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Abstract
We initiate the study of data dimensionality reduction, or sketching, for the q → p norms.
Given an n × d matrix A, the q → p norm, denoted ‖A‖q→p = supx∈Rd\~0

‖Ax‖p
‖x‖q , is a natural

generalization of several matrix and vector norms studied in the data stream and sketching
models, with applications to datamining, hardness of approximation, and oblivious routing. We
say a distribution S on random matrices L ∈ Rnd → Rk is a (k, α)-sketching family if from L(A),
one can approximate ‖A‖q→p up to a factor α with constant probability. We provide upper and
lower bounds on the sketching dimension k for every p, q ∈ [1,∞], and in a number of cases our
bounds are tight. While we mostly focus on constant α, we also consider large approximation
factors α, as well as other variants of the problem such as when A has low rank.
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1 Introduction

Data dimensionality reduction, or sketching, is a powerful technique by which one compresses
a large dimensional object to a much smaller representation, while preserving important
structural information. Motivated by applications in streaming and numerical linear algebra,
the object is often a vector x ∈ Rn or a matrix A ∈ Rn×d. One of the most common forms
of sketching is oblivious sketching, whereby one chooses a random matrix L from some
distribution S, and compresses x to Lx or A to L(A). The latter quantity L(A) denotes a
linear map from Rnd, interpreting A as an nd-dimensional vector, to an often much lower
dimensional space, say Rk for a value k � nd.

Sketching has numerous applications. For example, in the data stream model, one sees
additive updates xi ← xi + ∆, where the update indicates that xi should change from its
old value by an additive ∆. Given a sketch L · x, one can update it by replacing it with
L · x + ∆ · L∗,i, where L∗,i denotes the i-th column of L. Thus, it is easy to maintain a
sketch of a vector evolving in the streaming model. Similarly, in the matrix setting, given an
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update Ai,j ← Ai,j + ∆, one can update L(A) to L(A) + ∆L(ei,j), where ei,j denotes the
matrix with a single one in the (i, j)-th position, and is otherwise 0. If L is oblivious, that is,
sampled from a distribution independent of x (or A in the matrix case), then one can create
L without having to see the entire stream in advance. Other applications include distributed
computing, whereby a vector or matrix is partitioned across multiple servers. For instance,
server 1 might have a vector x1 and server 2 a vector x2. Given the sketches Lx1 and Lx2,
by linearity one can combine them, using L(x1 + x2) = Lx1 + Lx2. In these applications it
is important that the number k of rows of L is small, since it is proporational to the memory
required of the data stream algorithm, or the communication in a distributed protocol. Here
k is referred to as the sketching dimension.

Sketching vector norms is fairly well understood, and we have tight bounds up to
logarithmic factors for estimating the `p-norms ‖x‖p = (

∑
i |xi|p)1/p for every p ∈ [1,∞];

for a sample of such work, see [1, 10, 24, 23, 28, 27] for work in the related data stream
context, and [40, 9, 33] for work specifically in the sketching model. Recently, there is work
[13] characterizing the sketching complexity of any symmetric norm on a vector x. A number
of works have also looked at sketching matrix norms. In particular, the Schatten p-norms
‖A‖p =

(∑rank(A)
i=1 σi(A)p

)1/p
have gained considerable attention. They have proven to

be considerably harder to approximate than the vector p-norms, and understanding their
complexity has led to important algorithmic and lower bound techniques. A body of work has
focused on understanding the complexity of estimating matrix norms in the data stream model
with 1-pass over the stream [4, 34], as well as with multiple passes [15], the sketching model
[32, 36], statistical models [31, 29], as well as the general RAM model [38, 44]. Dimensionality
reduction in these norms also has applications in quantum computing [46, 22], and are studied
in nearest neighbor search data structures [2].

1.1 Our Contributions

We consider the sketching complexity of a new family of norms, namely, the p→ q norms of
a matrix. A common quantity that arises in various applications is the amount by which
a linear map A “stretches” vectors. One way to measure this quantity is the maximum
singular value of A, which can be written as sup‖x‖2=1 ‖Ax‖2, and is just the Schatten-∞
norm, defined above. In this work we consider a different way of measuring this stretch,
which considerably generalizes the operator norm.

For a linear operator A from a normed space X to a normed space Y , we define ‖A‖X→Y
as sup‖x‖X=1 ‖Ax‖Y . Of specific interest to us is the case where X = `dq and Y = `np , and we
denote the corresponding norm of such an operator by ‖A‖q→p. Our objective is to study
the sketching complexity of approximating this norm.

I Definition 1 ((k, α)-sketching family). Let S be a distribution over linear functions from
Rn×d to Rk and f a function from Rk to R. We call (S, f) a (k, α)-sketching family for
the q → p norm if for all A ∈ Rn×d, PrL∼S [f(L(A)) ∈ (1/α, α) ‖A‖q→p] ≥ 5

6 .

We provide upper and lower bounds on k. The details of the specific results we have are
described in Section 1.3.
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1.2 Motivation

This problem is well-studied in mathematics when p = q as it simply corresponds to p-matrix
norm estimation1.

An intriguing question is whether one can preserve ‖Ax‖p in a lower-dimensional sketch
space, given that the vectors x come from the unit ball of a smaller norm.

Apart from being mathematically interesting, this problem has a number of applications.
The operator norm is a special case when p = q = 2. The operator norm can be accurately
estimated by any subspace embedding for `2, discussed in detail in [18]. The dual of this
norm is also the Schatten-1 norm, which has received considerable attention in the streaming
model [34, 15]. The q → p norm problem is a natural generalization of the operator norm
problem, and when p < 2, may be more appropriate in the context of robust statistics, where
it is known that the p norm for p < 2 is less sensitive to outliers, see, e.g., Chapter 3 of [47]
for a survey on robust regression, and [42] for recent work on `1-low rank approximation.

The 2 → q norms arise in the hardness of approximation literature and an algorithm
for some instances of the problem was used to break the Khot-Vishnoi Unique Games
candidate hard instance [30]. Work by [11] gives an algorithm running in time exp(n2/p)
for approximating 2 → p norms for all p ≥ 4. These algorithms give a constant factor
approximation when promised the 2 → p norm is in a certain range (depending on the
operator norm) rather than providing a general estimate of the 2→ p norm. This same paper
also discusses assumptions on the the NP-hardness and ETH hardness of approximating
2 → p norms. The work of [14] extends that of [11] to all p ≥ 2. The work of [12] gives
a PTAS for computing ‖A‖q→p if 1 ≤ p ≤ q and A has non-negative entries, and gives an
application of this to the oblivious routing problem where congestion is measured using the
`p norm. The paper also shows that it is hard to approximate ‖A‖q→p within a constant
factor for general A, and general p and q. Sketching may allow, for example, for reducing
the original problem to a smaller instance of the same problem, which although may still
involve exhaustive search, could give a faster concrete running time.

The 1→ q norm turns out to be the maximum of the q-norm of the columns of A, which
is related to the heavy hitters problems in data streams, e.g., the column with the largest
q-norm may be the most significant or desirable in an application. Likewise, the q → ∞
norms turn out to be the maximum of the p-norms of the rows of A, where p is the dual norm
to q, and therefore have similar heavy hitter applications. The ∞→ q norm is maximized
when x ∈ {−1, 1}n and therefore includes the cut-norm as a special case, and is related to
Grothendieck inequalities, see, e.g., [16, 39, 17].

Our main motivation for studying the p → q norms comes from understanding and
developing new techniques for this family of norms. Another family of norms that is well-
studied in the data stream literature are the cascaded norms, which for an n× d matrix A
and parameters p and q, are defined to be (

∑
i=1,...,n(‖Ai,∗‖p)q)1/q, where Ai,∗ denotes the

i-th row of A. That is, we compute the q-norm of the vector of p-norms of the rows of A.
This problem originated in [19] and has applications to mining multi-graphs; the following
sequence of work established tight bounds up to logarithmic factors for every p, q ∈ [1,∞]
[26, 6]. This line of work led to very new techniques; one highlight is the use of Poincaré
inequalities in proving information complexity lower bounds, which has then been studied in
a number of followup works [5, 25, 7].

1 See, e.g., https://en.wikipedia.org/wiki/Matrix_norm
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1.3 Our Results
After establishing preliminary results and theorems in Section 2, we give our results for
constant and large approximation factors. Our main theorem is as follows. Here `q∗ is the
dual norm of `q, that is, 1/q∗ + 1/q = 1 (when q = 1, q∗ =∞, and vice versa).

I Theorem 2. For all matrices A ∈ Rn×n with rank r and real values p, q ∈ [1,∞], the table
below gives upper and lower bounds on k for a (k,Θ(1))-sketching family of various q → p

norms.

q → p Norm p∗ → q∗ Norm Upper Bound Sec Lower Bound Sec
1 → [1, 2] [2, ∞] → ∞ O(n log n) 3.1 Ω(n) 4.2
1 → [2, ∞] [1, 2] → ∞ O(n2− 2

p log2 n) 3.1 Ω(n2− 2
p ) 4.3

[2, ∞] → [1, 2] [2, ∞] → [1, 2] O(n2) - Ω(n2) 4.4
2 → [2, ∞] [1, 2] → 2 O(min{n

1− 2
p r2 log n, n2}) 3.2 Ω(min{n, n

1− 2
p r}) 4.5

[1, 2] → [1, 2] [2, ∞] → [2, ∞] O(n2) - Ω(min{n
1− 2

q∗ r, n}) 4.5
[1, 2] → [2, ∞] [1, 2] → [2, ∞] O(n2) - Ω

(
n

log n

)
4.6

The constant factor hidden in Theorem 2 does not hold for all constants, the smallest
constant it holds for varies depending on the specific values of q, p.

We also have several results for large approximation factors summarized in the theorem
below.

I Theorem 3. There exists a
(
O
(
n2

α

)
, α
)
-sketching family for the 2→ p and ∞→ p norm

and a
(
O
(
n2

α2

)
, α
)
-sketching family for the q → p norm for q ≥ 1 and 1 ≤ p ≤ 2.

Our algorithms combine several insights, which we illustrate here in the case of the 2→ p

norm for p ≥ 2 and when the rank of A is r: (1) we show by duality that ‖A‖2→p is the
same as ‖AT ‖p∗→2, where p∗ satisfies 1

p∗ + 1
p = 1 and is the dual norm to p. Although

the proof is elementary, this plays several key roles in our argument. Next, we (2) use
oblivious subspace embeddings S which provide constant factor approximations for all
vectors simultaneously in an r-dimensional subspace of `2, and enable us to say that with Cr
rows for a constant C > 0, we have ‖SAT ‖p∗→2 = Θ(1)‖AT ‖p∗→2. Next, (3) we use that for
a random Gaussian matrix G ∈ RC′r×Cr, for a constant C ′ > 0, with appropriate variance, it
has the property that simultaneously for all x ∈ RCr, ‖Gx‖1 = Θ(1) · ‖x‖2. This is a special
case of Dvoretsky’s theorem in functional analysis. Thus, instead of directly approximating
‖SAT ‖p∗→2, we can obtain a constant factor approximation by approximating ‖GSAT ‖p∗→1.
This is another norm we do not know how to directly work with, so we apply duality (1)
again, and argue this is the same as approximating ‖ASTGT ‖∞→p. A key observation is
now (4), that supx s.t. ‖x‖∞=1 ‖ASTGTx‖p is realized when x has each coordinate equal to
1 or −1. Consequently, as x ∈ RC′r, it suffices to use any sketch T for the p-norm of a
fixed vector which fails with probability exp(−C ′r), and estimate ‖TASTGTx‖p for each of
the 2C′r possible maximizers x, and output the largest estimate. As there exist sketches T
with O(n1−2/pr logn) rows for this purpose, this gives us an overall sketching complexity of
O(n1−2/pr2 logn).

We defer a discussion of our lower bound techniques to Section 4.

2 Preliminaries

In this section, we introduce the tools we use in this paper.
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I Definition 4 (Total Variation Distance). Given two distributions D and D′ over sample
space Ω with density functions pD and pD′ , the total variation distance is defined in two
equivalent ways as follows dTV (D,D′) = 1

2‖pD − pD′‖1 = supE |Prx∼D[E ]−Prx∼D′ [E ]|

The following result bounds the total variation distance between two multivariate Gaussi-
ans.

I Lemma 5 ([21], Lemma A4). Let λ be the minimum eigenvalue of PSD matrix Σ, then
dTV (N (µ,Σ),N (µ′,Σ′)) ≤ C√

λ
(‖µ− µ′‖2 + ‖Σ− Σ′‖F ) for an absolute constant C.

We state a well known result that a Lipschitz function of a Gaussian vector is tightly
concentrated around its expectation, which is useful since `p norms are Lipschitz.

I Theorem 6 ([43], Theorem 2.1.12). Let X ∼ N (0, In) be a Gaussian random vector and
let f : Rn → R be a 1-Lipschitz function. Then for some absolute constants C, c > 0,
Pr[|f(X)− E[f(X)]| ≥ λ] ≤ C exp(−cλ2) Notice that this implies if f is t-Lipschitz, then
Pr[|f(X)−E[f(X)]| ≥ λ] ≤ C exp(−cλ2/t2)

It is possible to embed `n2 into `O(n)
p with constant distortion using a linear map when

p ∈ [1, 2], and we use the existence of such a linear map in our results.

I Lemma 7 ([37], Theorem 2.5.1). For all p ∈ [1, 2], there is an absolute constant Cp such
that for any n, there is a linear map T : Rn → RCpn such that ‖T (x)‖p =

(
1± 1

2
)
‖x‖2.

An important observation is that this implies for any linear map A : Rn → Rn, we have
‖TA‖q→p =

(
1± 1

2
)
‖A‖q→2.

In the lemma below we make an important observation that highlights the connection
between several p→ q norms.

I Lemma 8. For any p, q ≥ 1 and d× n matrix A, ‖A‖q→p = ‖AT ‖p∗→q∗ .

Proof. Using the notation above for dual norms, we have

‖A‖q→p = sup{‖Ax‖q : ‖x‖p ≤ 1}
= sup{sup{y>Ax : ‖y‖q∗ ≤ 1} : ‖x‖p ≤ 1}
= sup{sup{x>A>y : ‖x‖p ≤ 1} : ‖y‖q∗ ≤ 1}
= sup{‖A>y‖p∗ : ‖y‖q∗ ≤ 1}
= ‖A>‖p∗→q∗ J

Throughout the paper, we make use of q∗ to refer to q
q−1 since ` q

q−1
is the dual norm of `q.

We give a characterization of the 1→ p and ∞→ p norm of a matrix. The proofs can be
found in the full version’s Appendix A. For any d× n matrix A, we have

I Lemma 9. ‖A‖1→p = maxi∈[n]{‖A∗,i‖p}.

I Lemma 10. ‖A‖∞→p = maxx∈{±1}n ‖Ax‖p.

We introduce the machinery of ε-nets, a common tool in the study of random matrices
(see [45]) along with some relevant lemmas and defer the proofs to the full version’s Appendix.

I Definition 11 (ε-net). Let X be a normed space. For S ⊆ V , we call a set N an ε-net for
S if for all v ∈ S, there is v′ ∈ N such that ‖v − v′‖X < ε.

For a linear operator A, we show that to bound ‖A‖X→Y , it suffices to bound ‖Ax‖Y for
x taken over an ε-net of the unit ball in X .

APPROX/RANDOM 2018
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I Lemma 12. Let X and Y be normed spaces and let A : X → Y be a linear map. Suppose
N is an ε-net of the unit ball in X , then ‖A‖X→Y ≤ 1

1−ε maxv∈N ‖Av‖Y .

We also give a way to construct ‘small’ ε-nets of unit balls.

I Lemma 13. There is an ε-net of the unit ball B in an n-dimensional normed space X
with at most

( 2+ε
ε

)n elements.

Another tool we use is subspace embeddings, which we define below.

I Definition 14. An oblivious subspace embedding family (OSE family) is a distri-
bution S over O(m) × n matrices such that for any subspace K ⊆ Rn of dimension m,
PrS∼S [∀x ∈ K : ‖Sx‖2 = Θ(1)‖x‖2] ≥ 9

10 .

I Lemma 15 ([41]). There exist OSE families, where the matrices have dimension O(k)×n.
Note that this means for any rank-k matrix A, a randomly drawn S from such an oblivious
subspace embedding family satisfies ‖SAx‖2 = Θ(1)‖Ax‖2 simultaneously for all x with
probability at least 99/100.

3 Sketching algorithms for constant factor approximations

3.1 Sketches for approximating ‖A‖1→p

We show how to use sketches for p-norms of vectors to come up with sketches for the 1→ p

norm.

I Lemma 16. Let x be an arbitrary vector in Rn. If S is a distribution over t× n sketching
matrices, and f : Rt → R is a function such that PrS∼S

[
f(Sx) ∈

( 1
2‖x‖p, 2‖x‖p

)]
≥ 2

3 then
there is an (O(nt logn), 2)-sketching family (S ′, g) for the 1→ p norm of n× n matrices.

Proof. Proof in the full version’s Appendix B. J

Given an n-dimensional vector x, we have the following theorems from [28] and [6]
respectively.

I Theorem 17 (Efficient sketches for small norms). When p ∈ [1, 2], there is a function f

and a distribution over sketching matrices F with O(1) rows such that for S ∼ F , f(Sx) is
a constant factor approximation for ‖x‖p with probability at least 2/3.

I Theorem 18 (Efficient sketches for large norms). When p > 2, there is a function f and a
distribution over sketching matrices F with O(n1−2/p logn) rows such that for S ∼ F , f(Sx)
is a constant factor approximation for ‖x‖p with probability at least 2/3.

Lemma 16 tells us the following as a corollary to Theorems 17 and 18.

I Theorem 19. There is an (O(n logn), 2)-sketching family for the 1 → p norm when
p ∈ [1, 2] and a (O(n2−2/p) log2 n, 2)-sketching family for the 1→ p norm when p ∈ (2,∞].

3.2 Sketches for approximating ‖A‖2→p for p > 2
We give a sketching algorithm for the 2 → p norm of A, whose number of measurements
depends on the rank r of d× n matrix A.

I Theorem 20. There is an (O(n1−2/pr2 logn),Θ(1))-sketching family for the 2→ p norm.
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Proof. Observe that ‖A‖2→p is equal to ‖AT ‖p∗→2 by Lemma 8 and let S be a Cr×d matrix
drawn from an oblivious subspace embedding family, which exists by Lemma 15. From Lemma
7, let G be a βr × Cr map such that for all x, ‖GSATx‖1 = Θ(1)‖SATx‖2. Combining
with the subspace embedding property, we get that ‖GSATx‖1 = Θ(1)‖ATx‖2 for all x,
which is equivalent to saying ‖GSAT ‖p∗→1 = Θ(1)‖A‖2→p. Another application of Lemma
8 gives us that ‖ASTGT ‖∞→p = Θ(1)‖A‖2→p. Since ASTGT is n× βr, ‖ASTGT ‖∞→p =
maxx∈{±1}βr ‖ASTGTx‖p.

Our final ingredient is the existence of an O(n1−2/p logn log(1/δ))× n sketching matrix
E and estimation function f such that for any x, Pr[f(Ey) = Θ(1)‖y‖p] ≥ 1− δ [3] when
p > 2. We set δ = 2−2βr and use a union bound over all 2βr vectors in {±1}βr to conclude

Pr[∀x ∈ {±1}βr : f(EASTGTx) = Θ(1)‖ASTGTx‖q] ≥ 1− 2−βr

Pr
[

max
x∈{±1}βr

f(EASTGTx) = Θ(1)‖ASTGT ‖∞→q
]
≥ 1− 2−βr

Consequently, we get a sketch that consists of O(n1−2/pr2 logn) measurements to get a Θ(1)
approximation to ‖A‖2→p with probability at least 0.99. J

4 Sketching lower bounds for constant factor approximations

4.1 Lower Bound Techniques
The way we prove most of our lower bounds is by giving two distributions over n×n matrices,
D1 and D2, where matrices drawn from the two distributions have q → p norm separated
by a constant factor κ with high probability, which means a (k,

√
κ)-sketching family can

distinguish between samples from the two distributions. We then show an upper bound on
the variation distance between distributions of k-dimensional sketches of D1 and D2. We
then argue that if k is too small, then the total variation distance is too small to solve the
distinguishing problem. We formalize this intuition in the following theorem.

I Theorem 21. Suppose D1 and D2 are distributions over d× n matrices such that
(i) PrD∼D1 [‖D‖q→p < s] ≥ 1− 1

n and PrD∼D2 [‖D‖q→p > κs] ≥ 1− 1
n

(ii) for any linear map L : Rd×n → Rk, dTV (L(D1), L(D2)) = O
(
ka

nb

)
for constants s, κ, a, b, any (k,

√
κ)-sketching family for the q → p norm must satisfy k =

Ω(nb/a).

Proof. Let D be the distribution over matrices given by sampling from D1 with probability
1
2 and drawing from D2 with probability 1

2 . We shall fix a sketching operator L : Rd×n → Rk
and consider A drawn from a distribution D. Suppose f(L(A)) lies in (1/

√
κ,
√
κ)‖A‖q→p

with probability at least 5/6. It suffices to show that k must be Ω(nb/a) since the theorem
statement then follows from Yao’s minimax principle. We must have

PrA∼D1

[
f(L(A)) ∈

(
1√
κ
,
√
κ

)
‖A‖q→p

]
≥ 2

3 ,

PrA∼D2

[
f(L(A)) ∈

(
1√
κ
,
√
κ

)
‖A‖q→p

]
≥ 2

3
Thus, we have an algorithm that correctly distinguishes with probability at least 3

5 if A
was drawn from D1 or D2 by checking if f(L(A)) is greater than or less than

√
κs.

The existence of this distinguishing algorithm means the total variation distance between
the distributions of L(D1) and L(D2) is at least 1

5 . From the theorem’s hypothesis, we know
of a constant C such that Cka

nb
≥ 1

5 , which gives us the desired upper bound. J

APPROX/RANDOM 2018
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We also show an upper bound on the variation distance of sketches for two distributions
that we use throughout this paper. Define G1,d×n as the distribution over d× n Gaussian
matrices and G2,d×n[α] as the distribution given by drawing a Gaussian matrix and adding
αu, where u is a d-dimensional Gaussian vector to a random column. We write Gi instead of
Gi,d×n when the dimensions of the random matrix are evident from context.

I Lemma 22. Let L be a linear sketch from Rd×n → Rk and let Hi be the distribution of
L(x) where x is drawn from Gi. Then dTV (H1,H2) ≤ Cα2k

n for an absolute constant C.

Proof. We can think of L as a k × nd matrix that acts on a sample from G1 or G2 as
though it were an nd-dimensional vector. Without loss of generality, we can assume that
the rows of L are orthonormal, since one can always perform a change of basis in post-
processing. Thus, the distribution H1 is the same as N (0, Ik). For fixed i and G a d × n
matrix of unit Gaussians, the distribution of L(G + αueTi ) is Gaussian with covariance
E[L(G+ αueTi )L(G+ αueTi )T ], equal to I + α2LBiL

T
Bi

where LBi is the submatrix given by
columns of L indexed (i− 1)d+ 1, (i− 1)d+ 2, . . . , id. Let H2,i be N (0, I + α2LBiL

T
Bi

). H2
is the distribution of picking a random i and drawing a matrix from N (0, I + LBiL

T
Bi

).
We now analyze the total variation distance between H1 and H2 and get the desired

bound from a chain of inequalities. dTV (H1,H2) = 1
2
∫
x∈Rk |pH1(x)− pH2(x)|dx

≤ 1
2
∫
x∈Rk

∣∣∑n
i=1

1
npH1(x)− 1

npH2,i(x)
∣∣ dx ≤ 1

n

∑n
i=1

1
2
∫
x∈Rk

∣∣pH1(x)− pH2,i(x)
∣∣ dx

≤ 1
n

∑n
i=1 dTV (N (0, Ik),H2,i) ≤ 1

n

∑n
i=1 Cα

2‖LBiLTBi‖F ≤
1
n

∑n
i=1 Cα

2‖LBi‖2
F

≤ Cα2

n ‖L‖
2
F = Cα2k

n . The third last inequality follows from Lemma 5. J

4.2 Lower bounds for approximating ‖A‖1→p for 1 ≤ p ≤ 2
We follow the lower bound template given in Section 4.1.

I Lemma 23. For any κ, there exist values sp such that with probability at least 1− 1/n,
‖G1‖1→p ≤ sp and ‖G2‖1→p ≥ κsp, for 1 ≤ p ≤ 2, and G1 ∼ G1 and G2 ∼ G2[κ].

Proof. Recall that from Section 3.1, we know that ‖A‖1→p = maxi∈[n] ‖A∗,i‖p which means
that it suffices to give bounds on the maximum `p norm across columns of G1 and G2
respectively.

The `p norm is ζp-Lipschitz, where ζp is equal to n1/p−1/2 in the regime 1 ≤ p ≤ 2. For a
given vector of standard Gaussians g, the probability that ‖g‖p deviates from E [‖g‖p] by
more than βζp

√
logn is at most C ′e−cβ2 logn from Theorem 6 where C ′ is the constant C

from the theorem, which for large enough choice of β can be made smaller than 1/n2. By a
union bound over all columns, the probability that ‖G1‖1→p exceeds E[‖g‖p] + βζp

√
logn

is at most 1/n. On the other hand, consider the perturbed column vector of G2, which
we denote g′. The probability that ‖g′‖2 is smaller than E[‖g′‖p] − β

√
1 + κ2ζp

√
logn =√

1 + κ2(E[‖g‖p]− βζp
√

logn) is at most 1/n2 by appropriate choice of β and Theorem 6,
from which a lower bound on ‖G2‖1→p that holds with probability at least 1− 1

n2 immediately
follows.

Since E[‖g‖p] is Θ(n1/p) and the deviations from expectations in upper bounds on
‖G1‖1→p and lower bounds on ‖G2‖1→p are asymptotically less than the expectations. J

The desired theorem is immediate from Lemma 23, Lemma 22, and Theorem 21 using
D1 = G1,n×n, and D2 = G2[κ].

I Theorem 24. Suppose p ∈ [1, 2] and (S, f) is a (k,
√
κ)-sketching family for the 1 → p

norm where κ is some constant, then k = Ω(n).
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4.3 Lower bound for approximating ‖A‖1→p for p > 2
We follow the lower bound template given in Section 4.1.

Denote E[‖g‖p] as ηp. Let G1 be the distribution over n × n matrices given by i.i.d.
Gaussians, and G2[α, ηp] be the distribution over n× n matrices given by taking a Gaussian
matrix and adding αηp to a random entry.

Since the proofs are very similar to those in Sections 4.1 and 4.2. We defer them to the
full version’s Appendix C.1.

I Lemma 25. For any κ, there exists sp such that with probability at least 1− 1
n , ‖G1‖1→p ≤

sp and ‖G2‖1→p ≥ κsp, such that G1 ∼ G1 and G2 ∼ G2[Cκ, ηp] for some absolute constant
C and p > 2.

I Lemma 26. Let L be a linear sketch from Rn×n → Rk and let Di be the distribution of
L(x) where x is drawn from Gi. Then dTV (D1,D2) ≤ C′αηp

√
k

n for an absolute constant C ′.

The theorem below immediately follows from Lemma 25, Lemma 26 and Theorem 21
using D1 = G1 and D2 = G2[Cκ, ηp].

I Theorem 27. Suppose (S, f) is a (k, κ)-approximate sketching family for the 1→ p norm
for p > 2 and some constant κ, then k = Ω

(
n2

η2
p

)
. In particular, using the fact that ηp

is Θ(n1/p) for p < ∞ and Θ(
√

logn) when p = ∞ gives k = Ω
(
n2− 2

p

)
when p < ∞ and

k = Ω
(

n2

logn

)
when p =∞.

4.4 Lower bound for approximating ‖A‖q→p when q ≥ 2 and p ≤ 2
We use the known lower bound of Ω(n2) for sketching the 2→ 2 norm from [35] to deduce a
lower bound on sketching the q → p norm for q ≥ 2 and p ≤ 2.

I Theorem 28. Suppose q ≥ 2 and p ≤ 2, and if (S, f) is a (k(n), γ)-approximate sketching
family for the q → p norm where γ is some constant, then k(n) = Ω(n2).

Proof. We prove this by showing that if the hypothesis of the theorem statement holds, then
the 2→ 2 norm can be sketched in O(k) measurements.

Given an n × n matrix A for which we want to sketch the 2 → 2 norm, note that by
Lemma 7 there is a Cn× n matrix L1 such that ‖L1A‖2→q∗ = ( 1

β , β)‖A‖2→2 for a constant
β, and by Lemma 8 ‖L1A‖2→q∗ = ‖ATLT1 ‖q→2, and another application of Lemma 7 gives
us another Cn× n matrix L2 for which ‖L2A

TLT1 ‖q→p = ( 1
β , β)‖ATLT1 ‖q→2. Note that this

means ‖L2A
TLT1 ‖q→p =

(
1
β2 , β

2
)
‖A‖2→2, so we can sketch A by drawing a random L from

D and storing L(L2A
TLT1 ), which uses k(Cn) measurements and serves as a sketch from

which f can be used to estimate ‖A‖2→2 within a constant factor, which means from [35],
k(Cn) must be Ω(n2), which means k(n) = Ω(n2/C2) = Ω(n2). J

4.5 Lower bounds for approximating ‖A‖q→p for p, q ≤ 2 and p, q ≥ 2
In this section, we show a lower bound on the sketching complexity of ‖A‖q→p where A is a
rank r matrix, when both p and q are at most 2. A corresponding lower bound for when p
and q are at least 2 follows from Lemma 8. We achieve this by first showing a lower bound
on the sketching complexity of ‖A‖2→q and then use Dvoretzky’s theorem along with the
relation between the q → p norm and the p∗ → q∗ norm to deduce the result.
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We show a lower bound for sketching the 2→ q norm using the template from Section
4.1. We use distributions D1 = G1,r×n and D2[α] = G2,r×n

[
α d√

r

]
, as defined in Section 4.1

where d is max{n1/q,
√
r}.

I Lemma 29. There exist values sq and tq such that with high probability, ‖G1‖2→q ≤ sq and
‖G2‖2→q ≥ Cαsq for some absolute constant C, for q > 2, and G1 ∼ D1 and G2 ∼ D2[α].

Proof. Let N be a 1/3-net of the Euclidean ball in Rr with 7r elements, which exists by
Lemma 13. For a fixed x ∈ N , G1x is distributed as an n-dimensional vector with independent
Gaussians, whose q-norm is at most β1n

1/q for some constant β1 in expectation and exceeds
β1n

1/q + β2
√
r with probability at most 1

8r for appropriate constant β2, which follows from
the q-norm being 1-Lipschitz and Theorem 6. A union bound over all x ∈ N implies that
with probability at least 1− (7/8)r, ∀x ∈ N : ‖G1x‖q ≤ β1n

1/q + β2
√
r.

Then by applying Lemma 12, we conclude that with probability at least 1 − (7/8)r,
‖G1‖2→q ≤ 3

2 (β1n
1/q + β2

√
r) ≤ 3

2 (β1 + β2)d. On the other hand, the perturbed row
of G2, called g′ is distributed as

√
1 + α2 d2

r g for a vector of i.i.d. Gaussians g. If we
take the unit vector u in the direction of g′, then the entry of G2u corresponding to
the perturbed row is concentrated around

√
1 + α2 d2

r ‖g‖2 =
√
r + α2d2, which means

‖G2‖2→q ≥ (1− o(1))
√
r + α2d2 ≥ 0.9αd with high probability. J

The theorem below immediately follows from Lemma 29, Lemma 22 and Theorem 21.

I Theorem 30. Suppose q ≥ 2 and (S, f) is a (k, γ)-sketching family for the 2→ q norm of
rank r matrices for some constant γ. Then k = Ω(nr/d2).

I Theorem 31. Suppose p, q ≤ 2 and (S, f) is a (k, γ)-sketching family for the q → p norm
of rank r matrices for some constant γ. Then k = Ω(nr/d2) where d = max{

√
r, n1/q∗}.

Proof. For a matrix A, from Lemma 8 we have that ‖A‖2→q∗ = ‖AT ‖q→2, and from Lemma
7, we know there is a Cr × r matrix L1 such that ‖L1A

T ‖q∗→p = Θ(1)‖A‖2→q∗ . We can
use (S, f) to sketch L1A

T to obtain an (O(k),Θ(1))-sketching family for the 2→ q∗ norm,
whose lower bound from Theorem 30 gives us the desired lower bound. J

4.6 Lower bounds for approximating ‖A‖q→p for 1 ≤ q ≤ 2 and p ≥ 2
We prove the desired lower bound using the template from Section 4.1. Let D1 be a
distribution over n×n matrices where diagonal entries are Gaussians and off-diagonal entries
are 0 and let D2[α] be a distribution over n× n matrices where a matrix is drawn from D1
and α

√
logn is added to a random diagonal entry.

I Lemma 32. There exists values sp,q, tp,q and α such that with probability at least 1− 1/n,
‖G1‖q→p ≤ sp,q and ‖G2‖q→p ≥ κsp,q for some desired constant factor κ separation, such
that G1 ∼ D1 and G2 ∼ D2[α].

We give the proof of Lemma 32 in the full version’s Appendix C.2.
Without loss of generality, we can assume that any sketch of G1 and G2 acts on diag(G1)

and diag(G2) respectively. Lemma 26 gives an upper bound of O(
√
k logn/

√
n) on the

variation distance between k-dimensional sketches of these distributions. Thus, from the
variation distance bound, Lemma 32 and Theorem 21, the desired theorem follows.

I Theorem 33. Suppose q ≥ 2 and (S, f) is a (k, γ)-sketching family for the q → p norm of
rank r matrices for some constant γ, then k = Ω(n/ logn).
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5 Sketching with large approximation factors

While our results primarily involve constant factor approximations, we give several preliminary
results studying large approximation factors for sketching the important cases of the 2→ q

norm and [1,∞] → [1, 2] norms. Our goal is, given an approximation factor α(n), to give
upper and lower bounds on k for a (k, α(n))-sketching family for the respective norms. As a
shorthand, we will refer to α(n) as α.

5.1 Sketching upper bounds for large approximations of ‖A‖2→q

It is sufficient to give a (k, α)-sketching family for the∞→ q norm. To see why, given an input
matrix A ∈ Rn×n, by Lemma 8 we have that ‖A‖2→q = ‖AT ‖q∗→2. Using Lemma 7, there is
a linear map such that this is equal within a constant factor of ‖GAT ‖q∗→1 = ‖AGT ‖∞→q.

I Theorem 34. Given a matrix A ∈ Rn×n, there exists a (O(n
2

α ), α)-sketching family given
by (S, f) for the ∞→ q norm.

Proof. Let B ∈ Z+ be some positive integer to be chosen later. Let the columns of our
sketch matrix S be indexed by sets given by {Bi}n/Bi=1 such that Bi = ((i− 1)B, iB]. For each
column vBi , we define i.i.d random variables {σij}Bj=1 such that σij = 1 with probability 1

2
and −1 with probability 1

2 . Let the column vBi be as follows:

vBi [j] =
{
σij for j ∈ [(i− 1)B, iB]
0 o/w

We define our linear map L(A) to be L(A) = AS. Our function f : Rn/B → R simply
optimizes over {−1, 1}n/B and outputs ‖AS‖∞→q.

Since all σij ∈ {−1, 1} we have that f(L(A)) ≤ ‖A‖∞→q since Sx for x ∈ {−1, 1}n/B has
the property that Sx ∈ {−1, 1}n.

We now show a lower bound on f(L(A)). To do so, we let Ti denote the column indices
of A such that the index is column i in its respective block. We then notice that there
exists i ∈ [n/B] such that ‖A∗,Ti‖∞→q ≥ B

n ‖A‖∞→q. We get this by applying the triangle
inequality ‖A‖∞→q ≤

∑n/B
i=1 ‖A∗,Ti‖∞→q.

Let i∗ be the index that realizes this n/B-approximation to ‖A‖∞→q and let {s1}n/Bi=1 be
the assignment of signs that realizes the ∞→ q norm of A∗,Ti∗ .

f(L(A)) ≥ ‖
B∑
i=1

n/B∑
j=1

sjA∗,Bj [i]‖q ≥ ‖
n/B∑
j=1

sjA∗,Bj [i∗]︸ ︷︷ ︸
y

+
B∑
i 6=i∗

n/B∑
j=1

sjA∗,Bj [i]︸ ︷︷ ︸
z

‖q

Notice that z is symmetric around the origin and hence we get that ‖y + z + y − z‖q ≤
‖y+z‖q+‖y−z‖q

2 which implies that f(L(A)) ≥ ‖y + z‖q ≥ Θ(1)‖y‖q ≥ n
B ‖A‖∞→q with

probability at least 1
2 . Thus, we get an O

(
n2

α

)
space sketch that gives us an α-approximation

by setting B = n/α. J

5.2 Sketching upper bounds for large approximations of ‖A‖q→p for
q ∈ [1,∞] and p ∈ [1, 2]

We give a description of our sketch followed by the approximation factor. Towards the end of
defining our sketch, let B ∈ Z+ be some positive integer to be chosen later. Let the rows of
our sketch matrix S be indexed by sets given by {Bi}n/Bi=1 such that Bi = ((i− 1)B, iB]. For
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each row vBi , we define i.i.d random variables {σij}Bj=1 such that σij = 1 with probability 1
2

and −1 with probability 1
2 . Let the row vBi be as follows:

vBi [j] =
{
σij for j ∈ [(i− 1)B, iB]
0 o/w

Our algorithm simply outputs ‖SA‖q→p. The proof of the theorem below can be found in
the full version’s Appendix D.

I Theorem 35. Given a matrix A ∈ Rn×n, there exists an (Õ(n
2

α2 ), α)-sketching family given
by (S, f) for the q → p norm for p ∈ [1, 2].

6 Further Directions

One interesting direction is to study the low-rank approximation problem with respect to the
q → p norm. An important open question in the literature is to find input sparsity time low
rank approximation algorithms with respect to the 2→ 2 norm, and a natural step might be
to try this problem with for q → p norms for certain q and p.

Another interesting problem would be to investigate algorithms for approximate nearest
neighbors with respect to the q → p norm, in light of a question posed by [8] about what
metric spaces admit efficient approximate nearest neighbor algorithms, with matrix norms
mentioned as an object of interest.
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A Proofs from Section 2

Proof of Lemma 9. For any x that is unit according to `1,

‖Ax‖p = ‖A∗,1x1 +A∗,2x2 + . . .+A∗,nxn‖p
≤ ‖A∗,1‖p|x1|+ ‖A∗,2‖p|x2|+ . . .+ ‖A∗,n‖p|xn| ≤ max

i∈[n]
{‖A∗,i‖p}

where the last inequality is because |xi| give a convex combination and is achieved for x = ei∗

where i∗ = arg maxi{‖A∗,i‖p}. J

Proof of Lemma 10. For any x such that there is a coordinate xj that is strictly between 1
or −1, let ε be min{1− xj , xj + 1}, consider

‖Ax‖p = ‖A∗,jxj +
∑
i6=j

A∗,ixi‖p

≤
(

1 + xj
2

)
‖A∗,j +

∑
i 6=j

A∗,ixi‖p +
(

1− xj
2

)
‖ −A∗,j +

∑
i 6=j

A∗,ixi‖p

where the inequality is due to the triangle inequality. Since ‖Ax‖p is at most a convex
combination of the p-norms after replacing xj with 1 or −1, we can make xj one of 1 or −1
without decreasing the p-norm. J

Proof of Lemma 12. Pick x∗ on the unit ball such that ‖Ax∗‖Y = ‖A‖X→Y . There is
x ∈ N such that ‖x∗ − x‖X < ε, which means

‖A(x∗ − x)‖Y ≤ ‖A‖X→Y‖x− x∗‖X < ε‖A‖X→Y

On the other hand,

‖A(x∗ − x)‖Y ≥ ‖Ax∗‖Y − ‖Ax‖Y ≥ ‖A‖X→Y − ‖Ax‖Y

and hence

‖A‖X→Y − ‖Ax‖Y < ε‖A‖X→Y

‖A‖X→Y <
‖Ax‖Y
1− ε ≤

1
1− ε max

x∈N
‖Ax‖Y J
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Proof of Lemma 13. For x in a normed space X , we use the notation Bx(r) to denote
{y : ‖x− y‖X < r}, the ball of radius r around x.

Start with an empty set N and while there is a point x in the unit ball B that has
distance at least ε to every element in N , pick x and add it to N . This process terminates
when every x ∈ B has distance less than ε to some element in N , thereby terminating with
N as an ε-net. We claim that the size of N meets the desired bound.

By construction, any y and y′ in N are at least ε apart, which means B = {Bx(ε/2) : x ∈
N} is a collection of disjoint sets and note that⋃

S∈B
S ⊆ B0(1 + ε/2)

By disjointness

Vol
(⋃
S∈B

S

)
=
∑
S∈B

Vol(S) = |N |Vol(B0(ε/2))

where Vol(S) is the volume of S according to the Lebesgue measure.
And thus, we obtain

|N | =
Vol

(⋃
S∈B S

)
Vol(B0(ε/2))

≤ Vol(B0(1 + ε/2))
Vol(B0(ε/2))

=
(

1 + ε/2
ε/2

)n
=
(

2 + ε

ε

)n
which concludes the proof. J

B Missing proofs from Section 3

Proof of Lemma 16. Draw c logn matrices S1, S2, . . . , Sc logn from D independently where
c is a constant to be determined later. We define

S :=


S1
S2
...

Sc logn


g(Sx) := median{f(S1x), f(S2x), . . . , f(Sc lognx)}

Let’s analyze the probability that g(Sx) falls outside Lx =
( 1

2‖x‖p, 2‖x‖p
)
. In order for that

to happen, more than half of f(S1x), . . . , f(Sc lognx) must lie outside Lx, and this happens
to each f(Six) with probability at most 1

3 . Using Hoeffding’s inequality, we know

Pr[g(Sx) /∈ L] ≤ 2 exp
(
−c logn

72

)
which for appropriate choice of c can be bounded by 1

n2 .
For a matrix A with n columns, a union bound tells us that for all i, g(SA∗,i) falls in

LA∗,i with probability at least 1− 1
n . Combined with Lemma 3.1, it follows that h(SA) :=

maxi g(SA∗,i) is a 2-approximation to ‖A‖1→p with probability at least 1− 1
n . J
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C Missing Proofs from Section 4

C.1 Missing Proofs from Section 4.3
Proof of Lemma 25. We denote Cκ as α and set the exact value of α in the end of the
proof. For a fixed pair i, j let us denote the perturbation term αηpeie

>
j as Eij . Recall that

from section 3.1, we know that ‖A‖1→p = maxi∈[n] ‖A∗,i‖p which means that it suffices to
give bounds on the maximum `p norm across columns of G1 and G2 respectively.

Since the `p norm is 1-Lipschitz for any p ≥ 2, we can apply Theorem 6 to show
concentration around the expectation for ‖G∗,i‖p for any column i of a matrix G of i.i.d
Gaussian entries. Hence we have that for any column i, and some positive constant λ

Pr [‖G∗,i‖p ≥ λE[‖G∗,i‖p]] ≤ C exp(−cλ2E[‖G∗,i‖p]2)

Letting g be an n-dimensional vector of i.i.d Gaussians, since we know E[‖g‖p] =
Ω(
√

logn), there exists appropriate constant β such that for any column i of G1 we have
that ‖(G1)∗,i‖p is less than βE[‖g‖p] with probability at least 1 − 1

n2 . By a union bound
over all columns, the probability that ‖G1‖1→p ≤ βE[‖g‖p] is at least 1− 1

n .
For a matrix G2 = G+ Eij drawn from G2[α, ηp], we know that the perturbed column

j has norm at least αηp − ‖G∗,i‖p, which satisfies (α − β)E[‖g‖p] ≤ ‖G2‖1→p. Setting
α ≥ (κ+ 1)β gives us the desired result. J

Proof of Lemma 26. Recall perturbation term αηpeie
>
j was referred to as Eij . Just as in

Lemma 22, we can think of L as a k × n2 matrix that acts on a sample from G1 or G2[α] as
though it were an n2-dimensional vector. Without loss of generality, we can assume that
the rows of L are orthonormal, since as before we can always perform a change of basis
in post-processing. Thus, the distribution D1 is the same as N (0, Ik). For fixed i, j, the
distribution of L(G + Eij) is Gaussian with mean vector L(Eij) (the ijth column of the
k × n2 matrix L scaled by αηp) and covariance Ik because of the following.

Cov(L(G+ Eij)) = E
[(
L(G+ Eij)−E [L(G+ Eij)]

)>(
L(G+ Eij)−E [L(G+ Eij)]

)]
= E

[(
L(G)−E [L(G)]

)>(
L(G)−E [L(G)]

)]
= CovG∼N (0,In)(G) = Ik

Thus, D2 is the distribution of picking a random i, j and drawing a matrix from
N (L(Eij), Ik).

We now analyze the total variation distance between D1 and D2 and get the desired
bound from a chain of inequalities.

dTV (D1,D2) = 1
2

∫
x∈Rk

|pD1(x)− pD2(x)|dx

= 1
2

∫
x∈Rk

∣∣∣∣∣∣
∑
i,j

1
n2 pD1(x)− 1

n2 pN (L(Eij),Ik)(x)

∣∣∣∣∣∣ dx
≤ 1
n2

∑
i,j

1
2

∫
x∈Rk

∣∣pD1(x)− pN (L(Eij),Ik)
∣∣ dx

= 1
n2

∑
i,j

dTV (D1,N (L(Eij), Ik))

APPROX/RANDOM 2018
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= 1
n2

∑
i,j

dTV (N (0, Ik),N (L(Eij), Ik))

≤ 1
n2

∑
i,j

C ′αηp‖L∗,ij‖2 [from lemma 5]

= C ′αηp
n2 ‖L‖1,2

≤ C ′αηp
n2 · n‖L‖F = C ′αηp ·

√
k

n
[by Cauchy-Schwarz]

J

C.2 Missing Proofs from Section 4.6
Proof of Lemma 32. We claim that for a diagonal matrix D, arg max‖x‖q=1 ‖Dx‖p is
achieved when x is one of the ei standard basis vectors ei. To see this,

‖Dx‖pp =
n∑
i=1
|diixi|p =

n∑
i=1
|dii|p(|xi|q)p/q ≤

n∑
i=1
|dii|p|xi|q ≤ max

i
|dii|p

which is achieved by picking x = ei∗ where choice of i = i∗ maximizes dii.
Thus, to analyze the q → p norm of G1, it suffices to analyze maxx∈{ei} ‖G1x‖p, which is

the same as ‖g‖∞ where g is a vector of i.i.d. Gaussians. We can extract from the proof of
Lemma 25 that ‖g‖∞ is upper bounded by β

√
logn with probability at least 1− 1

n2 .
On the other hand, if the perturbation is at index (i, i) and we pick α = κ(β + 1),

then ‖G2ei‖p is at least κβ
√

logn with probability at least 1 − 1
n2 implying the desired

separation. J

D General approximation factors α

D.1 Sketching Matrix Construction and Upper Bounds
Let us first define our sketch and then analyze its performance. For the sketch S, we group
the rows of A into n

α2 groups of size α2. We label the groups by B1, . . . , Bn/α2 and let
σ1i, . . . , σα2i be ±1 i.i.d random variables with equal probability for block Bi. Notice then
that the ith row of SA given by (SA)i,∗ is:

(SA)i,∗ ,
∑
j∈Bi

σjiAi,∗

To analyze the performance of this sketch, we will need a helpful inequality describing the
behavior of a random signed sums of reals.

I Theorem 36 (Khintchine’s Inequality, [20]). Let {xi}ni=1 ∈ R be reals and let {si}n
i=1 be

i.i.d ±1 random variables with equal probability and let 0 < t <∞, we then have:

Ap

√√√√ n∑
i=1

x2
i ≤ E

[∣∣∣∣∣
n∑
i=1

sixi

∣∣∣∣∣
p]1/p

≤ Bp

√√√√ n∑
i=1

x2
i

For some constants Ap, Bp that only depend on p.

Also recall that by Jensen’s inequality, we can relate two norms of a vector x ∈ Rn.
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I Remark. For two positive reals, p ≥ q > 1 and for a vector x ∈ Rn we have that:
‖x‖p ≤ n

1
q−

1
p ‖x‖q

We then have the following theorems describing the sketching complexity of the sketch S
for 1 ≤ p ≤ 2 and for p > 2.

I Theorem 37. For any 1 ≤ p ≤ 2 and for the maximizer x ∈ Rn of ‖A‖q→p the sketch S
defined earlier where each block Bi has size B has the property that

Θ(1) 1
B1− 1

p

‖SAx‖p ≤ ‖Ax‖p ≤ Θ(1)B
1
p−

1
2 ‖SAx‖p

with probability at least 99
100

Proof. Let us first show the first inequality in the theorem statement.

For some coordinate 1 ≤ i ≤ n
B :

|(SAx)i|p =

∣∣∣∣∣∣
∑
j∈Bi

σj(Ax)j

∣∣∣∣∣∣
p

≤

∑
j∈Bi

|(Ax)j |

p

By Remark D.1 relating ‖·‖1 and ‖·‖p

≤ Bp−1
∑
j∈Bi

|(Ax)j |p

∴ ‖(SAx)i‖p =

n/B∑
i=1
|(SAx)i|p

1/p

≤ B1− 1
p ‖Ax‖p

Notice that the first inequality holds irrespective of the vector x, it holds for all vectors. Now
let us show the second inequality of the theorem statement.

For some coordinate 1 ≤ i ≤ n
B :∑

j∈Bi

(Ax)pj

1/p

≤ B
1
p−

1
2

∑
j∈Bi

(Ax)2
j

1/2

[By Remark D.1] [1]

≤ Θ(1)B
1
p−

1
2 E

∣∣∣∣∣∣
∑
j∈Bi

σj(Ax)j

∣∣∣∣∣∣
p1/p

[By Khintchine’s Ineq.] [2]

∴
n/B∑
i=1

∑
j∈Bi

(Ax)pj = ‖Ax‖pp ≤ Θ(1)Bp(
1
p−

1
2 )E

[
‖SAx‖pp

]
Notice that the second inequality of the theorem statement follows by Markov’s inequality.

Notice that the success probability of line [2] is constant for each block. To get constant
success probability over the entire set of blocks, we construct O(log(n)) i.i.d copies of each
block Bi given by {Bji }

O(log(n))
i=1 . We then pick j such that it is the index realizing the

quantity medianj∈[O(log(n))]‖(SjAx)i‖p where Sj corresponds the sketch with the jth copy of
the blocks. Then, by standard concentration bounds, we can get 1− 1

n/B success probability
for each set of blocks Bi and then union bound over the n

B blocks giving us constant success
probability. J
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I Theorem 38. For any p > 2 and for the maximizer x ∈ Rn of ‖A‖q→p the sketch S defined
earlier where each block Bi has size B has the property that

Θ(1) 1
B1− 1

p

‖SAx‖p ≤ ‖Ax‖p ≤ Θ(1) ‖SAx‖p

The proof for Theorem 38 is the same as that for Theorem 37 except that there is no dilation
while upper bounding the ‖Ax‖p with the 2-norm in line [1] of the proof.

Notice that the above theorems imply that the sketch S is a
√
B-approximation when

0 ≤ p ≤ 2 and a B1− 1
p -approximation when p > 2 because it states that the sketch is

stretching ‖Ax‖pp by at most some factor and dilating it by at most some factor and hence
the approximation ratio is simply the product of these factors.
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