
Improved List-Decodability of Random Linear
Binary Codes
Ray Li1

Department of Computer Science, Stanford University, USA
rayyli@stanford.edu

Mary Wootters
Departments of Computer Science and Electrical Engineering, Stanford University, USA
marykw@stanford.edu

Abstract
There has been a great deal of work establishing that random linear codes are as list-decodable
as uniformly random codes, in the sense that a random linear binary code of rate 1 −H(p) − ε
is (p,O(1/ε))-list-decodable with high probability. In this work, we show that such codes are
(p,H(p)/ε+2)-list-decodable with high probability, for any p ∈ (0, 1/2) and ε > 0. In addition to
improving the constant in known list-size bounds, our argument – which is quite simple – works
simultaneously for all values of p, while previous works obtaining L = O(1/ε) patched together
different arguments to cover different parameter regimes.

Our approach is to strengthen an existential argument of (Guruswami, Håstad, Sudan and
Zuckerman, IEEE Trans. IT, 2002) to hold with high probability. To complement our upper
bound for random linear binary codes, we also improve an argument of (Guruswami, Narayanan,
IEEE Trans. IT, 2014) to obtain a tight lower bound of 1/ε on the list size of uniformly random
binary codes; this implies that random linear binary codes are in fact more list-decodable than
uniformly random binary codes, in the sense that the list sizes are strictly smaller.

To demonstrate the applicability of these techniques, we use them to (a) obtain more inform-
ation about the distribution of list sizes of random linear binary codes and (b) to prove a similar
result for random linear rank-metric codes.
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1 Introduction

An error correcting code is a subset C ⊆ Fn2 , which is ideally “spread out.” In this paper,
we focus on one notion of “spread out” known as list-decodability. We say that a code C
is (p, L)-list-decodable if any Hamming ball of radius pn in Fn2 contains at most L points
of C: that is, if for all x ∈ Fn2 , |B(x, pn) ∩ C| ≤ L, where B(x, pn) is the Hamming ball of
radius pn centered at x. Since list-decoding was introduced in the 1950’s [6, 44], it has found

1 Research supported by the National Science Foundation Graduate Research Fellowship Program under
Grant No. DGE - 1656518.

© Ray Li and Mary Wootters;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2018).
Editors: Eric Blais, Klaus Jansen, José D. P. Rolim, and David Steurer; Article No. 50; pp. 50:1–50:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/160477896?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:rayyli@stanford.edu
mailto:marykw@stanford.edu
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.50
https://arxiv.org/abs/1801.07839
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


50:2 Improved List-Decodability of Random Linear Binary Codes

applications beyond communication, for example in pseudorandomness [41] and complexity
theory [40].

A classical result in list-decoding is known as the list-decoding capacity theorem:

I Theorem 1 (List-decoding capacity theorem). Let p ∈ (0, 1/2) and ε > 0.
1. There exist binary codes of rate 1−H(p)− ε that are (p, d1/εe)-list-decodable.
2. Any binary code of rate 1−H(p) + ε that is (p, L)-list-decodable up to distance p must

have L ≥ 2Ω(εn).
Above, H(p) = −(1− p) log2(1− p)− p log2(p) is the binary entropy function. We say that a
family of binary codes with rate approaching 1−H(p) which are (p, L)-list-decodable for
L = O(1) achieves list-decoding capacity.2

Theorem 1 is remarkable because it means than even when pn is much larger than half
the minimum distance of the code – the radius at which at most one codeword c ∈ C lies in
any Hamming ball – it still can be the case that only a constant number of c ∈ C lie in any
Hamming ball of radius pn. Because of this, there has been a great deal of work attempting
to understand what codes achieve the bound in Theorem 1.

The existential part of Theorem 1 is proved by showing that a uniformly random
subset of Fn2 is (p, 1/ε)-list-decodable with high probability. For a long time, uniformly
random codes were the only example of binary codes known to come close to this bound,
and today we still do not have many other options. There are explicit constructions of
capacity-achieving list-decodable codes over large alphabets (either growing with n or else
large-but-constant) [5, 21, 22], but over binary alphabets we still do not have any explicit
constructions; we refer the reader to the survey [11] for an overview of progress in this area.

Because it is a major open problem to construct explicit binary codes of rate 1−H(p)− ε
with constant (or even poly(n)) list-sizes, one natural line of work has been to study structured
random approaches, in particular random linear codes. A random linear code C ⊂ Fn2 is
simply a random subspace of Fn2 , and the list-decodability of these codes has been well-
studied [45, 13, 12, 2, 43, 34, 36]. There are several reasons to study the list-decodability
of random linear codes. Not only is it a natural question in its own right as well as a
natural stepping stone in the quest to obtain explicit binary list-decodable codes, but also
the list-decodability of random linear codes is useful in other coding-theoretic applications.
One example of this is in concatenated codes and related constructions [14, 17, 24, 23], where
a random linear code is used as a short inner code. Here, the linearity is useful because (a) a
linear code can be efficiently described; (b) it is sometimes desirable to obtain a linear code
at the end of the day, hence all components of the construction must be linear; and (c) as in
[24] sometimes the linearity is required for the construction to work.

To this end, the line of work mentioned above has aimed to establish that random linear
codes are “as list-decodable” as uniformly random codes. That is, uniformly random codes
are viewed (as is often the case in coding theory) as the optimal construction, and we try to
approximate this optimality with random linear codes, despite the additional structure.

Our contributions

In this paper, we give an improved analysis of the list-decodability of random linear binary
codes. More precisely, our contributions are as follows.

2 Sometimes the phrase “achieves list-decoding capacity” is also used when L = poly(n); since this paper
focuses on the exact constant in the O(1) term however, we use it to mean that L = O(1).
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A unified analysis. As we discuss more below, previous work on the list-decodability
of random linear binary codes either work only in certain (non-overlapping) parameter
regimes [12, 43], or else get substantially sub-optimal bounds on the list-size [36]. Our
argument obtains improved list size bounds over all these results and works in all parameter
regimes.
Our approach is surprisingly simple: we adapt an existential argument of Guruswami,
Håstad, Sudan and Zuckerman [13] to hold with high probability. Extending the argument
in this way was asked as an open question in [13] and had been open until now.
Improved list-size for random linear codes. Not only does our result imply that
random linear codes of rate 1−H(p)−ε are (p, L)-list-decodable with list-size L = O(1/ε),
in fact we show that L ≤ H(p)/ε+ 2. In particular, the leading constant is small and – to
the best of our knowledge – is the best known, even existentially, for any list-decodable
code.
Finer-grained information about the combinatorial structure of random linear
codes. We extend our argument to obtain more information about the distribution of
list sizes of random linear codes. More precisely, we obtain high-probability bounds on
the number of points x so that the list size at x, LC(x) := |B(x, pn) ∩ C|, is at least `.
Tight list-size lower bound for uniformly random codes. To complement our
upper bound, we strengthen an argument of Guruswami and Narayanan [15] to show
that a uniformly random binary code of rate 1−H(p)− ε requires L ≥ (1− γ)/ε for any
constant γ > 0 and sufficiently small ε. In other words, the list size of 1/ε in Theorem 1 is
tight even in the leading constant. Thus, random linear codes are, with high probability,
list-decodable with smaller list sizes than completely random codes.3
Results for rank-metric codes. Finally, we adapt our argument for random linear
codes to apply to random linear rank-metric codes. As with standard (Hamming-metric)
codes, recent work aimed to show that random linear rank-metric codes are nearly as
list-decodable as uniformly random codes [4, 16]. Our approach establishes that in fact,
random linear binary rank-metric codes are more list-decodable than their uniformly
random counterparts in certain parameter regimes, in the sense that the list sizes near
capacity are strictly smaller. Along the way, we show that low-rate random linear binary
rank-metric codes are list-decodable to capacity, answering a question of [16].

On the downside, we note that our arguments only work for binary codes and do not
extend to larger alphabets; additionally, our positive results do not establish average-radius
list-decodability with list size O(1/ε), a stronger notion which was established in some of
the previous works [2, 43, 36]. It would be very interesting to extend our results to these
settings.

1.1 Outline of paper
After a brief overview of the notation in §1.2, we proceed in §2 with a survey of related work
for both random linear codes and rank-metric codes, and we formally state our results in this
context. In §3, we prove Theorem 5, which establishes our upper bound for random linear
binary codes. In Appendix A, we prove Theorem 6, characterizing the list size distribution
of random linear codes. We refer the interested reader to the full version of the paper [26]
for proofs of our other results, Theorems 7, 11, and 12.

3 In retrospect, this may not be surprising: for example, it is well-known that random linear codes have
better distance than completely random codes. However, the fact that we are able to prove this is
surprising to the authors, since it requires taking advantage of the dependence between the codewords,
rather than trying to get around it.

APPROX/RANDOM 2018



50:4 Improved List-Decodability of Random Linear Binary Codes

1.2 Notation
Throughout most of the paper, we are interested in binary codes C ⊆ Fn2 of block length n.
The dimension of a code C is defined as k = log2 |C|, and the rate is the ratio k/n. We define
a uniformly random binary code of rate R to be a set C of 2Rn elements chosen independently
and uniformly at random from Fn2 . We say that a binary code is linear if it forms a linear
subspace of Fn2 . We define a random linear binary code of rate R to be the span of k = Rn

independently random vectors b1, . . . , bk ∈ Fn2 .4
For two points x, y ∈ Fn2 , we use ∆(x, y) =

∑n
i=1 I[xi = yi] to denote the Hamming

distance between x and y, where, for an event E , I[E ] is 1 if E occurs and 0 otherwise.
For x ∈ Fn2 , r ∈ [0, n], we define the Hamming ball B(x, r) of radius r centered at x to be
B(x, r) = {y ∈ Fn2 : ∆(x, y) ≤ r}, and the volume of B(x, r) to be Vol(n, r) := |B(0n, r)| =∑r
i=0
(
n
i

)
. We use the well known bound that, for any p ∈ [0, 1], Vol(n, pn) ≤ 2H(p)n, where

H(p) = −(1 − p) log2(1 − p) − p log2(p) is the binary entropy function. One of our main
technical results is about the distribution of list sizes of points x ∈ Fn2 : given a code C and
p ∈ (0, 1/2), we define the list size of a point x ∈ Fn2 to be LC(x) := |B(x, pn) ∩ C|.

For α > 0, β ∈ R, let expα(β) := αβ and assume α = e when it is omitted. For two sets
A,B ⊆ Fn2 , define the sumset A+B = {a+ b : a ∈ A, b ∈ B}. When b ∈ Fn2 , let A+ b denote
A+ {b}.

2 Previous Work and Our Results

In §2.1 below, we survey related work on the list-decodability of random linear binary codes.
In §2.2, we state our positive results for random linear codes. In §2.3, we state our negative
result for uniformly random codes. In §2.4, we introduce and survey existing work on random
rank-metric codes. In §2.5, we state our results on the list-decodability of random linear and
uniformly random binary rank-metric codes.

2.1 Prior work: uniformly random and random linear codes
The list-decodability of random linear binary codes has been well studied. Here we survey
the results that are most relevant for this work. As this work focuses on binary codes, we
focus this survey on results for binary codes, even though many of the works mentioned also
apply to general q-ary codes. We additionally remark that, in contrast to the large alphabet
setting [18], capacity achieving binary codes have no known explicit constructions.

A modification of the proof of the list-decoding capacity theorem shows that a random
linear code of rate 1−H(p)− ε is (p, exp(O( 1

ε )))-list-decodable [45]. However, whether or
not random linear codes of this rate have list-sizes that do not depend exponentially on ε
remained open for decades: this question was explicitly asked in [7].

A first step was given in the work of Guruswami, Håstad, Sudan and Zuckerman [13],
who proved via a beautiful potential-function-based-argument that there exist binary linear
codes or rate 1−H(p)− ε which are (p, 1/ε)-list-decodable. However, this result did not hold
with high probability. Our approach relies heavily on the approach of [13], and we return to
their argument in §3.

4 Our definitions of uniformly random binary code and random linear binary code are slightly different
than the standard definitions, which are a uniformly random set of size 2Rn and a uniformly random
subspace of dimension k, respectively. However, our definitions are easier to work with. Furthermore,
for this paper, the difference is negligible. For example, a random linear code has rank strictly less than
k with probability at most 2−(n−k), and each dimension k code is represented in the same number of
ways, so our results hold also for the more standard definition.
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Over the next 15 years, a line of work [12, 2, 43, 34, 35, 36] has focused on the list-
decodability (and related properties) of random linear codes, which should hold with high
probability. The works most relevant to ours are [12, 43], which together more or less settle
the question. We state these results here for binary alphabets, although both works address
larger alphabets as well.

The first result, of [12], establishes a result for a constant p, bounded away from 1/2.

I Theorem 2 (Theorem 2 of [12]). Let p ∈ (0, 1/2). Then there exist constants Cp, δ > 0
such that for all ε > 0 and sufficiently large n, for all R ≤ 1 − H(p) − ε, if C ⊆ Fn2 is
a random linear code of rate R, then C is (p, Cp/ε)-list-decodable with probability at least
1− 2−δn.

However, Cp is not small and tends to ∞ as p approaches 1/2. The following result of [43]
fills in the gap when p is quite close to 1/2.

I Theorem 3 (Theorem 2 of [43]). There exist constants C1, C2 so that for all sufficiently
small ε > 0 and sufficiently large n, for p = 1/2 − C1

√
ε and for all R ≤ 1 −H(p) − ε, if

C ⊆ Fn2 is a random linear code of rate R, then C is (p, C2/ε)-list-decodable with probability
at least 1− o(1).

The list-decoding capacity theorem implies that we cannot hope to take the rate R
substantially larger than 1−H(p)− ε and obtain a constant list size. Moreover, the list size
Θ(1/ε) is optimal for both random linear codes and uniformly random codes [32, 15]. More
precisely, Guruswami and Narayanan show the following theorem (which we have specialized
to binary codes).

I Theorem 4 (Theorem 20 of [15]). Let ε > 0. A uniformly random binary code of rate
1−H(p)− ε is (p, (1−H(p))/ε)-list-decodable with probability at most exp(−Ωp,ε(n)).5

We note that for general codes (not uniformly random or random linear) it is still unknown
what the “correct” list size L is in terms of ε, although there are results in particular parameter
regimes [1, 19] and for stronger notions of list-decodability [15].

2.2 Our main results: random linear codes
We show that, with high probability, a random linear binary code of rate 1 −H(p) − ε is
(p, L)-list-decodable with L ∼ H(p)/ε. More precisely, the upper bound is as follows (proved
in §3).

I Theorem 5. Let p ∈ (0, 1/2), let ε > 0, and let R = 1 − H(p) − ε. Let C ⊆ Fn2 be
a random linear code of rate R. Then with probability 1 − exp(−Ωε(n)), the code C is
(p,H(p)/ε+ 2)-list-decodable.

Theorem 5 improves upon the picture given by Theorems 2 and 3 in two ways. First, the
leading constant on the list size, which is H(p), improves over both the constant Cp from
Theorem 2 (which blows up as p→ 1/2) and on the constant C2 from Theorem 3 (which the
authors do not see how to make less than 2). Moreover, when p→ 1/2, Theorem 5 improves
on Theorem 3 in that it decouples p from ε: in Theorem 3, we must take p = 1/2−O(

√
ε)

5 In fact, in [15], Theorem 20 is stated with a list size of (1−H(p))/2ε as a lower bound. However, the
constant can be improved to 1 − H(p), because the factor of 2 is introduced to handle an additive
constant term. Thus, for sufficiently large n their argument proves the stronger statement stated above.

APPROX/RANDOM 2018
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and R = 1 −H(p) − ε, while in Theorem 5, p and ε may be chosen independently. Thus,
Theorem 5 offers the first true “list-decoding capacity theorem for binary linear codes,” in
that it precisely mirrors the quantifiers in Theorem 1.

The techniques that we use to prove Theorem 5 can be refined to give more combinatorial
information about random linear codes. It is our hope that such information will help in
further derandomizing constructions of binary codes approaching list-decoding capacity. In
Appendix A, we prove the following structural result about random linear binary codes.

I Theorem 6. Let ε, γ ∈ (0, 1) be constants, p ∈ (0, 1/2), L be a positive integer, and let
R = 1 − H(p) − ε. Let C ⊂ Fn2 be a random linear code of rate R. Then with probability
1− exp(−ΩL(γεn)), the code C satisfies, for all 0 ≤ ` ≤ L,

|{x ∈ Fn2 : LC(x) ≥ `}| ≤ 2n · 2−n`ε(1−γ).

To interpret this result, it is helpful to think of γ as close to 0. Intuitively, it says that, with
high probability over the choice of a random linear code C, the number of words x ∈ Fn2
with “list size `” decays approximately exponentially as 2−n`ε. As we show in Appendix A,
Theorem 5 follows as a corollary of Theorem 6 (see Corollary 19), but as a warm-up to
Theorem 6 we present a proof of Theorem 5 independent of Theorem 6 in §3.
I Remark. Theorem 6 implies that, with high probability over the choice of the code, for
any codeword c ∈ C, Prx∈B(c,pn) [LC(x) = 1] ≥ 1− 2−n(ε(1−γ)−o(1)). That is, “most” points
x ∈ {0, 1}n within pn of a codeword c ∈ C are not within pn of any other codeword c′ 6= c.
This is in line with the conventional wisdom from the Shannon model: with high probability,
random linear codes achieve capacity on the BSC, so for a random linear code, a random
center x obtained by sending a codeword c ∈ C through the binary symmetric channel BSC(p)
has LC(x) ≤ 1 with high probability. (See also [33]). Thus, Theorem 6 recovers this intuition
for list size 1, and quantitatively extends it to list sizes larger than 1.

2.3 Our results: uniformly random codes
In Theorem 5, the list size of H(p)/ε + 2 is smaller than the list size of 1/ε given by the
classical list-decoding capacity theorem for uniformly random codes. Further, the following
negative result shows that the list size of 1/ε given by uniformly random binary codes in the
list-decoding capacity theorem is tight, even in the leading constant of 1.

I Theorem 7. For any p ∈ (0, 1/2) and ε > 0, there exists a γp,ε = exp(−Ωp( 1
ε )) and

np,ε ∈ N such that for all n ≥ np,ε, a random linear code C ⊆ Fn2 of rate R = 1−H(p)− ε is
with probability 1− exp(−Ωp,ε(n)) not (p, 1−γp,ε

ε )-list-decodable.

The proof of Theorem 7 is obtained by tightening the second moment method proof of [15],
and can be found in Appendix A of [26]. Theorem 7, combined with Theorem 5, implies that,
for all p ∈ (0, 1/2) and sufficiently small ε, random linear codes of rate 1−H(p)− ε with
high probability can be list-decoded up to distance p with smaller list sizes than uniformly
random codes. Perhaps surprisingly, the difference between the list size upper bound in
Theorem 1 and the lower bound in Theorem 7 is bounded by 1 as ε→ 0, implying that the
“correct” list size of a uniformly random code is tightly concentrated between b1/εc ± 1 for
small ε.

We are unaware of results in the literature that give even the existence of binary codes
list-decodable with list size better than H(p)/ε. We remark that the Lovasz Local Lemma
also gives the existence of (p,H(p)/ε)-list-decodable codes, matching our high probability
result for random linear codes. We refer the reader to Appendix C of [26] for the details.
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2.4 Prior work: rank metric codes
As an application of our techniques for random linear codes, we turn our attention to rank
metric codes. Rank metric codes, introduced by Delsarte in [3], are codes C ⊆ Fm×nq ; that
is, the codewords are m × n matrices, where typically m ≥ n. The distance between two
codewords X and Y is given by the rank of their difference: ∆R(X,Y ) := 1

n rank(X − Y ),
where ∆R is called the rank metric. We denote the rank ball by Bq,R(X, p) := {Y ∈ Fm×nq :
∆R(X < Y ) ≤ pn}, and say that a rank metric code C ⊆ Fm×nq is (p, L)-list-decodable if
|Bq,R(X, p) ∩ C| ≤ L for all X ∈ Fm×nq . The rate R of a rank metric code C ⊂ Fm×nq is
R := logq(|C|)/(mn).

Rank metric codes generalize standard (Hamming metric) codes, which are simply
diagonal rank metric codes. The study of rank metric codes has been motivated by a wide
range of applications, including magnetic storage [31], cryptography [8, 27, 28], space-time
coding [30, 29], and network coding [25, 39], and distributed storage [38, 37].

The natural “list-decoding capacity” for rank metric codes is R = (1− p)(1− (n/m)p),
which is the analog of the Gilbert-Varshamov bound [10]. It was shown in [4, 16] that this is
achievable by a uniformly random rank metric code.

I Theorem 8 ([16], Proposition A.1.6). Let ε > 0 and p ∈ (0, 1) and suppose that m,n
are sufficiently large compared to 1/ε. A uniformly random code C ⊆ Fm×nq of rate R =
(1− p)(1− bp)− ε is (p, d1/εe)-list-decodable with probability at least 1−O(q−εmn), where
b = n/m.

Moreover, it is shown in [4] that no linear code can beat this bound.

I Theorem 9. Let b = limn→∞
n
m be a constant. Then for any R ∈ (0, 1) and p ∈ (0, 1),

a (p, L)-list-decodable Fq-linear rank metric code C ⊆ Fm×nq with rate R satisfies R ≤
(1− p)(1− bp).

There has been a great deal of work aimed at establishing (or refuting) the list-decodability
of explicit rank metric codes. It is shown in [42] that Gabidulin codes [9] – the rank-metric
analog of Reed-Solomon codes – are not list-decodable to capacity, or even much beyond half
their minimum distance. However, there have been works [22, 20] designing explicit codes
meeting the lower bound of Theorem 9.

As with standard (Hamming-metric) codes, it is interesting to study the list-decodability
of random linear rank-metric codes; we say that C ⊆ Fn×mq is linear if it forms an Fq-linear
space. Following the approach of [45] for Hamming metric codes, [4] shows that random
linear rank metric codes of rate R = (1− p)(1− bp)− ε are (p, exp(O(1/ε))-list-decodable,
where as above b = n/m. In a recent paper of Guruswami and Resch [16], this result was
strengthened to give a list size of O(1/ε).

I Theorem 10 ([16]). Let p ∈ (0, 1) and q ≥ 2. There is some constant Cp,q so that the
following holds. For all sufficiently large n,m with b = n/m, a random linear rank metric
code C ⊆ Fm×nq of rate R = (1−p)(1−bp)−ε is (p, Cp,q/ε)-list-decodable with high probability.

The proof of Theorem 10 uses ideas from the approach of [12] to prove Theorem 2. This
is a beautiful argument, but as with the results of [12], the result of [16] suffers from the
fact that Cp,q tends to ∞ as p approaches 1. It is shown in [16], Proposition A.2, that

6 In [16], the result is stated with L = O(1/ε), but an inspection of the proof shows that we may take
the leading constant to be 1.

APPROX/RANDOM 2018
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when p = 1 − η, a uniformly random rank metric code of rate R = (η − ηb + η2b)/2 is
(p, 4/(η − ηb+ η2b))-list-decodable, and that work poses the question of whether or not a
random linear rank metric code can achieve this. Our results, described in the next section,
show that the answer is “yes” for q = 2.

2.5 Our results: rank metric codes
By applying the techniques in the proof of Theorem 5, we prove the following upper bound
on the list size of random linear binary rank-metric codes.

I Theorem 11. Let p ∈ (0, 1) and ε > 0. There is a constant Cε so that the following holds.
Let m and n be sufficiently large positive integers with n < m and let b = n/m. A random
linear rank metric code C ⊆ Fm×n2 of rate R = (1− p)(1− bp)− ε is (p, p+bp−bp

2

ε + 2)-list-
decodable with probability at least 1− exp(−Cεmn).

Notice that Theorem 11 works for all p, improving upon Theorem 10. In particular, when
p = 1 − η, then setting ε = (1 − p)(1 − bp)/2 and applying Theorem 11 implies that a
random linear binary rank metric code of rate R = (η − ηb+ η2b)/2 is (p, L) list-decodable
for L ≤ 2

η−ηb+η2b , answering the aforementioned open question of [16] in the affirmative.
We also prove a new lower bound on the list size of uniformly random rank-metric codes.

I Theorem 12. Let p ∈ (0, 1) and ε > 0. Suppose m,n are sufficiently large so that b = n/m.
Let C ⊆ Fm×nq be a uniformly random rank metric code of rate R = (1− p)(1− bp)− ε. Then
C is (p, (1− p)(1− bp)/ε− 1)-list-decodable with probability at most exp(−Ωp,ε(n)).

Theorem 12 again uses the method of [15]. The proofs of Theorems 11 and 12 can be found
in Section 5 and Appendix B, respectively, of [26]. Together, Theorems 11 and 12 show that
for some values of p, random linear binary rank metric codes have a strictly smaller list
size than uniformly random rank metric codes with the same parameters. In particular, the
upper bound of Theorem 11 is strictly smaller than the lower bound of Theorem 12 whenever
p < 1−b

2 . For larger values of p, we remark that the list size obtained by Theorem 11 is still
strictly smaller than the 1/ε list size given by uniformly random codes in Theorem 8, even
though in this case we don’t have a lower bound which proves that this is tight.

3 Simplified result for random linear binary codes

In this section, we prove Theorem 5, which we restate here.

I Theorem 13 (Theorem 5, restated). Let p ∈ (0, 1/2), let ε > 0, and let R = 1−H(p)− ε.
Let C ⊆ Fn2 be a random linear code of rate R. Then with probability 1− exp(−Ωε(n)), the
code C is (p,H(p)/ε+ 2)-list-decodable.

Theorem 5 also follows from our more refined result, Theorem 6. However, since our
techniques give a very simple proof of Theorem 5 on its own, we begin with just this simple
proof. We start by reviewing the approach of [13], which is the basis of our proof.

3.1 The approach of [13]
Before anything was known about the list-decodability of a typical random linear code,
Guruswami, Håstad, Sudan and Zuckerman [13] proved the existence of binary linear codes
of rate 1−H(p)− ε that are (p, 1/ε)-list-decodable. Their result followed from a beautiful
potential-function argument, which is the basis of our approach and which we describe here.
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Let k := Rn = (1−H(p)− ε)n. We choose vectors b1, . . . , bk one at a time, so that the
code Ci := span(b1, . . . , bi) remains “nice”: formally, so that a potential function S̃Ci remains
small. Once we have picked all k vectors, we set C = Ck, and the fact that S̃Ck is small
implies list-decodability.

Recall that for a code C and x ∈ Fn2 , we set LC(x) = |B(x, pn) ∩ C|. Define

S̃C := 1
2n
∑
x∈Fn2

2εnLC(x).

It is not hard to show that for any vectors b1, . . . , bi ∈ Fn2 ,

E
bi+1∼Fn2

[
S̃Ci+{0,bi+1}|b1, . . . , bi

]
≤ S̃2

Ci . (1)

That is, when a uniformly random vector bi+1 is added to the basis {b1, . . . , bi}, we expect
the potential function not to grow too much. Hence, there exists a choice of vectors b1, . . . , bk
so that S̃Ci+1 ≤ S̃2

Ci for i = 0, 1, . . . , k − 1.7
As C0 = {0}, we have S̃C0 ≤ 1 + 2−n(1−H(p)−ε). Setting C = Ck = span(b1, . . . , bk), we

have

S̃C ≤ S̃2k
C0
≤
(

1 + 2−n(1−H(p)−ε)
)2k
≤ exp

(
2k−n(1−H(p)−ε)

)
≤ e

by our choice of k. This implies that
∑
x 2εnLC(x) ≤ e · 2n, and in particular, for all x ∈ Fn2 ,

we have 2εnLC(x) ≤ e · 2n. Thus, for all x, LC(x) ≤ 1
ε + o(1), as desired.

The approach of [13] is extremely clever, but these ideas have not, to the best of our
knowledge, been used in subsequent work on the list-decodability of random linear codes.
One reason is that the crux of the argument, which is (1), holds in expectation, and it was not
clear how to show that it holds with high probability; thus, the result remained existential,
and other techniques were introduced to study typical random codes [12, 2, 43, 34, 36].

3.2 Proof of Theorem 5
We improve the argument of [13] in two ways. First, we show that in fact, (1) essentially
holds with high probability over the choice of bi+1, which allows us to use the approach
sketched above for random linear codes. Second, we introduce one additional trick which
takes advantage of the linearity of the code in order to reduce the constant in the list size
from 1 to H(p). Before diving into the details, we briefly describe the main ideas.

The first improvement follows from looking at the potential function in the right way. In
this paragraph, all o(1) terms are exponentially small in n. Our goal is S̃Ck ≤ O(1). Write
S̃Ci = 1 + T̃Ci . By above, T̃C0 = S̃C0 − 1 = o(1). We show that with high probability, for all
i ≤ k, we have T̃Ci = o(1). In the [13] argument we have

E S̃Ci+1 ≤ S̃2
Ci = (1 + T̃Ci)2 = 1 + 2T̃Ci(1 + o(1)),

and so E T̃Ci+1 = 2T̃Ci(1 + o(1)). One can show that, always, 2T̃Ci ≤ T̃Ci+1 . By Markov’s
inequality, T̃Ci+1 = 2T̃Ci(1 + o(1)) with probability 1 − o(1), for appropriately chosen o(1)
terms. Union bounding over the o(1) failure probabilities in the k steps, we conclude that T̃Ci
grows roughly as slowly as in the existential argument, giving the desired list-decodability.

7 As a technical detail, one needs to be careful that bi+1 /∈ Ci. One can guarantee bi+1 /∈ Ci by carefully
examining the proof of (1), or use (1) to get a similar equation where we additionally condition bi+1 /∈ Ci.
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The second improvement follows from the linearity of the code. In the last step of the [13]
argument, we replace the summation “

∑
x” in

∑
x 2εnLC(x) ≤ e · 2n with a “∀x.” We can save

a bit because, by linearity, the contribution 2εnLC(x) is the same for all x in a coset y + C.
Now we go through the details. It is convenient to change the definition of the potential

function very slightly: losing the tilde, define, for a code C ⊂ Fn2 ,

AC(x) := 2
εnLC(x)

1+ε and SC := E
x∼Fn2

[AC(x)] .

The term SC differs from the term S̃C above in that AC(x) has an extra factor of 1
1+ε in the

exponent. This is an extra “slack” term that helps guarantee a high probability result under
the same parameters. However, this definition does not change how the potential function
behaves. In particular, we still have the following lemma:

I Lemma 14 (Following [13]). For all linear C ⊆ Fn2 and all b ∈ Fn2 ,

LC+{0,b}(x) ≤ LC(x) + LC(x+ b) (2)
AC+{0,b}(x) ≤ AC(x) ·AC(x+ b), (3)

with equality if and only if b /∈ C.

Proof. To see (2), notice that

LC+{0,b}(x) = |B(x, pn) ∩ (C ∪ (C + b))|
≤ |B(x, pn) ∩ C|+ |B(x, pn) ∩ (C + b)|
= |B(x, pn) ∩ C|+ |B(x+ b, pn) ∩ C|
= LC(x) + LC(x+ b),

with equality in the second line if and only if b 6∈ C. Inequality (3) follows as a consequence
of (2), and this proves the lemma. J

We additionally define

BC(x) := AC(x)− 1 and TC := SC − 1.

As noted above, it is helpful to think of TC as a very small term; we would like to show – in
accordance with (1) – that TC approximately doubles each time we add a basis vector. Note
that

S{0} = 1 +
(

2
εn

1+ε − 1
)
· Vol(n, pn)

2n < 1 + 2
εn

1+ε · 2H(p)n

2n = 1 + 2−n(1−H(p)− ε
1+ε ). (4)

With these definitions, we can prove the concentration result we need.

I Lemma 15. Let p, ε, and R = 1 −H(p) − ε be as in the statement of Theorem 5. Let
CRn ⊂ Fn2 be a random linear code of rate R. Then with probability 1 − exp(−Ωε(n)), the
code CRn satisfies SCRn ≤ 2.

Before we prove Lemma 15 we show that this implies Theorem 5.

Proof of Theorem 5 given Lemma 15. We show that, for a binary linear code C of rate R =
1−H(p)− ε, SC ≤ 2 implies (p, H(p)

ε + 2)-list-decodability. Suppose for sake of contradiction
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that a code C satisfies SC ≤ 2 and there exists x∗ ∈ Fn2 such that |B(x∗, pn)∩C| > H(p)/ε+2.
For all x ∈ Fn2 and c ∈ C, we have

|B(x+ c, pn) ∩ C| = |B(x, pn) ∩ (C − c)| = |B(x, pn) ∩ C|,

so |B(x∗ + c, pn) ∩ C| > H(p)/ε for all c ∈ C. If SC ≤ 2, then we have

2n+1 ≥ 2nSC =
∑
x∈Fn2

exp2

(
n · ε

1 + ε
· |B(x, pn) ∩ C|

)

>
∑
c∈C

exp2

(
n · ε

1 + ε
· |B(x∗ + c, pn) ∩ C|

)
≥
∑
c∈C

exp2

(
n · ε

1 + ε
· (H(p)/ε+ 2)

)
= |C| · exp2

(
n · H(p) + 2ε

1 + ε

)
= exp2

(
n

(
1 + ε

1 + ε
(1−H(p)− ε)

))
,

where the first inequality is because we sum over strictly fewer terms, and the second
inequality is by definition of x∗. This is a contradiction for large enough n. J

Finally, we prove Lemma 15.

Proof of Lemma 15. As in §3.1, let b1, b2, . . . , bk ∈ Fn2 be independently and uniformly
chosen, and let Ci = span{b1, . . . , bi}.

I Lemma 16. Suppose that C is fixed and satisfies TC < 1, so that SC < 2. Then

Pr
b∼Fn2

[
SC+{0,b} > 1 + 2TC + T 1.5

C
]
< T 0.5

C .

Proof. By Lemma 14, for all b,

SC+{0,b} = E
x

[
AC+{0,b}(x)

]
≤ E

x
[AC(x)AC(x+ b)]

= E
x

[(1 +BC(x)) · (1 +BC(x+ b))]

= E
x

[1 +BC(x) +BC(x+ b) +BC(x)BC(x+ b)]

= 1 + 2TC + E
x

[BC(x)BC(x+ b)] .

Over the randomness of b and x, we have x and x + b are statistically independent and
uniform over Fn2 , so we have

E
b

E
x

[BC(x)BC(x+ b)] = E
b,x

[BC(x)] · E
b,x

[BC(x+ b)] = T 2
C . (5)

As BC is always nonnegative, we have, by Markov’s inequality,

Pr
b

[
SC+{0,b} > 1 + 2TC + T 1.5

C
]
≤ Pr

b

[
E
x

[BC(x)BC(x+ b)] > T 1.5
C

]
<

T 2
C

T 1.5
C

= T 0.5
C .J

APPROX/RANDOM 2018



50:12 Improved List-Decodability of Random Linear Binary Codes

Returning to the proof of Lemma 15, consider the sequence

δ0 := 2−n(1−H(p)− ε
1+ε )

δi := 2δi−1 + δ1.5
i−1.

We prove by induction that, for 0 ≤ i ≤ n(1−H(p)− ε), we have δi < 2i+1δ0, which is at
most 2− ε

2n
2 for n sufficiently large. The base case i = 0 is straightforward. If δj < 2j+1δ0 for

j < i, then

δi = 2δi−1(1 + δ0.5
i−1) = 2iδ0 ·

i−1∏
j=0

(1 + δ0.5
j ) ≤ 2iδ0 · exp

i−1∑
j=0

δ0.5
j

 < 2i+1δ0.

In the first two equalities, we applied the definitions of δi and δi−1, . . . , δ1, respectively. In
the first inequality, we used the estimate 1 + z ≤ ez, and in the second we used the inductive
hypothesis δj < 2− ε

2n
2 for j < i. By this induction, we conclude that, if k = n(1−H(p)− ε),

then δk < 2− ε
2n
2 .

Let b1, . . . , bk ∈ Fn2 be randomly chosen vectors, and let Ci = span(b1, . . . , bi) with Ck = C.
By Lemma 16, conditioned on a fixed Ci satisfying TCi ≤ δi, we have, with probability at
most T 0.5

Ci , which is at most δ0.5
i , that TCi+1 > δi+1. Furthermore, TC0 ≤ δ0 by the initial

condition (4). Thus, with probability at least

1−
(
δ0.5
0 + δ0.5

1 + · · ·+ δ0.5
k

)
> 1− k2−ε

2n/2 ≥ 1− 2−Ωε(n)

we have TCi ≤ δi for all i. In particular, TC = TCk < δk < 2− ε
2n
2 . Thus, SC = 1 + TC ≤ 2

with probability 1− exp(−Ωε(n)), completing the proof of Lemma 15. J

I Remark. We do not see how to extend this proof to larger alphabets. If, for example, q = 3,
then Lemma 16 would need to say Pr[SC+{0,b,2b} > 1 + 3TC + o(TC)] < o(1). However, the
same proof would fail to establish this, as we can no longer separate the expectation in (5);
that is we cannot say

E
b

E
x

[BC(x)BC(x+ b)BC(x+ 2b)] = E
b,x

[BC(x)] · E
b,x

[BC(x+ b)] · E
b,x

[BC(x+ 2b)] = T 3
C .

4 Conclusion

In this work, we have given an improved analysis of the list-decodability of random linear
binary codes. Our analysis works for all values of p, and also obtains improved bounds on
the list size as the rate approaches list-decoding capacity. In particular, not only do our
bounds improve on previous work for random linear codes, but they show that random linear
codes are more list-decodable than completely random codes, in the sense that the list size
is strictly smaller. Our techniques are quite simple, and strengthen an argument of [13] to
hold with high probability. In order to demonstrate the applicability of these techniques,
we use them to (a) obtain more information about the distribution of list sizes of random
linear codes and (b) to prove a similar result for random linear rank-metric codes, improving
a recent result of [16].

We end with some open questions raised by our work.
1. With the exception of Theorem 12, our results – both our upper bounds and our lower

bounds – hold only for binary alphabets. We conjecture that analogous results, and in
particular list-decoding random linear codes with list size C/ε for C < 1, hold over larger
alphabets.
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2. We showed that random linear binary codes of rate 1−H(p)− ε are with high probability
(p, L) list-decodable with L ≤ H(p)/ε. The lower bounds of [32, 15] show that we must
have L ≥ C/ε, but the constant C is much smaller than H(p). Thus, we still do not know
what the correct leading constant is for random linear codes.

3. Finally, there are currently no known explicit constructions of capacity-achieving binary
list-decodable codes for general p. It is our hope that this work – which gives more
information about the structure of linear codes which achieve list-decoding capacity –
could lead to progress on this front. Given that we don’t know how to efficiently check if
a given code is (p, L)-list-decodable, even an efficient Las Vegas construction (as opposed
to a Monte Carlo construction) would be interesting.
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A Characterizing the list size distribution

In this section we establish Theorem 6. Define

P
(`)
C := 2−n|{x : LC(x) = `}|

P
(≥`)
C :=

∞∑
i=`

P
(i)
C

Q
(≥`)
C :=

∞∑
i=`

i · P (i)
C
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The goal (per Theorem 6) is to bound P (≥`)
C ; in our argument, it is more convenient to work

with Q(≥`)
C , which is a proxy for P (≥`)

C . We note a few useful properties of these definitions.

I Proposition 17. Suppose that C ⊆ Fn2 is a linear code. Then the following hold for ` ≥ 1.
1. Q(≥`)

C = 2−n ·
∑
x∈Fn2 :LC(x)≥` LC(x) = Ex [I [LC(x) ≥ `] · LC(x)]

2. Q(≥1)
C = 2−n ·Vol(n, pn) · 2k ≤ 2−n(1−H(p))+k

Proof. To see Item 1, notice that

Q
(≥`)
C = 2−n

∞∑
i=`

i · | {x |LC(x) = i} |

= 2−n
∞∑
i=`

∑
x∈Fn2

i · I [LC(x) = i]

= 2−n
∑

x:LC(x)≥`

LC(x).

To see Item 2, we begin with Item 1 and derive

Q
(≥1)
C = 2−n

∑
x:LC(x)≥1

LC(x)

= 2−n
∑
x∈Fn2

LC(x)

= 2−n
∑
x∈Fn2

∑
v∈B(x,pn)

I[x+ v ∈ C]

= 2−n
∑

v∈B(x,pn)

∑
x∈Fn2

I[x+ v ∈ C]

= 2−n
∑

v∈B(x,pn)

|C|

= 2−n ·Vol(n, pn) · 2k. J

Using these properties, we are now can state and prove Theorem 18, which implies Theorem 6.

I Theorem 18. Fix L ≥ 0. There exists a constant CL depending only on L so that, for
all γ ∈ (0, 1) and sufficiently large n, the following holds. Suppose that k ≤ (1 − γ)n. If
C ⊆ Fn2 is a random linear code of dimension k, then with probability 1− exp(−CLγn), for
all 1 ≤ ` ≤ L,

Q
(≥`)
C ≤

(
2−n(1−H(p)) · 2k

)`
· 2γ`

2n. (6)

Before we prove Theorem 18, we explain why it implies Theorem 6. By setting k =
n(1−H(p)− ε) and γ = εγ′/L in Theorem 18, we obtain that with high probability, for all
1 ≤ ` ≤ L,

P
(≥`)
C ≤ Q

(≥`)
C ≤ 2−nε` · 2

εγ′
L `2n ≤ 2−nε`(1−γ

′),

which is Theorem 6. Theorem 18 also implies Theorem 5:

I Corollary 19 (Theorem 5). Let p ∈ (0, 1/2), let ε > 0, and let R = 1 − H(p) − ε. Let
C ⊆ Fn2 be a random linear code of rate R. Then with probability 1− exp(−Ωε(n)), the code
C is (p,H(p)/ε+ 2)-list-decodable.
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Proof. Let L = H(p)/ε+ 2 and choose γ � L−3, and let C ⊆ Fn2 be a random linear code of
dimension k = n(1−H(p)− ε). Then k ≤ (1− γ)n, so, by Theorem 18, with probability at
least 1− exp(−CLγn), code C satisfies (6) with k = n(1−H(p)− ε). In particular, choosing
` = L, this means that

Q
(≥L)
C ≤ 2L(−n(1−H(p))+k)+γL2n = 2−nLε+γL

2n < 2−n(1−R)

Suppose there exists x ∈ Fn2 such that LC(x) ≥ L. Then LC(x + c) ≥ L for all c ∈ C, so
that Q(≥L)

C > P
(`)
C ≥ 2−n(1−R). This is a contradiction, so there are no x ∈ Fn2 such that

LC(x) ≥ L. J

Proof of Theorem 18. The proof of Theorem 18 proceeds by induction on k, with the
inductive hypothesis that (6) holds for all 1 ≤ ` ≤ L. We begin with the base case by noting
that (6) is satisfied for k = 0, for all 1 ≤ ` ≤ L. To see this, notice that for ` = 1, we have
Q

(≥1)
{0} ≤ 2−n(1−H(p)) by Proposition 17, Item 2, which satisfies (6) for k = 0, ` = 1. For

` ≥ 2, Q(≥`)
{0} = 0, and so again (6) holds.

Now that we have established the base case of k = 0, we proceed by induction. Lemma 20
provides the inductive step; similar to the approach in §3, it shows that at every step the
“expected behavior” holds with high probability.

I Lemma 20. Let γ > 0, and suppose that C ⊆ Fn2 is a linear code of dimension k ≤ (1−γ)n
such that for all 1 ≤ ` ≤ L, we have

Q
(≥`)
C ≤

(
2−n(1−H(p)) · 2k

)`
· 2γ`

2n. (7)

Then, for a uniformly chosen b ∈ Fn2 , with probability at least 1− 4 ·L3 · 2−γn over the choice
of b, we have, for all 1 ≤ ` ≤ L,

Q
(≥`)
C+{0,b} ≤

(
2−n(1−H(p)) · 2k+1

)`
· 2γ`

2n. (8)

Proof. By Proposition 17, Item 2, (8) always holds for ` = 1, so suppose that ` ≥ 2. We
have, for any b ∈ Fn2 ,

Q
(≥`)
C+{0,b} = E

x

[
I[LC+{0,b}(x) ≥ `] · LC+{0,b}(x)

]
(By Prop. 17, Item 1)

≤ E
x

[I[LC(x) + LC(x+ b) ≥ `] · (LC(x) + LC(x+ b))] (By Lemma 14)

= E
x

[I[LC(x) + LC(x+ b) ≥ `] · LC(x) + I[LC(x) + LC(x+ b) ≥ `] · LC(x+ b)]

= 2 ·E
x

[I[LC(x) + LC(x+ b) ≥ `] · LC(x)]

= 2 ·E
x

[
I[LC(x) ≥ `] · LC(x) +

`−1∑
i=0

I[LC(x) = i, LC(x+ b) ≥ `− i] · LC(x)
]

= 2 ·Q(≥`)
C + 2 ·

`−1∑
i=0

i ·E
x

[I[LC(x) = i] · I[LC(x+ b) ≥ `− i]] , (9)

where we have used Proposition 17, Item 1 in the final line. Since the only inequality above
is an application of Lemma 14, which is an equality when b 6∈ C, the derivation above is an
equality when b 6∈ C. Thus, when b 6∈ C, we have

Q
(≥`)
C+{0,b} = 2 ·Q(≥`)

C + 2 ·
`−1∑
i=0

i ·E
x

[I[LC(x) = i] · I[LC(x+ b) ≥ `− i]] ≥ 2 ·Q(≥`)
C . (10)
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This fact (10) is useful later. For now, we move on with no assumption on b. Taking
expectations on both sides of (9), we see

E
b

[
Q

(≥`)
C+{0,b}

]
≤ 2 ·Q(≥`)

C + 2 ·
`−1∑
i=0

i · E
b,x

[I[LC(x) = i] · I[LC(x+ b) ≥ `− i]]

= 2 ·Q(≥`)
C + 2 ·

`−1∑
i=0

i · P (i)
C · P

(≥`−i)
C

≤ 2 ·Q(≥`)
C + 2 ·

`−1∑
i=0

i ·Q(≥i)
C ·Q(≥`−i)

C

Continuing, we bound

E
b

[
Q

(≥`)
C+{0,b}

]
≤ 2 ·Q(≥`)

C + 2 ·
`−1∑
i=0

i ·Q(≥i)
C ·Q(≥`−i)

C

≤ 2 ·Q(≥`)
C + 2 · L ·

`−1∑
i=1

Q
(≥i)
C ·Q(≥`−i)

C

≤ 2 ·Q(≥`)
C + 2 · L ·

`−1∑
i=1

(
2−n(1−H(p)) · 2k

)`
· 2γ(`2−2i`+2i2)n (By (7))

≤ 2 ·Q(≥`)
C + 2 · L ·

`−1∑
i=1

(
2−n(1−H(p)) · 2k

)`
· 2γ`

2n · 2−γn

≤ 2 ·Q(≥`)
C + 2 · L2 · 2−γn ·

(
2−n(1−H(p)) · 2k

)`
· 2γ`

2n

=: (?)

The above derivation holds whether or not b ∈ C. Thus,

(?) ≥ E
b

[
Q

(≥`)
C+{0,b}

]
= E

b

[
Q

(≥`)
C+{0,b}|b 6∈ C

]
Pr
b

[b 6∈ C] + E
b

[
Q

(≥`)
C+{0,b}|b ∈ C

]
Pr
b

[b ∈ C]

≥ E
b

[
Q

(≥`)
C+{0,b}|b 6∈ C

]
Pr
b

[b 6∈ C]

= E
b

[
Q

(≥`)
C+{0,b}|b 6∈ C

]
·
(

1− |C|2n

)
,

and so

E
b

[
Q

(≥`)
C+{0,b}|b /∈ C

]
≤

2 ·Q(≥`)
C + 2 · L2 · 2−γn ·

(
2−n(1−H(p)) · 2k

)` · 2γ`2n

1− |C|2n

≤
(

1 + 2|C|
2n

)(
2 ·Q(≥`)

C + 2 · L2 · 2−γn ·
(

2−n(1−H(p)) · 2k
)`
· 2γ`

2n

)
≤ 2 ·Q(≥`)

C +
(

2−n(1−H(p)) · 2k
)`
· 2γ`

2n

(
4|C|
2n + 3 · L2 · 2−γn

)
(By (7))

≤ 2 ·Q(≥`)
C + 4 · L2 · 2−γn ·

(
2−n(1−H(p)) · 2k

)`
· 2γ`

2n.

In the third line, we used the fact that 1/(1− x) ≤ 1 + 2x for all 0 ≤ x ≤ 1/2, along with
the fact that, since k < n, we have |C|/2n = 2k−n ≤ 1/2. In the last line, we used that
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|C| = 2k ≤ 2n(1−γ) and 2 ≤ ` ≤ L. By (10), when b 6∈ C, the quantity Q(≥`)
C+{0,b} − 2Q(≥`)

C is
nonnegative. Hence, we may apply Markov’s inequality to obtain

Pr
b

[
Q

(≥`)
C+{0,b} − 2Q(≥`)

C ≥
(

2−n(1−H(p)) · 2k
)`
· 2γ`

2n|b /∈ C
]
≤ 4 · L2 · 2−γn.

When b ∈ C, we have Q(≥`)
C+{0,b} = Q

(≥`)
C . Thus,

Pr
b

[
Q

(≥`)
C+{0,b} − 2Q(≥`)

C ≥
(

2−n(1−H(p)) · 2k
)`
· 2γ`

2n|b ∈ C
]

= 0.

Together these imply

Pr
b

[
Q

(≥`)
C+{0,b} − 2Q(≥`)

C ≥
(

2−n(1−H(p)) · 2k
)`
· 2γ`

2n

]
≤ 4 · L2 · 2−γn. (11)

Thus, with probability at least 1− 4L22−γn, we have

Q
(≥`)
C+{0,b} ≤ 2Q(≥`)

C +
(

2−n(1−H(p)) · 2k
)`
· 2γ`

2n

≤ 3
(

2−n(1−H(p)) · 2k
)`
· 2γ`

2n

≤
(

2−n(1−H(p)) · 2k+1
)`
· 2γ`

2n

where the first inequality is from (11), the second inequality is by the assumption (7), and
the final inequality is because ` ≥ 2. This completes the proof of Lemma 20. J

Returning to the proof of Theorem 18, call a code C of dimension k good if (6) holds
for all 1 ≤ ` ≤ L. Lemma 20 states that if C is good, then C + {0, b} fails to be good with
probability at most 4L32−γn over the choice of a uniformly random b ∈ Fn2 .

Since we have already shown that {0} is good at the beginning of the proof, it follows
from the union bound that a random linear binary code C = span(b1, . . . , bk) fails to be good
with probability at most k ·4L32−γn = 2−Ω(γn). This completes the proof of Theorem 18. J
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