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Abstract
We consider a random walk process, introduced by Orenshtein and Shinkar [10], which prefers
to visit previously unvisited edges, on the random r-regular graph Gr for any odd r ≥ 3. We
show that this random walk process has asymptotic vertex and edge cover times 1

r−2n logn and
r

2(r−2)n logn, respectively, generalizing the result from [7] from r = 3 to any larger odd r. This
completes the study of the vertex cover time for fixed r ≥ 3, with [3] having previously shown
that Gr has vertex cover time asymptotic to rn

2 when r ≥ 4 is even.
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1 Introduction

We consider a biased random walk on the random r-regular n-vertex graph Gr for any odd
fixed r ≥ 5, i.e. a graph chosen uniformly at random from the set of r-regular graph on
an even number n of vertices. In short, this is a random walk which chooses a previously
unvisited edge whenever possible, see Section 2 for a precise definition. This process was
introduced by Orenshtein and Shinkar [10]. In [7] it is shown that with high probability, G3
is such that the expected vertex cover time CbV (G3) and expected edge cover time CbE(G3)
of the biased random walk satisfy2

CbV (G3) ∼ n logn, CbE(G3) ∼ 3
2n logn.

We generalize this result as follows.

I Theorem 1. Suppose r ≥ 3 is odd, and let Gr be chosen uniformly at random from the
set of r-regular graphs on n vertices. Then with high probability, Gr is such that

CbV (Gr) ∼
1

r − 2n logn, CbE(Gr) ∼
r

2(r − 2)n logn.

With this the asymptotic leading term of CbV (Gr) is known for all r ≥ 3, with Berenbrink,
Cooper and Friedetzky [3] having previously shown that CbV (Gr) ∼ rn

2 for any even r ≥ 4.
They also showed that for even r, CbE(Gr) = O(ωn) for any ω tending to infinity with n,
with the ω factor owing to the w.h.p.3 existence of cycles of length up to ω.

1 Supported in part by the Knut and Alice Wallenberg Foundation.
2 We say that an ∼ bn if lim an/bn = 1.
3 An event E holds with high probability (w.h.p.) if Pr {E} → 0 as n→∞.
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45:2 Biased Random Walk on Random Regular Graph

Cooper and Frieze [5] considered the simple random walk on Gr, showing that for any
r ≥ 3, CsV (Gr) ∼ r−1

r−2n logn and CsE(Gr) ∼ r(r−1)
2(r−2)n logn, and we see that the biased random

walk speeds up the cover time by a factor of 1/(r − 1) for odd r. Cooper and Frieze [6] also
consider the non-backtracking random walk, i.e. the walk which at no point reuses the edge
used in the previous step, showing that CnbV (Gr) ∼ n logn and CnbE (Gr) ∼ r

2n logn. Here,
the biased random walk gains a factor of 1/(r − 2) for odd r.

Theorem 1 will follow from the following theorem. For a graph G let CbV (G; s) (CbE(G; t))
denote the expected time taken for the biased random walk to visit s vertices (t edges) of
G. Note that Cb· (G; ·) is defined as an expectation over the space of random walks on the
fixed graph G, and that E

(
Cb· (Gr; ·)

)
takes the expectation of Cb· (G; ·) when G is chosen

uniformly at random from the set of r-regular graphs.

I Theorem 2. Suppose r ≥ 3 is odd, and suppose Gr is chosen uniformly at random from
the set of r-regular graphs on an even number n of vertices. Let n− n log−1/2 n ≤ s ≤ n and
(1− log−1/2 n) rn2 ≤ t ≤ rn/2, and let ε > 0. Then

E
(
CbV (Gr; s)

)
= 1± ε
r − 2n log

(
n

n− s+ 1

)
+ o(n logn),

E
(
CbE(Gr; t)

)
= r ± ε

2(r − 2)n log
(

rn

rn− 2t+ 1

)
+ o(n logn).

We take a = b± c to mean that b− c < a < b+ c. The (1− log−1/2 n) factor in the lower
bounds for s, t is a fairly arbitrary choice, and the proof here is valid for any (1− 1/ω) factor
with ω tending to infinity sufficiently slowly. The specific choice of log−1/2 n is made to aid
readability.

Applying Theorem 2 with s = n and t = rn/2 gives E
(
CbV (Gr)

)
∼ 1

r−2n logn and
E
(
CbE(Gr)

)
∼ r

2(r−2)n logn. A little extra work is needed to conclude that w.h.p. Gr is such
that CbV (Gr), CbE(Gr) have the same asymptotic values. We refer to the full paper version of
[7], where this is done in detail.

2 Proof outline

The random r-regular graph Gr is chosen according to the configuration model, introduced
by Bollobás [4]. Each vertex v ∈ [n] is associated with a set P(v) of r configuration points,
and we let P = ∪vP(v). We choose u.a.r. (uniformly at random) a perfect matching µ of the
points in P . Each µ induces a multigraph G on [n] in which u is adjacent to v if and only if
µ(x) ∈ P(v) for some x ∈ P(u), allowing parallel edges and self-loops. Any simple r-regular
graph is equally likely to be chosen under this model.

We study a biased random walk. On a fixed graph G, this process is defined as follows.
Initially, all edges are declarded unvisited, and we choose a vertex v0 uniformly at random as
the active vertex. At any point of the walk, the walk moves from the active vertex v along
an edge chosen uniformly at random from the unvisited edges incident to v, after which the
edge is permanently declared visited. If there are no unvisited edges incident to v, the walk
moves along a visited edge chosen uniformly at random. The other endpoint of the chosen
edge is declared active, and the process is repeated.

A biased random walk on the random r-regular graph can be seen as a random walk
on the configuration model, where we expose µ along with the walk as follows. Initially
choosing some point x0 ∈ P u.a.r., we walk to x1 = µ(x0), chosen u.a.r. from P \ {x1}.
Suppose x1 ∈ P(v1). From x1 the walk moves to some unvisited x2 ∈ P(v1). In general, if
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Wk = (x0, x1, . . . , xk) then (i) if k is odd, the walk moves to xk+1 = µ(xk) (chosen u.a.r.
from P \ {x0, . . . , xk} if xk is previously unvisited), and (ii) if k is even, the walk moves from
xk ∈ P(vk) to xk+1 ∈ P(vk), chosen u.a.r. from the unvisited points of P(vk) if such exist,
otherwise chosen u.a.r. from all of P(vk).

We define C(t) to be the number of steps taken immediately before the walk exposes its
tth distinct edge. To be precise, if Wk = (x0, . . . , xk) denotes the walk after k steps, then

C(t) = min{k : |{x0, x1, . . . , xk}| = 2t− 1}.

Note that this set consists of exactly one k, as the walk will immediately go to xC(t)+1 = µ(xk),
which has not been visited before. We also let W (t) = WC(t). Note that C(t) is a random
variable over the combined probability space of random graphs and random walks, as opposed
to CbV (Gr) and CbE(Gr) which are variables over the space of random graphs only. We will
show (Lemma 8) that if t1 = (1− log−1/2 n) rn2 then

E (C(t1)) = o(n logn),

which does not contribute significantly to the cover time. The main part of the proof is
calculating E (C(t+ 1)− C(t)) when t ≥ t1. We define the random graph G(t) ⊆ Gr as
the graph spanned by the first t distinct edges visited by the walk. If, immediately after
discovering its tth edge, the biased random walk inhabits a vertex incident to no unvisited
edges, then a simple random walk commences on G(t), and C(t+ 1)−C(t) is the number of
steps taken for this random walk to hit a vertex incident to an unvisited edge.

We construct from G(t) a graph G∗(t) by contracting all vertices incident to at least
one unvisited edge into one “supervertex” x. Thus, conditioning on W (t), the graph G∗(t)
is a fixed graph, i.e. one with no random edges. We will show that when t ≥ t1, w.h.p. x
lies on “few” cycles of “short” length and has the appropriate number of self-loops (to be
made precise in Section 4), which will imply that the expected hitting time of x for a simple
random walk on G∗(t) is

E (H(x)) ∼ 1
r − 2

rn

rn− 2t .

The paper is laid out as follows. Sections 3, 4 and 5 respectively discuss properties of the
random regular graph, hitting times of simple random walks, and a uniformity lemma for
biased random walks, and may be read in any order. Section 6 contains the calculation of the
cover time. Appendix A and B are devoted to bounding the sizes of certain sets appearing
in the calculations.

3 Properties of Gr

Here we collect some properties of random r-regular graphs, chosen according to the config-
uration model.

I Lemma 3. Let r ≥ 3. Let Gr denote the random r-regular graph on vertex set [n], chosen
according to the configuration model. Let ω tend to infinity arbitrarily slowly with n. Its
value will always be small enough so that where necessary, it is dominated by other quantities
that also go to infinity with n.
(i) With high probability, the second largest in absolute value of the eigenvalues of the

transition matrix for a simple random walk on Gr is at most 0.99.
(ii) With high probability, Gr contains at most ωrω cycles of length at most ω,
(iii) The probability that Gr is simple is Ω(1).

APPROX/RANDOM 2018



45:4 Biased Random Walk on Random Regular Graph

Friedman [8] showed that for any ε > 0, the second eigenvalue of the transition matrix is at
most 2

√
r − 1/r + ε w.h.p., which gives (i). Property (ii) follows from the Markov inequality,

given that the expected number of cycles of length k ≤ ω can be bounded by O(rk). For
the proof of (iii) see Frieze and Karoński [9], Theorem 10.3. Note that (iii) implies that
any property which holds w.h.p. for the configuration multigraph holds w.h.p. for simple
r-regular graphs chosen uniformly at random.

Let G(t) denote the random graph formed by the edges visited by W (t). Let Xi(t)
denote the set of vertices incident to i unvisited edges in G(t) for i = 0, 1, . . . , r. Let
X(t) = X1(t) ∪ · · · ∪ ∪Xr(t) denote the set of vertices incident to at least one unvisited edge.
Let G∗(t) denote the graph obtained from G(t) by contracting the set X(t) into a single
vertex, retaining all edges. Define λ∗(t) to be the second largest eigenvalue of the transition
matrix for a simple random walk on G∗(t).

We note that by [2, Corollary 3.27], if Γ is a graph obtained from G by contracting a
set of vertices, retaining all edges, then λ(Γ) ≤ λ(G). This implies that λ∗(t) = λ(G∗(t)) ≤
λ(G) ≤ 0.99 for all t. Initially, for small t, we find that w.h.p. G∗(t) consists of a single
vertex. In this case there is no second eigenvalue and we take λ∗(t) = 0. This is in line with
the fact that a random walk on a one vertex graph is always in the steady state.

We define C(t) to be the number of steps the biased random walk takes to traverse
t distinct edges of Gr. Of course, if Gr is disconnected and the random walk starts in a
connected component of less than t edges, then C(t) = ∞. We resolve this by defining
a stopping time T ∗ = min{t : λ∗(t) > 0.99}, and setting C∗(t) = C(min{t, T}). Strictly
speaking, the estimates of C(t) in the upcoming sections are estimates of C∗(t), but we
do not make any explicit distinction between the two, noting that by Lemma 3 (i), w.h.p.
T ∗ =∞ which implies that C∗(t) = C(t) for all t.

4 Hitting times in simple random walks

We are interested in calculating C(t + 1) − C(t), i.e. the time taken between discovering
the tth and the (t+ 1)th edge. Between the two discoveries, the biased random walk can
be coupled to a simple random walk on the graph induced by W (t), and in this section we
derive the hitting time of a certain type of expanding vertex set.

I Definition 4. Let G = (V,E) be an r-regular graph. A set S ⊆ V is a root set of order
` if (i) |S| ≥ `5, (ii) the number of edges with both endpoints in S is between |S|/2 and
(1/2 + `−3)|S|, and (iii) there are at most |S|/`3 paths of length at most ` between vertices
of S which use no edges fully contained in S.

The following lemma establishes the hitting time of root sets.

I Lemma 5. Let ω tend to infinity arbitrarily slowly with n. Suppose G is an r-regular graph
on n vertices whose transition matrix has second largest eigenvalue λ ≤ 0.99, containing at
most ωrω cycles of length at most ω. If S is a root set of order ω and a simple random walk
is initiated at a uniformly random vertex of G, then the expected number of steps needed to
reach S is

E (H(S)) ∼ r

r − 2
n

|S|
.

The full proof of Lemma 5 is omitted in this extended abstract. The proof is based on the
following (see e.g. [2, Lemma 2.11]). If |S| = n/ω for some ω tending to infinity with n, then

E (H(S)) = n

|S|
ZSS .
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Here ZSS is a constant which can be approximated by the expected number of times a walk
starting in S visits S in its first ω steps. We show that this expectation is approximately
r/(r − 2) for root sets of order ω.

The following lemma is an important step in generalizing Theorem 1 from r = 3 to larger
r. It follows from reversibility properties of random walks on regular graphs, and the proof
is omitted in this extended abstract.

I Lemma 6. Let G be an r-regular graph with positive eigenvalue gap. Let R ⊆ S ⊆ V be
vertex sets. Suppose a simple random walk is initiated at a uniformly random vertex y ∈ R,
and ends as soon as it hits S \ {y}. Then there is a constant B > 0 such that for any x ∈ S,
the probability that the walk ends at x is at most B/|R|.

5 The structure of X

The walk W (t) induces a colouring on the edges and vertices of Gr as follows. An edge is
coloured red, green or blue if it has been visited zero, one or at least two time(s), respectively.
A vertex is (i) green if it is incident to exactly r − 1 green edges and one red edge, (ii) red if
it is incident to red edges only, and (iii) blue otherwise.

Recall that Xi(t) denotes the set of vertices incident to exactly i red edges in W (t). We
let Xg

1 (t), Xb
1(t) denote the green and blue vertices of X1(t), respectively, and set

Z(t) = Xb
1(t) ∪

r⋃
i=2

Xi(t).

The green edges and vertices are of particular interest. Suppose e1 = (u, v), e2 = (v, w)
are consecutive green edges in the walk W (t), meeting at a vertex v. Let p, q ∈ P(v) denote
the configuration points in v of e1, e2, respectively. We call the pair (p, q) a green link if v is
a green vertex.

Given a walk W (t), we form the contracted walk 〈W (t)〉 as follows. For any green link
(p, q), replace the corresponding edges (u, v), (v, w) by the edge (u,w) (coloured green),
freeing the configuration points p, q. This is repeated until there are no green links left. Note
that if e1, e2, . . . , ek are green edges visited sequentially by the walk where ei, ei+1 share a
green link, then at the end of the process the entire path is replaced by one green edge.

Let L(W ) denote the set of green links in the walkW , so L(W ) ⊆ P×P is a set of ordered
pairs of configuration points. Say that two walks W1,W2 are equivalent if 〈W1〉 = 〈W2〉 and
L(W1) = L(W2). The equivalence class is denoted [W ] = (〈W 〉, L(W )). The next lemma
shows that equivalent walks are equiprobable.

I Lemma 7. If W is such that Pr {[W (t)] = [W ]} > 0, then

Pr {W (t) = W | [W (t)] = [W ]} = 1
|[W ]| .

Proof. Let W be a walk with Pr {W (t) = W} > 0. We can calculate the probability of
W (t) = W exactly. There are two different types of steps a walk can take. Suppose the walk
has visited t distinct edges.

If the walk occupies a vertex incident to no red edges, it chooses an edge with probability
r−1.
If the walk occupies a vertex incident to k red edges, it chooses one of the k red edges
with probability k−1. The other endpoint of the red edge is chosen uniformly at random
from rn− 2t− 1 configuration points.

APPROX/RANDOM 2018



45:6 Biased Random Walk on Random Regular Graph

The probability of W (t) = W is

Pr {W (t) = W} = 1
rn

r∏
k=2

k−ik
t∏

s=0

1
rn− 2s− 1 ,

for some integers i2, . . . , ir ≥ 0, counting the number of steps of the different types. The
1/rn factor accounts for the starting point of the walk. Now, if W1 ∼W2, then W1 and W2
contain the same number of edges, and ik(W1) = ik(W2) for k = 2, . . . , r. Indeed, W1 and
W2 only disagree in which order they visit the links in L. J

We can now view the biased random walk as a walk on the equivalence class [W (t)]. Any
time a green edge in [W (t)] is visited, the probability that the edge corresponds to a green
link in a randomly chosen W (t) ∈ [W (t)] is about L(t)/Φ(t), where L(t) is the number of
green links in [W (t)] and Φ(t) the number of green edges in W (t). This along with bounds for
Xg

1 (t) and Z(t) provides a precise recursion for E (Φ(t)), which we use to prove the following.
W.h.p., if t = (1− δ) rn2 ,

|Xg
1 (t)| ∼ rnδ when δ ≤ log−1/2 n, (1)

|Z(t)| = O(nδ3/2) when δ ≤ log−1/2 n, (2)

Φ(t) ≥ nδ1−α when n−4/5+β ≤ δ ≤ log−1/2 n, (3)

where a > 0 and 0 < β < 1/20 are constants. Note in particular that Z(t)� Xg
1 (t)� Φ(t)

in the ranges where these bounds apply. Details are found in Appendix A and B.
Suppose n−4/5+β ≤ δ ≤ log−1/2 n. As L(t) = r−1

2 Xg
1 (t) = o(Φ(t)), when W (t) ∈ [W (t)]

is chosen uniformly at random, the links of L(t) are sprinkled into the much larger set of
green edges, and are expected to be spread far apart. This will imply that Xg

1 (t) is a root
set of order ω, and as Xg

1 (t) makes up almost all of X(t) by (1) and (2), the set X(t) is also
a root set of order ω. When δ ≤ n−4/5+β , the same technique can be applied with a little
more work.

6 Calculating the cover time

Define

δ0 = 1
log logn, δ1 = 1

log1/2 n
, δ2 = 1

log2 n
, δ3 = n−3/4, δ4 = n−1 logn, (4)

and ti = (1− δi) rn2 for i = 0, 1, 2, 3. From this point on we will use t and δ interchangeably
to denote time, and the two are always related by t = (1− δ) rn2 . We begin by showing that
the time taken to find the first t1 edges contributes insignificantly to the cover time.

I Lemma 8.

E (C(t1)) = o(n logn).

This is proved in Section 6.1. We then move on to estimating the expected cover time
increment for larger t.

I Lemma 9. For t1 ≤ t ≤ t4 and any ε > 0,

E (C(t+ 1)− C(t)) =
(

r

r − 2 ± ε
)

n

rn− 2t .
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The time to discover the final O(logn) edges can be bounded as follows:

E
(
C
(rn

2

)
− C(t4)

)
≤
rn/2−1∑
t=t4

O

(
n

rn− 2s

)
= o(n logn).

The proof of Lemma 9 is based on the following calculation. Define events

A(t) =
{
|Xg

1 (t)− (rn− 2t)| ≤ rn− 2t
ω

}
,

B(t) = {X(t) is a root set of order ω},

and set E(t) = A(t) ∩ B(t). Then for any ε > 0, E (C(t+ 1)− C(t)) can be calculated as(
r

r − 2 ± ε
)

n

rn− 2tPr {E(t)}+O

(
n

rn− 2tPr
{
E(t)

})
+O(logn).

Indeed, suppose E(t) holds. As X1(t) contains almost all unvisited configuration points, edge
t is attached to some v ∈ X1(t) w.h.p., and a simple random walk commences at v, ending
once it hits X \{v}. As the vertices of X are spread far apart, it is unlikely that this happens
within O(logn) steps. After a logarithmic number of steps, the random walk has mixed to
within ε of the stationary distribution π in total variation. Lemma 5 shows that after this
point, the expected time taken to hit X is (r/(r − 2)± ε)n/|X|, and as A(t) holds we have
|X| ∼ (rn− 2t). If E(t) does not hold, then we use the fact that the hitting time in a regular
graph with positive eigenvalue gap is O(n/|X|) = O(n/(rn − 2t)) (as |X| ≥ (rn − 2t)/r)
as long as the graph has a positive eigenvalue gap. We refer to the discussion in Section 3
justifying our assumption that the second largest eigenvalue stays at most 0.99 throughout
the process. Lemma 9 will now follow from proving that Pr {E(t)} = 1− o(1) for any fixed
t1 ≤ t ≤ t4. This is done in Section 6.2.

6.1 Phase one: Proof of Lemma 8
With t1 as in (4), we show that E (C(t1)) = o(n logn). Suppose W (t) = (x0, x2, . . . , xk) for
some t, k. If xk ∈ P(X(t)) then xk+1 = µ(xk) is uniformly random inside P(X(t)) \ {xk},
and since C(t+ 1) = C(t) + 1 in the event of xk+1 ∈ P(X2 ∪ · · · ∪Xr), we have

E (C(t+ 1)− C(t)) ≤ 1 + E (C(t+ 1)− C(t) | xk+1 ∈ P(X1)) Pr {xk+1 ∈ P(X1)}, (5)

We use the following theorem of Ajtai, Komlós and Szemerédi [1] to bound the expected
change when xk+1 ∈ P(X1).

I Theorem 10. Let G = (V,E) be an r-regular graph on n vertices, and suppose that each
of the eigenvalues of the adjacency matrix with the exception of the first eigenvalue are at
most λG (in absolute value). Let A be a set of cn vertices of G. Then for every `, the number
of walks of length ` in G which avoid A does not exceed (1− c)n((1− c)r + cλG)`.

The set A of Theorem 10 is fixed. In our case we choose a point xk+1 uniformly at random
from P(X1(t)), so we consider a simple random walk initiated at a uniformly random vertex
u ∈ X1(t). The subsequent walk now begins at vertex u and continues until it hits a vertex
of Yu = X(t) \ {u}. Because the vertex u is random, the set Yu differs for each possible
exit vertex u ∈ X1(t). To apply Theorem 10, we split X1(t) into two disjoint sets A,A′ of
(almost) equal size. For u ∈ A, instead of considering the number of steps needed to hit Yu,
we can upper bound this by the number of steps needed to hit B′ = A′ ∪X2 ∪ · · · ∪Xr, and
vice versa. Suppose without loss of generality that u ∈ A.

APPROX/RANDOM 2018



45:8 Biased Random Walk on Random Regular Graph

Let S(`) be a simple random walk of length ` starting from a uniformly chosen vertex of
A. Thus S(`) could be any of |A|r` uniformly chosen random walks. Let c = |B′|/n. The
probability p` that a randomly chosen walk of length ` starting from A has avoided B′ is, by
Theorem 10, at most

p` ≤
1

(|X1(t)|/2)r` (1− c)n(r(1− c) + cλG)` ≤ 2(1− c)n
|X1(t)| ((1− c) + cλ)`,

where λ ≤ .99 (see Lemma 3) is the absolute value of the second largest eigenvalue of the
transition matrix of S. Thus

EA (H(C)) ≤
∑
`≥1

p` ≤
2(1− c)n
|X1(t)|

1
c(1− λ) . (6)

So,

E (C(t+ 1)− C(t) | x2k ∈ P(X1(t))) = O

(
(n− |B′|)n
|X1||B′|

)
. (7)

Now, for any t we have r−1(rn− 2t) ≤ |B′| ≤ rn− 2t, so summing over 0 ≤ t ≤ t1, (5) gives
E (C(t1)) = o(n logn).

6.2 Phase two: Proof of Lemma 9, t1 ≤ t < t3

Let ω tend to infinity arbitrarily slowly with n and define for t ≥ t1,

A(t) =
{
|Xg

1 (t)− (rn− 2t)| ≤ rn− 2t
ω

}
,

B(t) = {X(t) is a root set of order ω},

and set E(t) = A(t) ∩ B(t). As discussed above, it remains to prove the following lemma.
I Lemma 11. Fix t1 ≤ t ≤ t4. Then

Pr {E(t)} = 1− o(1).

Proof. First fix t1 ≤ t ≤ t3. By (1) – (3), for some α > 0, the following holds w.h.p.:

Φ(t) ≥ nδ1−α,

Xg
1 (t) = rnδ(1−O(δ1/2)),

Z(t) = O(nδ3/2).

Condition on some [W (t)] satisfying these values. We will distribute the links L(t) into the
green edges to form W (t). Suppose `1 ∈ L(t) is placed at some green edge e1. As there are
at most Z(t)rω green edges within distance ω of Z(t), the probability that it is placed within
distance ω of Z(t) is O(Z(t)rω/Φ(t)) = o(1). The probability that any particular `2 ∈ L(t) is
placed on one of the O(rω) green edges within distance ω of e1 is O(rω/Φ(t)). Let D(`1, `2)
be the distance in [W (t)] between `1 and `2. Then∑

`1 6=`2

Pr {D(`1, `2) ≤ ω} = O

(
|L(t)|2rω

Φ(t)

)
= O

(
nδ2− 1+ε

r−1 3ω
)

= o(nδ).

This shows that all but o(nδ) vertices in X(t) are v ∈ Xg
1 (t) with d(v,X(t)) > ω. By Lemma

3, at most ωrω = o(nδ) vertices in G lie on cycles of length at most ω. This shows that
w.h.p., X(t) is a root set of order ω.

For t3 ≤ t ≤ t4 we can no longer use the bound (3) for Φ(t), but instead we can show
that w.h.p., the conditions of E(t3) hold with enough room to spare that they must hold also
for t. For example, Z(t3) is empty w.h.p., so Z(t) ⊆ Z(t3) must also be empty. J
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A Set sizes

Recall the definition

Z(t) = Xb
1(t) ∪

r⋃
i=2

Xi(t),

where Xi denotes the set of vertices incident to i unvisited edges, and Xb
1 is the set of vertices

in X1 which are incident to at least one edge which has been visited more than once.

I Lemma 12. There exists a constant B > 0 such that for t ≥ t0 and 0 < θ = o(1),

E
(
eθZ(t)

)
≤ exp

{
θBnδ3/2

}
.

Proof. We show that there exists a B > 0 such that for any m ≥ 1,

Pr {[m] ⊆ Z(t)} ≤ (Bδ)3m/2,

beginning with m = 1 before the general statement. Let L = L(r) denote the set of vectors
(`1, `2, . . . , `k) with `i ∈ {1, 2} such that

∑
`i ≤ r − 1, including in L the empty vector ∅,
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excluding the vector (2, 2, . . . , 2) consisting of (r − 1)/2 copies of 2 (which corresponds to
Xg

1 , as we will see). We partition

Z(t) =
⋃
`∈L

Z`(t),

where v ∈ Z`(t) for ` = (`1, . . . , `k) if and only if there exists a sequence 0 < s1 < s2 < · · · <
sk ≤ t such that v moves from Xr−`1−···−`j−1 to Xr−`1−···−`j at time sj for j = 1, . . . , k, and
is in Xr−`1−···−`k at time t. If v ∈ Xi at time s, the probability that v is chosen by random
assignment is i/(rn− 2s), while Lemma 6 shows that the probability that v is at the end of
a blue walk is O(1/(rn− 2s)). In either case, the probability that v moves from one set to
another is at most B/(rn− 2s) for some B > 0. For a fixed ` = (`1, . . . , `k) ∈ L, with s0 = 1,

Pr {1 ∈ Z`(t)} ≤
∑

s1<···<sk

k∏
j=1

 sj−1∏
s=sj−1+1

(
1− r − (`1 + · · ·+ `j−1)

rn− 2s

)
B

rn− 2sj


×

t∏
s=sk+1

(
1− r − (`1 + · · ·+ `k)

rn− 2s

)
. (8)

For b ≥ 1 we use the bound

t∏
s=t0

(
1− b

rn− 2s

)
≤
(
rn− 2t
rn− 2t0

)b/2
. (9)

Combining (8) and (9), the probability that 1 ∈ Z`(t) is bounded above by

∑
s1<···<sk

 k∏
j=1

B

rn− 2sj

(
rn− 2sj
rn− 2sj−1

)(r−(`1+···+`j−1))/2
( rn− 2t

rn− 2sk

)(r−(`1+···+`k))/2
. (10)

Collecting powers of rn− 2sj for j = 1, . . . , k, we have

Pr {1 ∈ Z`(t)} ≤ Bk
(rn− 2t)(r−(`1+···+`k))/2

(rn)r/2
∑

s1<···<sk

k∏
j=1

(rn− 2sj)`j/2−1.

Let N denote the number of indices j ∈ {1, . . . , k} with `j = 1. Then

∑
s1<···<sk

k∏
j=1

(rn− 2sj)`j/2−1 ≤
k∏
j=1

(
t∑

s=0
(rn− 2sj)`j/2−1

)
≤ nk−N (rn− 2t)N/2,

which implies that

Pr {1 ∈ Z`(t)} ≤
Bk

rr/2
(rn− 2t)(r+N−(`1+···+`k))/2nk−N−r/2.

As `1 + · · ·+ `k = 2k −N , we have (r +N − (`1 + · · ·+ `k))/2 = r/2− k +N . So

Pr {1 ∈ Z`(t)} ≤
Bk

rk−N
δr/2−k+N .

We now argue that r/2−k+N ≥ 3/2, or equivalently 2(k−N) ≤ r−3, for all ` ∈ L. Firstly,
if `1 + · · ·+ `k ≤ r− 3 then we have 2(k−N) ≤ 2k−N = `1 + · · ·+ `k ≤ r− 3. Secondly, if
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`1+· · ·+`k = r−2 then as r−2 is odd we haveN ≥ 1, so 2(k−N) ≤ 2k−N−1 ≤ r−3. Finally,
if `1+· · ·+`k = r−1 then (as (2, 2, . . . , 2) /∈ L) we haveN ≥ 2, so 2(k−N) ≤ 2k−N−2 ≤ r−3.

As |L(r)| is a function of r only, and therefore constant with respect to n, it follows that

Pr {1 ∈ Z(t)} =
∑
`∈L(r)

Pr {1 ∈ Z`(t)} = O(δ3/2).

We turn to bounding the probability that [m] ⊆ Z(t). We fix `(1), . . . , `(m) ∈ L and bound
the probability that i ∈ Z`(i)(t) for i = 1, . . . ,m. Let k(i) = dim `(i) denote the number of
components of `(i). Then, summing over all choices s(i)

j for 1 ≤ i ≤ m and 1 ≤ j ≤ k(i),

Pr {i ∈ Z`(i)(t), i = 1, . . . ,m}

≤
∑
s
(i)
j

m∏
i=1

Bk(i) (rn− 2t)(r−
∑

j
`
(i)
j

)/2

(rn)r/2

k(i)∏
j=1

(rn− 2s(i)
j )`

(i)
j
/2−1

≤
m∏
i=1

Bk(i) (rn− 2t)(r−
∑

j
`
(i)
j

)/2

(rn)r/2

k(i)∏
j=1

(
t∑

s=0
(rn− 2s)`

(i)
j
/2−1

)
≤ B

∑
k(i)δ3m/2 = O((Brδ)3m/2).

Summing over all O(m) choices of `(i), i = 1, . . . ,m, we have

Pr {[m] ⊆ Z(t)} = O(m(Brδ)3m/2) ≤ (Cδ)3m/2

for some constant C > 0. By symmetry the same bound holds for any vertex set of size m.
It follows that for any m, writing (n)m = n(n− 1) . . . (n−m+ 1),

E ((Z(t))m) ≤ (n)m × (Cδ)3m/2 ≤ (Cnδ3/2)m.

For s > 1 we apply the binomial theorem to obtain

E
(
sZ(t)

)
= E

(
(1 + (s− 1))Z(t)

)
=
∑
m≥0

E ((Z(t))m) (s− 1)m

m! .

We set s = eθ ≤ 1 + 2θ (as θ = o(1)) to obtain

E
(
eθZ(t)

)
≤
∑
m≥0

(Cnδ3/2)m(2θ)m

m! ≤ exp
{
θDnδ3/2

}
,

for some D > 0. J

I Corollary 13. For t = (1− δ) rn2 with δ = o(1), and 0 < θ = o(1),

E
(
e−θX

g
1 (t)
)

= exp {−θrnδ(1− o(1))}

The technique used to prove Lemma 12 can be strengthened to obtain concentration for the
number of unvisited vertices Xr(t).

I Lemma 14. For θ > 0,

E
(
eθXr(t)

)
≤ exp

{
2θnδr/2

}
. (11)

APPROX/RANDOM 2018
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Furthermore, if t = (1 − δ) rn2 with δ = o(1) and nδr/2 → ∞, then for any ω tending to
infinity arbitrarily slowly,

Pr
{
|Xr(t)− nδr/2| >

nδr/2

ω1/2

}
≤ 1
ω
.

Finally, if nδr/2 = o(1) then Xr(t) = 0 w.h.p.

Lemma 14, the proof of which is omitted here, relates the number of unvisited edges to the
number of unvisited vertices: we expect |Xr(t)| = n− s to occur when t ≈

(
1− s

n

)2/r. This
heuristically explains why CbE(Gr) ∼ r

2C
b
V (Gr). Detailed calculations for the vertex cover

time are carried out for r = 3 in [7], and the calculations for larger r are identical.

B The green edges

Let Φ(t) denote the number of green edges in W (t).

I Lemma 15. Let 0 < ε < r − 2 and define

δε =
(

log4 n

n

) r−1
r+ε

, tε = (1− δε)
rn

2 .

Then with high probability, Φ(t) ≥ nδ
1+ε
r−1 for all t1 ≤ t ≤ tε.

Proof. Firstly, let us see how Φ(t) changes with time. Fix ε1 > 0 such that

1
(1− ε1)(r − 1) <

1 + ε

r − 1 , (12)

and let

X (t) = {Xg
1 (t) ≥ (1− ε1)(rn− 2t)}

and let 1t denote the indicator variable for X (t). We note that with λ = 1/ logn, by Corollary
13

Pr
{
X (t)

}
≤

E
(
e−λX

g
1 (t)
)

e−λ(1−ε1)(rn−2t) ≤ exp
{
−ε1nδε

logn

}
=: η, (13)

for any t ≤ tε.
I Claim 1. For 0 < θ ≤ δε log−2 n, ε1 > 0 and t0 ≤ t ≤ tε,

E
(
e−θ(Φ(t+1)−Φ(t))1t | [W (t)]

)
≤ exp

{
2θΦ(t)

(1− ε1)(r − 1)(rn− 2t) (1 +O(γ))
}

1t,

with γ = o(log−1 n).

Proof of Claim 1. Condition on a [W (t)] such that Xg
1 (t) ≥ (1− ε1)(rn− 2t). If the next

edge is added without entering a blue walk, then Φ(t+ 1) = Φ(t) + 1. So,

Pr {Φ(t+ 1)− Φ(t) = 1 | [W (t)]} = 1− X1(t)
rn− 2t .

Suppose the new edge chooses a vertex of X1(t), thus entering a blue walk. We may view
this as a walk on [W (t)], and any time a green edge is traversed, we ask if the green edge
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in [W (t)] contains a green link in W (t), in which case the blue walk ends. If not, the green
edge turns blue and Φ decreases by one.

There are L(t) = r−1
2 Xg

1 (t) green links, distributed into the Φ(t) green edges by a Pólya
urn process as discussed in Section 5. Suppose e1, e2, . . . , e` are green edges in [W (t)], and
let K1,K2, . . . ,K` be the lengths of the corresponding paths in W (t), corresponding to the
first ` entries of a vector (k1, . . . , kφ) drawn uniformly at random from all vectors with ki ≥ 1
and

∑φ
i=1 ki = Φ(t). The probability that none of the ` edges contains a green link is exactly

Pr {Ki = 1 for i = 1, 2, . . . , `} =
∏̀
i=1

(Φ−i−1
φ−i−1

)(Φ−i
φ−i
) =

∏̀
i=1

(
1− L(t)

Φ(t)− i

)
≤
(

1− L(t)
Φ(t)

)`
.

This shows that the number of green edges visited before discovering a green link can be
bounded by a geometric random variable. If a green edge is visited without a discovery, that
edge turns blue. Note that the blue walk may also end when a vertex of Xb

i is found for
some i ≥ 1; we are upper bounding the number of green edges visited.

So in distribution,

Φ(t+ 1)− Φ(t) d= 1−B
(
X1(t)
rn− 2t

)
Rt

where B(p) denotes a Bernoulli random variable taking value 1 with probability p, and Rt
is stochastically dominated above by a geometric random variable with success probability
L(t)/Φ(t). The two random variables on the right-hand side are independent. So

E
(
e−θ(Φ(t+1)−Φ(t)) | [W (t)]

)
= e−θ

(
1− X1(t)

rn− 2t + X1(t)
rn− 2tE

(
eθRt | [W (t)]

))
The map x 7→ eθx is increasing for θ > 0, so we can couple Rt to a geometric random variable
St with success probability L(t)/Φ(t) in such a way that

E
(
eθRt | [W (t)]

)
≤ E

(
eθSt | [W (t)]

)
.

As St is geometrically distributed and Xg
1 (t) ≥ (rn− 2t)/2 by conditioning on X (t),

E
(
eθSt

∣∣ [W (t)]
)

= 1 + θ
Φ(t)
L(t) −O

(
θ2Φ(t)2

L(t)2

)
= 1 + θ

Φ(t)
L(t) (1 +O(γ)).

Conditioning on Xg
1 (t) ≥ (1− ε1)(rn− 2t) implies that L(t) = r−1

2 Xg
1 (t) = Ω(nδ), so

γ := θ
Φ(t)
L(t) ≤ δε log−2 n

n

Ω(nδε)
= o(log−1 n).

We also have Xb
1(t) ≤ rn− 2t−Xg

1 (t), so

X1(t)
L(t) = Xg

1 (t)
L(t) + Xb

1(t)
L(t) ≤

2
r − 1 + ε1(rn− 2t)

(1− ε1) r−1
2 (rn− 2t)

= 2
(1− ε1)(r − 1) .

So for [W (t)] ∈ X (t),

E
(
e−θ(Φ(t+1)−Φ(t))1t | [W (t)]

)
≤ e−θ

(
1− X1(t)

rn− 2t + X1(t)
rn− 2t

(
1 + θ

Φ(t)
L(t) (1 +O(γ))

))
≤ exp

{
2θΦ(t)

(1− ε1)(r − 1)(rn− 2t) (1 +O(γ))
}
. J
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Define for 0 < θ = o(1),

ft(θ) = E
(
e−θΦ(t)1t

)
.

As Φ(t) ≥ L(t) = r−1
2 Xg

1 (t) we have for 0 < θ = o(1), by Corollary 13,

ft0(θ) ≤ E
(
e−θΦ(t0)

)
≤ E

(
e−θ

r−1
2 Xg1 (t)

)
= exp

{
−θ r − 1

2 rnδ0(1 + o(1))
}
. (14)

Claim 1 shows that for t0 ≤ t < tε,

ft+1(θ) ≤ ft
(
θ

(
1− 2(1 +O(γ))

(1− ε1)(r − 1)(rn− 2t)

))
+ η

where η = exp{−ε1nδε/ logn} is an upper bound for Pr
{
X (t+ 1)

}
, as defined in (13). As

γ = o(log−1 n), we have

t−1∏
s=t0

(
1− 2(1 +O(γ))

(1− ε1)(r − 1)(rn− 2s)

)
∼
(
rn− 2t
rn− 2t0

) 1
(1−ε1)(r−1)

.

It follows by induction and from (14) that if F (t) = nδ
1+ε
r−1 ,

ft(θ) ≤ ft0

(
θ

t−1∏
s=t0

(
1− 2(1 +O(γ))

(1− ε1)(r − 1)(rn− 2s)

))
+ (t− t0)η

≤ exp
{
−θrnδ0

(
δ

δ0

) 1
(1−ε1)(r−1)

}
+ (t− t0)η

≤ exp {−rθF (t)}+ nη.

Here we used the fact that ε1 was chosen in (12) to satisfy 1/(1− ε1)(r− 1) < (1 + ε)/(r− 1).
Now, setting θ = δε log−2 n, using the bound 1{X>a} ≤ X/a,

Pr {Φ(t) < F (t)} ≤ Pr
{
X (t)

}
+ Pr {Φ(t) < F (t), X (t)}

≤ η + E
(

1{e−θΦ(t)>e−θF (t)}1t
)

≤ η + eθF (t)ft(θ)

= O(neθF (t)η) + e−θ(r−1)F (t)

= o(n−1).

It follows that Φ(t) ≥ F (t) for all t in the given range with high probability. J
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