
On Geodesically Convex Formulations for the
Brascamp-Lieb Constant

Suvrit Sra
Massachusetts Institute of Technology (MIT), Cambridge, MA, USA

Nisheeth K. Vishnoi
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Ozan Yıldız
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Abstract
We consider two non-convex formulations for computing the optimal constant in the Brascamp-
Lieb inequality corresponding to a given datum and show that they are geodesically log-concave
on the manifold of positive definite matrices endowed with the Riemannian metric corresponding
to the Hessian of the log-determinant function. The first formulation is present in the work of
Lieb [15] and the second is new and inspired by the work of Bennett et al. [5]. Recent work
of Garg et al. [12] also implies a geodesically log-concave formulation of the Brascamp-Lieb
constant through a reduction to the operator scaling problem. However, the dimension of the
arising optimization problem in their reduction depends exponentially on the number of bits
needed to describe the Brascamp-Lieb datum. The formulations presented here have dimensions
that are polynomial in the bit complexity of the input datum.
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1 Introduction

The Brascamp-Lieb Inequality. Brascamp and Lieb [7] presented a class of inequalities that
generalize many well-known inequalities and, as a consequence, have played an important
role in various mathematical disciplines. Formally, they presented the following class of
inequalities where each inequality is described by a “datum”, referred to as the Brascamp-Lieb
datum.

I Definition 1 (The Brascamp-Lieb Inequality, Datum, Constant). Let n, m, and (nj)j∈[m] be
positive integers and p := (pj)j∈[m] be non-negative real numbers. Let B := (Bj)j∈[m] be an
m-tuple of linear transformations where Bj is a surjective linear transformation from Rn to
Rnj . The corresponding Brascamp-Lieb datum is denoted by (B, p). The Brascamp-Lieb
inequality states that for each Brascamp-Lieb datum (B, p) there exists a constant C(B, p)
(not necessarily finite) such that for any selection of real-valued, non-negative, Lebesgue
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measurable functions fj where fj : Rnj → R,

∫
x∈Rn

 ∏
j∈[m]

fj(Bjx)pj

 dx ≤ C(B, p)
∏
j∈[m]

(∫
x∈Rnj

fj(x)dx
)pj

. (1)

The smallest constant that satisfies (1) for any choice of f := (fj)j∈[m] satisfying the
properties mentioned above is called the Brascamp-Lieb constant and is denoted by BL(B, p).
A Brascamp-Lieb datum (B, p) is called feasible if BL(B, p) is finite, otherwise, it is called
infeasible. For a given m-tuple B, the set of real vectors p such that (B, p) is feasible is
denoted by PB.

Applications of the Brascamp-Lieb inequality extend beyond functional analysis and appear
in convex geometry [3], information theory [8],[16],[17], machine learning [14], and theoretical
computer science [11, 10].

Mathematical Aspects of the Brascamp-Lieb Inequality. A Brascamp-Lieb inequality is
non-trivial only when (B, p) is a feasible Brascamp-Lieb datum. Therefore, it is of interest
to characterize feasible Brascamp-Lieb data and compute the corresponding Brascamp-Lieb
constant. Lieb [15] showed that one needs to consider only Gaussian functions as inputs for
(1). This result suggests the following characterization of the Brascamp-Lieb constant as an
optimization problem. For a positive integer k, let Sk+ be the space of real-valued, symmetric,
positive semi-definite (PSD) matrices of dimension k × k.

I Theorem 2 (Gaussian maximizers [15]). Let (B, p) be a Brascamp-Lieb datum with Bj ∈
Rnj×n for each j ∈ [m]. Let A := (Aj)j∈[m] with Aj ∈ Snj

+ , and consider the function

BL(B, p;A) :=
( ∏

j∈[m] det(Aj)pj

det(
∑
j∈[m] pjB

>
j AjBj)

)1/2

. (2)

Then, the Brascamp-Lieb constant for (B, p), BL(B, p) is equal to sup
A∈×j∈[m] S

nj
+

BL(B, p;A).

Bennett et al. [5] proved the following necessary and sufficient conditions for the feasibility
of a Brascamp-Lieb datum.

I Theorem 3 (Feasibility of Brascamp-Lieb Datum [5], Theorem 1.15). Let (B, p) be a
Brascamp-Lieb datum with Bj ∈ Rnj×n for each j ∈ [m]. Then, (B, p) is feasible if and only
if following conditions hold:
1. n =

∑
j∈[m] pjnj, and

2. dim(V ) ≤
∑
j∈[m] pj dim(BjV ) for any subspace V of Rn.

Theorem 3 introduces infinitely many linear constraints on p as V varies over different
subspaces of Rn. However, there are only finitely many different linear restrictions as
dim(BjV ) can only take integer values from [nj ]. Consequently, this theorem implies that
PB is a convex set and, in particular, a polytope. It is referred to as the Brascamp-Lieb
polytope, see e.g. [4] the “rank one” case (nj = 1 for all j) and [5] for the general case. Some
of the above inequality constraints are tight for any p ∈ PB such as the inequality constraints
induced by Rn and the trivial subspace, while others can be strict for some p ∈ PB. If p
lies on the boundary of PB, then there should be some non-trivial subspaces V such that
the induced inequality constraints are tight for p. This leads to the definition of critical
subspaces and simple Brascamp-Lieb datums.
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I Definition 4 (Critical Subspaces and Simple Brascamp-Lieb Data,[9], [5], Definition 1.12).
Let (B, p) be a feasible Brascamp-Lieb datum with Bj ∈ Rnj×n for each j ∈ [m]. Then, a
subspace V of Rn is called critical if

dim(V ) =
∑
j∈[m]

pj dim(BjV ).

(B, p) is called simple if there is no non-trivial proper subspace of Rn which is critical.

For a fixed B, simple Brascamp-Lieb data correspond to points p that lie in the relative
interior of the Brascamp-Lieb polytope PB. One important property of simple Brascamp-Lieb
data is that there exists a maximizer for BL(B, p;A). This was proved by Bennett et al. [5] by
analyzing Lieb’s formulation (2). This analysis also leads to a characterization of maximizers
of BL(B, p;A).

I Theorem 5 (Characterization of Maximizers[5], Theorem 7.13). Let (B, p) be a Brascamp-
Lieb datum with Bj ∈ Rnj×n and pj > 0 for all j ∈ [m]. Let A := (Aj)j∈[m] be an m-tuple
of positive semidefinite matrices with Aj ∈ Rnj×nj and let M :=

∑
j∈[m] pjB

>
j AjBj. Then,

the following statements are equivalent,
1. A is a global maximizer for BL(B, p;A) as in (2).
2. A is a local maximizer for BL(B, p;A).
3. M is invertible and A−1

j = BjM
−1B>j for each j ∈ [m].

Furthermore, the global maximizer A for BL(B, p;A) exists and is unique up to scalar if and
only if (B, p) is simple.

Computational Aspects of the Brascamp-Lieb Inequality. One of the computational ques-
tions concerning the Brascamp-Lieb inequality is: Given a Brascamp-Lieb datum (B, p), can
we compute BL(B, p) in time that is polynomial in the number of bits required to represent
the datum? Since computing BL(B, p) exactly may not be possible due to the fact that
this number may not be rational even if the datum (B, p) is, one seeks an arbitrarily good
approximation. Formally, given the entries of B and p in binary, and an ε > 0, compute a
number Z such that

BL(B, p) ≤ Z ≤ (1 + ε) BL(B, p)

in time that is polynomial in the combined bit lengths of B and p and log 1/ε.
There are a few obstacles to this problem: (a) Checking if a given Brascamp-Lieb datum

is feasible is not known to be in P. (b) The formulation of the Brascamp-Lieb constant by
Lieb [15] as in (2) is neither concave nor log-concave. Thus, techniques developed in the
context of linear and convex optimization do not seem to be directly applicable.

A step towards the computability of BL(B, p) was taken recently by Garg et al. [12] where
they presented a pseudo-polynomial time algorithm for (a) and a pseudo-polynomial time
algorithm to compute BL(B, p). The running time of this algorithm to compute BL(B, p)
up to multiplicative error 1 +ε has a polynomial dependency to ε−1 and the magnitude of the
denominators in the components of p rather than the number of bits required to represent
them. Garg et al. presented a reduction of the problem of computing BL(B, p) to the
problem of computing the “capacity” in an “operator scaling” problem considered by Gurvits
[13]. Roughly, in the operator scaling problem, given a representation of a linear mapping
from PSD matrices to PSD matrices, the goal is to compute the minimum “distortion” of
this mapping; see Section A for their reduction from Brascamp-Lieb to operator scaling. The

APPROX/RANDOM 2018
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operator scaling problem is also not a concave or log-concave optimization problem. However,
operator scaling is known to be “geodesically” log-concave; see [1].

Geodesic convexity is an extension of convexity with respect to straight lines in Euclidean
spaces to geodesics in Riemannian manifolds. Since all the problems mentioned so far are
defined on positive definite matrices, the natural manifold to consider is the space of positive
definite matrices with a particular Riemannian metric: the Hessian of the − log det function;
see section 2. Geodesics are analogs of straight lines on a manifold and, roughly, a function
f on is said to be geodesically convex if the average of its values at the two endpoints of any
geodesic is at least its value at its mid-point.

The reduction of Garg et al. [12], thus, leads to a geodesically log-concave formulation
to compute BL(B, p). However, this construction does not lead to an optimization problem
whose dimension is polynomial in the input bit length as the size of constructed positive linear
operator in the operator scaling problem depends exponentially on the bit lengths of the
entries of p. More precisely, if pj = cj/c for integers (cj)j∈[m] and c, then the aforementioned
construction results in operators over the space of real-valued, symmetric, positive definite
(PD) matrices of dimension (nc)× (nc), Snc++.

Our Contribution. Our first result is that Lieb’s formulation presented in Theorem 2 is
jointly geodesically log-concave with respect to inputs (Aj)j∈[m].

I Theorem 6 (Geodesic Log-Concavity of Lieb’s Formulation). Let (B, p) be a feasible
Brascamp-Lieb datum with Bj ∈ Rnj×n for each j ∈ [m]. Then, BL(B, p;A) is jointly
geodesically log-concave with respect to A := (Aj)j∈[m] where BL(B, p; A) is defined in (2).

This formulation leads to a geodesically convex optimization problem on×j∈[m] S
nj

++ that
captures the Brascamp-Lieb constant.

Subsequently, we present a new formulation for the Brascamp-Lieb constant by com-
bining Lieb’s result with observations made by Bennett et al. [5] about maximizers of
BL(B, p; A); see Theorem 5. [5] showed that if A = (Aj)j∈[m] is a maximizer to (2), then
Aj = (BjM−1B>j )−1 for each j ∈ [m], where

M :=
∑
j∈[m]

pjB
>
j AjBj .

Thus, we can write each Aj as a function of M and obtain, 2 log(BL(B, p;A(M))) equals

∑
j∈[m]

pj log det((BjM−1B>j )−1)− log det

∑
j∈[m]

pjB
>
j (BjM−1B>j )−1Bj

 . (3)

One can show that the expressions log det((BjM−1B>j )−1) for each j ∈ [m] and
log det

(∑
j∈[m] pjB

>
j (BjM−1B>j )−1Bj

)
are geodesically concave functions of M in the

positive definite cone. However, the expression in (3) being a difference, is not geodesically
concave with respect to M in general. However, if A is a global maximizer of BL(B, p;A),
then we also have that

M =
∑
j∈[m]

pjB
>
j (BjM−1B>j )−1Bj .

Combining these two observations, we obtain the following geodesically concave optimization
problem for computing the Brascamp-Lieb constant.
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I Definition 7 (A Geodesically Log-Concave Formulation for Computation of the Brascsamp-Lieb
Constant). Let (B, p) be a feasible Brascamp-Lieb datum with Bj ∈ Rnj×n for each j ∈ [m].
Let FB, p(X) : Sn++ → R be defined as follows,

FB,p(X) := log det(X)−
∑
j∈[m]

pj log det(BjXB>j ). (4)

The following theorem establishes the geodesic concavity of FB,p and its equivalence to
BL(B, p;A).

I Theorem 8 (Properties of FB,p). Let (B, p) be a feasible Brascamp-Lieb datum with
Bj ∈ Rnj×n for each j ∈ [m]. The function FB,p(X) as defined in (4) has following
properties;
1. FB,p is geodesically concave.
2. If (B, p) is simple, then sup

X∈Sn
++

FB,p(X) is attained. Moreover, if X? is a maximizer

of FB,p, then exp( 1
2FB,p(X?)) = BL(B, p) and A? = ((BjX?B>j )−1)j∈[m] maximizes

BL(B, p; A?).
Our results lead to a natural question: is there a polynomial time algorithm based on
techniques from geodesic optimization to compute the Brascamp-Lieb constant. For the case
when nj = 1 for all j, or the rank-one case, a polynomial time algorithm to compute the
Brascamp-Lieb constant is known; see [23, 25]. This algorithm relies on the observation that
the dual of the problem to compute the Brascamp-Lieb constant is the problem of optimizing
an entropy maximizing probability distribution on the vertices of the Brascamp-Lieb polytope
where the marginals of the probability distribution should correspond to the given point p.
This algorithm computes BL(B, p) up to multiplicative error 1 + ε in poly(m, 〈B, p〉, log ε−1)
where 〈B, p〉 denotes the bit complexity of B, p. The main technical result is to show that
for any p in the polytope, an ε-approximate solution to a function like FB,p can be found in
a ball of radius that is polynomial in the bit-complexity of B and p. To extend this rank-one
result to a higher rank already seems non-trivial due to a couple of reasons. (a) Lack of a
separation oracle to the Brascamp-Lieb polytope in general, and (b) lack of an interpretation
of FB,p as an optimization problem over the Brascamp-Lieb polytope. The hope is that our
formulation might lead to such an optimization interpretation of the Brascamp-Lieb constant
over the Brascamp-Lieb polyhedron and, consequently, lead to polynomial time algorithms
following the general approach of [25].

2 The Positive Definite Cone, its Riemannian Geometry, and
Geodesic Convexity

The Metric. Consider the set of positive definite matrices Sd++ as a subset of Rd×d with
the inner product 〈X,Y 〉 := Tr(X>Y ) for X,Y ∈ Rd×d. At any point X ∈ Sd++, the tangent
space consists of all d× d real symmetric matrices. There is a natural metric g on this set
that gives it a Riemannian structure: For X ∈ Sd++ and two symmetric matrices ν, ξ

gX(ν, ξ) := Tr(X−1νX−1ξ). (5)

It is an exercise in differentiation to check that this metric arises as the Hessian of the
following function ϕ : Sd++ → R:

ϕ(X) := − log detX.

APPROX/RANDOM 2018
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Hence, Sd++ endowed with the metric g is not only a Riemannian manifold but a Hessian
manifold [21]. The study of this metric on Sd++ goes back at least to Siegel [22]; see also the
book of Bhatia [6].

Geodesics on Sd
++. If X,Y ∈ Sd++ and γ : [0, 1]→ Sd++ is a smooth curve between X and

Y , then the arc-length of γ is given by the (action) integral

L(γ) :=
∫ 1

0

√
gγ(t)

(
dγ(t)
dt

,
dγ(t)
dt

)
dt. (6)

The geodesic between X and Y is the unique smooth curve between X and Y with the
smallest arc-length [26]. The following theorem asserts that between any two points in Sd++,
there is a geodesic that connects them. In other words, Sd++ is a geodesically convex set.
Moreover, there exists a closed form expression for the geodesic between two points, a formula
that is useful for calculations.

I Theorem 9 (Geodesics on Sd++ [6], Theorem 6.1.6). For X,Y ∈ Sd++, the exists a unique
geodesic between X and Y , and this geodesic is parametrized by the following equation:

X#tY := X1/2(X−1/2Y X−1/2)tX1/2 (7)

for t ∈ [0, 1].

Geodesic Convexity. One definition of convexity of a function f in a Euclidean space is
that the average of the function at the endpoints of each line in the domain is at least
the value of the function at the average point on the line. Geodesic convexity is a natural
extension of this notion of convexity from Euclidean spaces to Riemannian manifolds that
are geodesically convex. A set in the manifold is said to be geodesically convex if, for every
pair of points in the set, the geodesic combining these points lies entirely in the set.

I Definition 10 (Geodesically Convex Sets). A set S ⊆ Sd++ is called geodesically convex if
for any X,Y ∈ S and t ∈ [0, 1], X#tY ∈ S.

A function defined on a geodesically convex set is said to be geodesically convex if the average
of the function at the endpoints of any geodesic in the domain is at least the value of the
function at the average point on the geodesic.

I Definition 11 (Geodesically Convex Functions). Let S ⊆ Sd++ be a geodesically convex set.
A function f : S → R is called geodesically convex if for any X,Y ∈ Sd++ and t ∈ [0, 1],

f(X#tY ) ≤ (1− t)f(X) + tf(Y ). (8)

f is called geodesically concave if −f is geodesically convex.

An important point regarding geodesic convexity is that a non-convex function might be
geodesically convex or vice-versa. In general, one cannot convert a geodesically convex
function to a convex function by a change of variables. A well-known example for this is
the log det(X) function whose concavity a classical result from the matrix calculus. On the
other hand, a folklore result is that log det(X) is both geodesically convex and geodesically
concave on the space of positive definite matrices with the metric (5).

I Proposition 12 (Geodesic Linearity of log det). The log det(X) function is geodesically
linear, i.e, it is both geodesically convex and geodesically concave over Sn++.
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Proof. Let X,Y ∈ Sn++ and t ∈ [0, 1]. Then,

log det(X#tY ) Theorem 9= log det(X1/2(X−1/2Y X−1/2)tX1/2)
=(1− t) log det(X) + t log det(Y ).

Therefore, log det(X) is a geodesically linear function over the positive definite cone with
respect to the metric in (5). J

Henceforth, when we mention geodesic convexity, it is with respect to the metric in (5).
Geodesically convex functions share some properties with usual convex functions. One such
property is the relation between local and global minimizers.

I Theorem 13 (Minimizers of Geodesically Convex Functions [20], Theorem 6.1.1). Let S ⊆ Sd++
be a geodesically convex set and f : S → R be a geodesically convex function. Then, any local
minimum point of f is also a global minimum of f . More precisely, if x? := arg minx∈O f(x)
for some open geodesically convex subset O of S, then f(x?) = infx∈S f(x).

Geometric Mean of Matrices and Linear Maps. While the function log det(P ) is geodesic-
ally linear, our proof of Theorem 6 relies on the geodesic convexity of
log det(

∑
j∈[m] pjB

>
j AjBj). A simple but important observation is that, if (B, p) is feasible,

then pjB>j AjBj is a strictly positive linear map for each j as proved below.

I Lemma 14 (Strictly Linear Maps Induced by Feasible Brascamp-Lieb Datums). Let (B, p) be
a Brascamp-Lieb datum with Bj ∈ Rnj×n for each j ∈ [m] such that

∑
j∈[m] pjnj = n and

dim(Rn) ≤
∑
j∈[m] pj dim(BjRn). Then, Φj(X) := B>j XBj is a strictly positive linear map

for each j ∈ [m].

Theorem 3 shows that any feasible Brascamp-Lieb datum satisfies both conditions. Further-
more non-feasible Brascamp-Lieb data can also satisfy these conditions as second condition
on Theorem 3 enforced for only the Rn.

Proof. Let us assume that for some j0 ∈ [m], Φj0(X) is not a strictly positive linear map.
Then, there exists X0 ∈ Sn++ such that Φj0(X0) is not positive definite. Thus, there exists
v ∈ Rnj0 such that v>Φj0(X0)v ≤ 0. Equivalently, (B>j0

v)>X0(B>j0
v) ≤ 0. Since X0 is

positive definite, we get B>j0
v = 0. Hence, v>Bj0B

>
j0
v = 0. Consequently, the rank of Bj0 is

at most nj0 − 1 and dim(Bj0Rn) < nj0 . Therefore,

n = dim(Rn) ≤
∑
j∈[m]

pj dim(BjRn) <
∑
j∈[m]

pjnj = n,

by the hypothesis, a contradiction. Consequently, for any j ∈ [m], Φj(X) := B>j XBj is
strictly positive linear whenever (B, p) satisfies conditions

∑
j∈[m] pjnj = n and dim(Rn) ≤∑

j∈[m] pj dim(BjRn). J

The joint geodesic convexity of log det(
∑
j∈[m] pjB

>
j AjBj) follows from a more general

observation (that we prove) that asserts that if Φjs are strictly positive linear maps from Snj

+
to Sn+, then log det(

∑
j∈[m] Φj(Aj)) is geodesically convex. Sra and Hosseini [24] observed

this when m = 1. Their result also follows from a result of Ando [2] about “geometric means”
that is also important for us and we explain it next.

The geometric mean of two matrices was introduced by Pusz and Woronowicz [19]. If
P,Q ∈ Sd++, then the geometric mean of P and Q is defined as

P#1/2Q = P 1/2(P−1/2QP−1/2)1/2P 1/2. (9)

APPROX/RANDOM 2018
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By abuse of notation, we drop 1/2 and denote geometric mean by P#Q. Recall that, the
geodesic convexity of a function f : Sd++ → R is equivalent to for any P,Q ∈ Sd++ and
t ∈ [0, 1],

f(P#tQ) ≤ (1− t)f(P ) + tf(Q).

If f is continuous, then the geodesic convexity of f can be deduced from the following:

∀P,Q ∈ Sd++, f(P#Q) ≤ 1/2f(P ) + 1/2f(Q).

Ando proved the following result about the effect of a strictly positive linear map on the
geometric mean of two matrices.

I Theorem 15 (Effect of a Linear Map over Geometric Mean [2], Theorem 3). Let Φ : Sd+ → Sd′

+
be a strictly positive linear map. If P,Q ∈ Sd++, then

Φ(P#Q) � Φ(P )#Φ(Q). (10)

The monotonicity of logdet (P � Q implies log det(P ) ≤ log det(Q)) and the multiplicativity
of the determinant, combined with Theorem 15, imply the following result.

I Corollary 16 (Geodesic Convexity of the Logarithm of Linear Maps[24], Corollary 12). If
Φ : Sd+ → Sd′

+ is a strictly positive linear map, then log det(Φ(P )) is geodesically convex.

While the proof of Theorem 8 uses Theorem 16, it is not enough for the proof of The-
orem 6. Instead of geodesic convexity of log det(Φ(P )), the joint geodesic convexity of
log det(

∑
j∈[m] Φj(Pj)) is needed where Φj : Snj

+ → Sn+ is a linear map for each j ∈ [m].
We conclude this section with the following two results on a maximal characterization of
the geometric mean and the effect of positive linear maps on positive definiteness of block
diagonal matrices.

I Theorem 17 (Maximal Characterization of the Geometric Mean, see e.g. [6], Theorem 4.1.1).
Let P,Q ∈ Sd++. The geometric mean of P and Q can be characterized as follows,

P#Q = max
{
Y ∈ Sd++

∣∣∣∣ [P Y

Y Q

]
� 0

}
,

where the maximal element is with respect to Loewner partial order.

I Proposition 18 (Effect of Positive Linear Maps, see e.g. [6], Exercise 3.2.2). Let Φ : Sd+ → Sd′

+
be a strictly positive linear map and P,Q,R ∈ Sd+. If[

P R

R Q

]
� 0, then

[
Φ(P ) Φ(R)
Φ(R) Φ(Q)

]
� 0.

3 Proof of Theorem 6

Let (B, p) be a feasible Brascamp-Lieb datum with Bj ∈ Rnj×n and A := (Aj)j∈[m] with
Aj ∈ Snj

++ be the input of BL(B, p;A) as defined in (2). To prove the joint geodesic convexity
of BL(B, p;A) with respect to A we extend Theorem 16 and Theorem 15 from linear maps to
“jointly linear maps”. We use the term jointly linear maps to refer to multivariable functions
of the form

∑
j∈[m] Φj(Pj) where each Φj is a strictly positive linear map for each j ∈ [m].

In particular, the term
∑
j∈[m] pjB

>
j AjBj in (2) is a jointly linear map.
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The extension of Theorem 15 is presented in Theorem 20 and its proof is based on the
maximal characterization of geometric mean (Theorem 17) and the effect of positive linear
maps on the positive definiteness of block matrices (Theorem 18). We follow the proof of
Theorem 15 for each Φj , but instead of concluding Φj(Pj#Qj) � Φj(Pj)#Φj(Qj) from the
maximality of geometric mean, we sum the resulting inequalities. Subsequently, Theorem 20
follows from the maximality of geometric mean. Lemma 21 is an extension of Theorem 16
and follows directly from Theorem 20.

I Definition 19 (Jointly linear map). Let Φ : Sn1
+ × · · · × Snm

+ → Sn+. We say that Φ is a
jointly linear map if there exist strictly positive linear maps Φj : Snj

+ → Sn+ such that

Φ(P1, . . . , Pk) :=
∑
j∈[k]

Φj(Pj). (11)

Now, we state the extension of Theorem 15.

I Theorem 20 (Effect of Jointly Linear Maps over Geometric Means). Let Φ : Sn1
+ ×· · ·×S

nm
+ →

Sn+ be a jointly linear map. Then,

Φ(G) � Φ(P )#Φ(Q)

where P := (Pj)j∈[m], Q := (Qj)j∈[m], and G := (Gj)j∈[m] with Pj , Qj ∈ Snj

++ and Gj :=
Pj#Qj.

The following is a corollary of the theorem above and a generalization of Theorem 16.

I Corollary 21 (Joint Geodesic Convexity of Logarithm of Jointly Linear Maps). If Φ : Sn1
+ ×

· · · × Snm
+ → Sn+ is a jointly linear map, then

g(P1, . . . , Pm) := log det(Φ(P1, . . . , Pm)) (12)

is jointly geodesically convex in Sn1
++ × · · · × Snm

++.

Proof of Corollary 21. We show that g is jointly geodesically mid-point convex. Theorem
20 implies that

Φ(G) � Φ(P )#Φ(Q) (13)

for any P := (Pj)j∈[m] and Q := (Qj)j∈[m] with Pj , Qj ∈ Snj

++. Therefore,

g(G) (12)= log det(Φ(G))
≤ log det(Φ(P )#Φ(Q)) (monotonicity of log det and (13))
≤1/2 log det(Φ(P )) + 1/2 log det(Φ(Q)) (multiplicativity of det)

(12)= 1/2 (g(P ) + g(Q)) .

Thus, g satisfies mid-point geodesic convexity. Consequently, we establish the geodesic
convexity of g using the continuity of g. J

The proof of Theorem 6 is a simple application of Corollary 21 and Theorem 12.

Proof of Theorem 6. We show that BL(B, p;A) is jointly geodesically mid-point log-concave
with respect to A. In other words, we show that for arbitrary P = (Pj)j∈[m], Q = (Qj)j∈[m]

− log BL(B, p;G) ≤ −1/2 (log BL(B, p;P ) + log BL(B, p;Q))
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where G = (Gj)j∈[m] with Gj := Pj#Qj , being the midpoint of geodesic combining Pj to
Qj . This implies that BL(B, p;A) is jointly geodesically log-concave with respect to A due
to the continuity of BL(B, p;A) with respect to A.

Let Φj(Pj) := pjB
>
j PjBj . Φj is strictly positive linear map by Lemma 14. Then,

Φ(P ) :=
∑
j∈[m]

pjB
>
j PjBj is jointly linear, as Φ(P ) =

∑
j∈[m]

Φj(Pj). Hence, log det(Φ(P )) is

jointly geodesically convex by Corollary 21. Also, log det(X) is geodesically linear (Theorem
12). Thus, for any P := (Pj)j∈[m], Q := (Qj)j∈[m] and G := (Gj)j∈[m] with Gj := Pj#Qj
we have

− log BL(B, p;G) (2)= 1/2(log det(Φ(G))−
∑
j∈[m]

pj log det(Gj))

(12)
≤ 1/2(1/2(log det(Φ(P )) + log det(Φ(Q)))−

∑
j∈[m]

pj log det(Gj))

=1/2(1/2(log det(Φ(P ))−
∑
j∈[m]

pj log det(Pj)) (Theorem 12)

+ 1/2(log det(Φ(Q))−
∑
j∈[m]

pj log det(Qj)))

(2)= − 1/2(log det BL(B, p;P ) + log det BL(B, p;Q)).

This concludes the proof. J

Now we prove Theorem 20. This proof is based on the proof of Theorem 15 and depends on
the maximality of geometric mean (Theorem 17) and effects of positive linear maps on block
matrices (Theorem 18).

Proof of Theorem 20. Φ is a jointly linear map by the assumption. Thus, there exist linear
maps Φj : Snj

+ → Sn+ such that Φ(P ) =
∑
j∈[m] Φj(Pj). Theorem 17 implies for each j ∈ [m],

0 �
[
Pj Gj
Gj Qj

]
.

Since Φj ’s are strictly positive linear maps, Theorem 18 implies that for each j ∈ [m],

0 �
[

Φj(Pj) Φj(Gj)
Φj(Gj) Φj(Qj)

]
.

The dimension of these block matrices is 2n× 2n for each j ∈ [m]. Thus we can sum these
inequalities and the summation leads to

0 �
∑
j∈[m]

[
Φj(Pj) Φj(Gj)
Φj(Gj) Φj(Qj)

]
=


∑
j∈[m]

Φj(Pj)
∑
j∈[m]

Φj(Gj)∑
j∈[m]

Φj(Gj)
∑
j∈[m]

Φj(Qj)

 (11)=
[
Φ(P ) Φ(G)
Φ(G) Φ(Q)

]
. (14)

Theorem 17 and (14) imply that Φ(G) � Φ(P )#Φ(Q). J

4 Proof of Theorem 8

Let (B, p) be a feasible Brascamp-Lieb datum with Bj ∈ Rnj×n. Let A := (Aj)j∈[m] with
Aj ∈ Snj

++ be the input of BL(B, p;A) as defined in (2). The proof of Theorem 8 first
establishes the geodesic concavity of FB,p as defined in (4) when (B, p) is feasible. Next,
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it establishes the relation between global maximizers of FB,p(X) and global maximizers of
BL(B, p;A), as well as the relation between supX∈Sn

++
FB,p(X) and BL(B, p) when (B, p) is

simple.
Feasibility of (B, p) implies the linear maps BjXB>j are strictly positive linear for each

j ∈ [m] ( Lemma 14). Consequently, − log det(BjXB>j ) is geodesically concave by Theorem
16 for each j ∈ [m]. Also, log det(X) is geodesically concave by Theorem 12. Thus, FB,p(X) is
geodesically concave as a sum of geodesically concave functions with non-negative coefficients.

The geodesic concavity of FB,p implies that any local maximum is also a global maximum
(Theorem 13). Consequently, we investigate the points where all directional derivatives of
FB,p vanish, the critical points of FB,p. A simple calculation involving the first derivative
shows that any critical point X of FB,p should satisfy

X−1 =
∑
j∈[m]

pjB
>
j (BjXB>j )−1Bj .

Theorem 5 implies that we can construct a global maximizer of BL(B, p;A) from X by setting
Aj := (BjXB>j )−1. Furthermore, we can construct a critical point of FB,p using a global
maximizer of BL(B, p;A) by setting X := (

∑
j∈[m] pjB

>
j AjBj)−1. Theorem 5 guarantees

the existence of a global maximizer of BL(B, p;A) if (B, p) is simple. Thus, if (B, p) is simple,
then supX FB,p(X) should be attained. We can deduce

sup
X
FB,p(X) = 2 log BL(B, p)

from the construction of FB,p and the relation between maximizers of FB,p and BL(B, p;A).
The second part of the proof Theorem 8 depends on well-known identities from matrix

calculus. We present these identities for the convenience of the reader and refer the interested
readers to the matrix cookbook [18] for more details.
I Proposition 22. Let X(t), Y (t) be differentiable functions from R to d × d invertible
symmetric matrices. Let U ∈ Rd′×d, V ∈ Rd×d′′ , W ∈ Rd×d be matrices which do not depend
on t. Then, the following identities hold:

d log det(X(t))
dt

=Tr
(
X(t)−1 dX(t)

dt

)
(15)

dUX(t)V
dt

=U dX(t)
dt

V (16)

dtW

dt
=W. (17)

Proof of Theorem 8. We start by showing that FB,p(X) is geodesically concave. The
feasibility of (B, p) implies BjXB>j is a strictly positive linear map for each j ∈ [m] ( Lemma
14). Thus, Theorem 16 yields that for any X,Y ∈ Sn++,

log det(Bj(X#Y )B>j ) ≤ 1/2 log det(BjXB>j ) + 1/2 log det(BjY B>j ). (18)

Combining this with the geodesic linearity of log det(X) (Theorem 12), we obtain

FB,p(X#Y ) = log det(X#Y )−
∑
j∈[m]

pj log det(Bj(X#Y )B>j )

≥1/2(log det(X)−
∑
j∈[m]

pj log det(BjXB>j ))

+ 1/2(log det(Y )−
∑
j∈[m]

pj log det(BjY B>j ))

=1/2FB,p(X) + 1/2FB,p(Y )
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Therefore, FB,p(X) is geodesically concave.
Now, we can show the second part of the theorem. The geodesic concavity of FB,p implies

any local maximum of FB,p is a global maximum of FB,p. A local maximum of FB,p is
achieved at X if it is a critical point of FB,p. If X is a critical point of FB,p, then for any
symmetric matrix Q, the directional derivative of FB,p at X in the direction of Q should be
0. In other words, if ζ(t) := X + tQ and f(t) := FB,p(ζ(t)), then df

dt

∣∣∣
t=0

should be 0 for any

Q. Let us compute df
dt ,

df

dt

(4)= d

dt
log det(ζ(t))−

∑
j∈[m]

pj
d

dt
log det(Bjζ(t)B>j )

(15)= Tr
(
ζ(t)−1 dζ(t)

dt

)
−
∑
j∈[m]

pjTr
(

(Bjζ(t)B>j )−1 dBjζ(t)B>j
dt

)
(16)= Tr

(
ζ(t)−1 dζ(t)

dt

)
−
∑
j∈[m]

pjTr
(

(Bjζ(t)B>j )−1Bj
dζ(t)
dt

B>j

)
(17)= Tr(ζ(t)−1Q)−

∑
j∈[m]

pjTr((Bjζ(t)B>j )−1BjQB
>
j ).

Hence, the directional derivative of FB,p(X) in the direction of Q, df
dt

∣∣∣
t=0

is

Tr(X−1Q)−
∑
j∈[m]

pjTr((BjXB>j )−1BjQB
>
j ). (19)

If directional derivates of FB,p vanish at X, then (19) should be 0 for any symmetric matrix
Q. Consequently,

Tr(Q[X−1 −
∑
j∈[m]

pjB
>
j (BjXB>j )−1Bj ]) = 0.

This observation leads to

X−1 =
∑
j∈[m]

pjB
>
j (BjXB>j )−1Bj . (20)

If (B, p) is simple, then there exists an input A? = (Aj)j∈[m] such that A−1
j = BjM

−1B>j
where M =

∑
j∈[m] pjB

>
j AjBj by Theorem 5. Consequently, M satisfies

M =
∑
j∈[m]

pjB
>
j (BjM−1B>j )−1Bj . (21)

If X? := M−1, then X? satisfies (20) due to (21). Thus, X? is a critical point of FB,p(X)
and FB,p attains its maximal value at X?. Furthermore, the maximizer A? of BL(B, p;A) is
equal to ((BjX?B>j )−1)j∈[m]. Finally,

FB,p(X?) (4)= log det(X?)−
∑
j∈[m]

pj log det(BjX?B>j )

= log det((
∑
j∈[m]

pjB
>
j (BjX?B>j )−1Bj)−1)−

∑
j∈[m]

pj log det(BjX?B>j )

= log det((
∑
j∈[m]

pjB
>
j AjBj)−1)−

∑
j∈[m]

pj log det(A−1
j )

=
∑
j∈[m]

pj log det(Aj)− log det(
∑
j∈[m]

pjB
>
j AjBj).

Therefore, BL(B, p;A?) = exp( 1
2FB,p(X?)). J
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A An Exponential-Sized Geodesically Convex Formulation from
Operator Scaling

In this section, we describe the operator scaling problem and the reduction of Garg et al. [12]
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of a positive operator.

The Operator Scaling Problem and its Geodesic Convexity. In the operator scaling
problem [13], one is given a linear operator T (X) :=

∑
j∈[m] T

>
j XTj through the tuple of

matrices Tjs and the goal is to find square matrices L and R such that∑
j∈[m]

T̂>j T̂j = I and
∑
j∈[m]

T̂j T̂
>
j = I, (22)

where T̂j := LTjR. The matrices L and R can be computed by solving the following
optimization problem.

I Definition 23 (Operator Capacity). Let T : Sd++ → Sd′

++ be a linear operator, then the
capacity of T is

cap(T ) := inf
det(X)=1

det
(
d′

d
T (X)

)
. (23)

In particular, if X?
T is a minimizer of (23) and Y ?T = T (X?

T )−1, then (22) holds if we let
L := (Y ?T )1/2 and R := (X?

T )1/2; see [13] for details. Operator capacity is known to be
geodesically log-convex, see e.g. [1], Lemma C.1.
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The Reduction. Let (B, p) be a Brascamp-Lieb datum with Bj ∈ Rnj×n for each j ∈ [m].
Garg et al. [12] proved that if the exponent p = (pj)j∈[m] is a rational vector, then one
can construct an operator scaling problem from (B, p). Let pj = cj/c where cjs are non-
negative integers and c is a positive integer, the common denominator for all the pjs. Their
reduction, outlined below, results in an operator TB,p : Snc++ → Sn++ with the property that
cap(TB,p) = 1/BL(B,p)2.

The operator TB,p is constructed with cj copies of the matrix Bj for each j ∈ [m]. In order
to easily refer these copies, let us define m′ :=

∑
j∈[m] cj , and the function δ : [m′] → [m].

δ(i) is defined as the integer j such that,∑
k<j

ck < i ≤
∑
k≤j

ck.

Let Zij be an nδ(i)×n matrix all of whose entries are zero when δ(i) 6= j and Bδ(i) if δ(i) = j,
for i, j ∈ [m′]. Define nc× n matrices Tj for j ∈ [m] as follows:

Tj :=

 Z1j
...

Zm′j

 ,
and define the linear operator TB,p : Snc++ → Sn++ as

TB,p(X) :=
∑
j∈[m′]

T>j XTj . (24)

I Theorem 24 (Reduction from Brascamp-Lieb to Operator Scaling[12], Lemma 4.4.). Let
(B, p) be a Brascamp-Lieb a datum with Bj ∈ Rnj×n and pj = cj/c where c, cj ∈ Z+ for each
j ∈ [m]. The capacity of the operator TB,p defined in (24) satisfies cap(TB,p) = 1/BL(B,p)2.

While this reduction gives a geodesically log-concave formulation to compute the Brascamp-
Lieb constant, the dimension of the optimization problem is exponentially large in the bit
complexity of the Brascamp-Lieb datum. Consequently, a truly polynomial time algorithm
for the computation of the Brascamp-Lieb constant does not follow from any black-box
optimization method for geodesically convex functions or polynomial time algorithms for
operator capacity; e.g. the algorithm presented in [1].
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