
Multi-Agent Submodular Optimization
Richard Santiago
McGill University, Montreal, Canada
richard.santiagotorres@mail.mcgill.ca

F. Bruce Shepherd
University of British Columbia, Vancouver, Canada
fbrucesh@cs.ubc.ca

Abstract
Recent years have seen many algorithmic advances in the area of submodular optimization: (SO)
min /max f(S) : S ∈ F , where F is a given family of feasible sets over a ground set V and
f : 2V → R is submodular. This progress has been coupled with a wealth of new applications
for these models. Our focus is on a more general class of multi-agent submodular optimization
(MASO) min /max

∑k
i=1 fi(Si) : S1] S2] · · ·] Sk ∈ F . Here we use] to denote disjoint union

and hence this model is attractive where resources are being allocated across k agents, each
with its own submodular cost function fi(). This was introduced in the minimization setting by
Goel et al. In this paper we explore the extent to which the approximability of the multi-agent
problems are linked to their single-agent versions, referred to informally as the multi-agent gap.

We present different reductions that transform a multi-agent problem into a single-agent one.
For minimization, we show that (MASO) has an O(α ·min{k, log2(n)})-approximation whenever
(SO) admits an α-approximation over the convex formulation. In addition, we discuss the class
of “bounded blocker” families where there is a provably tight O(logn) multi-agent gap between
(MASO) and (SO). For maximization, we show that monotone (resp. nonmonotone) (MASO)
admits an α(1 − 1/e) (resp. α · 0.385) approximation whenever monotone (resp. nonmonotone)
(SO) admits an α-approximation over the multilinear formulation; and the 1 − 1/e multi-agent
gap for monotone objectives is tight. We also discuss several families (such as spanning trees,
matroids, and p-systems) that have an (optimal) multi-agent gap of 1. These results substantially
expand the family of tractable models for submodular maximization.

2012 ACM Subject Classification Theory of computation → Submodular optimization and
polymatroids

Keywords and phrases submodular optimization, multi-agent, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2018.23

Related Version The full version of this work can be found in [35], https://arxiv.org/abs/
1803.03767.

Acknowledgements We thank Chandra Chekuri for valuable comments and suggestions.

1 Introduction

A set function f : 2V → R is submodular if f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T) for any
S, T ⊆ V . We say that f is monotone if f(S) ≤ f(T) whenever S ⊆ T . Throughout, we
usually assume that our functions are nonnegative and satisfy f(∅) = 0. We work in the
value oracle model, where for a given set S we can query the oracle to find its value f(S).

© Richard Santiago and F. Bruce Shepherd;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2018).
Editors: Eric Blais, Klaus Jansen, José D. P. Rolim, and David Steurer; Article No. 23; pp. 23:1–23:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/160477869?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:richard.santiagotorres@mail.mcgill.ca
mailto:fbrucesh@cs.ubc.ca
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.23
https://arxiv.org/abs/1803.03767
https://arxiv.org/abs/1803.03767
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Multi-Agent Submodular Optimization

For a family of feasible sets F ⊆ 2V on a finite ground set V we consider the following
broad class of submodular optimization (SO) problems:

SO(F) Min / Max f(S) : S ∈ F (1)

where f is a nonnegative submodular set function on V . There has been an impressive recent
stream of activity around these problems for a variety of set families F . We explore the
connections between these (single-agent) problems and their multi-agent incarnations. In the
multi-agent (MA) version, we have k agents each of which has an associated nonnegative
submodular set function fi, i ∈ [k]. As before, we are looking for sets S ∈ F , however, we
now have a 2-phase task: the elements of S must also be partitioned amongst the agents.
Hence we have set variables Si and seek to optimize

∑
i fi(Si). This leads to the multi-agent

submodular optimization (MASO) versions:

MASO(F) Min / Max
∑k
i=1 fi(Si) : S1] S2] · · ·] Sk ∈ F . (2)

The special case when F = {V } has been previously examined both for minimization (the
minimum submodular cost allocation problem [17, 39, 7, 5]) and maximization (submodular
welfare problem [29, 40]). For general families F , however, we are only aware of the
development in Goel et al. [12] for the minimization setting. A natural first question is
whether any multi-agent problem could be directly reduced (or encoded) to a single-agent
one over the same ground set V . Goel et al. give an explicit example where such a reduction
does not exist. More emphatically, they show that when F consists of vertex covers in a
graph, the single-agent (SA) version (i.e., (1)) has a 2-approximation while the MA version
has an inapproximability lower bound of Ω(logn).

Our first main objective is to explain the extent to which approximability for multi-agent
problems is intrinsically connected to their single-agent versions, which we also refer to as
the primitive associated with F . We refer to the multi-agent (MA) gap as the approximation-
factor loss incurred by moving to the MA setting.

Our second objective is to extend the multi-agent model and show that in some cases this
larger class remains tractable. Specifically, we define the capacitated multi-agent submodular
optimization (CMASO) problem as follows:

CMASO(F)
max /min

∑k
i=1 fi(Si)

s.t. S1] · · ·] Sk ∈ F
Si ∈ Fi , ∀i ∈ [k]

(3)

where we are supplied with subfamilies Fi. Many existing applications fit into this framework
and some of these can be enriched through the added flexibility of the capacitated model.
We illustrate this with concrete examples in the next section.

Prior work in both the single and multi-agent settings is summarized in Section 1.2. Our
main contributions are presented in Section 1.3.

1.1 Some applications of (capacitated) multi-agent optimization
In this section we present several problems in the literature which are special cases of Problem
(2) and the more general Problem (3). We also indicate how the extra generality of CMASO
(i.e. (3)) gives modelling advantages. We start with the maximization setting.

I Example 1 (The Submodular Welfare Problem). The most basic problem in the maximization
setting arises when we take the family F = {V }. This describes a well-known model
(introduced in [29]) for allocating goods to agents, each of which has a monotone submodular

R. Santiago and F. B. Shepherd 23:3

valuation (utility) function over baskets of goods. This is formulated as (2) by considering
nonnegative monotone functions fi and F = {V }. The CMASO framework allows us to
incorporate additional constraints by defining the families Fi appropriately. For instance,
one can impose cardinality constraints on the number of elements that an agent can take, or
to only allow agent i to take a set Si of elements satisfying some bounds Li ⊆ Si ⊆ Ui.

I Example 2 (The Separable Assignment Problem). An instance of the Separable Assignment
Problem (SAP) consists of m items and n bins. Each bin j has an associated downwards
closed collection of feasible sets Fj , and a modular function vj(i) that denotes the value of
placing item i in bin j. The goal is to choose disjoint feasible sets Sj ∈ Fj so as to maximize∑n
j=1 vj(Sj). This well-studied problem ([11, 14, 4]) corresponds to a CMASO instance with

modular objectives, F = 2V , and downwards closed families Fi.

I Example 3 (Sensor Placement). The problem of placing sensors and information gathering
has been popular in the submodularity literature [24, 26, 25]. We are given a set of sensors
V and a set of possible locations {1, 2, . . . , k} where the sensors can be placed. There is also
a budget constraint restricting the number of sensors that can be deployed. The goal is to
place sensors at some of the locations so as to maximize the total “informativeness”. Consider
a multi-agent objective function

∑
i∈[k] fi(Si), where fi(Si) measures the informativeness

of placing sensors Si at location i. It is then natural to consider a diminishing return
(i.e. submodularity) property for the fi. We can formulate this problem as MASO where
F := {S ⊆ V : |S| ≤ b} imposes the budget constraint. We can also use CMASO for
additional modelling flexibility. For instance, we may define Fi = {S ⊆ Vi : |S| ≤ bi} where
Vi are the allowed sensors for location i and bi an upper bound on the sensors located there.

We now discuss applications of MASO and CMASO in the minimization setting.

I Example 4 (Minimum Submodular Cost Allocation). The most basic problem in the
minimization setting arises when we simply take F = {V }. This problem, min

∑k
i=1 fi(Si) :

S1] · · ·] Sk = V , has been widely considered in the literature for both monotone [39]
and nonmonotone functions [5, 7], and is referred to as the Minimum Submodular Cost
Allocation (MSCA) problem1 (introduced in [17, 39] and further developed in [5]).
This is formulated as (2) by taking F = {V }. The CMASO framework allows us to
incorporate additional constraints into this problem. The most natural are to impose
cardinality constraints on the number of elements that an agent can take, or to only allow
agent i to take a set Si of elements satisfying some bounds Li ⊆ Si ⊆ Ui.

I Example 5 (Multi-agent Minimization). Goel et al [12] consider the special cases of
MASO(F) where the objectives are nonnegative monotone submodular and F is either the
family of vertex covers, spanning trees, perfect matchings, or shortest st paths.

1.2 Related work
Single Agent Optimization. Minimizing a submodular function is a classical problem
which can be solved in polytime [15, 36, 19]. Unconstrained maximization on the other hand
is known to be inapproximable for general submodular functions but admits a polytime
constant-factor approximation algorithm when f is nonnegative [2, 8].

For constrained maximization, the classical work [32, 33, 10] established an optimal (1−
1/e)-approximation for nonnegative monotone maximization under a cardinality constraint,
and a (1/(k+ 1))-approximation under k matroid constraints. The latter is almost tight since

1 Sometimes referred to as submodular procurement auctions.

APPROX/RANDOM 2018

23:4 Multi-Agent Submodular Optimization

there is an Ω(log(k)/k) inapproximability result [18]. For nonnegative monotone functions,
[40, 4] give an optimal (1− 1/e)-approximation based on the multilinear extension when F
is a matroid; and [28] gives a local-search algorithm that achieves a (1/k − ε)-approximation
(for any fixed ε > 0) when F is a k-matroid intersection. For nonnegative nonmonotone
functions, a 0.385-approximation ([1]) is the best factor known for a matroid constraint. In
[27] a 1/(k +O(1))-approximation is given for k matroid constraints with k fixed, and [16]
gives a simple “multi-greedy” algorithm that matches the approximation of Lee et al. but
is polytime for any k. Finally, Chekuri et al [42] introduce a general framework based on
relaxation-and-rounding that allows for combining different types of constraints.

For constrained minimization the news are worse [12, 38, 20]. If F consists of spanning
trees Goel et al [12] show a lower bound of Ω(n), while if F corresponds to the cardinality
constraint {S : |S| ≥ k} Svitkina and Fleischer [38] show a lower bound of Ω̃(

√
n). There

are a few exceptions. The problem can be solved exactly when F is a ring family ([36]),
triple family ([15]), or parity family ([13]). In the context of NP-Hard problems, there are
almost no cases where good approximations exist. We have a 2-approximation ([12, 20]) for
submodular vertex cover, and an O(k)-approximation for k-uniform hitting set.

Multi-agent Problems. In the maximization side, the main studied problem is Submodular
Welfare Maximization (F = {V }) for which the initial 1/2-approximation [29] was improved
to 1− 1/e by Vondrak [40]. This approximation is in fact optimal [22, 31]. We are not aware
of any maximization work for MASO(F) for nontrivial families F .

For multi-agent minimization, MSCA (i.e. F = {V }) is the most studied application of
MASO(F). For nonnegative monotone functions, MSCA is equivalent to the Submodular
Facility Location problem from [39], where a tight O(logn) approximation is given. If the
functions fi are nonnegative and nonmonotone, then no multiplicative factor approximation
exists [7]. However, the works of [5] and [7] respectively show that O(logn) and O(k logn)
approximations are available for some special types of nonnegative nonmonotone objectives.

Goel et al [12] consider the minimization case of MASO(F) where the objectives are
nonnegative and monotone, and F is a nontrivial collection of subsets of V (i.e. F ⊂ 2V).
In particular, given a graph G they consider the families of vertex covers, spanning trees,
perfect matchings, and shortest st paths. They provide a tight O(logn) approximation for
the vertex cover problem, and show polynomial hardness for the other cases. To the best of
our knowledge, [12] is the only work on MASO(F) for nontrivial collections F .

1.3 Our contributions
We first discuss the minimization side. Here we mainly focus on nonnegative monotone
objectives fi, due to the strong hardness results discussed in Section 1.2. Our main result is
showing that if the SA primitive for a family F admits approximation via a natural “blocking”
convex relaxation (see Section 2.1), then we may extend this to its MA version with a modest
blow-up in the approximation factor.

I Theorem 6. Suppose there is a (polytime) α(n)-approximation for monotone SO(F) minim-
ization via the blocking convex relaxation. Then there is a (polytime) O(α(n)·min{k, log2(n)})
approximation for monotone MASO(F) minimization.

We remark that the O(log2(n)) factor loss due to having multiple agents (i.e the MA
gap) is in the right ballpark, since the vertex cover problem has a factor 2-approximation for
single-agent and a tight O(logn)-approximation for the MA version [12].

R. Santiago and F. B. Shepherd 23:5

We also discuss how Goel et al’s O(logn)-approximation for MA vertex cover is a special
case of a more general phenomenon. Their analysis only relies on the fact that the feasible
family (or at least its upwards closure) has a bounded blocker property. Given a family F ,
the blocker B(F) of F consists of the minimal sets B such that B ∩ F 6= ∅ for each F ∈ F .
We say that B(F) is β-bounded if |B| ≤ β for all B ∈ B(F).

Families with bounded blockers have been previously studied in the SA minimization
setting, where the works [23, 21] show that β-approximations are always available. Our next
result then establishes an O(logn) MA gap for bounded blocker families, thus improving
the O(log2(n)) factor in Theorem 6 for general families. We remark that this O(logn) MA
gap is tight due to examples like vertex covers [12], or submodular facility location (a trivial
1-approximation for SA and a tight O(logn)-approximation [39] for MA).

I Theorem 7. Let F be a family with a β-bounded blocker. Then there is a randomized
O(β logn)-approximation algorithm for monotone MASO(F) minimization.

While our work mainly focuses on monotone objectives, in the full version [35] we show
that upwards closed families with a bounded blocker remain tractable under some special
types of nonmonotone objectives introduced by Chekuri and Ene (see Section 2.3).

We conclude our minimization work by discussing a class of families which behaves well
for MA minimization despite not having a bounded blocker. More specifically, we observe in
Section 2.4 that crossing (and ring) families have an MA gap of O(logn).

I Theorem 8. There is a tight ln(n)-approximation for monotone MASO(F) minimization
over crossing families F .

We now discuss our contributions for maximization. Our main result here establishes
that if the SA primitive for a family F admits approximation via its multilinear relaxation
(see Section 3.2), then we may extend this to its MA version with a constant factor loss.

I Theorem 9. If there is a (polytime) α(n)-approximation for monotone SO(F) maximization
via its multilinear relaxation, then there is a (polytime) (1− 1/e) · α(n)-approximation for
monotone MASO(F) maximization. Furthermore, given a downwards closed family F , if
there is a (polytime) α(n)-approximation for nonmonotone SO(F) maximization via its
multilinear relaxation, then there is a (polytime) 0.385 ·α(n)-approximation for nonmonotone
MASO(F) maximization.

We remark that the (1 − 1/e) MA gap in the monotone case is tight due to examples
like F = {V }, where there is a trivial 1-approximation for the SA problem and a tight
(1− 1/e)-approximation for the MA version [40].

In Section 3 we describe a simple generic reduction that shows that for some families an
(optimal) MA gap of 1 holds.

I Theorem 10. Let F be a matroid, a p-matroid intersection, or a p-system. Then, if there
is a (polytime) α-approximation algorithm for monotone (resp. nonmonotone) SO(F) maxim-
ization, there is a (polytime) α-approximation algorithm for monotone (resp. nonmonotone)
MASO(F) maximization.

In the setting of CMASO (i.e. (3)) our results from Section 3.1 provide additional
modelling flexibility. They imply that one maintains decent approximations even while
adding interesting side constraints. For instance, for a monotone maximization instance
of CMASO where F corresponds to a p-matroid intersection and the Fi are all matroids,
our results lead to a (p+ 1 + ε)-approximation algorithm. We believe that these, combined
with other results from Section 3, substantially expand the family of tractable models for
maximization.

APPROX/RANDOM 2018

23:6 Multi-Agent Submodular Optimization

2 Multi-agent submodular minimization

In this section we seek generic reductions for multi-agent minimization problems to their
single-agent primitives. We work with a natural blocking convex relaxation that is obtained
via the Lovász extension of a set function. We show that if the SA primitive admits
approximation via such relaxation, then we may extend this to its MA version up to an
O(min{k, log2(n)}) factor loss. Moreover, as noted already, the O(log2(n)) approximation
factor loss due to having multiple agents is in the right ballpark given the tight O(logn) MA
gap for the vertex cover problem [12]. In Section 2.3 we discuss an extension of this vertex
cover result to a larger class of families with a MA gap of O(logn).

2.1 The single-agent and multi-agent formulations
Due to monotonicity, one may often assume that we are working with a family F which is
upwards-closed, aka a blocking family (cf. [21]). The advantage is that to certify whether
F ∈ F , we only need to check that F ∩ B 6= ∅ for each element B of the family B(F) of
minimal blockers of F . We discuss the details in Appendix A.

For a set function f : {0, 1}V → R with f(∅) = 0 one defines its Lovász extension
fL : RV+ → R (introduced in [30]) as follows. Let 0 < v1 < v2 < ... < vm be the distinct
positive values taken in some vector z ∈ RV+, and let v0 = 0. For each i ∈ {0, 1, ...,m} let
Si := {j : zj > vi}. In particular, S0 is the support of z and Sm = ∅. One then defines

fL(z) =
m−1∑
i=0

(vi+1 − vi)f(Si).

It follows from the definition that fL is positively homogeneous, that is fL(αz) = αfL(z)
for any α > 0 and z ∈ RV+. It is also straightforward that fL is monotone if f is. We use
both of these properties of fL in our proofs. We also have the following result due to Lovász.

I Lemma 11 (Lovász [30]). The function fL is convex if and only if f is submodular.

This gives rise to natural convex relaxations for the single-agent and multi-agent problems
based on the blocking formulation P ∗(F) := {z ≥ 0 : z(B) ≥ 1 for all B ∈ B(F)} (see
Appendix A for details). The single-agent Lovász extension formulation (used in [20, 21]) is:

(SA-LE) min fL(z) : z ∈ P ∗(F), (4)

and the multi-agent Lovász extension formulation (used in [5] for F = {V }) is:

(MA-LE) min
∑
i∈[k]

fLi (zi) : z1 + z2 + · · ·+ zk ∈ P ∗(F). (5)

By standard methods (see Appendix B) one may solve these problems in polytime if one
can separate over the blocking formulation P ∗(F). This is the case for many natural families
such as spanning trees, perfect matchings, st-paths, and vertex covers.

It is shown in [5] that in the setting of monotone objectives and F = {V }, a fractional
solution of (MA-LE) can be rounded into an integral one at an O(logn) factor loss.

I Theorem 12 ([5]). Let z1 + z2 + · · · + zk be a feasible solution for (MA-LE) in the
setting where F = {V } (i.e.

∑
i∈[k] zi = χV) and fi are nonnegative monotone submodular.

Then there is a randomized rounding procedure that outputs an integral feasible solution
z̄1 + z̄2 + · · ·+ z̄k such that

∑
i∈[k] f

L
i (z̄i) ≤ O(logn)

∑
i∈[k] f

L
i (zi) on expectation. That is,

we get a partition S1, S2, . . . , Sk of V such that
∑
i∈[k] fi(Si) ≤ O(logn)

∑
i∈[k] f

L
i (zi) on

expectation.

R. Santiago and F. B. Shepherd 23:7

2.2 A multi-agent gap of O(min{k, log2(n)})
In this section we present the proof of Theorem 6. The high level idea is that we start with
an optimal solution z∗ = z∗1 + z∗2 + · · ·+ z∗k to the multi-agent relaxation (MA-LE) and build
a new feasible solution ẑ = ẑ1 + ẑ2 + · · ·+ ẑk where the ẑi have supports Vi that are pairwise
disjoint. We interpret the Vi as the set of items associated (or pre-assigned) to agent i. Once
we have such a pre-assignment we consider the single-agent problem min g(S) : S ∈ F where

g(S) =
∑
i∈[k]

fi(S ∩ Vi). (6)

It is clear that g is nonnegative monotone submodular since the fi are as well. Moreover, for
any solution S ∈ F for this single-agent problem we obtain a MA solution of the same cost
by setting Si = S ∩ Vi, since we then have g(S) =

∑
i∈[k] fi(S ∩ Vi) =

∑
i∈[k] fi(Si).

For a set S ⊆ V and a vector z ∈ [0, 1]V we denote by z|S the truncation of z to elements
of S. That is, we set z|S(v) = z(v) for each v ∈ S and to zero otherwise. We then have by
definition of g that gL(z) =

∑
i∈[k] f

L
i (z|Vi

). Moreover, if the Vi are pairwise disjoint, then
we also have

∑
i∈[k] f

L
i (z|Vi) =

∑
i∈[k] f

L
i (zi). We summarize this in the following result.

I Proposition 13. Let z = z1 + z2 + · · ·+ zk be a feasible solution to (MA-LE) where the
vectors zi have pairwise disjoint supports Vi. Then gL(z) =

∑
i∈[k] f

L
i (z|Vi

) =
∑
i∈[k] f

L
i (zi).

The next two results show how one can get a feasible solution ẑ = ẑ1 + ẑ2 + · · ·+ ẑk where
the ẑi have pairwise disjoint supports, by losing a factor of O(log2(n)) and k respectively.
We remark that these two results combined prove Theorem 6.

I Theorem 14. Suppose there is a (polytime) α(n)-approximation for monotone SO(F)
minimization based on rounding (SA-LE). Then there is a (polytime) O(α(n) log2(n))-
approximation for monotone MASO(F) minimization.

Proof. Let z∗ = z∗1 + z∗2 + · · · + z∗k denote an optimal solution to (MA-LE) with value
OPTfrac. In order to apply a black box single-agent rounding algorithm we must create
a different multi-agent solution. This is done in several steps, the first few of which are
standard. The key steps are fracture, expand and return, which arise later in the process.

Call an element v small if z∗(v) ≤ 1
2n . Note that

∑
v small z

∗(v) ≤ 1
2 , and so for any

blocking set B ∈ B(F), we have that at most 1
2 of z∗(B) is contributed by small elements.

We obtain a new feasible solution z′ = z′1 + z′2 + · · · + z′k by removing all small elements
from the support of the z∗i and then doubling the resulting vectors. By the monotonicity
and homogeneity of the fLi , this at most doubles the cost of OPTfrac.

We now prune the solution z′ = z′1 + z′2 + · · ·+ z′k a bit more. Let Zj be the elements v
such that z′(v) ∈ (2−(j+1), 2−j] for j = 0, 1, 2, . . . , L. Since z′(v) > 1

2n for any element in the
support, we have that L ≤ log(n). We call Zj bin j and define rj = 2j . We round up each
v ∈ Zj so that z′(v) = 2−j by augmenting the z′i values by at most a factor of 2. We may
do this simultaneously for all v by possibly “truncating” the values associated to some of
the elements. As before, this is fine since the fLi are monotone. In the end, we call this a
uniform solution z′′ = z′′1 + z′′2 + · · · + z′′k in the sense that each z′′(v) is some power of 2.
Note that its cost is at most 4 ·OPTfrac.

Fracture. We now fracture the vectors z′′i by defining vectors z′′i,j = z′′i |Zj
for each

i ∈ [k] and each j ∈ {0, 1, . . . , L}, where recall that the notation z|S denotes the truncation
of z to elements of S. Notice that z′′i =

∑L
j=0 z

′′
i,j .

Expand. Now for each j ∈ {0, 1, . . . , L} we blow up the vectors z′′i,j by a factor rj . Since
z′′(v) = 1

rj
for each v ∈ Zj , the resulting values yield a (probably fractional) cover of Zj . We

APPROX/RANDOM 2018

23:8 Multi-Agent Submodular Optimization

can then use the rounding procedure discussed in Theorem 12 (with ground set Zj) to get
an integral solution z′′′i,j such that

∑
i f

L
i (z′′′i,j) ≤ O(logn)

∑
i f

L
i (rj · z′′i,j) on expectation.

Return. Now we go back to get a new MA-LE solution ẑ = ẑ1 + ẑ2 + · · · + ẑk by
setting ẑi =

∑L
j=0

1
rj
z′′′i,j . Note that ẑ = z′′ and so this is indeed feasible (and again uniform).

Moreover, we have that the cost of this new solution satisfies
k∑
i=1

fLi (ẑi) ≤
k∑
i=1

L∑
j=0

1
rj
fLi (z′′′i,j) =

L∑
j=0

1
rj

k∑
i=1

fLi (z′′′i,j) ≤ O(logn)
k∑
i=1

L∑
j=0

fLi (z′′i,j)

≤ O(logn)(L+ 1)
k∑
i=1

fLi (z′′i)

≤ O(log2(n))
k∑
i=1

fLi (z∗i) ≤ O(log2(n)) ·OPTMA,

where in the first inequality we use the convexity and homogeneity of the fLi , in the second
inequality we use again the homogeneity together with the upper bound for

∑
i f

L
i (z′′′i,j), and

in the third inequality we use monotonicity and the fact that z′′i,j ≤ z′′i for all j.
Single-Agent Rounding. In the last step we use the function g defined in (6), with sets

Vi corresponding to the support of the ẑi. Given our α-approximation rounding assumption
for (SA-LE), we can round ẑ to find a set Ŝ such that g(Ŝ) ≤ αgL(ẑ). Then, by setting
Ŝi = Ŝ ∩ Vi we obtain a MA solution satisfying

k∑
i=1

fi(Ŝi) = g(Ŝ) ≤ αgL(ẑ) = α

k∑
i=1

fLi (ẑi) ≤ α ·O(log2(n)) ·OPTMA,

where the second equality follows from Proposition 13. This completes the proof. J

While in this paper we define our (SA-LE) and (MA-LE) formulations in terms of the
blocking formulation P ∗(F), in the full version [35] we discuss how our results naturally
extend to more general upwards closed relaxations {z ≥ 0 : Az ≥ r} of the integral polyhedron
conv({χS : S ∈ F}). We also show how a more careful analysis of the above proof leads to a
slightly improved MA gap of O(log(n) log(n

logn)).
We now give an approximation in terms of the number of agents, which becomes preferable

in settings where k < log2(n).

I Lemma 15. Suppose there is a (polytime) α(n)-approximation for monotone SO(F)
minimization based on rounding (SA-LE). Then there is a (polytime) kα(n)-approximation
for monotone MASO(F) minimization.

Proof. Let z∗ = z∗1 + z∗2 + · · · + z∗k denote an optimal solution to (MA-LE) with value
OPTfrac. We build a new feasible solution ẑ = ẑ1 + ẑ2 + · · ·+ ẑk as follows. For each element
v ∈ V let i′ = argmaxi∈[k] z

∗
i (v), breaking ties arbitrarily. Then set ẑi′(v) = kz∗i (v) and

ẑi(v) = 0 for each i 6= i′. By construction we have ẑ ≥ z∗, and hence this is indeed a feasible
solution. Moreover, by construction we also have that ẑi ≤ kz∗i for each i ∈ [k]. Hence, given
the monotonicity and homogeneity of the fLi we have∑

i∈[k]

fLi (ẑi) ≤
∑
i∈[k]

fLi (kz∗i) = k
∑
i∈[k]

fLi (z∗i) = k ·OPTfrac ≤ k ·OPTMA.

Since the ẑi have disjoint supports Vi, we can now use the function g defined in (6) and do a
single-rounding argument as in Theorem 14. This completes the proof. J

R. Santiago and F. B. Shepherd 23:9

2.3 A tight multi-agent gap of O(log n) for bounded blocker families
While we established an O(log2(n)) MA gap for general families based on the blocking convex
formulations, the work of [12] shows an improved MA gap of O(logn) for vertex covers. In
this section we generalize their result by describing a larger family class with such MA gap.

Their algorithm relies on the fact that the set family has the following bounded blocker
property. We call a clutter (family of non-comparable sets) F β-bounded if |F | ≤ β for all
F ∈ F . Recall that the blocker of a clutter F , denoted by B(F), is the set of all minimal B
such that B ∩ F 6= ∅ for all F ∈ F . We then say that F has a β-bounded blocker if |B| ≤ β
for each B ∈ B(F). The main SA minimization result for such families is the following.

I Theorem 16 ([21, 23]). Let F be a family with a β-bounded blocker. Then there is a
β-approximation algorithm for monotone SO(F) minimization. If P ∗(F) has a polytime
separation oracle, then this is a polytime algorithm.

Our next result establishes an O(logn) MA gap for families with a bounded blocker.

I Theorem 17. Let F be an upwards closed family with a β-bounded blocker. Then there is
a randomized O(β logn)-approximation algorithm for the monotone MASO(F) minimization
problem. If P ∗(F) has a polytime separation oracle, then this is a polytime algorithm.

Proof. Let z∗ =
∑
i∈[k] z

∗
i be an optimal solution to (MA-LE) with value OPTfrac. Consider

the new feasible solution given by βz∗ =
∑
i∈[k] βz

∗
i and let U = {v ∈ V : βz∗(v) ≥ 1}. Since

F has a β-bounded blocker it follows that U ∈ F . We now have that
∑
i∈[k] βz

∗
i is a feasible

solution such that
∑
i∈[k] βz

∗
i ≥ χU . Thus, we can use Theorem 12 to get an integral feasible

solution
∑
i∈[k] z̄i such that

∑
i∈[k] z̄i ≥ χU and

∑
i∈[k] f

L
i (z̄i) ≤ O(log |U |)

∑
i∈[k] f

L
i (βz∗i) ≤

β ·O(logn) ·OPTfrac on expectation. J

While our work focuses on monotone objectives, in the full version [35] we show that
upwards closed families with a bounded blocker remain tractable under some special types
of nonmonotone objectives. These were introduced in [5] and [7], where they consider
objectives of the form fi = gi + h where the gi are monotone submodular and h is symmetric
submodular (in [5]) or just submodular (in [7]). Note that by taking h ≡ 0 (which is
symmetric submodular) we recover the monotone case.

2.4 A tight multi-agent gap of O(log n) for ring and crossing families
It is well known ([36]) that submodular minimization can be solved exactly in polynomial
time over a ring family. In this section we observe that the MA problem over this type of
constraint admits a tight ln(n)-approximation. More generally, we consider crossing families.
A family F of subsets of V forms a ring family (aka lattice family) if for each A,B ∈ F we
have A ∩ B,A ∪ B ∈ F . A crossing family is one where we only require it for sets where
A \B,B \A,A∩B, V − (A∪B) are all non-empty. Thus any ring family is a crossing family.

For any crossing family F and any u, v ∈ V , let Fuv = {A ∈ F : u ∈ A, v 6∈ A}. It is easy
to see that Fuv is a ring family. We may then solve the original MA problem by solving the
associated MA problem for each non-empty Fuv and then selecting the best output solution.

So we assume now that we are given a ring family in such a way that we may compute
its minimal set M (which is unique). This is a standard assumption when working with
ring families (cf. submodular minimization algorithm described in [36]). Then, due to
monotonicity and the fact that F is closed under intersections, it is not hard to see that the

APPROX/RANDOM 2018

23:10 Multi-Agent Submodular Optimization

original problem reduces to the submodular facility location problem

min
k∑
i=1

fi(Si) : S1] · · ·] Sk = M ,

which admits a tight (ln |M |)-approximation ([39]). In particular, for the special case where
we have the trivial ring family F = {V } we get a tight ln(n)-approximation. The next result
summarizes these observations.

I Theorem 18. There is a tight ln(n)-approximation for monotone MASO(F) minimization
over crossing families F .

3 Multi-agent submodular maximization

In this section we describe two different reductions. The first one reduces the capacitated
multi-agent problem (3) to a single-agent problem. We show that several properties of the
objective and family of feasible sets stay invariant (i.e. preserved) under the reduction. We
use this to establish an (optimal) MA gap of 1 for several families. Examples of such families
include spanning trees, matroids, and p-systems.

Our second reduction uses the multilinear extension of a set function. We establish that
if the SA (monotone or nonmonotone) primitive admits approximation via its multilinear
relaxation, then we may extend this to its MA version with a constant factor loss. Moreover,
for the monotone case our MA gap is tight.

3.1 The lifting reduction
In this section we describe a generic reduction of CMASO (i.e. (3)) to a single-agent problem:
max /min f(S) : S ∈ L. The argument is based on the idea of viewing assignments of
elements v to agents i in a multi-agent bipartite graph. This simple idea (which is equivalent
to making k disjoint copies of the ground set) already appeared in the classical work of
Fisher et al [10], and has since then been widely used [29, 40, 4, 37]. We review briefly the
reduction here for completeness and to fix notation.

Consider the complete bipartite graph G = ([k] +V,E). Every subset of edges S ⊆ E can
be written uniquely as S =]i∈[k]({i} × Si) for some sets Si ⊆ V . This allows us to go from
a multi-agent objective (such as the one in (3)) to a univariate objective f : 2E → R over the
lifted space. Namely, for each set S ⊆ E we define f(S) =

∑
i∈[k] fi(Si). The function f is

well-defined because each subset S ⊆ E can be uniquely written as S =]i∈[k]({i} × Si).
We consider two families of sets over E that capture the original constraints:

F ′ := {S ⊆ E : S1] · · ·] Sk ∈ F} and H := {S ⊆ E : Si ∈ Fi, ∀i ∈ [k]}.

We now have:

max /min
∑
i∈[k] fi(Si) = max /min f(S) = max /min f(S)

s.t. S1] · · ·] Sk ∈ F s.t. S ∈ F ′ ∩H s.t. S ∈ L
Si ∈ Fi , ∀i ∈ [k]

,

where in the last step we just let L := F ′ ∩H.
Clearly, this reduction is interesting if our new function f and family of sets L have

properties which allows us to handle them computationally. This will depend on the original
structure of the functions fi, and the set families F and Fi. In terms of the objective, it is

R. Santiago and F. B. Shepherd 23:11

Table 1 Invariant properties under the lifting reduction.

Multi-agent problem Single-agent (i.e. reduced) problem Result
1 (V, F) a p-system (E, F ′) a p-system Appendix C
2 F = bases of a p-system F ′ = bases of a p-system Appendix C
3 (V, F) a matroid (E, F ′) a matroid Appendix C
4 F = bases of a matroid F ′ = bases of a matroid Appendix C
5 (V, F) a p-matroid intersection (E, F ′) a p-matroid intersection Full version [35]
6 F = forests (resp. spanning trees) F ′ = forests (resp. spanning trees) Full version [35]
7 F = matchings (resp. perfect matchings) F ′ = matchings (resp. perfect matchings) Full version [35]
8 F = st-paths F ′ = st-paths Full version [35]
9 (V, Fi) a matroid for all i ∈ [k] (E, H) a matroid Full version [35]
10 Fi a ring family for all i ∈ [k] H a ring family Full version [35]

straightforward to check (as previously pointed out in [29]) that if the fi are (nonnegative,
respectively monotone) submodular functions, then f as defined above is also (nonnegative,
respectively monotone) submodular. In the full version [35] we discuss several properties of
the families F and Fi that are preserved under this reduction, as well as their algorithmic
consequences. We show, for instance, that if the family F induces a matroid (or more
generally a p-system) over the original ground set V , then so does the family F ′ over the
lifted space E. We summarize some of these results in Table 1, and we remark that these
now prove Theorem 10 (see [35] for full details).

3.2 The single-agent and multi-agent formulations
For a set function f : {0, 1}V → R we define its multilinear extension fM : [0, 1]V → R
(introduced in [3]) as

fM (z) =
∑
S⊆V

f(S)
∏
v∈S

zv
∏
v/∈S

(1− zv).

An alternative way to define fM is in terms of expectations. Consider a vector z ∈ [0, 1]V
and let Rz denote a random set that contains element vi independently with probability zvi

.
Then fM (z) = E[f(Rz)], where the expectation is taken over random sets generated from
the probability distribution induced by z.

This gives rise to natural single-agent and multi-agent relaxations for constrained sub-
modular maximization. The single-agent multilinear extension relaxation is:

(SA-ME) max fM (z) : z ∈ P (F), (7)

and the multi-agent multilinear extension relaxation is:

(MA-ME) max
∑
i∈[k]

fMi (zi) : z1 + z2 + · · ·+ zk ∈ P (F), (8)

where P (F) denotes some fractional relaxation of the integral polytope conv({χS : S ∈ F}).
While the relaxation (SA-ME) has been used extensively [4, 27, 9, 6, 1] in the submodular
maximization literature, we are not aware of any previous work using the multi-agent
relaxation (MA-ME). We next discuss the solvability of (SA-ME).

I Theorem 19 ([1, 40]). Let f : 2V → R+ be nonnegative submodular and fM its multilinear
extension. Let P ⊆ [0, 1]V be any downwards closed polytope that admits a polytime separation

APPROX/RANDOM 2018

23:12 Multi-Agent Submodular Optimization

oracle, and let OPT = max fM (z) : z ∈ P . Then there is a polytime algorithm ([1]) that
finds z∗ ∈ P such that fM (z∗) ≥ 0.385 ·OPT . Moreover, if f is monotone there is a polytime
algorithm ([40]) that finds z∗ ∈ P such that fM (z∗) ≥ (1− 1/e)OPT .

For monotone objectives the assumption that P is downwards closed is without loss of
generality. This is not the case, however, when the objective is nonmonotone. Nonetheless,
this restriction is unavoidable, as Vondrák [41] showed that no algorithm can find z∗ ∈ P
such that fM (z∗) ≥ c ·OPT for any constant c > 0 when P admits a polytime separation
oracle but it is not downwards closed.

We remark that we can solve (MA-ME) to the same approximation factor as (SA-ME).
This follows from the fact that the MA problem has the form {max g(w) : w ∈W ⊆ Rnk}
where g(w) = g(z1, z2, . . . , zk) =

∑
i∈[k] f

M
i (zi) and W is the downwards closed polytope

{w = (z1, ..., zk) :
∑
i zi ∈ P (F)}. Clearly we have a polytime separation oracle for W given

that we have one for P (F). Moreover, it is straightforward to check (see Lemma 34 on
Appendix C) that g(w) = fM (w), where f is the function on the lifted space after applying
the lifting reduction from Section 3.1. Thus, g is the multilinear extension of a nonnegative
submodular function, and we can use Theorem 19.

3.3 A tight multi-agent gap of 1− 1/e

In this section we present the proof of Theorem 9. The high-level idea behind our reduction
is the same as in the minimization setting (see Section 2.2). That is, we start with an
(approximate) optimal solution z∗ = z∗1 +z∗2 + · · ·+z∗k to the multi-agent (MA-ME) relaxation
and build a new feasible solution ẑ = ẑ1 + ẑ2 + · · ·+ ẑk where the ẑi have supports Vi that are
pairwise disjoint. We then use for the SA rounding step the single-agent problem (as previously
defined in (6) for the minimization setting) max g(S) : S ∈ F where g(S) =

∑
i∈[k] fi(S ∩Vi).

Similarly to Proposition 13 which dealt with the Lovász extension, we have the following
result for the multilinear extension.

I Proposition 20. Let z =
∑
i∈[k] zi be a feasible solution to (MA-ME) where the vectors zi

have pairwise disjoint supports Vi. Then gM (z) =
∑
i∈[k] f

M
i (z|Vi

) =
∑
i∈[k] f

M
i (zi).

We now have all the ingredients to prove our main result in the maximization setting.

I Theorem 21. If there is a (polytime) α(n)-approximation for monotone SO(F) maximiza-
tion via rounding (SA-ME), there is a (polytime) (1−1/e) ·α(n)-approximation for monotone
MASO(F) maximization. Furthermore, if F is downwards closed and there is a (polytime)
α(n)-approximation for nonmonotone SO(F) maximization via rounding (SA-ME), there is
a (polytime) 0.385 · α(n)-approximation for nonmonotone MASO(F) maximization.

Proof. We discuss first the case of monotone objectives.
STEP 1. Let z∗ = z∗1 + z∗2 + · · · + z∗k denote an approximate solution to (MA-ME)

obtained via Theorem 19, and let OPTfrac be the value of an optimal solution. We then
have that

∑
i∈[k] f

M
i (z∗i) ≥ (1− 1/e)OPTfrac ≥ (1− 1/e)OPTMA.

STEP 2. For an element v ∈ V let ev denote the characteristic vector of {v}, i.e. the
vector in RV which has value 1 in the v-th component and zero elsewhere. Notice that
by definition of the multilinear extension we have that the functions fMi are linear along
directions ev for any v ∈ V . It then follows that the function

h(t) = fMi (z∗i + tev) + fMi′ (z∗i′ − tev) +
∑

j∈[k],j 6=i,i′
fMj (z∗j)

R. Santiago and F. B. Shepherd 23:13

is also linear for any v ∈ V and i 6= i′ ∈ [k], since it is the sum of linear functions (on t). In
particular, given any v ∈ V such that there exist i 6= i′ ∈ [k] with z∗i (v), z∗i′(v) > 0, there
is always a choice so that increasing one component and decreasing the other by the same
amount does not decrease the objective value. We use this as follows.

Let v ∈ V be such that there exist i 6= i′ ∈ [k] with z∗i (v), z∗i′(v) > 0. Then, we either
set z∗i (v) = z∗i (v) + z∗i′(v) and z∗i′(v) = 0, or z∗i′(v) = z∗i (v) + z∗i′(v) and z∗i (v) = 0, whichever
does not decrease the objective value. We repeat until the vectors z∗i have pairwise disjoint
support. Let us denote these new vectors by ẑi and let ẑ =

∑
i∈[k] ẑi. Then notice that

the vector z∗ =
∑
i∈[k] z

∗
i remains invariant after performing each of the above updates (i.e.

ẑ = z∗), and hence the new vectors ẑi remain feasible.
STEP 3. In the last step we use the function g defined in (6), with sets Vi corresponding

to the support of the ẑi. Given our α-approximation rounding assumption for (SA-ME),
we can round ẑ to find a set Ŝ such that g(Ŝ) ≥ αgM (ẑ). Then, by setting Ŝi = Ŝ ∩ Vi we
obtain a MA solution satisfying

k∑
i=1

fi(Ŝi) = g(Ŝ) ≥ αgM (ẑ) = α

k∑
i=1

fMi (ẑi) ≥ α
k∑
i=1

fMi (z∗i) ≥ α(1− 1/e)OPTMA,

where the second equality uses Proposition 20. This completes the monotone case.
For the nonmonotone setting the proof is very similar. Here we restrict our attention

to downwards closed families, since then we can get a 0.385-approximation at STEP 1 via
Theorem 19. We then apply STEP 2 and 3 in the same fashion as we did for monotone
objectives. This leads to a 0.385 · α(n)-approximation for the multi-agent problem. J

4 Conclusion

A number of interesting questions remain. Perhaps the main one being whether the O(log2(n))
MA gap for minimization can be improved to O(logn)? We have shown this is the case for
bounded blocker and crossing families. Another question is whether the α log2(n) and αk
approximations can be made truly black box? I.e., do not depend on the convex formulation.

On separate work ([34]) we discuss multivariate submodular objectives. We show that
our reductions for maximization remain well-behaved algorithmically and this opens up more
tractable models. This is the topic of planned future work.

References
1 Niv Buchbinder and Moran Feldman. Constrained submodular maximization via a non-

symmetric technique. arXiv preprint arXiv:1611.03253, 2016.
2 Niv Buchbinder, Moran Feldman, Joseph Seffi, and Roy Schwartz. A tight linear time (1/2)-

approximation for unconstrained submodular maximization. SIAM Journal on Computing,
44(5):1384–1402, 2015.

3 Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a submodu-
lar set function subject to a matroid constraint. In Integer programming and combinatorial
optimization, pages 182–196. Springer, 2007.

4 Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a mono-
tone submodular function subject to a matroid constraint. SIAM Journal on Computing,
40(6):1740–1766, 2011.

5 Chandra Chekuri and Alina Ene. Submodular cost allocation problem and applications.
In International Colloquium on Automata, Languages, and Programming, pages 354–366.
Springer, 2011. Extended version: arXiv preprint arXiv:1105.2040.

APPROX/RANDOM 2018

23:14 Multi-Agent Submodular Optimization

6 Alina Ene and Huy L Nguyen. Constrained submodular maximization: Beyond 1/e. In
Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages
248–257. IEEE, 2016.

7 Alina Ene and Jan Vondrák. Hardness of submodular cost allocation: Lattice matching
and a simplex coloring conjecture. Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2014), 28:144–159, 2014.

8 Uriel Feige, Vahab S Mirrokni, and Jan Vondrak. Maximizing non-monotone submodular
functions. SIAM Journal on Computing, 40(4):1133–1153, 2011.

9 Moran Feldman, Joseph Naor, and Roy Schwartz. A unified continuous greedy algorithm
for submodular maximization. In Foundations of Computer Science (FOCS), 2011 IEEE
52nd Annual Symposium on, pages 570–579. IEEE, 2011.

10 Marshall L Fisher, George L Nemhauser, and Laurence A Wolsey. An analysis of approx-
imations for maximizing submodular set functions-II. Springer, 1978.

11 Lisa Fleischer, Michel X Goemans, Vahab S Mirrokni, and Maxim Sviridenko. Tight ap-
proximation algorithms for maximum general assignment problems. In Proceedings of the
seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages 611–620. Society
for Industrial and Applied Mathematics, 2006.

12 Gagan Goel, Chinmay Karande, Pushkar Tripathi, and Lei Wang. Approximability of com-
binatorial problems with multi-agent submodular cost functions. In Foundations of Com-
puter Science, 2009. FOCS’09. 50th Annual IEEE Symposium on, pages 755–764. IEEE,
2009.

13 Michel X. Goemans and VS Ramakrishnan. Minimizing submodular functions over families
of sets. Combinatorica, 15(4):499–513, 1995.

14 Pranava R Goundan and Andreas S Schulz. Revisiting the greedy approach to submodular
set function maximization. Optimization online, pages 1–25, 2007.

15 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and com-
binatorial optimization, volume 2. Springer Science & Business Media, 2012.

16 Anupam Gupta, Aaron Roth, Grant Schoenebeck, and Kunal Talwar. Constrained non-
monotone submodular maximization: Offline and secretary algorithms. In International
Workshop on Internet and Network Economics, pages 246–257. Springer, 2010.

17 Ara Hayrapetyan, Chaitanya Swamy, and Éva Tardos. Network design for information
networks. In Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete al-
gorithms, pages 933–942. Society for Industrial and Applied Mathematics, 2005.

18 Elad Hazan, Shmuel Safra, and Oded Schwartz. On the complexity of approximating k-set
packing. computational complexity, 15(1):20–39, 2006.

19 Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. A combinatorial strongly polynomial
algorithm for minimizing submodular functions. Journal of the ACM (JACM), 48(4):761–
777, 2001.

20 Satoru Iwata and Kiyohito Nagano. Submodular function minimization under covering
constraints. In Foundations of Computer Science, 2009. FOCS’09. 50th Annual IEEE
Symposium on, pages 671–680. IEEE, 2009.

21 Rishabh Iyer, Stefanie Jegelka, and Jeff Bilmes. Monotone closure of relaxed constraints in
submodular optimization: Connections between minimization and maximization: Extended
version, 2014.

22 Subhash Khot, Richard J Lipton, Evangelos Markakis, and Aranyak Mehta. Inapproximab-
ility results for combinatorial auctions with submodular utility functions. In International
Workshop on Internet and Network Economics, pages 92–101. Springer, 2005.

23 Christos Koufogiannakis and Neal E Young. Greedy δ-approximation algorithm for covering
with arbitrary constraints and submodular cost. Algorithmica, 66(1):113–152, 2013.

R. Santiago and F. B. Shepherd 23:15

24 Andreas Krause and Carlos Guestrin. Near-optimal observation selection using submodular
functions. In AAAI, volume 7, pages 1650–1654, 2007.

25 Andreas Krause, Jure Leskovec, Carlos Guestrin, Jeanne VanBriesen, and Christos Falout-
sos. Efficient sensor placement optimization for securing large water distribution networks.
Journal of Water Resources Planning and Management, 134(6):516–526, November 2008.

26 KW Krause, MA Goodwin, and RW Smith. Optimal software test planning through auto-
mated network analysis. TRW Systems Group, 1973.

27 Jon Lee, Vahab S Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Non-monotone
submodular maximization under matroid and knapsack constraints. In Proceedings of the
forty-first annual ACM symposium on Theory of computing, pages 323–332. ACM, 2009.

28 Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular maximization over mul-
tiple matroids via generalized exchange properties. Mathematics of Operations Research,
35(4):795–806, 2010.

29 Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with de-
creasing marginal utilities. Games and Economic Behavior, 55(2):270–296, 2006. URL:
http://EconPapers.repec.org/RePEc:eee:gamebe:v:55:y:2006:i:2:p:270-296.

30 László Lovász. Submodular functions and convexity. In Mathematical Programming The
State of the Art, pages 235–257. Springer, 1983.

31 Vahab Mirrokni, Michael Schapira, and Jan Vondrák. Tight information-theoretic lower
bounds for welfare maximization in combinatorial auctions. In Proceedings of the 9th ACM
conference on Electronic commerce, pages 70–77. ACM, 2008.

32 George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of ap-
proximations for maximizing submodular set functions - i. Mathematical Programming,
14(1):265–294, 1978.

33 George L Nemhauser and Leonard A Wolsey. Best algorithms for approximating the max-
imum of a submodular set function. Mathematics of operations research, 3(3):177–188,
1978.

34 Richard Santiago and F Bruce Shepherd. Multivariate submodular optimization. arXiv
preprint arXiv:1612.05222, 2016.

35 Richard Santiago and F Bruce Shepherd. Multi-agent submodular optimization. arXiv
preprint arXiv:1803.03767, 2018.

36 Alexander Schrijver. A combinatorial algorithm minimizing submodular functions in
strongly polynomial time. Journal of Combinatorial Theory, Series B, 80(2):346–355, 2000.

37 Ajit Singh, Andrew Guillory, and Jeff Bilmes. On bisubmodular maximization. In Artificial
Intelligence and Statistics, pages 1055–1063, 2012.

38 Zoya Svitkina and Lisa Fleischer. Submodular approximation: Sampling-based algorithms
and lower bounds. SIAM Journal on Computing, 40(6):1715–1737, 2011.

39 Zoya Svitkina and ÉVA Tardos. Facility location with hierarchical facility costs. ACM
Transactions on Algorithms (TALG), 6(2):37, 2010.

40 Jan Vondrák. Optimal approximation for the submodular welfare problem in the value or-
acle model. In Proceedings of the fortieth annual ACM symposium on Theory of computing,
pages 67–74. ACM, 2008.

41 Jan Vondrák. Symmetry and approximability of submodular maximization problems. SIAM
Journal on Computing, 42(1):265–304, 2013.

42 Jan Vondrák, Chandra Chekuri, and Rico Zenklusen. Submodular function maximization
via the multilinear relaxation and contention resolution schemes. In Proceedings of the
forty-third annual ACM symposium on Theory of computing, pages 783–792. ACM, 2011.

APPROX/RANDOM 2018

http://EconPapers.repec.org/RePEc:eee:gamebe:v:55:y:2006:i:2:p:270-296

23:16 Multi-Agent Submodular Optimization

A Upwards-closed (aka blocking) families

In this section, we give some background for blocking families. As our work for minimization
is restricted to monotone functions, we can often convert an arbitrary set family into its
upwards-closure (i.e., a blocking version of it) and work with it instead. We discuss this
reduction as well. The technical details discussed in this section are fairly standard and we
include them for completeness. Several of these results have already appeared in [21].

A.1 Blocking families and a natural relaxation for P (F)
A set family F , over a ground set V is upwards-closed if F ⊆ F ′ and F ∈ F , implies that
F ′ ∈ F ; these are sometimes referred to as blocking families. Examples of such families
include vertex-covers or set covers more generally, whereas spanning trees are not.

For a blocking family F one often works with the induced sub-family Fmin of minimal
sets. Then Fmin has the property that it is a clutter, that is, Fmin does not contain a pair
of comparable sets, i.e., sets F ⊂ F ′. If F is a clutter, then F = Fmin and there is an
associated blocking clutter B(F), which consists of the minimal sets B such that B ∩ F 6= ∅
for each F ∈ F . We refer to B(F) as the blocker of F .

One also checks that for an arbitrary upwards-closed family F , we have the following.

I Claim 22 (Lehman).
1. F ∈ F if and only if F ∩B 6= ∅ for all B ∈ B(Fmin).
2. B(B(Fmin)) = Fmin.

Thus the significance of blockers is that one may assert membership in an upwards-closed
family F by checking intersections on sets from the blocker B(Fmin). If we define B(F) to be
the minimal sets which intersect every element of F , then one checks that B(F) = B(Fmin).
These observations lead to a natural relaxation for minimization problems over the integral
polyhedron P (F) = conv({χF : F ∈ F}). The blocking formulation for F is:

P ∗(F) = {z ∈ RV≥0 : z(B) ≥ 1 ∀B ∈ B(Fmin) = B(F)}. (9)

Clearly we have P (F) ⊆ P ∗(F).

A.2 Reducing to blocking families
Consider an arbitrary set family F over V . We may define its upwards closure by F↑ =
{F ′ : F ⊆ F ′ for some F ∈ F}. In this section we argue that in order to solve a monotone
optimization problem over sets in F it is often sufficient to work over its upwards-closure.

As already noted B(F) = B(F↑) = B(Fmin) and hence one approach is via the blocking
formulation P ∗(F) = P ∗(F↑). This requires two ingredients. First, we need a separation
algorithm for the blocking relaxation, but indeed this is often available for many natural
families such as spanning trees, perfect matchings, st-paths, and vertex covers. The second
ingredient needed is the ability to turn an integral solution χF ′ from P ∗(F↑) or P (F↑) into
an integral solution χF ∈ P (F). We now argue that this is the case if a polytime separation
algorithm is available for the blocking relaxation P ∗(F↑) or for the polytope P (F).

For a polyhedron P , we denote its dominant by P ↑ := {z : z ≥ x for some x ∈ P}. The
following observation is straightforward.

I Claim 23. Let H be the set of vertices of the hypercube in RV . Then

H ∩ P (F↑) = H ∩ P (F)↑ = H ∩ P ∗(F↑).

In particular we have that χS ∈ P (F)↑ ⇐⇒ χS ∈ P ∗(F↑).

R. Santiago and F. B. Shepherd 23:17

We use this observation to prove the following.

I Lemma 24. Assume we have a separation algorithm for P ∗(F↑). Then for any χS ∈
P ∗(F↑) we can find in polytime χM ∈ P (F) such that χM ≤ χS.

Proof. Let S = {1, 2, . . . , k}. We run the following routine until no more elements can be
removed:

For i ∈ S
If χS−i ∈ P ∗(F↑) then S = S − i

Let χM be the output. We show that χM ∈ P (F). Since χM ∈ P ∗(F↑), by Claim 23
we know that χM ∈ P (F)↑. Then by definition of dominant there exists x ∈ P (F) such
that x ≤ χM ∈ P (F)↑. It follows that the vector x can be written as x =

∑
i λiχ

Ui for
some Ui ∈ F and λi ∈ (0, 1] with

∑
i λi = 1. Clearly we must have that Ui ⊆ M for all i,

otherwise x would have a non-zero component outside M . In addition, if for some i we have
Ui (M , then there must exist some j ∈M such that Ui ⊆M − j (M . Hence M − j ∈ F↑,
and thus χM−j ∈ P (F)↑ and χM−j ∈ P ∗(F↑). But then when component j was considered
in the algorithm above, we would have had S such that M ⊆ S and so χS−j ∈ P ∗(F↑) (that
is χS−j ∈ P (F)↑), and so j should have been removed from S, contradiction. J

We point out that for many natural set families F we can work with the relaxation
P ∗(F↑) assuming that it admits a separation algorithm. Then, if we have an algorithm which
produces χF ′ ∈ P ∗(F↑) satisfying some approximation guarantee for a monotone problem,
we can use Lemma 24 to construct in polytime F ∈ F which obeys the same guarantee.

Moreover, notice that for Lemma 24 to work we do not need an actual separation oracle
for P ∗(F↑), but rather all we need is to be able to separate over 0− 1 vectors only. Hence,
since the polyhedra P ∗(F↑), P (F↑) and P (F)↑ have the same 0− 1 vectors (see Claim 23),
a separation oracle for either P (F↑) or P (F)↑ would be enough for the routine of Lemma 24
to work. We now show that this is the case if we have a polytime separation oracle for P (F).
The following result shows that if we can separate efficiently over P (F) then we can also
separate efficiently over the dominant P (F)↑.

I Claim 25. If we can separate over a polyhedron P in polytime, then we can also separate
over its dominant P ↑ in polytime.

Proof. Given a vector y, we can decide whether y ∈ P ↑ by solving

x+ s = y

x ∈ P
s ≥ 0.

Since can we easily separate over the first and third constraints, and a separation oracle for
P is given (i.e. we can also separate over the set of constraints imposed by the second line),
it follows that we can separate over the above set of constraints in polytime. J

Now we can apply the same mechanism from Lemma 24 to turn feasible sets from F↑
into feasible sets in F .

I Corollary 26. Assume we have a separation algorithm for P (F)↑. Then for any χS ∈ P (F)↑
we can find in polytime χM ∈ P (F) such that χM ≤ χS.

We conclude this section by making the remark that if we have an algorithm which
produces χF ′ ∈ P (F↑) satisfying some approximation guarantee for a monotone problem, we
can use Corollary 26 to construct F ∈ F which obeys the same guarantee.

APPROX/RANDOM 2018

23:18 Multi-Agent Submodular Optimization

B Convex relaxations for constrained submodular minimization

We will be working with upwards-closed set families F , and their blocking relaxations P ∗(F).
As we now work with arbitrary vectors z ∈ [0, 1]n, we must specify how our objective function
f(S) behaves on all points z ∈ P ∗(F). Formally, we call g : [0, 1]V → R an extension of f if
g(χS) = f(S) for each S ⊆ V . For a submodular objective function f(S) there can be many
extensions of f to [0, 1]V (or to RV). The most popular one has been the so-called Lovász
Extension (introduced in [30]) due to several of its desirable properties.

We present one of several equivalent definitions for the Lovász Extension. Let 0 < v1 <

v2 < ... < vm ≤ 1 be the distinct positive values taken in some vector z ∈ [0, 1]V . We also
define v0 = 0 and vm+1 = 1 (which may be equal to vm). Define for each i ∈ {0, 1, ...,m} the
set Si = {j : zj > vi}. In particular, S0 is the support of z and Sm = ∅. One then defines

fL(z) =
m∑
i=0

(vi+1 − vi)f(Si).

I Lemma 27 (Lovász [30]). The function fL is convex if and only if f is submodular.

One could now attack constrained submodular minimization by solving the problem

(SA-LE) min fL(z) : z ∈ P ∗(F), (10)

and then seek rounding methods for the resulting solution. This is the approach used
in [5, 20, 21]. We refer to the above as the single-agent Lovász extension formulation,
abbreviated as (SA-LE).

B.1 Tractability of the single-agent formulation (SA-LE)
In this section we show that one may solve (SA-LE) approximately as long as a polytime
separation algorithm for P ∗(F) is available. This is useful in several settings and in particular
for our methods which rely on the multi-agent Lovász extension formulation (discussed in
Section B.2).

Polytime Algorithms. One may apply the Ellipsoid Method to obtain a polytime algorithm
which approximately minimizes a convex function over a polyhedron K as long as various
technical conditions hold. For instance, one could require that there are two ellipsoids
E(a,A) ⊆ K ⊆ E(a,B) whose encoding descriptions are polynomially bounded in the input
size for K. We should also have polytime (or oracle) access to the convex objective function
defined over Rn. In addition, one must be able to polytime solve the subgradient problem for
f .2 One may check that the subgradient problem is efficiently solvable for Lovász extensions
of polynomially encodable submodular functions. We call f polynomially encodable if the
values f(S) have encoding size bounded by a polynomial in n (we always assume this for
our functions). If these conditions hold, then methods from [15] imply that for any ε > 0
we may find an approximately feasible solution for K which is approximately optimal. By
approximate here we mean for instance that the objective value is within ε of the real
optimum. This can be done in time polynomially bounded in n (size of input say) and log 1

ε .
Let us give a few details for our application.

2 For a given y, find a subgradient of f at y.

R. Santiago and F. B. Shepherd 23:19

Our convex problem’s feasible space is P ∗(F) and it is easy to verify that our optimal
solutions will lie in the 0− 1 hypercube H. So we may define the feasible space to be H and
the objective function to be g(z) = fL(z) if z ∈ H ∩ P ∗(F) and =∞ otherwise. (Clearly g
is convex in Rn since it is a pointwise maximum of two convex functions; alternatively, one
may define the Lovász Extension on Rn which is also fine.) Note that g can be evaluated in
polytime by the definition of fL as long as f is polynomially encodable. We can now easily
find an ellipsoid inside H and one containing H each of which has poly encoding size. We
may thus solve the convex problem to within ±ε-optimality in time bounded by a polynomial
in n and log 1

ε .

I Corollary 28. Consider a class of problems F , f for which f ’s are submodular and
polynomially-encodable in n = |V |. If there is a polytime separation algorithm for the
family of polyhedra P ∗(F), then the convex program (SA-LE) can be solved to accuracy of
±ε in time bounded by a polynomial in n and log 1

ε .

B.2 The multi-agent formulation
The single-agent formulation (SA-LE) discussed above has a natural extension to the multi-
agent setting. This was already introduced in [5] for the case F = {V }.

(MA-LE) min
∑
i∈[k]

fLi (zi) : z1 + z2 + · · ·+ zk ∈ P ∗(F). (11)

We refer to the above as the multi-agent Lovász extension formulation, abbreviated as
(MA-LE). We can solve (MA-LE) as long as we have polytime separation of P ∗(F). This
follows the approach from the previous section (see Corollary 28) except our convex program
now has k vectors of variables z1, z2, . . . , zk (one for each agent) such that z =

∑
i zi. This

problem has the form {min g(w) : w ∈ W ⊆ Rnk} where W is the full-dimensional convex
body {w = (z1, ..., zk) :

∑
i zi ∈ P ∗(F)} and g(w) = g(z1, z2, . . . , zk) =

∑
i∈[k] f

L
i (zi) is

convex. Clearly we have a polytime separation routine for W , and hence we may apply
Ellipsoid as in the single-agent case.

C Invariance under the lifting reduction

We prove some of the results from Table 1 in Section 3.1. For a subset of edges S ⊆ E we
define its coverage cov(S) as the set of nodes v ∈ V saturated by S. That is, v ∈ cov(S)
if there exists i ∈ [k] such that (i, v) ∈ S. By definition of F ′ (see Section 3.1) it is
straightforward that for each S ⊆ E we have that

S ∈ F ′ ⇐⇒ cov(S) ∈ F and |S| = |cov(S)|. (12)

For a set S ⊆ E, a set B ⊆ S is called a basis of S if B is an inclusion-wise maximal
independent subset of S. Our next result describes how bases and their cardinalities behave
under the lifting reduction.

I Lemma 29. Let S be an arbitrary subset of E. Then for any basis B (over F ′) of S there
exists a basis B′ (over F) of cov(S) such that |B′| = |B|. Moreover, for any basis B′ of
cov(S) there exists a basis B of S such that |B| = |B′|.

Proof. For the first part, let B be a basis of S and take B′ := cov(B). Since B ∈ F ′ we
have by (12) that B′ ∈ F and |B′| = |B|. Now, if B′ is not a basis of cov(S) then we can

APPROX/RANDOM 2018

23:20 Multi-Agent Submodular Optimization

find an element v ∈ cov(S) − B′ such that B′ + v ∈ F . Moreover, since v ∈ cov(S) there
exists i ∈ [k] such that (i, v) ∈ S. But then we have that B + (i, v) ⊆ S and B + (i, v) ∈ F ′,
a contradiction with the fact that B was a basis of S.

For the second part, let B′ be a basis of cov(S). For each v ∈ B′ let iv be such that
(iv, v) ∈ S, and take B :=]v∈B′(iv, v). It is clear by definition of B that cov(B) = B′

and |B| = |B′|. Hence B ∈ F ′ by (12). If B is not a basis of S there exists an edge
(i, v) ∈ S −B such that B + (i, v) ∈ F ′. But then by (12) we have that cov(B + (i, v)) ∈ F
and B′ (cov(B + (i, v)) ⊆ cov(S), a contradiction since B′ was a basis of cov(S). J

We say that (V,F) is a p-system if for each U ⊆ V , the cardinality of the largest basis
of U is at most p times the cardinality of the smallest basis of U . The following result is a
direct consequence of Lemma 29.

I Proposition 30. If (V,F) is a p-system, then (E,F ′) is a p-system.

I Corollary 31. If F corresponds to the set of bases of a p-system (V, I), then F ′ also
corresponds to the set of bases of some p-system (E, I ′).

Proof. Consider (E, I ′) where I ′ := {S ⊆ E : cov(S) ∈ I and |cov(S)| = |S|}. Then by
Proposition 30 we have that (E, I ′) is a p-system. It is now straightforward to check that F ′
corresponds precisely to the set of bases of (E, I ′). J

The following two results follow from Proposition 30 and Corollary 31 and the fact that
matroids are precisely the class of 1-systems.

I Corollary 32. If (V,F) is a matroid, then (E,F ′) is a matroid.

I Corollary 33. Assume F is the set of bases of some matroidM = (V, I), then F ′ is the
set of bases of some matroidM′ = (E, I ′).

Let the functions fi and f be as described in the lifting reduction in Section 3.1. The
following result establishes the relationship between fM (z1, . . . , zk) and

∑
i∈[k] f

M
i (zi).

I Lemma 34. Let the functions fi and f be as described in the lifting reduction in Section 3.1.
Then for any vector z̄ = (z1, z2, . . . , zk) ∈ [0, 1]E, where zi ∈ [0, 1]V is the vector associated
with agent i, we have that fM (z̄) = fM (z1, z2, . . . , zk) =

∑
i∈[k] f

M
i (zi).

Proof. We use the definition of the multilinear extension in terms of expectations (see Section
3.2). Recall that for a vector z ∈ [0, 1]V , Rz denotes a random set that contains element vi
independently with probability zvi

. We use Pz(S) to denote P[Rz = S]. We then have

fM (z̄) = E[f(Rz̄)] =
∑
S⊆E

f(S)Pz̄(S)

=
∑
S1⊆V

∑
S2⊆V

· · ·
∑
Sk⊆V

[
∑
i∈[k]

fi(Si)] · P(z1,z2,...,zk)(S1, S2, . . . , Sk)

=
∑
i∈[k]

∑
S1⊆V

∑
S2⊆V

· · ·
∑
Sk⊆V

fi(Si) · P(z1,z2,...,zk)(S1, S2, . . . , Sk)

=
∑
i∈[k]

∑
Si⊆V

fi(Si)
∑

Sj⊆V,j 6=i
P(z1,z2,...,zk)(S1, S2, . . . , Sk)

=
∑
i∈[k]

∑
Si⊆V

fi(Si)Pzi
(Si) =

∑
i∈[k]

E[fi(Szi
i)] =

∑
i∈[k]

fMi (zi).

J

	Introduction
	Some applications of (capacitated) multi-agent optimization
	Related work
	Our contributions

	Multi-agent submodular minimization
	The single-agent and multi-agent formulations
	A multi-agent gap of O(min {k, log^2 (n)})
	A tight multi-agent gap of O(log n) for bounded blocker families
	A tight multi-agent gap of O(log n) for ring and crossing families

	Multi-agent submodular maximization
	The lifting reduction
	The single-agent and multi-agent formulations
	A tight multi-agent gap of 1-1/e

	Conclusion
	Upwards-closed (aka blocking) families
	Blocking families and a natural relaxation for P(F)
	Reducing to blocking families

	Convex relaxations for constrained submodular minimization
	Tractability of the single-agent formulation (SA-LE)
	The multi-agent formulation

	Invariance under the lifting reduction

