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Abstract
One of the central problems in complexity theory is to prove super-logarithmic depth bounds
for circuits computing a problem in P , i.e., to prove that P is not contained in NC1. As an
approach for this question, Karchmer, Raz and Wigderson [5] proposed a conjecture called the
KRW conjecture, which if true, would imply that P is not cotained in NC1.

Since proving this conjecture is currently considered an extremely difficult problem, previous
works by Edmonds, Impagliazzo, Rudich and Sgall [1], Håstad and Wigderson [3] and Gavinsky,
Meir, Weinstein and Wigderson [2] considered weaker variants of the conjecture. In this work we
significantly improve the parameters in these variants, achieving almost tight lower bounds.
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1 Introduction

The holy grail question in circuit complexity is to prove super-polynomial size lower bounds for
NP, i.e., to show that NP is not contained in P/ poly. This is considered to be an extremely
difficult problem and even after years of research we do not even know a super-linear size
lower bound. Hence, a natural approach is to prove lower bounds for more restricted classes
of circuits. One such restricted class of circuits are NC1, which are circuits of polynomial
size, logarithmic depth and bounded fan-in. It is widely believed that NC1 does not contain
P. However even this problem is deemed very hard. In particular, we do not even know
super-linear lower bounds for NC1 circuits computing a function even in NEXP.

An approach for separating P from NC1 was suggested by Karchmer, Raz and Wigderson
[5]. They conjectured that the depth complexity of Boolean functions adds up under a certain
composition of Boolean functions. We refer to this as the KRW conjecture, and if it is true,
would give an explicit function in P which does not have NC1 circuits. In order to state the
conjecture we define the following composition of functions.
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48:2 Improved Composition Theorems for Functions and Relations

I Definition 1 (Composition). Given two arbitrary Boolean functions f : {0, 1}m → {0, 1} ,
g : {0, 1}n → {0, 1} we define their composition to be the Boolean function f � g :
({0, 1}n)m → {0, 1} obtained as follows:

f � g (x1, x2, . . . , xm) = f (g (x1) , g (x2) , . . . , g (xm))

where xi ∈ {0, 1}n ,1 ≤ i ≤ m.

We recall a standard definition of depth complexity. For a Boolean function f : {0, 1}n →
{0, 1} , its depth complexity denoted by D(f), is the smallest depth of a circuit of AND,OR
and NOT gates of fan-in 2 that computes f . We now state the KRW conjecture.

I Conjecture 2 (The KRW conjecture, [5]). Let f : {0, 1}m → {0, 1} and g : {0, 1}n →
{0, 1} be two arbitrary non-constant Boolean functions. Then the following holds true3,

D (f � g) ≈ D (f) +D (g)

Since this is a difficult conjecture previous works [1, 2, 3] proved lower bounds for two
simplified variants of the KRW conjecture. In this work we improve the parameters of these
lower bounds, motivated by the value of these parameters in the target application. Though
the two simplified variants of the KRW conjecture are important milestones, we would like
to point out that settling these two variants of the conjecture do not imply any circuit lower
bound.

1.1 Background
1.1.1 Karchmer-Wigderson relations
Karchmer and Wigderson [6] established an interesting connection between the depth com-
plexity of a Boolean function f and the communication complexity of an associated relation,
which is called the Karchmer-Wigderson relation, and is denoted by KWf . They proved that
the depth complexity of f is equal to the deterministic communication complexity of KWf .

The Karchmer-Wigderson relation associated with a Boolean function f : {0, 1}n → {0, 1}
is the following communication problem. Alice is given an input x ∈ f−1(0) and Bob is given
an input y ∈ f−1(1).The objective of the players is to find an index i ∈ [n] such that xi 6= yi.

In the rest of this paper we refer to the Karchmer-Wigderson relation as “KW relation”.
We also denote the deterministic communication complexity of KWf by CC (KWf ). In
the rest of this paper, when we say communication complexity, we mean deterministic
communication complexity.

1.1.2 The KW relation of composition
We study the KRW conjecturing using the Karchmer-Wigderson framework. To this end,
we describe how the KW relation related to the composition f � g looks like for arbitrary
Boolean functions f, g. In the KW relation KWf�g, Alice and Bob’s inputs are conveniently
viewed as m× n matrices X,Y , respectively. Given an m× n binary matrix X, we define
g(X) to be an m bit binary vector obtained by applying g to the rows of X.

The KW relation KWf�g associated with the composition f � g is the following communi-
cation problem.

3 The approximate equality in the statement of the conjecture is intentionally left vague, since there
are multiple possible definitions which are weaker than strict equality, but which would still imply the
P 6⊆ NC1 separation.
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Alice gets a matrix X ∈ {0, 1}m×n with the promise that the vector a = g(X) is such
that f (a) = 0.
Bob gets a matrix Y ∈ {0, 1}m×n with the promise that the vector b = g(Y ) is such that
f (b) = 1.
The goal of the players is to find a pair of indices (i, j) ∈ [m]× [n] such that Xi,j 6= Yi,j .

It is easy to see that CC (KWf�g) ≤ CC (KWf ) + CC (KWg). The KRW conjecture says
that the upper bound is essentially optimal for KWf�g.

1.1.3 Universal relation and its composition
Because of the difficulty of the original conjecture, Karchmer, Raz and Wigderson [5] suggested
studying a simpler variant of the conjecture. To this end, they defined a simplified variant
of KW relations called the universal relation. The universal relation on n bits, denoted
by Un, is a promise problem where Alice is given an input x ∈ {0, 1}n and Bob is given
an input y ∈ {0, 1}n with the guarantee that x 6= y. The goal of the players is to find an
index i ∈ [n] such that xi 6= yi. This relation is called the universal relation in the sense
that KW relation of any Boolean function reduces to it. Tardos and Zwick [9] proved that
deterministic communication complexity of Un is n+ 1.

Karchmer, Raz and Wigderson [5] suggested to study the composition of universal relations
defined next. The composition of the universal relation Um with the universal relation Un,
denoted by Um � Un, is defined as the following communication problem.

Alice gets a matrix X ∈ {0, 1}m×n and a vector a ∈ {0, 1}m.
Bob gets a matrix Y ∈ {0, 1}m×n and a vector b ∈ {0, 1}m.
They are guaranteed that a 6= b.
They are guaranteed that for any i ∈ [m], whenever ai 6= bi, the corresponding rows of
the matrices, denoted by Xi and Yi, are not equal.
The goal of the players is to find a pair of indices (i, j) ∈ [m]× [n] such that Xi,j 6= Yi,j .

This problem generalizes the KW relation corresponding to the composition of Boolean
functions. As a first step towards the KRW conjecture, [5] suggested to prove the following:

I Conjecture 3 (Analogue of KRW conjecture for Um � Un, [5]). CC (Um � Un) ≈ CC (Um) +
CC (Un) ≈ m+ n

The first progress towards this conjecture on the composition of universal relations was made
by Edmonds et al. [1] who proved that CC (Un � Un) ≥ 2n − O(

√
n). Later Håstad and

Wigderson [3] improved on the results of [1] using a completely different proof strategy. They
[3] proved that for sufficiently large n, CC (Un � Un) ≥ 2n− 1.

1.1.4 Composition of a function with the universal relation
A variant of the above conjecture, which is closer to the original KRW conjecture, is a
conjecture dealing with composition of an arbitrary Boolean function with a universal
relation. It was suggested by Gavinsky et al. [2]. Given an arbitrary Boolean function
f : {0, 1}m → {0, 1} , they define the KW relation KWf�Un as the following promise problem.

Alice gets a matrix X ∈ {0, 1}m×n and a vector a ∈ {0, 1}m such that f (a) = 0.
Bob gets a matrix Y ∈ {0, 1}m×n and a vector b ∈ {0, 1}m such that f (b) = 1.
They are guaranteed that for any i ∈ [m] whenever ai 6= bi, the corresponding rows of
the matrices, denoted by Xi and Yi, are not equal.
The goal of the players is to find a pair of indices (i, j) ∈ [m]× [n] such that Xi,j 6= Yi,j .

APPROX/RANDOM 2018
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This definition is a natural candidate for the composition of a function with the universal
relation as any instance of KWf�Un as defined above is also a legal instance of Um � Un. In
addition, any instance of KWf�g where f : {0, 1}m → {0, 1} and g : {0, 1}n → {0, 1} is
also a legal instance of KWf�Un if we set a = g(X) and b = g(Y ).

We now describe the definition of the promise version of the composition of a function f
with a universal relation, due to [2]. As in the above version, goal of Alice and Bob is to
find an entry (i, j) on which X and Y differ, but they are allowed to reject if there exists an
index i ∈ [m] such that ai 6= bi but Xi = Yi.

I Remark. It is easy to see that the complexity of the problem over all inputs is larger by at
most two bits than the complexity of the promise problem.

Gavinsky et al. [2] proposed the following analogous conjecture for KWf�Un :

I Conjecture 4 (Conjecture for f � Un, [2]). CC (KWf�Un) ≈ CC (KWf ) + CC (Un) ≈
CC (KWf ) + n

They [2] also proved the following lower bound on the composition4.

I Theorem 5 (Lower bound for f �Un, [2]). For any m,n ∈ N, and any non-constant function
f : {0, 1}m → {0, 1} , CC (KWf�Un) ≥ log (L(f)) + n−O

(
1 + m

n

)
logm.

1.1.5 Known results
In this work, we are interested in improving the dependence on m in the known lower bounds,
and in particular in the setting where m� n. The early results of Edmonds et al. [1] and
Håstad and Wigderson [3], established lower bounds for the composition of universal relation
with itself when m = n. However, these results can be generalized in a straightforward
manner for proving lower bounds for communication complexity of Um � Un.

A straightforward generalization of the [1] bound for m 6= n yields the following result:
CC (Um � Un) ≥ m+ n−O (

√
m)

A straightforward generalization of the Håstad and Wigderson [3] result only gives a
lower bound of 2n− o(1) for CC (Um � Un). Note that this lower bound is independent of m
and hence is far from the conjectured lower bound of m+ n when m� n.

Gavinsky et al. studied CC(f � Un) and proved a lower bound of log (L(f)) + n −
O
(
1 + m

n

)
logm. The lower bound proved by [2] is for m and n which are not necessarily

equal. However, similar to the other known lower bounds it also has a loss term depending
on m, O

(
m
n logm

)
, which becomes significant if m� n.

1.2 Our results
We overcome the additive losses in the above lower bounds and obtain bounds which are
optimal except for an O (log?m) additive term.

I Theorem 6. For any m,n ∈ N with n ≥ 6 logm, and any non-constant function f :
{0, 1}m → {0, 1} , CC (KWf�Un) ≥ logL (f) + n − O (log?m) where L (f) is the formula
complexity of the function f .

4 Note that the lower bound depends on the logarithm of the formula complexity of f , denoted by
log (L (f)), instead of the depth complexity of f denoted by D(f). However, the parameters log (L (f))
and D(f) are tightly related.
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We also prove a similar lower bound for the deterministic communication complexity of
Um � Un.

I Theorem 7. For any m,n ∈ N with n ≥ 6 logm, CC (Um � Un) ≥ m+ n−O (log?m)

But for sake of simplicity, we prove the following lower bounds with O(logm) additive losses
and defer the proof of O(log?m) improvement to the full version of the paper.

I Theorem 8. For any m,n ∈ N, and any non-constant function f : {0, 1}m → {0, 1} ,
CC (KWf�Un) ≥ logL (f) + n − O (logm) where L (f) is the formula complexity of the
function f .

As a corollary we get the following lower bound for the deterministic communication com-
plexity of Um � Un.

I Corollary 9. For any m,n ∈ N, CC (Um � Un) ≥ m+ n−O (logm)

Proof. As noted earlier, for any non-constant Boolean function f : {0, 1}m → {0, 1} ,
the KW relation associated with f � Un reduces to the communication problem Um � Un.
In particular, this implies that for any non-constant f : {0, 1}m → {0, 1} , it holds that
CC (Um � Un) ≥ CC (KWf�Un). Since there exists Boolean functions with formula complexity

2m
logm among the set of allm-bit Boolean functions, we get by Theorem 8 that, CC (Um � Un) ≥

log
(

2m
logm

)
+ n−O (logm) = m+ n−O (logm). J

Note that in the improved lower bounds, since the losses are only O(log?m), we do not get
the improved lower bound for Um � Un as a corollary from the lower bound for f � Un. But
using a very similar proof, an independent lower bound can be derived for Um � Un.

Motivation

Bridging the gap between the known lower bounds and the conjectured lower bounds is an
important pursuit in itself. More importantly, the KRW conjecture implies the two weaker
conjectures up to sub-logarithmic additive losses. Thus it is necessary to prove the weaker
variants with such losses if one it to settle the KRW conjecture. Our work obtains the first
known lower bounds on the two variants of the conjecture, with additive losses smaller than
the losses implied if the KRW conjecture is true.

However, the improved parameters in our lower bounds are also significant for the following
reason. As we mentioned above, the main motivation for studying the KRW conjecture is
that it implies P 6⊆ NC1. In fact, in order to obtain this implication, it suffices to prove
a relaxed variant of the conjecture in which g is a random function (but f is an arbitrary
function). This relaxation seems to be closer to our reach, since [2] have already proved the
conjecture when g is replaced with the universal relation and f is an arbitrary function.

However, in order to derive P 6⊆ NC1 from the relaxation, we need to have lower bounds
that are meaningful for values of m that satisfy m = nω(1). Unfortunately, the result of [2]
does not give a meaningful bound when m ≥ n2. If we aspire to prove this relaxation of
the KRW conjecture, we need to have lower bounds that work for larger values of m. Our
Theorem 8 achieves exactly that: it gives a bound on KWf�Un that is meaningful as long as
m = o(2n), which is good enough for our purposes.

We should mention that there is another relaxation of the KRW conjecture that implies
P 6= NC1, in which f is a random function and g is an arbitrary function. However, this
relaxation seems farther from our reach, since we do not have any result on KWUm�g when
g is an arbitrary function.

APPROX/RANDOM 2018



48:6 Improved Composition Theorems for Functions and Relations

Results for formula lower bounds

We also have a similar (though somewhat weaker) result for formula lower bounds. The
analogue of the KRW conjecture for formula lower bounds says that L(f � g) ≈ L(f) · L(g)
(see [2] for details). This can also be stated in the Karchmer-Wigderson framework: To
this end, for any communication problem R, let us denote by L(R) the smallest num-
ber of distinct transcripts in a deterministic protocol that solves R. Then, the ana-
logue of the KRW conjecture is to say that L(KWf�g) ≈ L(KWf ) · L(KWg) or equiv-
alently logL(KWf�g) ≈ logL(KWf ) + logL(KWg) We prove that logL(KWf�Un) ≥
logL(KWf ) + n − O

(√
logL(KWf ) + logm

)
. While this result is weaker than our re-

sult for depth complexity due to the loss of O(
√

logL(KWf )), it is still stronger than the
corresponding results of [3, 2] when logL(KWf )� n5. We defer the proof to the full version
of this paper.

1.3 Our techniques
In this section we provide an overview of the proof of our main result (Theorem 8). Our
approach is based on a proof strategy due to [1]. We begin by describing this proof strategy,
and then describe our new ideas. Recall that the inputs of the parties are pairs (X, a)
and (Y, b) where X,Y are m × n matrices and a ∈ f−1(0), b ∈ f−1(1) are m bit column
vectors. Fix a deterministic protocol Π that solves KWf�Un . We wish to prove that Π must
transmit ≈ CC(KWf ) + n bits.

The basic intuition that underlies the proof consists of the following three observations:
Morally, in order to solve KWf�Un , the parties have to solve the universal relation on one
of the rows of X,Y . To this end, they have to transmit at least n bits about this row.
However, solving the universal relation on a row Xi, Yi only makes sense if the parties
are guaranteed that Xi 6= Yi, since otherwise they might waste their communication on
equal rows.
Intuitively, in order to find rows Xi, Yi that are guaranteed to be different, the parties
must solve KWf , and to this end they have to transmit at least CC(KWf ) bits.

Therefore, the total amount of communication must be at least ≈ CC(KWf ) + n.

High-level idea

We now sketch the argument that is based on this intuition. We partition the communication
of the protocol Π into two stages – intuitively, the parties should solve KWf on a, b in
the first stage, and then solve the universal relation on a row of X,Y in the second stage.
Formally, the first stage is defined as the first CC(KWf )−α bits that are transmitted in the
protocol, where α is some small “slack term”, and the second stage consists of the remaining
bits. We prove that the parties must transmit approximately n bits during the second stage,
and this implies that the protocol must transmit approximately CC(KWf ) + n bits in total.

We start by making the following observation: If, during the first stage, the parties only
“talk about” a, b, then it is easy to prove that they have to transmit at least n bits in the
second stage: morally, this is because in the second stage they still have to solve the universal
relation on one of the rows of X,Y , and must do so “from scratch” (since they did not talk
about this row before).

5 the work of [1] does not provide a result for formula lower bounds
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The challenging case is when the parties “talk about” X,Y during the first stage. We
deal with this case by observing that talking about X,Y during the first stage is useless,
for the following reason: during the first stage, the parties have not finished solving KWf

yet, since they communicated less than CC(KWf ) bits. Thus, at this point, they do not
know any row i where ai 6= bi, and therefore they do not know any row i for which they are
guaranteed that Xi 6= Yi. This means that any communication about X,Y during the first
stage is likely to be wasted on rows where Xi = Yi, and hence will not help the parties to
solve the problem.

In short, we observe that any communication about X,Y during the first stage is useless.
Therefore, any optimal protocol should behave roughly as if the parties do not talk about X,Y
at all during the first stage. However, in such case the parties must transmit n bits during
the second stage, and this is what we want to prove.

An adversary argument

The foregoing idea is formalized using an adversary argument. This means that we view the
inputs of the parties as if they are chosen by an adversary that can adapt to the messages
sent by the parties. We now describe the behavior of our adversary. The adversary starts by
letting the parties talk throughout the first stage, and chooses the messages such that no
more than CC(KWf )− α bits of information are revealed. At the end of the first stage, the
adversary looks at the transcript of the communication so far, and partitions the rows of
X,Y into two types:

“Revealed rows”, about which the parties talked much (i.e., more than τ bits for some
small parameter τ).

“Unrevealed rows”, about which the parties talked a little (i.e., at most τ bits).
Intuitively, if the parties end up solving the universal relation on one of the unrevealed rows,
then they have to transmit about n− τ ≈ n bits in the second stage, which is what we want
to prove.

Hence, the adversary only needs to worry about the revealed rows. In order to deal
with the revealed rows, the adversary chooses the inputs of the parties such that ai = bi
for every revealed row Xi, Yi. This allows the adversary to prevent the parties from solving
the universal relation on a revealed row Xi, Yi, since the adversary is free to set Xi = Yi
whenever they attempt to do so. It follows that the parties must solve the universal relation
on an unrevealed row, and therefore they must transmit roughly n bits during the second
stage, as required.

In order for this argument to go through, we must make sure that the adversary is indeed
capable of setting ai = bi for every revealed row. In principle, the adversary should be
able to set ai = bi for some rows because the parties have not yet finished solving KWf .
However, the number of rows for which the adversary can set ai = bi depends on how far the
parties are from solving KWf exactly. Morally, it can be shown that if the parties talked
at most CC(KWf ) − k bits about a and b, then the adversary can set ai = bi for about
k rows. Therefore, in order for the argument to work, the number of revealed rows should
be at most k. This condition depends, in turn, on the choice of the threshold τ (which
determines which rows are considered “revealed”) and on the choice of the slack term α

(which determines the length of the first stage). This is our point of departure from the work
of [1].

APPROX/RANDOM 2018



48:8 Improved Composition Theorems for Functions and Relations

The analysis of [1]

The analysis of [1] sets both the threshold τ and the slack term α to6 O(
√

CC(KWf )) (so
the length of the first stage is CC(KWf )−O(

√
CC(KWf )) bits). The analysis proceeds as

follows: In the first stage, the parties talked at most CC(KWf ) bits about the matrices X,Y
(since they talked at most CC(KWf )−O(

√
CC(KWf )) bits overall). By Markov’s inequality,

this implies that the number of revealed rows is at most

CC(KWf )
τ

= O(
√
CC(KWf )).

On the other hand, the parties talked at most CC(KWf ) − O(
√
CC(KWf )) bits about a

and b (again, since they talked at most CC(KWf )−O(
√
CC(KWf )) bits overall), and hence

the adversary can set ai = bi for O(
√
CC(KWf )) rows. Thus, for an appropriate choice of

the parameters, the adversary can set ai = bi for all the revealed rows.
Note that this analysis loses a term of O(

√
CC(KWf )) twice: once because it sets

α = O(
√
CC(KWf )) (thus losing O(

√
CC(KWf )) bits in the first stage), and once because

it sets τ = O(
√
CC(KWf )) (thus losing O(

√
CC(KWf )) in the second stage).

Our analysis

Our goal is to avoid the loss of the O(
√
CC(KWf )) term in the lower bound, and therefore

we set τ = O(1) and α = O(1). In order to make the analysis go through with this choice of
parameters, we need a new idea.

Our first key idea is the following observation: the analysis of [1] works as if the parties
transmit during the first stage CC(KWf ) bits about X,Y , and another CC(KWf ) bits about
a, b. However, this cannot happen, since the total amount of communication in the first stage
is less than CC(KWf ). Hence, if the parties talked much about X,Y , then they can talk
only a little about a, b, and vice versa.

For concreteness, let us denote by ` the number of bits that the parties talked about X,Y .
Then, by Markov’s inequality, the number of revealed rows is at most `

τ . On the other
hand, the parties talked at most CC(KWf )− α− ` bits about a and b (since they talked at
most CC(KWf )− α bits overall). Hence, the adversary can set ai = bi for ` rows, which is
more than the number of revealed rows as long as τ > 1.

A further complication

The foregoing simple idea almost works. However, there is still another complication that
we have not discussed: when the adversary fixes ai = bi for a row, it may leak a bit of
information to the parties, and in total, if there are k revealed rows then k bits may be
leaked. This leakage causes us to lose k bits in the lower bound of the second stage: in the
worst case, after the leakage the parties know τ + k bits about some unrevealed row, and
therefore, in the second stage, they may solve the universal relation on this row using only
n− τ − k bits. In such case, we will lose a term of k in the lower bound.

In the work of [1], this loss was not an issue, since they had k = O(
√
CC(KWf )) revealed

rows, and they were losing a term of O(
√

CC(KWf )) anyhow. However, in our argument
above the number of revealed rows is about `

τ , which could be almost as large as CC(KWf ).
This loss is therefore unacceptable.

6 Note that the original paper of [1] proves the result for Un � Un rather than KWf�Un , and therefore all
the occurrences of CC(KWf ) in the following description were originally equal to n.
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An iterative adversary

Our second key idea is to modify the adversary in order to deal with the above complication
as follows: After the adversary fixed ai = bi for each of the revealed rows, it checks if
new revealed rows were created in the process. In other words, the adversary checks if the
leakage of information caused the parties to know more than τ bits on some of the previously
unrevealed rows. If this is the case, the adversary fixes ai = bi for each of these new revealed
rows as well. The adversary now repeats the process until there are no more revealed rows –
i.e., until the parties know at most τ bits of information on each of the unrevealed rows.

Obviously, if such an adversary can be implemented, then it avoids losing the term
of k in the second stage. However, we need to show that such an adversary can indeed
be implemented, i.e., that the adversary is allowed to fix ai = bi for all the revealed rows
encountered throughout all the iterations.

To this end, we bound the total number of revealed rows that are encountered in the
process using the following potential argument: Whenever the adversary fixes ai = bi for a
revealed row Xi, Yi, the parties may gain one bit of information that is leaked about X,Y .
However, the parties also lose τ bits of information about X,Y , in the sense that the τ bits
of information they knew about Xi, Yi become useless after the fixing. In total, whenever
the adversary fixes ai = bi for a revealed row, the parties lose (τ − 1) bits of information
about X,Y . Since at the beginning of the iterative process the parties knew at most ` bits
of information about X,Y , the total number of revealed rows cannot exceed `/(τ − 1).

Finally, recall the adversary is allowed to fix ai = bi for ` rows, and observe that this is
more than `/(τ − 1) as long as τ ≥ 2. Therefore, we can implement the above adversary.
This concludes the analysis.

1.4 Organization of the paper
In Section 2 we review the required preliminaries. In Section 3 we discuss the general
adversarial strategy and prove a lower bound for the composition of a function with the
universal relation.

2 Preliminaries

We use [n] to denote the set {1, . . . , n}. We denote the set of m × n binary matrices by
{0, 1}m×n. For every binary m× n matrix X, we denote by Xi ∈ {0, 1}n the i-th row of X.

2.1 Formulas
In this paper we consider (de-Morgan) formulas of whose internal gates are 2 bit, AND (∧)
or OR (∨) gates.

I Definition 10. The formula complexity of a Boolean function f : {0, 1}n → {0, 1}, denoted
L(f), is the size of the smallest formula7 that computes f . The depth complexity of f ,
denoted D(f), is the smallest depth of a formula that computes f .

7 Note that we define here the depth complexity of a function as the depth of a formula that computes f ,
while in the introduction we defined it as the depth of a circuit with fan-in 2 that computes f . However,
for our purposes, this distinction does not matter, since every circuit with fan-in 2 can be converted
into a formula with the same depth.
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The following definition generalizes the above definitions from functions to promise problems,
which will be useful when we discuss Karchmer-Wigderson relations.

I Definition 11. Let X ,Y ⊆ {0, 1}n be disjoint sets. We say that a formula φ separates
X and Y if φ(X ) = 0 and φ(Y) = 1. The formula complexity of the rectangle X × Y,
denoted L(X × Y), is the size of the smallest formula that separates X and Y. The depth
complexity of the rectangle X × Y, denoted D(X × Y), is the smallest depth of a formula
that separates X and Y.

2.2 Communication complexity
Let X , Y, and Z be sets, and let R ⊆ X × Y × Z be a relation. The communication
problem [10] that corresponds to R is the following: two players, Alice and Bob, get inputs
x ∈X and y ∈ Y, respectively. They would like to communicate and find z ∈ Z such that
(x, y, z) ∈ R. At each round, one of the players sends a bit that depends on her/his input
and on the previous messages, until they find z. The communication complexity of R is the
minimal number of bits that is transmitted by a protocol that solves R.

We now define a notion of protocol size that is analogous to the notion of formula size.

I Definition 12. We define the size of a protocol Π to be its number of leaves. Note that
this is also the number of distinct transcripts of the protocol. We define the protocol size of
a relation R, denoted L(R), as the size of the smallest protocol that solves it (this is also
known as the protocol partition number of R).

2.3 Karchmer-Wigderson relations
In this section, we define KW relations formally, and state the correspondence between KW
relations and formulas. We start by defining KW relations for general rectangles, and then
specialize the definition to functions.

I Definition 13. Let X ,Y ⊆ {0, 1}n be two disjoint sets. The KW relation KWX×Y ⊆
X × Y × [n] is defined by KWX×Y = {(x, y, i) : xi 6= yi} Intuitively, KWX×Y corresponds
to the communication problem in which Alice gets x ∈X , Bob gets y ∈ Y, and they would
like to find a coordinate i ∈ [n] such that xi 6= yi (note that x 6= y since X ∩ Y = ∅).

I Definition 14. Let f : {0, 1}n → {0, 1} be a non-constant function. The KW relation
of f , denoted KWf , is defined by KWf = KWf−1(0)×f−1(1).

We now state the connection between Boolean functions and Karchmer-Wigderson relations.

I Theorem 15 ([6]8). For every two disjoint sets X ,Y ⊆ {0, 1}n it holds that D(X ×
Y) = CC(KWX×Y), and L(X × Y) = L(KWX×Y). In particular, for every non-constant
f : {0, 1}n → {0, 1}, it holds that D(f) = CC(KWf ), and L(f) = L(KWf ).

We note that for a pair of disjoints sets X ,Y ⊆ {0, 1}n where either X or Y or both is the
empty set, the leaf complexity L(X × Y) is defined to 0.

Throughout this work, we will rely extensively on the following subadditivity property of
protocol size and formula complexity: for every X ,Y ⊆ {0, 1}n such that X = X0 ∪X1
and Y = Y0 ∪ Y1, it holds that

L(X × Y) ≤ L(X0 × Y) + L(X1 × Y)
L(X × Y) ≤ L(X × Y0) + L(X × Y1).

8 The connection for formula complexity is implicit in [6], and is discussed explicitly in [8, 4, 2].
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2.4 Subaddtive measures on protocol trees
We rely upon a property of subadditive measures defined on binary trees, like the protocol
tree of a deterministic protocol Π. To this end, we define subadditive measures on binary
trees as follows:

I Definition 16. Given a rooted binary tree T = (V,E), we say that φ : V → N is a
subadditive measure on T if for every vertex u with children v and w in T it holds that
φ(u) ≤ φ(v) + φ(w).

We state without proof the following easy lemma about such measures.

I Lemma 17. Let T = (V,E) be a rooted binary tree with root r and depth d, and let φ
be a subadditive measure on T . Then there exists at least one leaf l of the tree for which,
φ (l) ≥

⌊
φ(r)
2d

⌋
2.5 Predictability and Average degree
In this paper we consider matrices of order m× n and partial matrices formed by a subset
of rows, say σ, of the original set of rows, [m]. Let S ⊆ ({0, 1}n)σ denote a set of binary
matrices whose rows are indexed by σ. We measure the information revealed on a typical
row of S, conditioned on other rows, using the notion of predictability as in [1] but using the
presentation in Raz-McKenzie [7].

I Definition 18 (Projections). Let S ⊆ ({0, 1}n)ρ. Given a matrix X ∈ S and a subset
σ ⊆ ρ, we denote by Xσ the projection of X into rows indexed by σ. We extend the definition
to a set of matrices S: Sσ = {Xσ | X ∈ S}

For a subset σ of [m], we denote by −σ its complement set in [m], i.e., [m] \ σ. When σ is
a singleton set say {i} , we denote it with i and −σ with −i. Similarly, given a bit string
a ∈ {0, 1}m and a subset σ ⊆ [m], we denote by aσthe projection of a to coordinates in σ.

As mentioned earlier, we measure information using the layered graph corresponding to the
set of matrices obtained as follows. We interpret a subset of matrices S ⊆ {0, 1}m×n as a [m]
bipartite graphs GiS(U, V,E) for each i ∈ [m], defined as follows. The left partition U is the
set S−i, the projection of S onto [m] \ {i}. The right partition V is the set Si, the projection
of S onto row i. The edge set E is defined as the set {(X,Y ) | ∃Z ∈ S,X = Z−i, Y = Zi} .
For any X ∈ S−i, we denote by degi (X,S), the degree of the left node X in the graph GiS .

We use both average-degree and min-degree as information measures for measuring
conditional information. More specifically, we use them to measure information on specific
row, conditioned on the information about the other rows.

I Definition 19 (Average degree of row). Let S be a subset of {0, 1}m×n. We define the
average degree of the ith row in the set S to be,

avgdegi (S) =
∑
X∈S−i degi (X,S)

|S−i|
= |S|
|S−i|

.

Similarly we define min-degree as.

I Definition 20 (Minimum degree of row). Let S be a subset of {0, 1}m×n. We define the
average degree of the ith row in the set S to be,

mindegi (S) = min
X∈S−i

degi (X,S) .
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Collision probability denoted by CPi (S) is defined to be the probability that two vectors
chosen uniformly at random (with replacement) from S has the same ith element, i.e.,
CPi (S) = PrX,X′∈S [Xi = X ′i]. The following is known about CPi (S),

I Lemma 21 (Lemma 4.4 from [1]). CPi (S) ≤ 1
avgdegi(S) .

In fact [1] proves something stronger. It also proves that for an individual X ∈ S, the
collision probability with a randomly sampled X ′ is bounded by inverse of the average degree.
We state it as the following lemma.

I Lemma 22 (follows from proof of Lemma 4.4 of [1]). For any X ∈ S, for an X ′ chosen
uniformly at random (with replacement) from S has,

Pr
X′∈S

[Xi = X ′i] ≤
1

avgdegi (S) .

The next lemma describes how average degree changes when we remove a set of matrices
from S.

I Lemma 23 (Lemma 4.5 from [1]). Let S′ ⊆ S,

avgdegi (S′) ≥ |S′|
|S|

avgdegi (S) .

3 Depth lower bound

In this section we prove our main result. That is, we prove the following theorem, restated
from the introduction.

I Theorem 8. For any m,n ∈ N, and any non-constant Boolean function f : {0, 1}m →
{0, 1} it holds that,

CC (KWf�Un) ≥ logL (f) + n− 2 logm− 10

where L (f) is the formula complexity of the smallest formula computing f .

Let Π be a deterministic protocol solving the totalized variant of KWf�Unwhose communica-
tion complexity is less than logL (f) + n− 2 logm+ 10 bits.

Recall that in the communication problem KWf�Un , Alice gets (X, a) and Bob gets (Y, b)
where X,Y are m× n matrices and a, b are m bit column vectors. We refer to X,Y as the
matrix part, and a, b as the column vector part of players input, respectively. Recall that in
the totalized variant of KWf�Un , players can get inputs where the promises are not kept,
and the protocol solving the totalized variant is supposed to reject such inputs.

We defer the techincal details of the argument to the appendix. The appendix section is
organized as follows : In Appendix A we show the existence of a partial transcript on which
the players have not learned too much information about their inputs. In Section B, we
formalize the intuition that the information transmitted by an average partial transcript is
divided between the matrix and the column vector part of the players input. In Section B.1,
we do a cleanup to ensure that the players are forced to solve the second stage on unrevealed
rows, i.e., rows in which the parties have learned very little information in the first stage.



S. Koroth and O. Meir 48:13

References
1 J. Edmonds, R. Impagliazzo, S. Rudich, and J. Sgall. Communication complexity towards

lower bounds on circuit depth. computational complexity, 10(3):210–246, Dec 2001. doi:
10.1007/s00037-001-8195-x.

2 Dmitry Gavinsky, Or Meir, Omri Weinstein, and Avi Wigderson. Toward better formula
lower bounds: an information complexity approach to the KRW composition conjecture.
In Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June
03, 2014, pages 213–222, 2014.

3 Johan Håstad and Avi Wigderson. Composition of the universal relation. In Advances In
Computational Complexity Theory, volume 13 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 119–134. DIMACS/AMS, 1990.

4 Mauricio Karchmer, Eyal Kushilevitz, and Noam Nisan. Fractional covers and communi-
cation complexity. SIAM J. Discrete Math., 8(1):76–92, 1995.

5 Mauricio Karchmer, Ran Raz, and Avi Wigderson. Super-logarithmic depth lower bounds
via the direct sum in communication complexity. Computational Complexity, 5(3/4):191–
204, 1995.

6 Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require super-
logarithmic depth. SIAM J. Discrete Math., 3(2):255–265, 1990.

7 Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. In 38th Annual
Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida, USA,
October 19-22, 1997, pages 234–243, 1997.

8 Alexander A. Razborov. Applications of matrix methods to the theory of lower bounds in
computational complexity. Combinatorica, 10(1):81–93, 1990.

9 G. Tardos and U. Zwick. The communication complexity of the universal relation. In
Proceedings of Computational Complexity. Twelfth Annual IEEE Conference, pages 247–
259, Jun 1997. doi:10.1109/CCC.1997.612320.

10 Andrew Chi-Chih Yao. Some complexity questions related to distributive computing (pre-
liminary report). In STOC, pages 209–213, 1979.

A First Stage Communication

We let the players speak for t1 = log (L (f)) − α bits in the first stage, where α is a slack
variable to be fixed later. We define a formal measure that measures the progress that the
players make throughout the protocol towards solving KWf�Un . We then show that this
measure does not increase by much during the first stage.

We first define the set of matrices which are “alive” with respect to a partial transcript π
of Π. We say that a matrix X is alive with respect to partial transcript π, if there exists
a pair (a, b) ∈ f−1 (0) × f−1 (1) such that the input ((X, a) , (X, b)) is consistent with the
partial transcript π. We define AXπ as the set of all column vectors a ∈ f−1(0) for which
(X, a) is an input for Alice consistent the partial transcript π. Similarly define BXπ as the
set of all column vectors b ∈ f−1(1) for which (X, b) is an input for Bob consistent with
the partial transcript π. We let the set Sπ be the set of alive matrices with respect partial
transcript π. To quantify the total progress the players have made given a partial transcript
π, we use the following measure.

φ (π) =
∑
X∈Sπ

L
(
AXπ ×BXπ

)
It is easy to note that the measure φ (π) defined above is a subadditive measure on the
protocol tree of Π. By applying Lemma 17 on T ′ we get that, there exists a leaf l ∈ T ′
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and a corresponding partial transcript π′ of Π, with φ (l) ≥ 1
2log(L(f))−αφ (λ). At the root

φ (λ) = 2mnL (f). Thus we get the following proposition,

I Proposition 24. There exists a partial transcript π such that,
φ (π′) ≥ 1

2t1 2mn+log(L(f)) = 2mn+α.
Th length of π′ is at most t1, and length of π′ is strictly less than t1 if and only if π′ is a
leaf of the protocol Π.

B Cleanup after first stage

In this section we do a cleanup so that players are forced to solve Un on rows where not too
much information was revealed.

At this point, we fix the partial transcript π′ and differentiate between the information
the players have learned about the matrices in Sπ′ , and the progress players have made
on solving KWf problem associated with an average X ∈ Sπ′ . To this end, we describe
two measures of information. We first measure the information about the matrix. This is
done by measuring what fraction of matrices from {0, 1}m×n are alive in Sπ′ . Throughout
the argument we would like to discard some of the inputs which are consistent with the
transcript, and measure the information with respect to remaining inputs. Hence, we also
define these measures for arbitrary subsets of {0, 1}m×n, and their associated rectangles.

Let S ⊆ {0, 1}m×n be such that every X ∈ S has an associated rectangle AXS × BXS ⊆
f−1 (0) × f−1 (1). The subadditive measure φ defined earlier extends naturally to such
arbitrary as, φ (S) =

∑
X∈S L

(
AXS ×BXS

)
. When S = Sπ′ , for every X ∈ S, AXS × BXS is

defined to be AXπ′ ×BXπ′ . The information on the matrix part is measured as:

TSX = log
(

2mn

|S|

)
= mn− log (|S|) .

To measure the progress players have made on solving KWf problem conditioned on an
average X, we define:

TSa|X = log
(

L (f)
1
|S|
∑
X∈S L

(
AXS ×BXS

)) = log (L (f))− log
(

1
|S|

φ (S)
)
.

Observe that,

Tπ
′

X + Tπ
′

a|X = mn+ log (L (f))− log (φ (π′)) . (1)

Since we chose π′ such that φ (π′) ≥ 2mn2α, we get that,

Tπ
′

X + Tπ
′

a|X = mn+ log (L (f))−mn− α = log (L (f))− α.

Intuitively, this means that the total amount of information the players have learned in the
first stage is bounded by the number of bits communicated in the first stage.

B.1 Regularization
In order to facilitate the analysis, we would like if the matrices X ∈ Sπ′ has roughly the same
formula complexity for its associated rectangle AXπ × BXπ′ as an average X. In particular,
we need that for every X ∈ Sπ′ , it holds that L

(
AXπ′ ×BXπ′

)
≈ 2log(L(f))−Tπ

′
a|X . However,

we do not have this property for every matrix X in Sπ′ . We thus construct a subset
S′ ⊆ Sπ′ , such that for every X ∈ S′, L

(
AXS′ ×BXS′

)
≈ 2log(L(f))−TS

′
a|X while maintaining

that, TS′X + TS
′

a|X ≤ log (L (f))− α+O (logm).
We defer the details of the construction of S′ to the full version. We denote the set S′ by

Sreg, signifying that this is a regularized set. From now on we work with the set Sreg.
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B.2 Fixing revealed rows
In this section we describe an iterative process to classify the rows into revealed and unrevealed
rows based on a threshold τ , and fix the corresponding bits in the column vector to be same
for both players. In this process whenever we find a row whose average degree is smaller
than 2n−τ , we ensure that ai = bi for this row. This specific row ceases to matter as we have
maintained the promise irrespective of the value of this row for either players. We call such
a row, identified by the iterative process and for which we fix ai = bi, an inactive row. Any
row which is not an inactive row is called an active row. At any point during the iterative
process, we would like to work with a set of matrices that consist only of the active rows.
When we set ai = bi for a new row i, we remove the row i from the set of active rows to the
set of inactive rows. Now, formally, since the players expect to receive m× n matrices, we
maintain a bijection between the set of matrices over active rows and the set of legal m× n
matrices. Finally, when we remove a row from the set of active rows, we update the bijection.
This is done by fixing the row as a function of the other rows. When the iterative process
terminates, the set of active rows correspond to the unrevealed rows and the set of inactive
rows correspond to the revealed rows with respect to threshold τ .

We fix a threshold τ on information learned about a row to classify the rows into “revealed”
and “unrevealed rows”. Under our average-degree measure, we say that a row is revealed
with respect to a set of matrices S ⊆ {0, 1}m×n, if avgdegi (S) ≤ 2n−τ . Initially we look for
revealed rows with respect to Sreg. We fix a revealed row to be a function of the remaining
rows, and also fix the corresponding bit the in column vector. Fixing of a revealed row
potentially reduces the set of alive matrices by eliminating the matrices whose extension into
the revealed row is not according to the fixing chosen. The adversary proceeds by looking
for revealed rows with respect to the current set and repeats the process of fixing such a row
and corresponding column vector until there are no revealed rows with respect to the current
set of alive matrices.

We have to make sure that the above process terminates before reducing the formula
complexity of associated rectangles to zero. The following intuitive argument illustrates why
the adversary can guarantee such a convergence. Since the players learned TSreg

X amount of
information about the entire matrix, when the adversary fixes a revealed row, the adversary
accounts for τ amount of information from the total TSreg

X . However, fixing the corresponding
bit in the column vector, could potentially reveal a bit of information about the remaining
rows. Thus during one such operation, the adversary accounts for at least τ − 1 bits of
information from TS

reg

X . Hence number of such operations, and consequently, the number of
fixed rows can be at most TS

reg
X

τ−1 . Since this is less than total number of rows, not all rows
are fixed. We also need to ensure that at the end of all fixings every matrix has non-zero leaf
complexity for its associated rectangle. We ensure that when fixing a bit corresponding to
a revealed row, the formula complexity of the rectangle associated with a matrix reduces
at most by a fraction of 1

4 th. Since every matrix X in Sreg had 2log(L(f))−TS
reg

a|X −1 formula

complexity for the associated rectangle, we can ensure that after at at most T
Si
X

τ−1 fixings, the
rectangle associated with a matrix has non-zero formula complexity.

The following lemma formalizes the effect of a single iteration of our iterative adversary.

I Lemma 25. Let S′ be a subset of ({0, 1}n)m−|σ|, with an extension function Eσ : S′ →
{0, 1}m×n, along with rectangles AXS′×BXS′ ⊆ f−1 (0)×f−1 (1) for every matrix X ∈ Eσ (S′).
Let i ∈ [m] \ σ be a row such that avgdegi (S′) ≤ 2n−τ .

Then there exists a set S′′ ⊆ S′−i, an extension function Eσ∪{i} : S′′ → {0, 1}m×n, along
with rectangles AXS′′ ×BXS′′ for every matrix X ∈ Eσ∪{i} (S′′) such that,
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|S′′|
2(m−(|σ|+1))n ≥

|S′|
2(m−|σ|)n 2τ−1. That is the amount of information in the matrix part,

when restricted to rows [m] \ (σ ∪ {i}), is decreased by τ − 1 bits (from the amount of
information in the matrix part, when restricted to rows [m] \ σ).
For any X,Y ∈ Eσ∪{i} (S′′) and for any a ∈ AXS′′ and for any b ∈ BYS′′ it holds that
ai = bi.
For any X ∈ Eσ∪{i} (S′′), L

(
AXS′′ ×BXS′′

)
≥ 1

4L
(
AXS′ ×BXS′

)
as long as L

(
AXS′ ×BXS′

)
≥

4.

We defer the proof of the Lemma to the full version of the paper and prove Theorem 26
which shows how the adversary can iteratively fix revealed rows using Lemma 25 and get a
set of matrices with the desired properties for the second stage.

I Theorem 26. Let Sreg ⊆ {0, 1}m×n be the set from Section B.1. Then for any τ ∈ N,
n > τ > 3, there exists a set of indices σ ⊆ [m], a subset Sclean ⊆ Sreg

−σ, an extension
function Eσ : Sclean → {0, 1}m×n and associated rectangles RXSclean = AXSclean × BXSclean for
every X ∈ Eσ

(
Sclean) , such that,

The set σ of revealed rows is such that |σ| < m.
For any row outside σ players have learned at most τ bits of information. More formally
for any i ∈ [m] \ σ,avgdegi

(
Sclean) > 2n−τ .

For any X ∈ Eσ
(
Sclean), AXSclean ×BXSclean is non-empty.

For any X,Y ∈ Eσ
(
Sclean) not necessarily distinct, for any a ∈ AXSclean , and any b ∈

BYSclean , we have that aσ = bσ.

Proof. The adversary uses Lemma 25 to fix revealed rows until there is none. Initially
the adversary sets σ ← φ, and S′ ← Sreg. If there is any row i ∈ [m] \ σ, for which
avgdegi (S′) ≤ 2n−τ , the adversary invokes Lemma 25 to obtain a set S′′ of matrices, an
extension function Eσ∪{i} : S′′ → {0, 1}m×n, and an updated set of fixed rows σ ← σ ∪ {i}.
Adversary sets S′ ← S′′, and checks again for a row i ∈ [m]\σ, for which avgdegi (S′) ≤ 2n−τ .
If no such row exists, the adversary stops. Otherwise the adversary invokes Lemma 25 on
S′ and repeats the procedure. Note that when the iterative process stops, the resulting set
clearly satisfies the requirement.

We claim that the procedure terminates after at most TS
reg

X

τ−1 steps. Equivalently, |σ| ≤
TS

reg
X

τ−1 , as each invocation of the Lemma 25 increases |σ| by 1. We use the following claim,

whose proof is deferred to the full version, to show that |σ| ≤ TS
reg

X

τ−1 .

I Claim 27. Between every invocation of Lemma 25, the following invariant holds,
|S′|

2mn−|σ|n
≥ 2−(TSreg

X −|σ|(τ−1))

Note that S′ ⊆ {0, 1}(m−|σ|)×n and thus |S′|
2mn−|σ|n is always upper bounded by 1. This along

with the invariant implies that, 1 ≥ 2−(TSX−|σ|(τ−1)). That is TSreg

X ≥ |σ| (τ − 1). Since
τ > 1, this proves the claim that |σ| ≤ TS

reg
X

τ−1 . Since TSreg

X +TS
reg

a|X ≤ log (L (f))− 4, and since
log (L (f)) ≤ m, we get that |σ| < m.

We claim that S′ obtained at the end of such iterative fixing has all the properties claimed
by the theorem for Sclean. That is we set Sclean ← S′.

Note that Lemma 25 ensures that the rows indexed by σ are fixed as a function of
other rows for matrices in Sclean. The adversary stops invoking Lemma 25 on S′ only
when every row i ∈ [m] \ σ has avgdegi (S′) > 2n−τ . Hence every row i ∈ [m] \ σ has
avgdegi

(
Sclean) > 2n−τ .
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Suppose at any point during the iterative fixing of the rows, every X that we consider,
has formula complexity at least 4. Then, each invocation of Lemma 25 reduces the formula
complexity of the associated rectangle by at most a quarter. Since we started with formula
complexity 2log(L(f))−TS

reg
a|X −1 for every matrix X, after |σ| ≤ TS

reg
X

τ−1 many invocations, any

X ∈ Eσ
(
Sclean), has formula complexity 2

−
(

2·
TS

reg
X
τ−1

)
fraction of the formula complexity in

Sreg. That is,

L
(
AXSclean ×BXSclean

)
≥ 2

−
(

2·
TS

reg
X
τ−1

)
L
(
AXSreg ×BXSreg

)
≥ 2log(L(f))−TS

reg
a|X −1−TS

reg
X .

Note that this at least 23 as the statement of the theorem assumes that TSreg

X + TS
reg

a|X ≤
log (L (f))− 4 and τ > 3. Thus in all of |σ| invocations of the Lemma 25, all the rectangles
associated with the all the matrices have formula complexity at least 8. This also ensures that
for any X ∈ Eσ

(
Sclean), AXSclean×BXSclean is non-empty at the end as L

(
AXSclean ×BXSclean

)
≥ 8.

This concludes the proof the theorem. J

The fact that for any X ∈ Eσ
(
Sclean),L (AXSclean ×BXSclean

)
> 0 implies that, there is at

least one (a, b) pair in AXSclean ×BXSclean . From now on, for any X ∈ Eσ
(
Sclean), we denote

by
(
aX , bX

)
an arbitrary but fixed (a, b) pair in AXSclean ×BXSclean .

C Second Stage Communication

In this section we describe how to handle the second stage of communication and complete
the lower bound.

In the second stage, we let the players communicate at most t2 = n − logm − 5 bits
of communication. At the end of the second stage the adversary would like to ensure
that on any unrevealed row from the first stage, the players have not learned more than
τ + 2 + t2 = n− logm bits of information. Intuitively this should be possible, because after
the cleanup at the end of first stage, the players knew at most τ + 2 bits of information about
any unrevealed row in S′′. To this end, we use Lemma 23 to ensure that with the additional
t2 bits of communication, the players learn at most t2 bits of information on any row.

We consider the sub-tree T ′′π′ of the protocol tree Π rooted at the node π′ (the partial
transcript from first stage). We would like to use Lemma 23 on the subtree T ′′π′ to find a leaf
of the protocol that is supported by at least 2−t2 fraction of the matrices in Sclean. To this
end, we need to prove that the depth of the tree is at most t2. Recall that communication
complexity of Π was less than t1 + t2, where t1 is an upper bound on the number of bits
communicated in the first stage. If π′ itself is a leaf of the protocol Π, the tree T ′′π′ is just a
leaf and the claim is true. If π′ is not a leaf of the protocol Π, the way we chose π′ ensures
that depth of π′ is Π is equal to t1. Hence there cannot be a leaf of T ′′π′ which is at depth
more than t2, as the corresponding leaf in Π would be at depth more than t1 + t2, which is a
contradiction to the fact CC (Π) ≤ t1 + t2.

We define the following subadditive measure on the nodes of T ′′π′ . For a node v ∈ T ′′π ,
corresponding to a partial transcript π′′ of the second stage, define φ (π′′) = |Pπ′′ |where
Pπ′ = Sπ′′ ∩ Eσ

(
Sclean). That is, Pπ′ is the set of matrices consistent with π′ and are from

the set Eσ
(
Sclean). It is easy to verify that this is indeed a subadditive measure on the

protocol sub-tree T ′′π′ . Note that at the root of T ′′π′ , φ (π′) =
∣∣Eσ (Sclean)∣∣. Applying Lemma

17, we get that there is a leaf of T ′′π corresponding to a transcript π′′ of the second stage
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for which φ (π′′) ≥ 1
2t2
∣∣Sclean

∣∣. Thus at the end of the second stage, we have a partial
transcript π′′ such that, |Pπ′′ | ≥ 2−t2

∣∣Sclean
∣∣. By Lemma 23, we get that for any i ∈ [m],

avgdegi (Pπ′) ≥ 2−t2avgdegi
(
Eσ
(
Sclean)).

Hence at the end of the second stage, we have a full transcript and a set of inputs
satisfying the following conditions.

I Lemma 28. Let Π be any deterministic protocol solving f � Un. Let t = t1 + t2 where
t1 = log (L (f))− logm− 5 and t2 = n− logm− 5. Then there are:

A full transcript π of length at most t of Π.
A subset σ ⊆ [m] of indices where |σ| < m.
A set T ⊆ {0, 1}(m−|σ|)×n.
An extension function Eσ : T → {0, 1}m×n.
For any X ∈ Eσ (T ), a pair of column vectors aX , bX .

satisfying the following,
For any X,Y ∈ Eσ (T ),

(
X, aX

)
∈ SAπ and

(
Y, bY

)
∈ SBπ .

For any X ∈ Eσ (T ), f
(
aX
)

= 0 and f
(
bX
)

= 1.
For any X,Y ∈ Eσ (T ), for any i ∈ σ, aXi = bYi .
For any row outside σ players have learned at most t2 + τ bits of information. More
formally for any i ∈ [m] \ σ, it holds thatavgdegi (T ) ≥ 2n−τ−2−t2 = 22+logm.

C.1 Choosing the inputs
We show that the protocol Π must err on π, by showing that it must reject some inputs as
well as accept some other inputs.

Since there is at least one input ((X, a) , (X, b)) consistent with π at the end of second
stage, and since π is a leaf of the protocol Π, the transcript π has to reject.

We show that Π cannot reject on π by showing the existence of an input
((
X, aX

)
,
(
Y, bY

))
consistent with π which satisfies all the promises. That is, for any i ∈ [m] \ σ, if aXi 6= bYi
then Xi 6= Yi. Recall that for i ∈ σ, we have already ensured that aXi = bYi . We show that
there exists inputs where for all i ∈ [m] \ σ, Xi 6= Yi using the probabilistic method. This
would establish that, for any i ∈ [m], if aXi 6= bYi then Xi 6= Yi. By Lemma 21 we know that
for two matrices U, V chosen uniformly at random (with replacement) from T , the probability
that Ui = Vi is at most (avgdegi (T ))−1. We set X = Eσ (U) and Y = Eσ (V ). Thus for any
i ∈ [m] \ σ, we have that PrX,Y∼Eσ(T ) [Xi = Yi] ≤ 1

2logm+2 = 1
4m . By a union bound, the

probability for two matrices U, V chosen uniformly at random from T , the probability that
all the rows indexed by [m] \ σ are different is at least 1− m−|σ|

4m . For the rows indexed by σ,
we already have that aXi = bYi for any X,Y ∈ Eσ (T ). Thus with probability 1

4 , the matrices
X,Y satisfy all the promises when players are given the input

((
X, aX

)
,
(
Y, bY

))
. Hence

the protocol cannot reject on π, establishing that Π errs on π.
Thus we get any protocol Π of length at most t = log (L (f)) + n− 2 logm− 10 cannot

correctly solve totalized variant of KWf�Un , by choosing τ = 3. This proves the main
theorem from the introduction.
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