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Abstract
We study the classic problem of finding `1 heavy hitters in the streaming model. In the general
turnstile model, we give the first deterministic sublinear-time sketching algorithm which takes a
linear sketch of length O(ε−2 logn · log∗(ε−1)), which is only a factor of log∗(ε−1) more than the
best existing polynomial-time sketching algorithm (Nelson et al., RANDOM ’12). Our approach
is based on an iterative procedure, where most unrecovered heavy hitters are identified in each
iteration. Although this technique has been extensively employed in the related problem of sparse
recovery, this is the first time, to the best of our knowledge, that it has been used in the context
of heavy hitters. Along the way we also obtain a sublinear time algorithm for the closely related
problem of the `1/`1 compressed sensing, matching the space usage of previous (super-)linear
time algorithms. In the strict turnstile model, we show that the runtime can be improved and
the sketching matrix can be made strongly explicit with O(ε−2 log3 n/ log3(1/ε)) rows.
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1 Introduction

The problem of detecting heavy hitters, also frequently referred to as elephants or hot items,
is one of the most well-studied problems in databases and data streams, from both theoretical
and practical perspectives. In this problem, we are given a long data stream of elements
coming from a large universe, and we are asked to report all the elements that appear at
least a large number of times (called heavy hitters), using space that is much smaller than
the size of the universe and the length of the stream.

Finding popular terms in search queries, identifying destination adresses of packets,
detecting anomalies in network traffic streams such as denial-of-service (DoS) attacks, or
performing traffic engineering, are only some of the important practical appearances of the
heavy hitters problem. For example, the central task of managing large-scale networks lies
in accurately measuring and monitoring network traffic [28, 26]. Interestingly, empirical
studies [6, 21, 23, 27] indicate that flow-statistics in large networks follow an elephant/mice
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18:2 Deterministic Heavy Hitters with Sublinear Query Time

phenomenon, i.e., the vast majority of the bytes are concentrated on only a small fraction of
the flows.

On the theoretical side, heavy hitters appear very often, both in streaming algorithms
and sparse recovery tasks. For the problems such as streaming entropy estimation [11], `p
sampling [1, 20], finding duplicates [14], block heavy hitters [13], sparse recovery tasks [8, 9, 10],
many algorithmic solutions use heavy hitters algorithms as subroutines.

Streaming Models. In this paper we consider the most general streaming model, called the
(general) turnstile model, defined as follows. There is an underlying vector x ∈ Rn, which is
initialized to zero and is maintained throughout the input stream. Each element in the input
stream describes an update xi ← xi + δ for some index i and increment δ, where δ can be
either positive or negative.

We also consider a restricted version of the general turnstile model, called the strict
turnstile model, under which it is guaranteed that xi ≥ 0 for all i throughout the input stream.
This restricted model captures the practical scenario where item deletions are allowed but
an item cannot be deleted more than it is inserted.

Sketching Algorithms. An important class of streaming algorithms is called sketching
algorithms. A sketching algorithm maintains a short linear sketch v = Φx (where Φ ∈ Rm×n)
throughout the input stream and then runs a recovery algorithm D, which has access to
only v and Φ, to output a desired x̂. The space usage is proportional to m (the length
of the sketch v) and to the memory needed to store Φ. Therefore we wish to minimize m
and design a structured Φ such that storing Φ takes little space. Surprisingly, all existing
streaming algorithms under the general turnstile model are sketching algorithms, and it
has been shown [17] that all streaming algorithms under the general turnstile model can be
converted to sketching algorithms with a mild increase in the space usage.

1.1 `∞/`1 Sparse Recovery
The heavy hitter problem has been studied under various streaming models and various
recovery guarantees. Depending on the heaviness we are interested in, we distinguish between
`1 and `2 heavy hitters. We are interested in finding, in the first case, the coordinates which
are at least ε‖x‖1 in magnitude, and in the second case, the coordinates which are at least
ε‖x‖2. Although finding `2 heavy hitters is strictly stronger than finding `1 heavy hitters,
we consider only `1 heavy hitters in this paper, for it is impossible to find `2 heavy hitters
using a deterministic space-saving sketching algorithm (see details below).

Specifically, we consider a classical recovery guarantee, called the `∞/`1 error guarantee
in the literature, that is, the algorithm outputs an O(1/ε)-sparse vector x̂ such that

‖x̂− x‖∞ ≤ ε‖x−r‖1, (1)

for some parameters ε and r, where x−r is the vector obtained by zeroing out the largest
r coordinates of x in magnitude (absolute value). This type of guarantee requires not
only finding the heavy hitters, but also giving ‘good enough’ estimates of them, where
the estimates are measured with respect to ‖x−r‖1 instead of the larger ‖x‖1; this type of
guarantee is called the tail guarantee. It should be noted that the `∞/`1 guarantee has been
extensively studied and is provided by several classical algorithms, e.g. Count-Min [5],
LossyCounting [18], SpaceSaving [19], although not all of them work under the general
turnstile model.
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In this paper we focus on deterministic sketching algorithms, which means that both
the matrix Φ and the recovery algorithm D allow uniform reconstruction of every x ∈ Rn
up to ε‖x−r‖1 error, providing the best applicability. This is also referred to as “for-all”
guarantee in the sparse recovery literature, in contrast to the “for-each” guarantee, which
allows reconstruction of a fixed vector with some target success probability. Most previous
sketching algorithms for the heavy hitter problems concern the “for-each” model and resort to
randomization (e.g. [5, 3]), by drawing a random Φ from some distribution and guaranteeing
D to output an acceptable x̂ with a good probability. Other sketching algorithms are
deterministic, however, they run in time at least linear in the universe size n. The goal of
fast query time, say, logarithmic in n, is crucial to streaming applications. For instance, in
traffic monitoring n equals the number of all possible packets, namely 232; a linear runtime
would be prohibitive in any reasonable real-world scenario. A natural goal is to design a
sketching algorithm with sublinear query time, preferably O(poly(1/ε, r, logn)), with as little
space usage as possible.

Apart from practical importance, deterministic algorithms for heavy hitters is an inter-
esting theoretical subfield of streaming algorithms, connected to dimensionality reduction
and incoherent matrices [22]. Moreover, gaining insight into such questions may give in-
sight for many other data stream problems where heavy hitter algorithms are used as
subroutines. We note that any deterministic sketching algorithm that finds `2 heavy hitters
requires Ω(n) space [4] (which implies that the trivial algorithm storing the entire input
vector x is asymptotically optimal), while the best lower bound for `1 heavy hitters is
Ω(r log(n/r)/ log r + ε−2 + ε−1 logn) [22, 7].

The state-of-the-art deterministic sketching algorithms for `1 heavy hitters are found
in [22], where two algorithms are given. The first algorithm uses m = O(ε−2 logn ·
min{1, logn/(log logn+ log(1/ε))2}) rows and achieves ε‖x−d1/εe‖1 tail guarantee (setting
r = d1/εe in (1)). The second algorithm uses m = O(ε−2 logn) rows and achieves a stronger
ε‖x−d1/ε2e‖1 tail guarantee. We can see that when ε < 2−Ω(

√
logn), the first algorithm uses

less space, whereas when ε ≥ 2−Ω(
√

logn) the second algorithm is better. The number of
rows used by both algorithms is at most suboptimal by a logn factor while the runtimes
are both superlinear Ω(ε−1n logn). In this paper our goal is to obtain an algorithm which
runs in sublinear time in n while attaining the stronger ε‖x−d1/ε2e‖1 tail guarantee with
near-optimal number of rows. Our main theorem is formally stated below.

I Theorem 1 (`∞/`1). There exists a linear sketch Φ ∈ Rm×n such that for every x ∈ Rn,
we can, given Φx, find an O(1/ε)-sparse vector x̂ such that

‖x− x̂‖∞ ≤ ε‖x−d1/ε2e‖1,

in O((1/ε)6 poly(logn)) time. The number of rows of Φ equals m = O(ε−2 logn log∗(ε−1)).

The number of rows in Φ is more than that in [22] by merely a factor of O(log∗(1/ε)),
while the query time is sublinear for all small ε ≥ n−1/7, a significant improvement upon the
previous O(ε−1n logn) runtime in [22].

Difference Between Deterministic and Explicit Schemes. To avoid confusion, we note the
difference between ‘deterministic’ and ‘explicit’. In the compressed sensing/sparse recovery
literature ‘deterministic’ is also called ‘for-all’ or ‘uniform’, which means that a single matrix
Φ suffices for the reconstruction of all vectors. ‘Explicit’ means that the matrix Φ can be
constructed in time poly(1/ε, r, n). ‘Strongly explicit’ means that any entry of the matrix
can be computed in time poly(1/ε, r, logn). Hence, in this paper we show the existence of a
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18:4 Deterministic Heavy Hitters with Sublinear Query Time

single matrix that allows reconstrction of all vectors, which we argue via the probabilistic
method. The same holds for some of the schemes in [22].

In the strict turnstile model, we show that for the tail guarantee of r = d1/εe, the matrix
Φ can be made strongly explicit, with a mild increase in the number of rows, and the runtime
can be improved polynomially. Note, however, the tail guarantee is with respect to r = d1/εe
instead of r = d1/ε2e. We state our theorem below and omit the proof owing to space
limitations.

I Theorem 2 (`∞/`1, strict turnstile). There exists a strongly explicit matrix M of
O((1/ε)2 log3 n/ log3(1/ε)) rows, which, given Mx in the strict turnstile model, allows us to
find an O(1/ε)-sparse vector x̂ such that

‖x− x̂‖∞ ≤ ε‖x−d1/εe‖1,

in time O((1/ε)3 log3 n/ log3(1/ε)).

1.2 `1/`1 Sparse Recovery
In the `1/`1 sparse recovery problem, instead of the guarantee (1), the algorithm should
output x̂ such that

‖x̂− x‖1 ≤ (1 + ε)‖x−k‖1. (2)

It is known that any deterministic sketching algorithm requires
m = Ω(ε−2 + ε−1k log(εn/k)) rows of Φ [22], and the best known upper bound is m =
O(ε−2k log(n/k)) rows [12, 2, 10], suboptimal from the lower bound by only a logarithmic
factor. However all these algorithms suffer from various defects: the algorithms in [12, 2]
run in polynomial time in n, and that in [10] imposes a constraint on ε that precludes it
from being a small constant when k is small. In this paper, we show that one can achieve
sublinear runtime with the same number of rows for small k.

I Theorem 3 (`1/`1). There exists a matrix Φ ∈ Rm×n such that, given Φx with x ∈ Rn, we
can find an O(k)-sparse vector x̂ satisfying (2) in O(k3 poly(1/ε, logn)) time. The number
of rows of Φ is m = O(ε−2k logn).

This result is the first sublinear time algorithm for all small k ≤ n0.3 with constant ε,
while the algorithm in [10], using the same number of measurements, works for constant ε
only when nδ′ ≤ k ≤ n1−δ (where δ, δ′ > 0 are arbitrarily small constants), owing to its use
of the list-decodable code. Combining the two results, we have solved the `1/`1 problem in
sublinear time for all k ≤ n1−δ and constant ε.
I Remark. Our results heavily involve random hash functions, for which O(1/ε)- or O(k)-wise
independence would be sufficient. The space complexity of our algorithms is the same as the
number of rows, unless stated otherwise.

2 Overview of Techniques

The main result on `∞/`1 combines different ideas from sparse recovery and heavy hitters
literature. We first prove a result with the ε‖x−1/ε‖1 tail guarantee. We need a different,
more careful construction of the weak system, akin to that in [10], which does not detect
only a constant fraction of the heavy hitters, but a much larger fraction, as much as
(1 − ε log log(1/ε)). One of our technical contributions and tools is the design of a more
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general form of the weak system, which we then apply iteratively with carefully chosen
parameters to recover all heavy hitters. We then iterate by subtracting the found heavy
hitters, and try to find the remaining ones using a new matrix of the same number of
resources (rows). Similar iteration techniques have been adopted in most combinatorial
sparse recovery tasks, where the algorithms are allowed to miss even all heavy hitters if they
are not large enough! Our `∞/`1 error guarantee, however, makes it prohibitive to miss
small heavy hitters in later iterations. To that end, we heavily exploit the more abundant
resource of 1/ε2 rows in each iteration throughout, for which we pay a mild extra factor
in the total number of rows. While in previous sparse recovery tasks the number of rows
decreases across different iterations, this does not happen in our case. As aforementioned,
we pay an additional log∗(1/ε) factor as we shall have O(log∗(1/ε)) iterations until all heavy
hitters are recovered.

To obtain the stronger tail guarantee of ε‖x−1/ε2‖1, we invoke additionally our `1/`1
algorithm and the point-query algorithm of [22]. We note that any sub-optimality in the
number of rows of the `1/`1 linear sketch would yield a worse result for our main scheme,
which forces us to obtain also an improved result for the `1/`1 problem. Our new weak
system and the novel idea of using the iterative loop to satisfy the `∞/`1 guarantee may
indicate new approaches to tackle heavy hitters tasks, and might be of interest beyond the
scope of this paper. Our side-result on `1/`1 sparse recovery, is a combination of [10] and
[16]. Specifically, one can avoid the Parvaresh-Vardy list-recoverable code that [10] employed,
and use instead the clustering technique in [16], upon the two-layer hashing schemes and
linking technique in [10]. This makes possible an improved result for `1/`1 that removes the
restriction on ε the previous work of [10] was suffering from.

We remark that any improvement in the running time of the clustering algorithm of [16]
immediately translates to improvement to `∞/`1 and `1/`1 schemes. More specifically, a
near-quadratic or near-linear algorithm for that clustering would imply a near-quadratic or
near-linear (in the number of rows of the sketching matrix) time algorithm for all three of
our tasks. The current state of the art for that algorithm is Õ(N3) runtime on a graph of N
vertices, since the algorithm performs N calls to a routine that finds a Cheeger cut. We also
remark that we could obtain our `∞/`1 result using explicit list-recoverable codes, such as
Parvaresh-Vardy code, but this would lead to a slightly worse result than what we currently
have.

In the strict turnstile model, we obtain a family of fully explicit matrices that solves the
point query problem in sublinear time using the family of matrices from [22]. First, we show
how to stengthen the guarantee obtained by the matrix in [22], achieving a stronger tail
guarantee, and then we show how to recursively combine those explicit matrices to obtain a
sketching algorithm that gives the `∞/`1 guarantee in sublinear time. Our result in the strict
turnstile model, not only is fully explicit, but also has a better running time than the general
turnstile model and gets also improved space for some regime of ε, namely ε ≤ 2−

√
logn. We

note though that we obtain a weaker tail guarantee than in the general case, namely r = 1/ε,
instead of 1/ε2. This weaker guarantee stems from the lack of fully explicit `1/`1 schemes
with nearly optimal measurements, that can also answer queries in sublinear time.

3 Preliminaries

For a vector x ∈ Rn, we define x−k to be the vector obtained by zeroing out the largest k
coordinates in magnitude, and supp(x) to be the set of the non-zero coordinates of x. We
also define H(x, k) to be the index set of the largest k coordinates of x in magnitude. Thus,
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18:6 Deterministic Heavy Hitters with Sublinear Query Time

supp(x−k) ∩ H(x, k) = ∅. We also define H(x, k, ε) = {i ∈ [n] : |xi| ≥ ε/k‖x−k‖1}. We
assume that the word size is w = Θ(logn).

An error correcting code is a subset C ⊆ Σn, where Σ is a finite set called alphabet and
|C| = |Σ|k for some k ≥ n, together with an injective encoding map enc : Σk → C and a
decoding map dec : C → Σk. The parameter k is called the message length and n is called
codeword length or block length. We say that an error correcting code can correct up to
θ-fraction of errors if for any message m ∈ Σk and any x ∈ Σn such that the Hamming
distance d(enc(m), x) ≤ θn, it holds that dec(x) = m.

3.1 Two-layer Hashing Schemes
In this subsection we review the two-layer hashing scheme and the linking techniques used
in [10], which will be the skeleton of construction for all our sparse recovery results.

First we recall some definitions, taken from [10], regarding bipartite expander, two-layer
hashing and isolation of heavy hitters.

I Definition 4 (bipartite expander). An (n,m, d, `, ε)-bipartite expander is a d-left-regular
bipartite graph G(L∪R,E) where |L| = n and |R| = m such that for any S ⊆ L with |S| ≤ `
it holds that |Γ(S)| ≥ (1− ε)d|S|, where Γ(S) is the neighbour of S (in R). When n and m
are clear from the context, we abbreviate the expander as (`, d, ε)-bipartite expander.

I Definition 5 (one-layer hashing scheme). The (N,B, d) (one layer) hashing scheme is
the uniform distribution on the set of all functions f : [N ] → [B]d. We write f(x) =
(f1(x), . . . , fd(x)), where fi’s are independent (N,B) hashing schemes.

Each instance of such a hashing scheme induces a d-left-regular bipartite graph with Bd
right nodes. When N is clear from the context, we simply write (B, d) hashing scheme.

I Definition 6 (two-layer hashing scheme). An (N,B1, d1, B2, d2) (two-layer) hashing scheme
is a distribution µ on the set of all functions f : [N ] → [B2]d1d2 defined as follows. Let g
be a random function subject to the (N,B1, d1) hashing scheme and {hi,j}i∈[d1],j∈[d2] be a
family of independent functions subject to the (B1, B2, d2) hashing scheme which are also
independent of g. Then µ is defined to be the distribution induced by the mapping

x 7→ (h1,1(g1(x)), . . . , h1,d2(g1(x)), h2,1(g2(x)), . . . , h2,d2(g2(x)), . . . ,
hd1,1(gd1(x)), . . . , hd1,d2(gd1(x))) .

Each instance of such a hashing scheme gives a d1d2-left-regular bipartite graph of B2d1d2
right nodes. When N is clear from the context, we simply write (B1, d1, B2, d2) hashing
scheme. Conceptually we hash N elements into B1 buckets and repeat d1 times; these buckets
will be referred to as first-layer buckets. In each of the d1 repetitions, we hash B1 elements
into B2 buckets and repeat d2 times, those buckets will be referred to as second-layer buckets.

Bipartite expander graphs can be used as hashing schemes because of their isolation
property.

I Definition 7 (isolation property). An (n,m, d, `, ε)-bipartite expander G is said to satisfy
the (`, η, ζ)-isolation property if for any set S ⊂ L(G) with |S| ≤ `, there exists S′ ⊂ S with
|S′| ≥ (1− η)|S| such that for all x ∈ S′ it holds that |Γ({x}) \ Γ(S \ {x})| ≥ (1− ζ)d.

The following lemma shows that a random two-layer hashing satisfies a good isolation
property with high probability. Previous works [25, 10] build sparse recovery systems upon
this lemma.
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I Lemma 8 ([10]). Let ε > 0, α > 1 and (N,B1, d1, B2, d2) be a two-layer hashing scheme
with B1 = Ω( k

ζαε2α ), d1 = Ω( α
α−1 ·

1
ζε

logN
log(B1/k) ), B2 = Ω( kζε ) and d2 = Ω( 1

ζ log B1
k ). Then

with probability ≥ 1− 1/N c, the two-layer hashing scheme with parameters prescribed above
gives an (N,B2d1d2, d1d2, 4k, ε) bipartite graph with the (L, ε, ζ)-isolation property, where
L = O(k/ε).

4 A Sublinear Time `1/`1 Algorithm

The result is almost immediate by replacing the list-recoverable code in [10] with the clustering
algorithm in [16], which we now give a brief review. The overall algorithm is an iterative
algorithm of Θ(log k) iterations. Each iteration is called a weak system, which (i) recovers
at least a constant fraction of the remaining heavy hitters (and hence all heavy hitters can
be recovered in Θ(log k) iterations) and (ii) introduces only a small amount of error (see,
e.g. [25, 10]). The introduced error comes from two sources: the estimation error of those
recovered heavy hitters and some small coordinates that can be safely ignored.

The following lemma is crucial in bounding the number of missed heavy hitters in iteration,
modified from [10]. For completeness we include the proof in Appendix A.

I Lemma 9. Let θ, ε ∈ (0, 1), δ ∈ (0, 1
2 ] and β, ζ > 0 such that 0 < ζ < δ− 64β

θ . Suppose that
G is a (4s, d, βε)-bipartite expander which satisfies the ( 6

γε ,
εθ
12 , ζ)-isolation property, where

γ ∈ [ θs , 1]. Let x ∈ Rn be a vector which can be written as x = y + z, where y and z have
disjoint supports, | supp(y)| ≤ s and ‖z‖1 ≤ 3/2. For each i ∈ [n] define the multiset Ei as

Ei =

 ∑
(u,v)∈E

xu


v∈Γ({i})

.

Note that |Ei| = d since it is a multiset. Then, for every D ⊂ [n], |D| ≤ 2s, we have that∣∣∣{i ∈ D : |xi − w| ≥
εγ

4 for at least (1− δ)d values w in Ei
}∣∣∣ ≤ θ

γ
.

We remark that the construction of the weak system is similar to the partition setup
in [16], where the linking information and the message block are ‘absorbed’ into the fash-
ion coordinates are split into buckets so that recovering a heavy hitter in a bucket will
automatically recover that information correctly instead of recovering the information from
second-layer buckets with an error correcting code. In this paper, however, we opt for the
two-layer construction for the ‘for-all’ guarantee, for the presentation would be simpler for
our sparse recovery results as some auxiliary lemmata are already proved in [10].

We now present the precise statement of our weak system , which is central to our `1/`1
result. The proof is almost identical to that in [10] and is postponed to Appendix B.

I Lemma 10 (Weak system). Suppose that s ≤
√
n and ε ∈ (0, 1). There exist a linear sketch

Φ ∈ Rm×n and an algorithm WeakSystem(x, s, ε) satisfying the following:
For any vector x ∈ Rn that can be written as x = y + z, where y and z have disjoint
supports, | supp(y)| ≤ s, ‖y‖∞ ≥ ε/(2s) and ‖z‖1 ≤ 3/2, given the measurements Φx, the
decoding algorithm D returns x̂ such that x admits the decomposition of

x = x̂+ ŷ + ẑ,

where | supp(x̂)| = s, | supp(ŷ)| ≤ s/8 and ‖ẑ‖1 ≤ ‖z‖1 + ε/4. Intuitively, ŷ and ẑ will be
the head and the tail of the residual x− x̂, respectively;
m = O(ε−2s logn);
D runs in O(s3 poly(1/ε, logn)) time.
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5 A Sublinear Time `∞/`1 Algorithm

For ease of exposition and connection with the previous algorithms, we set k = d1/εe in this
section.

First, we prove the following weaker theorem, and shall show how to bootstrap this
theorem in order to obtain Theorem 1 in Section 5.1.

I Theorem 11. There exists a linear sketch Φ ∈ Rm×n such that for every x ∈ Rn, we can,
given Φx, find an O(k)-sparse vector x̂ such that ‖x− x̂‖∞ ≤ 1

k‖x−k‖1 in O(k6 poly(logn))
time. The number of rows of Φ equals m = O(k2 logn log∗ k). The space needed to store
(y,Φ) is O(k2 logn · log∗ k · log log k) words.

We remark that this theorem is slightly weaker than our main result, namely Theorem 1,
because the error is measured with respect to ‖x−k‖1, and not with respect to ‖x−k2‖1. We
are going to bootstrap Theorem 11 later.

Weak-Level System. Lemma 9 is a central argument for deterministic sparse recovery tasks.
Previous works [25, 10] used the lemma with γ = 1/s and constant θ ∈ (0, 1) to show that if
we estimate every coordinate xi to be the median of Ei and take the biggest Θ(s) estimates
in magnitude, we shall miss at most 2s heavy hitters, upon which weak systems that miss a
θ-fraction of heavy hitters were constructed. The overall algorithm makes sequential calls to
weak systems with geometrically decreasing number of remaining heavy hitters. In our case,
since we want the stronger `∞/`1 guarantee, we are not allowed to decrease geometrically
the number of rows for the weak systems. But, with more allotted number of rows, we can
recover much more than a constant fraction of heavy hitters by exploiting the power of θ.
The full proof is postponed to Appendix C.

I Lemma 12 (Weak system). Suppose that w ≤ s ≤ k ≤
√
n and η ∈ (0, 1) is an arbitrarily

small constant. There exist a linear sketch Φ ∈ Rm×n and an algorithm WeakSystem
(x, k, s, w) satisfying the following:

For any vector x ∈ Rn that can be written as x = y + z, where y and z have disjoint
supports, | supp(y)| ≤ s, ‖y‖∞ ≥ 1/(2k) and ‖z‖1 ≤ 2 − s/k, given the sketch Φx, the
decoding algorithm D returns x̂ such that x admits the decomposition of

x = x̂+ ŷ + ẑ,

where | supp(x̂)| = s, ‖(x − x̂)supp(x̂)‖∞ ≤ 1
2k , | supp(ŷ)| ≤

√
sw and ‖ẑ‖1 ≤ 2 − s

2k .
Intuitively, ŷ and ẑ will be the head and the tail of the residual x− x̂, respectively.
m = O(k

2

w logn),
D runs in O(k6 poly(logn)) time.

Proof Sketch. We only specify the parameters of the two-layer hashing and the application
of Lemma 9 below. We instantiate the two-layer hashing and the encoding scheme as in
Section 3.1, where α ∈ (1, 2), B1 = Θ(k2α), d1 = Θ( k√

sw
logn

log(B1/s) ), B2 = Θ(k
√
s/w) and

d2 = Θ(log(B1/s)). By Lemma 8 (to see the conditions hold, replace k with s and ε with
k/
√
sw), we can find a two-layer hashing with these prescribed parameters which satisfies

(Θ(k), d1d2,
√
sw
k )-expansion property and (Θ(k),

√
sw
k ,Θ(1))-isolation property. Invoking

Lemma 9 with δ = Θ(
√
sw/k), θ = Θ(

√
sw/k), ε = 1 and γ = 1/k, and following the

argument in [10, Section 4.1], we have good estimates for all but at most Θ(θ/γ) =
√
sw

heavy hitters (elements in supp(y)). We are able to recover those heavy hitters as argued in
[10] with the clustering algorithm from [16]. J
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Algorithm 1 Overall algorithm for `∞/`1 sparse recovery. In the pseudocode below, v(i,r)

as an argument of WeakSystem is understood to be restricted to the corresponding
coordinates.
Input: sketching matrix Φ, sketch v = Φx, sparsity parameter k
Output: x̂ that approximates x with `∞/`1 guarantee

1: v(0,1) ← v

2: k1 ← k

3: while kr > 4 do . O(log∗ k) rounds
4: i← 0
5: while k2−i

r ≥ max{(i+ 1)2, 4(1 + 1
i+1 )4} do . O(log log kr) steps

6: si,r ← (i+ 1)2k2−i
r

7: wi,r ← (i+ 1)2

8: x̂(i,r) ←WeakSystem(Φ(i,r), v(i,r), k, si,r, wi,r)
9: v(i+1,r) ← v(i,r) − Φx̂(i,r)

10: i← i+ 1
11: end while
12: i∗r ← i− 1
13: si,r ← (si∗r ,r)

2−(i−i∗r−1)

14: while si,r ≥ max{4, log log kr} do . O(1) steps
15: wi,r ← 1
16: x̂(i,r) ←WeakSystem(Φ(i,r), v(i,r), k, si,r, wi,r)
17: v(i+1,r) ← v(i,r) − Φx̂(i,r)

18: i← i+ 1
19: si,r ← (si∗r ,r)

2−(i−i∗r−1)

20: end while
21: i+r ← i− i∗r − 1
22: v(0,r+1) ← v(i,r)

23: kr+1 ← si,r
24: r ← r + 1
25: end while
26: x̂final ←WeakSystem(Φ(0,r), v(0,r), k, 4, 1/5) . last round
27: return x̂← x̂final +

∑
r,i x̂

(i,r)

Construction of Measurement Matrix. Now we construct the sketch for Theorem 11. The
main idea is to apply the weak system (Lemma 12) repeatedly. We form our linear sketch Φ
as illustrated below and present our recovery algorithm in Algorithm 1.

Φ =


Φ1
Φ2
...

ΦR
Φfinal

 , where Φr =



Φ(1,r)

...
Φ(i∗r ,r)

Φ(i∗r+1,r)

...
Φ(i∗r+i+r ,r)


, r = 1, . . . , R.

Here
the overall Φ is the vertical concatenation of R+ 1 matrices and every layer, except the
last one, is further a concatenation of i∗r + i+r matrices, where R = Θ(log∗ k) and i∗r , i+r

APPROX/RANDOM 2018
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are computed as in Algorithm 1;
the i-th layer in Φr, namely Φi,r, is the sketching matrix for the weak system (Lemma 12)
with parameters s = si,r and w = wi,r, the values of which are as assigned in Algorithm 1;
the last layer of Φ, namely Φfinal, is the sketching matrix for the weak system with
parameters s = 4 and w = 1/5.
Overall there are i∗r + i+r + 1 iterations in the algorithm and each iteration corresponds

to one block of Φ. There are k heavy hitters at the beginning. Each iteration reduces
the number of remaining heavy hitters to almost its square root and hence in O(log log k)
iterations the number of remaining heavy hitters will be reduced to a constant, and those
heavy hitters will be all recovered in the last iteration. In order to minimize the number
of measurements, in each of the first i∗r iterations, the number of remaining heavy hitters
is reduced to slightly bigger than its square root, and in each of the next i+r iterations, to
exactly the square root.

The parameters si,r, wi,r, i∗r , i+r may seem adaptive at the first glance, but they in fact do
not depend on the input x and depend only on the sparsity parameter k and can thus be
pre-computed. The whole algorithm is non-adaptive.

Proof of Theorem 11. We only provide a sketch of the proof below and leave the full proof
to Appendix D.

Proof Sketch. Without loss of generality, assume that ‖x−k‖1 = 1. We shall apply Lemma 12
repeatedly to obtain a sequence of vectors x̂(i,r), which admit decompositions x(i,r) =
x− ŷ(i,r) − ẑ(i,r). We can show inductively that the loops invariants (I) below, parametrized
by (i, r), are satisfied at the beginning on each while loop from Line 5 to 11 in Algorithm 1
and the loop invariants (II) below are satisfied at the beginning on each while loop from Line
14 to 20.

(I)
{
| supp(ŷ(i,r))| ≤ si,r := (i+ 1)2k2−i

r ,

‖ẑ(i,r)‖1 ≤ 2− si,r/k;
(II)

{
| supp(ŷ(i,r))| ≤ si,r := (si∗r ,r)

2−(i−i∗r−1)
,

‖ẑ(i,r)‖1 ≤ 2− si,r/k.

When the algorithm runs into Line 25, that is, when there are at most 4 heavy hitter left,
we shall recover all of them in one call to the weak system.

The total number of rows and runtime, etc., follow from direct calculations. J

5.1 Getting the Final Result
We now show how to combine the `1/`1 scheme with the `∞/`1 scheme to obtain the main
result of the paper. For completeness, we restate the main theorem with the substitution of
k = d1/εe.

I Theorem 1 (rephrased). There exists a linear sketch Φ ∈ Rm×n such that for every x ∈ Rn,
we can, given Φx, find an O(k)-sparse vector x̂ such that ‖x − x̂‖∞ ≤ (1/k)‖x−k2‖1 in
O(k6 poly(logn)) time. The sketch length is m = O(k2 logn log∗ k) and the space needed to
store (y,Φ) is O(k2 logn · log∗ k · log log k) words.

We shall need the following lemma from [22].

I Lemma 13 (Point Query [22]). There exists a matrix C ∈ Rm×n with m = O(k2 logn)
rows, such that given y = Cx and i ∈ [n], it is possible to find in O(k logn) time a value x̂i
such that |xi − x̂i| ≤ (1/k)‖x[n]\{i}‖1.
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The construction of C given in [22] includes taking C to be a Johnson-Lindenstrauss
Transform matrix for the set of points {0, e1, . . . , en}, where e1, . . . , en is the canonical basis
of Rn.

We now give a sketch of the proof of Theorem 1 and leave the full proof to Appendix E.

Proof of Theorem 1 (Sketch). We first pick a matrix A using Lemma 3, setting the sparsity
parameter to k2 and ε = 1. We also pick a matrix B satisfying the guarantees of Theorem 11,
with sparsity 6k, and a matrix C using Lemma 13 with sparsity parameter 6k. Our sketching
matrix Φ is the vertical concatenation of A, B and C.

We first run the algorithm on Ax to obtain an O(k2)-sparse vector z such that ‖x−z‖1 ≤
2‖x−k2‖1. Then we form B(x− z) and using the query algorithm for B, we find an O(k)-
sparse vector w such that ‖(x− z)− w‖∞ ≤ 1

2k‖x− z‖1 ≤
1
k‖x−k2‖1. It then follows that{

i ∈ [n] : |xi| > 1
k‖x−k2‖1

}
⊆ supp(z) ∪ supp(w) and so it suffices to estimate xi, for every

i ∈ supp(z) ∪ supp(w), up to (1/k)‖x−k2‖1 error, which we can do exactly as in [22].
The total number of rows and runtime, etc., follow from direct calculations. J

6 Conclusion and Open Problems

In this work, we present the first algorithm for finding `1 heavy hitters (`∞/`1 guarantee)
deterministically in sublinear time, up to anO(log∗(1/ε)) factor in the number of measurement
from the best superlinear-time algorithm. It still remains to improve the dependence on ε in
the running time, ideally to O(ε−2 poly(logn)). The problem could first be approached in the
strict turnstile model, where it is possible to avoid the heavy machinery of list-recoverable
codes or the clustering algorithm of [16]. Another open problem is to find (fully) explicit
constructions that allows a sublinear-time decoding with the number of rows near O(ε−2 logn)
in the strict turnstile model. In the general turnstile model, our current understanding
and techniques suggest that an explicit scheme would require an explicit construction of
expanders or lossless condensers, together with list-recoverable codes with nearly optimal
encoding and decoding time, constructions that are currently out of reach. In conclusion, we
hope that our work will ignite further work in the field, and towards the resolution of some
of these questions.
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A Proof of Lemma 9

Proof. Suppose that |D| > θs, otherwise the result holds automatically. Assume that |x1| ≥
|x2| ≥ · · · ≥ |xn|. Let T = D ∪ {i : |xi| ≥ εγ/4}, then t := |T | ≤ ‖z‖1/(εγ/4) + |D| ≤ 6/(εγ).

Note that |xt+1| ≤ εγ/4. Taking α = 2 in [10, Lemma 3.3], we know that

‖(Φ(x− x[t]))Γ(D)‖1 ≤ 4 · βεd
(

3
2 + 2s · εγ4

)
≤ 8βεd.

By the isolation property, there are at most 6
εγ ·

εθ
12 = θ

2γ elements in T which are not
isolated in at least (1− ζ)d nodes from other elements in T . This implies that at least θ/(2γ)
elements in D are isolated in at least (1− ζ)d nodes from other elements in T .

A decoy at position i receives at least εγ/4 noise in at least (β − ζ)d isolated nodes of
Γ({i}), hence in total, a decoy element receives at least εγ(β − ζ)d/4 noise. Therefore at
least θ/(2γ) decoys overall should receive noise at least

εγ(β − ζ)d
4 · θ2γ > 8βεd ≥ ‖(Φ(x− x[t]))Γ(D)‖1,

which is a contradiction. Therefore there are at most θs decoys. J

B Proof of Lemma 10

Before presenting the proof, we sketch our setup of message encoding. Let enc : {0, 1}logn →
{0, 1}O(logn) be an error-correcting code that corrects a constant fraction of errors in linear
time. For notational convenience, let mi = enc(i), the codeword for the binary representation
of i. Furthermore, we break mi into d1 blocks of length Θ((logn)/d1) each, say, mi =
(mi,1, . . . ,mi,d1).
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Let G be a ∆-regular edge-expander graph on d1 vertices, where ∆ is an absolute constant
(we may assume that d1 is even and such edge expander exists by [24]). Let j be a node in G
and denote its neighbours by Γ1(j), . . . ,Γ∆(j). Let idx(r, i) (r ∈ [d1] and i ∈ [n]) denote the
index of the bucket where i is hashed in the r-th first-layer repetition. Construct the message

m̄i,r = mi,r ◦ idx(Γ1(r), i) ◦ · · · ◦ idx(Γ∆(r), i), i ∈ [n], r ∈ [d1],

where ◦ denotes concatenation of strings and idx(·, ·) is understood as its binary representation
of log(B1) bits.

Now for each index i we have d1 blocks of message m̄i,1, . . . , m̄i,d1 . We can protect each
block using a constant-rate error correcting code which tolerates a constant fraction of error
and decodes in polynomial time, so that if we can recover a fraction of m̄i,r we can recover
the entire message m̄i,r efficiently. The high-level idea is then to recover a good fraction of
{m̄i,r}r∈[d] for a good fraction of heavy hitters i, so that we can recover mi using the linking
information embedded in m̄i,r and the clustering algorithm in [16]. Finally we decode mi to
obtain the corresponding index i.

Proof of Lemma 10. We follow the construction and the argument as in [10]. We instantiate
the two-layer hashing and the encoding scheme as in Section 3.1, where α ∈ (1, 2), B1 =
Θ(sα/ε2α), d1 = Θ(ε−1 logn

log(B1/s) ), B2 = Θ(s/ε) and d2 = Θ(log(B1/s)). By Lemma 8 we can
find a two-layer hashing with these prescribed parameters which satisfies (4s, d1d2, O(ε))-
expansion property and (O(s/ε), O(ε),Θ(1))-isolation property. It is also easy to verify that
the length of each message block m̄i,r is L = Θ(log(B1/s)) + ∆ log(B1) ≤ d2/2 if we choose
d2 large enough. We can use two second-layer measurements to encode 1 bit of message
by replacing a single entry a in the measurement matrix with a 2× 1 block of ( a0 ) or ( 0

a ),
depending on the bit to encode. To decode the bit, suppose that the two corresponding
measurements are ( ab ) and we convert them back to 0 if |a| < |b| and 1 if |a| ≥ |b|. When
the heavy hitter is isolated and the noise is small in a bucket, the bit is expected to be the
corresponding bit in the message for that heavy hitter.

Next we shall show that we can recover most bits of the message for at least a large
constant fraction of heavy hitters. Invoking Lemma 9 with δ = O(1), θ = O(1), β = O(1) and
γ = 1/s, and following the argument in [10, Section 4.1], we have good estimates for all but
at most s/8 heavy hitters (elements in supp(y)). Call those heavy hitters well-estimated. The
two-layer hashing eventually hashes n coordinates into B2 buckets and repeat d1d2 times, and
we know that each well-estimated heavy hitter i receives small noise in at least (1− δ)d1d2
repetitions. This implies that there exist δ1 and δ2 such that for each well-estimated heavy
hitter i, there exist (1−δ1)d1 first-layer repetitions such that in each such first-layer repetition
r the heavy hitter i receives small noise in at least (1− δ2)d2 second-layer repetitions. For
each such pair (i, r), we can recover at least (1− δ2) fraction of the message m̄i,r, and if we
protect m̄i,r using a constant-rate error-correcting code (e.g. Reed-Solomon code) that can
tolerate up to δ2 fraction of error, we shall recover m̄i,r in entirety. To summarize, for each
well-estimated heavy hitter i, we can recover m̄i,r for at least (1− δ1)d1 values of r ∈ [d1].
We note that δ1 can made arbitrarily small by adjusting the constants in the two-layer
construction and making δ arbitrarily small.

Now we construct the chunk graph as in [16]. The chunk graph has B1d1 nodes, indexed
by pairs (b, r) for b ∈ [B1] and r ∈ [d1]. For each bucket b in the first-repetition r, we recover
a message of length L, break it up into blocks of the same structure as in m̂ and extract the
linking information q1(b, r), . . . , q∆(b, r). We say in G̃ the node (b, r) makes suggestion to
connect to (q`(b, r),Γ`(r)), and we add an edge if both endpoints suggest each other. By the
argument in [16, Lemma 2], a well-estimated heavy hitter i corresponds to an ε0-spectral
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cluster of G̃ for some small ε0 > 0. The spectral clustering algorithm ([16, Theorem 1]) will
find all those spectral clusters, recovering a constant fraction of message mi and enabling
us to identify the index i of the heavy hitter. In each first-layer we retain the bucket of
magnitude at least ε/(4s) so there are O(s/ε) buckets, and we therefore have a candidate list
of size O(s/ε) which misses at most s/8 heavy hitters. Finally we evaluate every candidate
and retain the biggest s ones (in magnitude).

Each recovered coordinate is estimated to within ε/(4s), thus

‖ẑ‖1 ≤ ‖z‖1 + | supp(x̂)| · ε4s ≤ ‖z‖1 + ε

4 .

The total number of measurements is B2d1d2 = O(ε−2s logn). For each first-layer
repetition, we enumerate all coordinates in the bucket of size B1, and decode the associated
message (which is of length d2), which takes time O(B1 poly(d2)) = O(sα poly(1/ε, logn)).
We then run the spectral clustering algorithm on a graph of size O(s/ε · d1) in time Õ((s/ε ·
d1)3) = O(s3 poly(1/ε, logn)). To obtain the indices of the candidates, We decode O(s/ε ·
d1) = O(ε−2s logn) messages, and the decoding algorithm on each Θ(logn)-bit-long mi

with a constant fraction corruption runs in time O(poly(logn)). Lastly we estimate each
of the candidates and retain the biggest s ones, which takes time O((s/ε)d1 · B2d1d2) =
O(s2 poly(1/ε, logn)). The overall runtime is dominated by the clustering algorithm and is
therefore O(s3 poly(1/ε, logn)). J

C Proof of Lemma 12

We follow the argument in [10]. We instantiate the two-layer hashing and the encoding scheme
as in Section 3.1, where α ∈ (1, 2), B1 = Θ(k2α), d1 = Θ( k√

sw
logn

log(B1/s) ), B2 = Θ(k
√
s/w)

and d2 = Θ(log(B1/s)). By Lemma 8 (to see the conditions hold, replace k with s and
ε with k/

√
sw), we can find a two-layer hashing with these prescribed parameters which

satisfies (Θ(k), d1d2,
√
sw
k )-expansion property and (Θ(k),

√
sw
k ,Θ(1))-isolation property. The

constants in the Θ-notations above all depend on η. It is also easy to verify that the length of
each message block m̄i,r is L = Θ(log(B1/s)) + ∆ log(B1) ≤ d2 if we choose d2 large enough.

Invoking Lemma 9 with δ = Θ(
√
sw/k), θ = Θ(

√
sw/k), ε = 1 and γ = 1/k, and following

the argument in [10, Section 4.1], we have good estimates for all but at most Θ(θ/γ) =
√
sw

heavy hitters (elements in supp(y)). Call those heavy hitters well-estimated. Following the
same argument as in the proof of Lemma 12, we can, for each well-estimated heavy hitter i,
recover m̄i,r for at least (1− δ1)d1 values of r ∈ [d1]. We note that δ1 can made arbitrarily
small by adjusting the constants in the two-layer construction and making δ arbitrarily small.

We construct the chunk graph G̃ as in [16]. By the argument in [16, Lemma 2], a
well-estimated heavy hitter i corresponds to an ε0-spectral cluster of G̃ for some small ε0 > 0.
The spectral clustering algorithm ([16, Theorem 1]) will find all those spectral clusters,
recovering a constant fraction of message mi and enabling us to identify the index i of the
heavy hitter. In each first-layer we retain the bucket of magnitude at least 1/(4k) so there
are O(k) buckets, and we therefore have a candidate list of size O(k) which misses at most√
sw heavy hitters. Finally we evaluate every candidate and retain the biggest s ones (in

magnitude).
Each recovered coordinate is estimated to within εγ/4 ≤ 1/(4k), thus

‖ẑ‖1 ≤ ‖z‖1 + | supp(x̂)|
4k ≤ 2− s

k
+ s

2k ≤ 2− s

2k .

The total number of rows is B2d1d2 = O(k
2

w logn). For each first-layer repetition, we
enumerate all coordinates in the bucket of size B1, and decode the associated message (which
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is of length d2), which takes time O(B1 poly(d2)) = O(k2α poly(log k)). We then run the
spectral clustering algorithm on a graph of size O(kd1) in time O((kd1)3) = O(k6 poly(logn)).
To obtain the indices of the candidates, We decode O(kd1) = O(k2 logn) messages, and the
decoding algorithm on each Θ(logn)-bit-long mi with a constant fraction corruption runs in
time O(poly(logn)). Lastly we estimate each of the candidates and retain the biggest s ones,
which takes time O(kd1 ·B2d1d2) = O(k4 log2 n). The overall runtime is dominated by the
clustering algorithm and is therefore O(s6 poly(logn)) = O(k6 poly(logn)).

D Proof of Theorem 11

Without loss of generality, assume that ‖x−k‖1 = 1. We shall apply Lemma 12 repeatedly to
obtain a sequence of vectors x̂(i,r), which admit decompositions x(i,r) = x − ŷ(i,r) − ẑ(i,r).
Consider the following loop invariants, parametrized by (i, r), at the beginning of the i-th
step in the r-th round:

| supp(ŷ(i,r))| ≤ si,r := (i+ 1)2k2−i
r

‖ẑ(i,r)‖1 ≤ 2− si,r/k
(3)

We claim that the loop invariants above hold for (0, r) for r = O(log∗ k). The base case
is (0, 0) and the loop invariants holds trivially. Suppose that the loop invariants hold for
(i, r), we shall show that it holds for (i, r + 1) whenever r ≤ r0 for some r0 = O(log∗ k).

To prove the inductive step w.r.t. r, we consider an inductive proof w.r.t. i for a fixed r.
For the inductive step, if i < i∗r we apply Lemma 12 with wi,r = (i+1)2 and si,r = (i+1)2k2−i

r .
We then get that

| supp(ŷ(i,r))| ≤ √si,rwi,r = (i+ 1)2k2−(i+1)

r ≤ si+1,r,

and

‖ẑ(i,r)‖1 ≤ 2− si,r/(2k) ≤ 2− si+1,r/k

when si+1,r ≤ si,r/2, that is, when 4(1 + 1
i+1 )4 ≤ k2−i

r .
This proves the loop invariants (3) when k2−i

r ≥ max{(i + 1)2, 4(1 + 1
i+1 )4}, and that

is i ≤ i∗r for some i∗r = O(log log kr). At this stage, the residual admits the decomposition
y(i∗r ,r) + z(i∗r ,r) with | supp(y(i∗r ,r))| ≤ O(log4 log k) and ‖z(i,r)‖1 ≤ 2− si∗r ,r/k.

Now we change our choice of parameters and the loop invariants. In the i-th step
(i ≥ i∗r + 1), we claim the following invariants hold at the beginning of the i-th step by
changing wi,r to wi,r = 1:

| supp(ŷ(i,r))| ≤ si,r := (si∗r ,r)
2−(i−i∗r−1)

‖ẑ(i,r)‖1 ≤ 2− si,r/k
(4)

By our choice of i∗r and the argument above the invariants hold when i = i∗r + 1. Applying
Lemma 12 with wi,r = 1, we see that

| supp(ŷ(i,r))| ≤ √si,r ≤ si+1,r

and

‖ẑ(i,r)‖1 ≤ 2− si,r/(2kr) ≤ 2− si+1,r/k,
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whenever si,r ≥ 4. This proves the loop invariants (4) when si,r ≥ max{4, log log kr}, which
holds when i ≤ i∗r + i+r for some i+r = O(1) (recall that si∗r = O(log4 log kr)). These steps
leaves us a decomposition of the residual as y(i,r) + z(i,r), where | supp(y(i,r))| = si,r ≤
max{4, log log kr} and ‖z(i,r)‖1 ≤ 2− si,r/k.

Next, we start a new round by setting kr+1 = s0,r+1 = si∗r+i+r +1,r. The loop invariants in
(3) continue to hold in the base case i = 0. This completes proof of the claim that the loop
invariants hold for (0, r + 1), provided that kr+1 > 4. Since kr+1 ≤ log log kr and k0 = k,
the loop invariants in (3) hold for all r ≤ r0 for some r0 = O(log∗ k).

When kr+1 ≤ 4, that is, there are at most 4 heavy hitter left, we shall recover all of them
in one call to the weak system. Setting w < 1/4 in Lemma 12 yields that | supp(ŷ)| < 1;
it thus must hold that | supp(ŷ)| = 0, or ŷ = 0, which means that all heavy hitters have
recovered. This last call recovers x̂final, which has support size O(1).

Support size of output. The support size of the output x̂ is upper bounded by

| supp(x̂final)|+
∑
r,i

| supp(x̂(i,r))| ≤ O(1) +
∑
r

O(kr) = O(k).

Number of rows. In all rounds except the last round, the number of rows is bounded by

O

 i∗r∑
i=0

k2

(i+ 1)2 logn

+O(i+r · k2 logn) = O(k2 logn)

and the last round needs O(k2 logn) rows. The overall number of rows is therefore m =
O(k2 logn log∗ k) as there are O(log∗ k) rounds.

Runtime. Each call to the weak system runs in O(k6 poly(logn)) time and there are
(
∑
r(i∗r + i+r )) + 1 = O(log log k · log∗ k) calls. Each update of y(i+1,r) ← y(i,r)−Φx̂(i,r) takes

O(mk) since Φ has m rows and | supp(x̂)| = O(k); there are O(log log k · log∗ k) such updates.
The overall runtime is therefore O(k6 poly(logn)).

Storage of the sketching matrix. Each weak system uses O(k logn) random O(k)-wise in-
dependent hash function and needs space O(k2 logn) words. We have O(log log k ·log∗ k) such
hash functions and thus the total storage for sketching matrix is O(k2 logn · log log k log∗ k)
words.

E Proof of Theorem 1

We first pick a matrix A using Theorem 3, setting the sparsity parameter to k2 and ε = 1.
We also pick a matrix B satisfying the guarantees of Theorem 11, with sparsity 6k, and
a matrix C using Lemma 13 with sparsity parameter 6k. Our sketching matrix Φ is the
vertical concatenation of A, B and C. The total number of rows is O(k2 logn) for A and C,
and O(k2 logn log∗ k) for B, for a total of O(k2 logn log∗ k) rows.

We first run the algorithm on Ax to obtain an O(k2)-sparse vector z such that ‖x−z‖1 ≤
2‖x−k2‖1. Then we form B(x−z) and using the query algorithm for B, we find an O(k)-sparse
vector w such that

‖(x− z)− w‖∞ ≤
1
2k ‖x− z‖1 ≤

1
k
‖x−k2‖1. (5)
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Let H be the set of coordinates i ∈ [n] such that |xi| > 1
k‖x−k2‖1. We claim that

H ⊆ supp(z) ∪ supp(w); otherwise, it holds for i ∈ H that

|((x− z)− w)i| = |xi| >
1
k
‖x−k2‖1,

which contradicts (5). The next step is to estimate xi, for every i ∈ supp(z) ∪ supp(w), up
to (1/k)‖x−k2‖1 error. This argument is almost identical to [22], but we include it here for
completeness. For every such i, define vector z′ to be equal to z but with the i-th coordinate
zeroed out. Then we run the point query algorithm of Lemma 13 on sparsity parameter 6k
with sketch C(x− z′) to obtain a value x̂i such that

|x̂i − xi| = |x̂i − (x− z′)i| ≤
1
6k ‖(x− z

′)[n]\{i}‖1 ≤
1
6k ‖x− z‖1 ≤

1
3k ‖x−k

2‖1.

We note that |H| ≤ k and, hence, by keeping the top 4k coordinates in magnitude, we
shall include all elements in H. Otherwise, there are at least 3k estimates of value at least
2
3k‖x−k2‖1 and so there are at least 3k coordinates of xsupp(z)∪supp(w) of magnitude at least
1
3k‖x−k2‖1, which is impossible. This concludes the proof of correctness.

Running time. The first step of obtaining z takes time O(k3 poly(logn)) by Theorem 3.
The second step of obtaining w takes time O(k6 poly(logn)) by Theorem 11. The third step
makes O(k2) point queries. For each point query, it computes C(x− z′) = Cx− Cz′, where
Cx is part of the overall sketch and Cz′ can be efficiently computed in O(k4 logn) time since
C has O(k2 logn) rows and z′ is O(k2)-sparse. Then the point query procedure itself runs in
time O(k logn) by Lemma 13. The total runtime of the third step is thus O(k6 logn). The
overall runtime is dominated by that of the second step.

Storage space. The space to store A is O(k2 logn) words by Theorem 3. The space to store
B is O(k2 logn · log∗ k · log log k) words by Theorem 11. The space to store C is O(k2 logn)
words by taking C to be a fast Johnson-Lindenstrauss Transform matrix [15]. The overall
storage space is dominated by that of B.
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