Lemma 4.2). This is to say, Cg, CrL, and Cr are pairwise disjoint. Next we show the
following lemma and its direct implication (Corollary 4.4).

» Lemma 4.3. If in a state T there is no monochromatic cross, then there is a fault line.

Proof. If there is no monochromatic cross (i.e., a green cross or a red cross) in 7, we can
assume that

there is no green horizontal bridge and there is no red horizontal bridge. (%)

Suppose 7 has a green horizontal bridge. There is no red vertical bridge since it cannot
“cross” the green horizontal bridge; there is no green vertical bridge since there is no green
cross. Therefore, this case is symmetric to (x), switching horizontal for vertical.
Suppose 7 has a red horizontal bridge. This case is similar to the above case, and thus is
also symmetric to ().
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Next we show there is a vertical fault line if there is no monochromatic horizontal bridge.

We introduce another graph M, that is the medial graph of A,, where every vertex of M,
corresponds to an edge of A,,, i.e., two M, -vertices are neighboring if the two corresponding

A,,-edges are rotationally adjacent. Note that M, is part of another shifted square lattice.

An example of M,, and its relationship with Z? is shown in Figure 7a. For any state 7 € Q,
there is a subset M, of M,-edges associated with 7. An M,-edge e is in M, if the two
vertices that e is incident to (as Ap-edges) have the same color (both green or both red). See
Figure 7d for an example.

Observe that the correspondence between A, -edges and M, -vertices translates into the
correspondence between simple monochromatic paths in A,, to simple connected paths in M.
In fact, the connected components in M., capturing the notion of monochromatic regions
of A,-edges, and connected components in L., capturing the notion of separation between
regions of A,-edges of different colors, are in a dual relationship.

This duality is depicted in Figure 7e and helps us find a fault line. Let V)j; be the
collection of M,,-vertices that can be reached from the left boundary of M, by a simple
path in M,. Since there is no monochromatic horizontal bridge, Vj; does not contain any
M,,-vertex on the right boundary. As a consequence, there is a cutset in M,, separating Vs
from the right boundary. This cutset, composed of M,,-edges, corresponds to a vertical fault
line. For instance, in Figure 7e the blue solid L,-path ~ is a fault line defined by the above
argument. <

» Corollary 4.4. Q) = C¢ U Cprp UCR is a partition of the state space.

Before moving on to prove Theorem 4.1, we introduce the notion of almost fault lines. A
horizontal (or vertical) almost fault line is a self-avoiding L,,-path connecting a L,,-vertex on
the left boundary of L, to a L,-vertex on the right boundary of L, where all edges except
for one are in L. Denote by Capy, the set of states containing an almost fault line. Let 0Cq
be the set of states outside Cg which are one-flip away from Cg in the state space of Mg.

» Lemma 4.5. 0Cq C Crr UC4Fr.
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Figure 8 A step in Mg.

Proof. If a state 79 € 9Cq is not in Cgr, (does not have a fault line), then by Corollary 4.4
Ty € CR since by definition it is outside of Cg. Because 7y is one move away from Cg, there
exists a state 7, € Cg such that flipping four monochromatic edges along a unit square s
on Z?* yields 75. We know that in 7, there exists a green cross and no red cross; in 7 there
exists a red cross and no green cross. Then it must be true that the four edges along s are
all green in 7, and all red in 75. See Figure 8 for a pictorial illustration. Moreover, any
green cross in 7, must contain edges along s and so is any red cross in 7y; otherwise, a green
horizontal (vertical) bridge in 7, must go across a red vertical (or horizontal, respectively)
bridge in 79 at some other place on A,,, which is impossible.

Therefore, there exists a simple green path I'g from some vertices on s to the top boundary
of A, and a simple red path I'g from some vertices on s to the top boundary of A,. In the
following, we prove that the above conditions suffice to show that there exists an L, -path
from s to the top boundary of L,,. Similar conclusions can be made for the existence of
L, -paths from s to the bottom boundary of L,,. By adding at most one L,-edge, we can
concatenate these paths to obtain a vertical almost fault line.

' and I'g cannot cross each other (Figure 5). Without loss of generality, suppose I'g is
to the left of I'r. Then we use the medial lattice view M., as in the proof of Lemma 4.3.
I'g corresponds to a connected component mq in M,,. Denote by Vg the set of M,-vertices
which can be reached by m¢ in M, and let V{, be Vi together with the set of M,,-vertices
which are separated from the right boundary of M,, by V. Then there is a cutset in M,
separating V¢, from the right boundary. This cutset, composed of M,,-edges, corresponds to
a dual L, -path from s to the top boundary of L,,. <

Now we are ready to show Theorem 4.1. Let Qpgrr = Ca, QOMIDDLE = CFLU(CAFLQCR),
and Qrigur = Cr \ Carr. Theorem 4.1 is a consequence of the following lemma which uses
a Peierls argument to show that 7(Cpr, U Capr) is exponentially small.

> Lemma 4.6. 7(Cr,UCurz) < O(n) (M)”

c

Proof. For a self-avoiding path = in L,, connecting a vertex on the top boundary to a vertex
on the bottom boundary, denote by F, the set of states in {2 that contain ~ as vertical fault
line or almost fault line. Reversing directions of all the edges to the left side of « defines
an injective mapping from F, to Q\ F, that magnifies probability by a factor of at least

) [y[-1
mméa’b) . (maxc(a,b)) . This is because: if 7 is a fault line in a state, every A,-vertex sitting

on v would have four incident edges in the same color after the map, which increase its weight
to ¢ (from a or b); if v is an almost fault line in a state, the above is true except that for one

A, -vertex, its weight decrease from c to a or b after the map, as orientations on half of the
[vI-1
max(a,b) )

— mil

four monochromatic edges are reversed. This indicates that 7(F) < .nfa R ( =
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Figure 9 A state in Mp.

See Figure 7f for an example. The same goes for horizontal (almost) fault lines.

Since every (almost) fault line is a self-avoiding walk on L, the number of fault lines
of length [ is upper bounded by 2n times the number of self-avoiding walks of that length
starting at a vertex on the left or bottom boundary. The latter can be bounded by an
well-studied estimate p! on the number of self-avoiding walks of length I on Z2, where p is
called the connective constant. The best proved bound is p /= 2.638158 - -+ [12]. Summing
this over fault lines of length from n to n? completes the proof. <

We have proved the torpid mixing of Glauber dynamics for the six-vertex model on the
lattice region A,, with free boundary conditions. Next we state the idea to extend the proof
for the case when the Markov chain is M p and the case when the boundary of /~\n is periodic.
Theorem 1.2 is a combination of Theorem 4.1 and the extensions.

To extend Theorem 4.1 to hold for the directed-loop algorithm Mp whose state space
is QU ', we need to pay extra attention for the states in €, the near-perfect Eulerian
orientations. For a state 7/ € ', there are two “defects” on the edges (Figure 9). Apart from
the diagonal L,-edges, there are two (22 (2, 2)) edges separating green (half-)edges from
red (half-)edges. The adaption we make is to put such (Z* + (4, 1))-edges also into the set
L.,+. Notice that a connected component in L., could possibly lie on Ly-edges as well as Lq-
edges. Everything we prove is still correct if we allow fault lines to have (Z2 + (%, %))—edges.
Due to the possible positions of such two defects, the weight of Crr, U Capr, only increases
by a polynomial factor in n, hence not affecting the fact of torpid mixing.

To extend Theorem 4.1 to hold for JN\n with periodic boundary condition (i.e., a 2-
dimensional torus), we make the following modification. When n is even, there still are two
states with maximum weights -’ (similar to 7¢ and 7g in Figure 4). Again, for any state
7, Ap-edges can be classified as green or red, and its associated L, separates A,-edges of
different colors. For the 2-dimensional torus T2, the homology group H;(T?) = Z x Z. We
say a state 7 has a green (or red) cross if there are two non-contractable cycles of green (or
red, respectively) edges of homology classes (a1,b1) and (az,bo) with det 4172 ] # 0; 7 has
a pair of fault lines if there is a pair of non-contractable cycles of L,-edges. (By parity, if
there is one L,-cycle there must be two.) Then the proofs in this section can be naturally
adapted for the torus case, and the torpid mixing result follows.

—— References

1 David Allison and Nicolai Reshetikhin. Numerical study of the 6-vertex model with domain
wall boundary conditions. Annales de Institut Fourier, 55(6):1847-1869, 2005. URL:
http://eudml.org/doc/116236.

2 G. T. Barkema and M. E. J. Newman. Monte Carlo simulation of ice models. Phys. Reuv.
E, 57:1155-1166, Jan 1998. doi:10.1103/PhysRevE.57.1155.

52:13

APPROX/RANDOM 2018


http://eudml.org/doc/116236
http://dx.doi.org/10.1103/PhysRevE.57.1155

52:14

Torpid Mixing of Markov Chains for the Six-vertex Model on Z2

10

11

12

13

14

15

16

17

18

19

20

21

R. J. Baxter. Ezactly Solved Models in Statistical Mechanics. Academic Press, 1982. doi:
10.1007/978-3-642-73193-8_19.

Antonio Blanca, David Galvin, Dana Randall, and Prasad Tetali. Phase coexistence and
slow mixing for the hard-core model on Z2. In Approzimation, Randomization, and Combi-
natorial Optimization. Algorithms and Techniques (APPROX/RANDOM), pages 379-394,
2013. doi:10.1007/978-3-642-40328-6_27.

Christian Borgs, Jennifer T. Chayes, Jeong Han Kim, Alan Frieze, Prasad Tetali, Eric
Vigoda, and Van Ha Vu. Torpid mixing of some Monte Carlo Markov chain algorithms
in statistical physics. In Proceedings of the 40th Annual Symposium on Foundations of
Computer Science (FOCS), pages 218-229, 1999. URL: http://dl.acm.org/citation.
cfm?id=795665.796518.

H. J. Brascamp, H. Kunz, and F. Y. Wu. Some rigorous results for the vertex model
in statistical mechanics. Journal of Mathematical Physics, 14(12):1927-1932, 1973. doi:
10.1063/1.1666271.

Jin-Yi Cai, Tianyu Liu, and Pinyan Lu. Approximability of the six-vertex model. CoRR,
abs/1712.05880, 2017. arXiv:1712.05880.

F. Cesi, G. Guadagni, F. Martinelli, and R. H. Schonmann. On the two-dimensional
stochastic Ising model in the phase coexistence region near the critical point. Journal of
Statistical Physics, 85(1):55-102, Oct 1996. doi:10.1007/BF02175556.

K. Eloranta. Diamond Ice. Journal of Statistical Physics, 96:1091-1109, 1999. doi:10.
1023/A:1004644418182.

Chungpeng Fan and F. Y. Wu. General lattice model of phase transitions. Phys. Rev. B,
2:723-733, Aug 1970. doi:10.1103/PhysRevB.2.723.

Leslie Ann Goldberg, Russell Martin, and Mike Paterson. Random sampling of 3-colorings
in Z2. Random Structures & Algorithms, 24(3):279-302, 2004. doi:10.1002/rsa.20002.
A.J. Guttmann and A.R. Conway. Square lattice self-avoiding walks and polygons. Annals
of Combinatorics, 5(3):319-345, Dec 2001. doi:10.1007/PL00013842.

David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov chains and mizing times.
American Mathematical Society, 2006.

Elliott H. Lieb. Exact solution of the F' model of an antiferroelectric. Phys. Rev. Lett.,
18:1046-1048, Jun 1967. doi:10.1103/PhysRevLett.18.1046.

Elliott H. Lieb. Exact solution of the two-dimensional Slater KDP model of a ferroelectric.
Phys. Rev. Lett., 19:108-110, Jul 1967. doi:10.1103/PhysRevLett.19.108.

Elliott H. Lieb. Residual entropy of square ice. Phys. Rev., 162:162-172, Oct 1967. doi:
10.1103/PhysRev.162.162.

Eyal Lubetzky and Allan Sly. Critical Ising on the square lattice mixes in polynomial
time. Communications in Mathematical Physics, 313(3):815-836, Aug 2012. doi:10.1007/
s00220-012-1460-9.

Michael Luby, Dana Randall, and Alistair Sinclair. Markov chain algorithms for planar
lattice structures. SIAM Journal on Computing, 31(1):167-192, 2001. doi:10.1137/
S0097539799360355.

I Lyberg, V Korepin, and J Viti. The density profile of the six vertex model with do-
main wall boundary conditions. Journal of Statistical Mechanics: Theory and Experiment,
2017(5):053103, 2017. URL: http://stacks.iop.org/1742-5468/2017/i=5/a=053103.
F. Martinelli and E. Olivieri. Approach to equilibrium of Glauber dynamics in the one phase
region. L. the attractive case. Communications in Mathematical Physics, 161(3):447-486,
Apr 1994. doi:10.1007/BF02101929.

F. Martinelli and E. Olivieri. Approach to equilibrium of Glauber dynamics in the one phase
region. II. the general case. Communications in Mathematical Physics, 161(3):487-514, Apr
1994. doi:10.1007/BF02101930.


http://dx.doi.org/10.1007/978-3-642-73193-8_19
http://dx.doi.org/10.1007/978-3-642-73193-8_19
http://dx.doi.org/10.1007/978-3-642-40328-6_27
http://dl.acm.org/citation.cfm?id=795665.796518
http://dl.acm.org/citation.cfm?id=795665.796518
http://dx.doi.org/10.1063/1.1666271
http://dx.doi.org/10.1063/1.1666271
http://arxiv.org/abs/1712.05880
http://dx.doi.org/10.1007/BF02175556
http://dx.doi.org/10.1023/A:1004644418182
http://dx.doi.org/10.1023/A:1004644418182
http://dx.doi.org/10.1103/PhysRevB.2.723
http://dx.doi.org/10.1002/rsa.20002
http://dx.doi.org/10.1007/PL00013842
http://dx.doi.org/10.1103/PhysRevLett.18.1046
http://dx.doi.org/10.1103/PhysRevLett.19.108
http://dx.doi.org/10.1103/PhysRev.162.162
http://dx.doi.org/10.1103/PhysRev.162.162
http://dx.doi.org/10.1007/s00220-012-1460-9
http://dx.doi.org/10.1007/s00220-012-1460-9
http://dx.doi.org/10.1137/S0097539799360355
http://dx.doi.org/10.1137/S0097539799360355
http://stacks.iop.org/1742-5468/2017/i=5/a=053103
http://dx.doi.org/10.1007/BF02101929
http://dx.doi.org/10.1007/BF02101930

T. Liu

22

23

24

25

26

27

28

29

30

31

M. Mihail and P. Winkler. On the number of Eulerian orientations of a graph. Algorithmica,
16(4):402-414, Oct 1996. doi:10.1007/BF01940872.
Linus Pauling. The structure and entropy of ice and of other crystals with some randomness

of atomic arrangement. Journal of the American Chemical Society, 57(12):2680-2684, 1935.

doi:10.1021/ja01315a102.

R. Peierls. Statistical theory of adsorption with interaction between the adsorbed atoms.

Mathematical Proceedings of the Cambridge Philosophical Society, 32(3):471-476, 1936. doi:
10.1017/S0305004100019162.

Aneesur Rahman and Frank H. Stillinger. Proton distribution in ice and the Kirkwood
correlation factor. The Journal of Chemical Physics, 57(9):4009-4017, 1972. doi:10.1063/
1.1678874.

Dana Randall. Slow mixing of Glauber dynamics via topological obstructions. In Proceed-
ings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm (SODA),
pages 870-879, 2006. URL: http://dl.acm.org/citation.cfm?id=1109557.1109653.
Dana Randall and Prasad Tetali. Analyzing Glauber dynamics by comparison of Markov
chains. Journal of Mathematical Physics, 41(3):1598-1615, 2000. doi:10.1063/1.533199.
Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and rapidly
mixing Markov chains. Information and Computation, 82(1):93-133, 1989. doi:10.1016/
0890-5401(89)90067-9.

Bill Sutherland. Exact solution of a two-dimensional model for hydrogen-bonded crystals.
Phys. Rev. Lett., 19:103-104, Jul 1967. doi:10.1103/PhysRevLett.19.103.

Olav F. Syljudsen and M. B. Zvonarev. Directed-loop Monte Carlo simulations of vertex
models. Phys. Rev. F, 70:016118, Jul 2004. doi:10.1103/PhysRevE.70.016118.

A. Yanagawa and J.F. Nagle. Calculations of correlation functions for two-dimensional
square ice. Chemical Physics, 43(3):329-339, 1979. doi:10.1016/0301-0104(79)85201-5.

52:15

APPROX/RANDOM 2018


http://dx.doi.org/10.1007/BF01940872
http://dx.doi.org/10.1021/ja01315a102
http://dx.doi.org/10.1017/S0305004100019162
http://dx.doi.org/10.1017/S0305004100019162
http://dx.doi.org/10.1063/1.1678874
http://dx.doi.org/10.1063/1.1678874
http://dl.acm.org/citation.cfm?id=1109557.1109653
http://dx.doi.org/10.1063/1.533199
http://dx.doi.org/10.1016/0890-5401(89)90067-9
http://dx.doi.org/10.1016/0890-5401(89)90067-9
http://dx.doi.org/10.1103/PhysRevLett.19.103
http://dx.doi.org/10.1103/PhysRevE.70.016118
http://dx.doi.org/10.1016/0301-0104(79)85201-5

	Introduction
	Preliminaries
	Markov chains
	Glauber dynamics
	Directed-loop algorithm

	Mixing time

	Ferroelectric phase
	Anti-ferroelectric phase

