
Nearly Optimal Distinct Elements and Heavy
Hitters on Sliding Windows
Vladimir Braverman1

Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
vova@cs.jhu.edu

Elena Grigorescu2

Department of Computer Science, Purdue University, West Lafayette, IN, USA
elena-g@purdue.edu

Harry Lang3

Department of Mathematics, Johns Hopkins University, Baltimore, MD, USA
hlang8@jhu.edu

David P. Woodruff4

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
dwoodruf@cs.cmu.edu

Samson Zhou5

Department of Computer Science, Purdue University, West Lafayette, IN, USA
samsonzhou@gmail.com

Abstract
We study the distinct elements and `p-heavy hitters problems in the sliding window model, where
only the most recent n elements in the data stream form the underlying set. We first introduce the
composable histogram, a simple twist on the exponential (Datar et al., SODA 2002) and smooth
histograms (Braverman and Ostrovsky, FOCS 2007) that may be of independent interest. We
then show that the composable histogram along with a careful combination of existing techniques
to track either the identity or frequency of a few specific items suffices to obtain algorithms for
both distinct elements and `p-heavy hitters that are nearly optimal in both n and ε.

Applying our new composable histogram framework, we provide an algorithm that out-
puts a (1 + ε)-approximation to the number of distinct elements in the sliding window model
and uses O

( 1
ε2 logn log 1

ε log logn+ 1
ε log2 n

)
bits of space. For `p-heavy hitters, we provide

an algorithm using space O
( 1
εp log2 n

(
log2 logn+ log 1

ε

))
for 0 < p ≤ 2, improving upon

the best-known algorithm for `2-heavy hitters (Braverman et al., COCOON 2014), which has
space complexity O

( 1
ε4 log3 n

)
. We also show complementing nearly optimal lower bounds of

Ω
( 1
ε log2 n+ 1

ε2 logn
)
for distinct elements and Ω

( 1
εp log2 n

)
for `p-heavy hitters, both tight up

to O (log logn) and O
(
log 1

ε

)
factors.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near
linear time algorithms

Keywords and phrases Streaming algorithms, sliding windows, heavy hitters, distinct elements

1 This material is based upon work supported in part by the National Science Foundation under Grants
No. 1447639, 1650041, and 1652257, Cisco faculty award, and by the ONR Award N00014-18-1-2364.

2 Research supported in part by NSF CCF-1649515.
3 This material is based upon work supported by the Franco-American Fulbright Commission. The author

thanks INRIA (l’Institut national de recherche en informatique et en automatique) for hosting him
during the writing of this paper.

4 D. Woodruff would like to acknowledge the support by the National Science Foundation under Grant
No. CCF-1815840.

5 Research supported in part by NSF CCF-1649515.

© Vladimir Braverman, Elena Grigorescu, Harry Lang, David P. Woodruff, and Samson Zhou;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2018).
Editors: Eric Blais, Klaus Jansen, José D. P. Rolim, and David Steurer; Article No. 7; pp. 7:1–7:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vova@cs.jhu.edu
mailto:elena-g@purdue.edu
mailto:hlang8@jhu.edu
mailto:dwoodruf@cs.cmu.edu
mailto:samsonzhou@gmail.com
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


7:2 Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2018.7

Related Version A full version of the paper is available at [16], https://arxiv.org/abs/1805.
00212.

1 Introduction

The streaming model has emerged as a popular computational model to describe large data
sets that arrive sequentially. In the streaming model, each element of the input arrives
one-by-one and algorithms can only access each element once. This implies that any element
that is not explicitly stored by the algorithm is lost forever. While the streaming model is
broadly useful, it does not fully capture the situation in domains where data is time-sensitive
such as network monitoring [29, 30, 33] and event detection in social media [61]. In these
domains, elements of the stream appearing more recently are considered more relevant than
older elements. The sliding window model was developed to capture this situation [35]. In
this model, the goal is to maintain computation on only the most recent n elements of the
stream, rather than on the stream in its entirety. We call the most recent n elements active
and the remaining elements expired. Any query is performed over the set of active items
(referred to as the current window) while ignoring all expired elements.

The problem of identifying the number of distinct elements, is one of the foundational
problems in the streaming model.

I Problem 1 (Distinct elements). Given an input S of elements in [m], output the number
of items i whose frequency fi satisfies fi > 0.

The objective of identifying heavy hitters, also known as frequent items, is also one of the
most well-studied and fundamental problems.

I Problem 2 (`p-heavy hitters). Given parameters 0 < φ < ε < 1 and an input S of elements
in [m], output all items i whose frequency fi satisfies fi ≥ ε(Fp)1/p and no item i for which
fi ≤ (ε− φ)(Fp)1/p, where Fp =

∑
i∈[m] f

p
i . (The parameter φ is typically assumed to be at

least cε for some fixed constant 0 < c < 1.)

In this paper, we study the distinct elements and heavy hitters problems in the sliding
window model. We show almost tight results for both problems, using several clean tweaks
to existing algorithms. In particular, we introduce the composable histogram, a modification
to the exponential histogram [35] and smooth histogram [19], that may be of independent
interest. We detail our results and techniques in the following section, but defer complete
proofs to the full version of the paper [16].

1.1 Our Contributions
Distinct elements.
An algorithm storing O

( 1
ε2 logn log 1

δ (log 1
ε + log logn)

)
bits in the insertion-only model was

previously provided [53]. Plugging the algorithm into the smooth histogram framework
of [19] yields a space complexity of O

( 1
ε3 log3 n(log 1

ε + log logn)
)
bits. We improve this

significantly as detailed in the following theorem.

I Theorem 1. Given ε > 0, there exists an algorithm that, with probability at least 2
3 ,

provides a (1 + ε)-approximation to the number of distinct elements in the sliding window
model, using O

( 1
ε2 logn log 1

ε log logn+ 1
ε log2 n

)
bits of space.

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.7
https://arxiv.org/abs/1805.00212
https://arxiv.org/abs/1805.00212


V. Braverman, E. Grigorescu, H. Lang, D. P. Woodruff, and S. Zhou 7:3

Table 1 Our improvements for `2-heavy hitters and distinct elements in the sliding window
model.

Problem Previous Bound New Bound
`2-heavy hitters O

(
1
ε4 log3 n

)
[15] O

(
1
ε2 log2 n

(
log2 logn+ log2 1

ε

))
Distinct elements O

(
1
ε3 log2 n+ 1

ε
log3 n

)
[53, 19] O

(
1
ε2 log 1

ε
logn log logn+ 1

ε
log2 n

)
A known lower bound is Ω

( 1
ε2 + logn

)
bits [1, 50] for insertion-only streams, which is also

applicable to sliding windows since the model is strictly more difficult. We give a lower
bound for distinct elements in the sliding window model, showing that our algorithm is
nearly optimal, up to log 1

ε and log logn factors, in both n and ε.

I Theorem 2. Let 0 < ε ≤ 1√
n
. Any one-pass streaming algorithm that returns a (1 + ε)-

approximation to the number of distinct elements in the sliding window model with probability
2
3 requires Ω

( 1
ε log2 n+ 1

ε2 logn
)
bits of space.

`p-heavy hitters.
We first recall in Lemma 16 a condition that allows the reduction from the problem of
finding the `p-heavy hitters for 0 < p ≤ 2 to the problem of finding the `2-heavy hitters. An
algorithm of [12] allows us to maintain an estimate of F2. However, observe in Problem 2
that an estimate for F2 is only part of the problem. We must also identify which elements are
heavy. First, we show how to use tools from [13] to find a superset of the heavy hitters. This
alone is not enough since we may return false-positives (elements such that fi < (ε− φ)

√
F2).

By keeping a careful count of the elements (shown in Section 4), we are able to remove these
false-positives and obtain the following result, where we have set φ = 11

12ε:

I Theorem 3. Given ε > 0 and 0 < p ≤ 2, there exists an algorithm in the sliding window
model that, with probability at least 2

3 , outputs all indices i ∈ [m] for which fi ≥ εF 1/p
p , and

reports no indices i ∈ [m] for which fi ≤ ε
12F

1/p
p . The algorithm has space complexity (in

bits) O
( 1
εp log2 n

(
log2 logn+ log 1

ε

))
.

Finally, we obtain a lower bound for `p-heavy hitters in the sliding window model, showing
that our algorithm is nearly optimal (up to log 1

ε and log logn factors) in both n and ε.

I Theorem 4. Let p > 0 and ε, δ ∈ (0, 1). Any one-pass streaming algorithm that returns the
`p-heavy hitters in the sliding window model with probability 1−δ requires Ω((1−δ)ε−p log2 n)
bits of space.

More details are provided in Section 4 and Section 5.
By standard amplification techniques any result that succeeds with probability 2

3 can be
made to succeed with probability 1− δ while multiplying the space and time complexities by
O
(
log 1

δ

)
. Therefore Theorem 1 and Theorem 15 can be taken with regard to any positive

probability of failure.
See Table 1 for a comparison between our results and previous work.

1.2 Our Techniques
We introduce a simple extension of the exponential and smooth histogram frameworks, which
use several instances of an underlying streaming algorithm. In contrast with the existing
frameworks where O (logn) different sketches are maintained, we observe in Section 2 when
the underlying algorithm has certain guarantees, then we can store these sketches more
efficiently.

APPROX/RANDOM 2018



7:4 Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows

pi−n−2 pi−n−1

pi−n−1

pi−n

pi−n

. . .

. . .

Sliding window begins

pi−n . . .

. . . pi

. . . pi

. . . pi

. . . pi

. . . pi

. . . pi

. . . pi

. . . pi

Figure 1 Each horizontal bar represents an instance of the insertion-only algorithm. The red
instance represents the sliding window. Storing an instance beginning at each possible start point
would ensure that the exact window is always available, but this requires linear space. To achieve
polylogarithmic space, the histogram stores a strategically chosen set of O (logn) instances (shaded
grey) so that the value of f on any window can be (1 + ε)-approximated by its value on an adjacent
window.

Algorithm 1 Input: a stream of elements p1, p2, . . . from [m], a window length n ≥ 1, error
ε ∈ (0, 1).
1: T ← 0
2: i← 1
3: loop
4: Get pi from stream
5: T ← T + 1; tT ← i; Compute D(tT ), where f̂(D) is a

(
1± ε

4
)
-approximation of f .

6: for all 1 < j < T do
7: if f̂(D(tj−1 : tT )) <

(
1− ε

4
)
f̂(D(tj+1 : tT )) then

8: Delete tj ; update indices; T ← T − 1
9: if t2 < i− n then
10: Delete t1; update indices; T ← T − 1
11: i← i+ 1

Sketching Algorithms

Consider the sliding window model, where elements eventually expire. A very simple (but
wasteful) algorithm is to simply begin a new instance of the insertion-only algorithm upon
the arrival of each new element (Figure 1). The smooth histogram of [19], summarized in
Algorithm 1, shows that storing only O (logn) instances suffices.

Algorithm 1 may delete indices for either of two reasons. The first (Lines 9-10) is that
the index simply expires from the sliding window. The second (Lines 7-8) is that the indices
immediately before (tj−1) and after (tj+1) are so close that they can be used to approximate
tj .

For the distinct elements problem (Section 3), we first claim that a well-known streaming
algorithm [6] provides a (1 + ε)-approximation to the number of distinct elements at all
points in the stream. Although this algorithm is suboptimal for insertion-only streams, we
show that it is amenable to the conditions of a composable histogram (Theorem 6). Namely,
we show there is a sketch of this algorithm that is monotonic over suffixes of the stream, and
thus there exists an efficient encoding that efficiently stores D(ti : ti+1) for each 1 ≤ i < T ,
which allows us to reduce the space overhead for the distinct elements problem.

For `2-heavy hitters (Section 4), we show that the `2 norm algorithm of [12] also satisfies
the sketching requirement. Thus, plugging this into Algorithm 1 yields a method to maintain



V. Braverman, E. Grigorescu, H. Lang, D. P. Woodruff, and S. Zhou 7:5

an estimate of `2. Algorithm 2 uses this subroutine to return the identities of the heavy
hitters. However, we would still require that all n instances succeed since even O (1) instances
that fail adversarially could render the entire structure invalid by tricking the histogram into
deleting the wrong information (see [19] for details). We show that the `2 norm algorithm
of [12] actually contains additional structure that only requires the correctness of polylog(n)
instances, thus improving our space usage.

1.3 Lower Bounds

Distinct elements.

To show a lower bound of Ω
( 1
ε log2 n+ 1

ε2 logn
)
for the distinct elements problems, we

show in Theorem 19 a lower bound of Ω
( 1
ε log2 n

)
and we show in Theorem 22 a lower

bound of Ω
( 1
ε2 logn

)
. We first obtain a lower bound of Ω

( 1
ε log2 n

)
by a reduction from the

IndexGreater problem, where Alice is given a string S = x1x2 · · ·xm and each xi has n bits so
that S has mn bits in total. Bob is given integers i ∈ [m] and j ∈ [2n] and must determine
whether xi > j or xi ≤ j.

Given an instance of the IndexGreater problem, Alice splits the data stream into blocks
of size O

(
εn

logn

)
and further splits each block into

√
n pieces of length (1 + 2ε)k, padding

the remainder of each block with zeros if necessary. For each i ∈ [m], Alice encodes xi by
inserting the elements {0, 1, . . . , (1 + 2ε)k − 1} into piece xi of block (`− i+ 1). Thus, the
number of distinct elements in each block is much larger than the sum of the number of
distinct elements in the subsequent blocks. Furthermore, the location of the distinct elements
in block (`− i+ 1) encodes xi, so that Bob can recover xi and compare it with j.

We then obtain a lower bound of Ω
( 1
ε2 logn

)
by a reduction from the GapHamming

problem. In this problem, Alice and Bob receive length-n bitstrings x and y, which have
Hamming distance either at least n

2 +
√
n or at most n

2 −
√
n, and must decide whether

the Hamming distance between x and y is at least n
2 . Recall that for ε ≤ 2√

n
, a (1 + ε)-

approximation can differentiate between at least n
2 +
√
n and at most n

2 −
√
n. We use this

idea to show a lower bound of Ω
( 1
ε2 logn

)
by embedding Ω(logn) instances of GapHamming

into the stream. As in the previous case, the number of distinct elements corresponding
to each instance is much larger than the sum of the number of distinct elements for the
remaining instances, so that a (1 + ε)-approximation to the number of distinct elements in
the sliding window solves the GapHamming problem for each instance.

Heavy hitters.

To show a lower bound on the problem of finding `p-heavy hitters in the sliding window model,
we give a reduction from the AugmentedIndex problem. Recall that in the AugmentedIndex
problem, Alice is given a length-n string S ∈ {1, 2 . . . , k}n (which we write as [k]n) while
Bob is given an index i ∈ [n], as well as S[1, i− 1], and must output the ith symbol of the
string, S[i]. To encode S[i] for S ∈ [k]n, Alice creates a data stream a1 ◦ a2 ◦ . . . ◦ ab with
the invariant that the heavy hitters in the suffix ai ◦ ai+1 ◦ . . . ◦ ab encode S[i]. Specifically,
the heavy hitters in the suffix will be concentrated in the substream ai and the identities
of each heavy hitter in ai gives a bit of information about the value of S[i]. To determine
S[i], Bob expires the elements a1, a2, . . . , ai−1 so all that remains in the sliding window is
ai ◦ ai+1 ◦ . . . ◦ ab, whose heavy hitters encode S[i].

APPROX/RANDOM 2018



7:6 Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows

1.4 Related Work

The study of the distinct elements problem in the streaming model was initiated by Flajolet
and Martin [44] and developed by a long line of work [1, 45, 6, 38, 43]. Kane, Nelson, and
Woodruff [53] give an optimal algorithm, using O

( 1
ε2 + logn

)
bits of space, for providing a

(1 + ε)-approximation to the number of distinct elements in a data stream, with constant
probability. Blasiok [9] shows that to boost this probability up to 1− δ for a given 0 < δ < 1,
the standard approach of running O

(
log 1

δ

)
independent instances is actually sub-optimal

and gives an optimal algorithm that uses O
(

log δ−1

ε2 + logn
)
bits of space.

The `1-heavy hitters problem was first solved by Misra and Gries, who give a deterministic
streaming algorithm using O

( 1
ε logn

)
space [59]. Other techniques include the CountMin

sketch [32], sticky sampling [57], lossy counting [57], sample and hold [40], multi-stage
bloom filters [21], sketch-guided sampling [54], and CountSketch [26]. Among the numerous
applications of the `p-heavy hitters problem are network monitoring [37, 62], denial of service
prevention [40, 4, 31], moment estimation [51], `p-sampling [60], finding duplicates [47],
iceberg queries [41], and entropy estimation [22, 48].

A stronger notion of “heavy hitters” is the `2-heavy hitters. This is stronger than the
`1-guarantee since if fi ≥ εF1 then f2

i ≥ ε2F 2
1 ≥ ε2F2 (and so fi ≥ ε

√
F2). Thus any

algorithm that finds the `2-heavy hitters will also find all items satisfying the `1-guarantee.
In contrast, consider a stream that has fi =

√
m for some i and fj = 1 for all other elements

j in the universe. Then the `2-heavy hitters algorithm will successfully identify i for some
constant ε, whereas an algorithm that only provides the `1-guarantee requires ε = 1√

n
, and

therefore Ω(
√
n logn) space for identifying i. Moreover, the `2-gaurantee is the best we can

do in polylogarithmic space, since for p > 2 it has been shown that identifying `p-heavy
hitters requires Ω(n1−2/p) bits of space [23, 5].

The most fundamental data stream setting is the insertion-only model where elements
arrive one-by-one. In the insertion-deletion model, a previously inserted element can be
deleted (each stream element is assigned +1 or −1, generalizing the insertion-only model
where only +1 is used). Finally, in the sliding window model, a length n is given and the
stream consists only of insertions; points expire after n insertions, meaning that (unlike the
insertion-deletion model) the deletions are implicit. Letting S = s1, s2, . . . be the stream, at
time t the frequency vector is built from the window W = {st−(n−1), . . . , st} as the active
elements, whereas items {s1, . . . , st−n} are expired. The objective is to identify and report
the “heavy hitters”, namely, the items i for which fi is large with respect to W .

Table 2 shows prior work for `2-heavy hitters in the various streaming models. A retuning
of CountSketch in [63] solves the problem of `2-heavy hitters in O

(
log2 n

)
bits of space. More

recently, [13] presents an `2-heavy hitters algorithm using O (logn log logn) space. This
algorithm is further improved to an O (logn) space algorithm in [12], which is optimal.

In the insertion-deletion model, CountSketch is space optimal [26, 52], but the update
time per arriving element is improved by [55]. Thus in some sense, the `2-heavy hitters
problem is completely understood in all regimes except the sliding window model. We provide
a nearly optimal algorithm for this setting, as shown in Table 2.

We now turn our attention to the sliding window model. The pioneering work by Datar
et al. [35] introduced the exponential histogram as a framework for estimating statistics
in the sliding window model. Among the applications of the exponential histogram are
quantities such as count, sum of positive integers, average, and `p norms. Numerous
other significant works include improvements to count and sum [46], frequent itemsets [28],
frequency counts and quantiles [2, 56], rarity and similarity [36], variance and k-medians [3]



V. Braverman, E. Grigorescu, H. Lang, D. P. Woodruff, and S. Zhou 7:7

Table 2 Space complexity in bits of computing `2-heavy hitters in various streaming models. We
write n = |S| and to simplify bounds we assume logn = O (logm).

Model Upper Bound Lower Bound
Insertion-Only O

(
ε−2 logn

)
[12] Ω(ε−2 logn) [Folklore]

Insertion-Deletion O
(
ε−2 log2 n

)
[26] Ω(ε−2 log2 n) [52]

Sliding Windows O
(
ε−2 log2 n(log ε−1 + log logn)

)
[Theorem 15] Ω(ε−2 log2 n) [Theorem 4]

and other geometric problems [42, 25]. Braverman and Ostrovsky [19] introduced the smooth
histogram as a framework that extends to smooth functions. [19] also provides sliding window
algorithms for frequency moments, geometric mean and longest increasing subsequence. The
ideas presented by [19] also led to a number of other results in the sliding window model
[34, 17, 20, 18, 27, 39, 14]. In particular, Braverman et al. [15] provide an algorithm that
finds the `2-heavy hitters in the sliding window model with φ = cε for some constant c > 0,
using O

( 1
ε4 log3 n

)
bits of space, improving on results by [49]. [7] also implements and

provides empirical analysis of algorithms finding heavy hitters in the sliding window model.
Significantly, these data structures consider insertion-only data streams for the sliding window
model; once an element arrives in the data stream, it remains until it expires. It remains
a challenge to provide a general framework for data streams that might contain elements
“negative” in magnitude, or even strict turnstile models. For a survey on sliding window
algorithms, we refer the reader to [11].

2 Composable Histogram Data Structure Framework

We first describe a data structure which improves upon smooth histograms for the estimation
of functions with a certain class of algorithms. This data structure provides the intuition for
the space bounds in Theorem 1. Before describing the data structure, we need the definition
a smooth function.

I Definition 5 ([19]). A function f ≥ 1 is (α, β)-smooth if it has the following properties:
Monotonicity f(A) ≥ f(B) for B ⊆ A (B is a suffix of A)
Polynomial boundedness There exists c > 0 such that f(A) ≤ nc.
Smoothness For any ε ∈ (0, 1), there exists α ∈ (0, 1), β ∈ (0, α] so that if B ⊆ A and

(1− β)f(A) ≤ f(B), then (1− α)f(A ∪ C) ≤ f(B ∪ C) for any adjacent C.
We emphasize a crucial observation made in [19]. Namely, for p > 1, `p is a

(
ε, ε

p

p

)
-smooth

function while for p ≤ 1, `p is a (ε, ε)-smooth function.
Given a data stream S = p1, p2, . . . , pn and a function f , let f(t1, t2) represent f applied

to the substream pt1 , pt1+1, . . . , pt2 . Furthermore, let D(t1 : t2) represent the data structure
used to approximate f(t1, t2).

I Theorem 6. Let f be an (α, β)-smooth function so that f = O (nc) for some constant c.
Suppose that for all ε, δ > 0:
(1) There exists an algorithm A that maintains at each time t a data structure D(1 : t) which

allows it to output a value f̂(1, t) so that

Pr
[
|f̂(1, t)− f(1, t)| ≤ ε

2f(1, t), for all 0 ≤ t ≤ n
]
≥ 1− δ.

(2) There exists an algorithm B which, given D(t1 : ti) and D(ti + 1 : ti+1), can compute
D(ti : ti+1). Moreover, suppose storing D(ti : ti+1) uses O (gi(ε, δ)) bits of space.

APPROX/RANDOM 2018



7:8 Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows

Then there exists an algorithm that provides a (1 + ε)-approximation to f on the sliding

window, using O

 1
β

log2 n+

4
β logn∑
i=1

gi

(
ε,
δ

n

) bits of space.

We remark that the first condition of Theorem 6 is called “strong tracking” and well-motivated
by [10].

3 Distinct Elements

We first show that a well-known streaming algorithm that provides a (1 + ε)-approximation
to the number of distinct elements actually also provides strong tracking. Although this
algorithm uses O

( 1
ε2 logn

)
bits of space and is suboptimal for insertion-only streams, we show

that it is amenable to the conditions of Theorem 6. Thus, we describe a few modifications to
this algorithm to provide a (1 + ε)-approximation to the number of distinct elements in the
sliding window model.

Define lsb(x) to be the 0-based index of least significant bit of a non-negative integer
x in binary representation. For example, lsb(10) = 1 and lsb(0) := log(m) where we
assume log(m) = O (logn). Let S ⊂ [m] and h : [m] → {0, 1}logm be a random hash
function. Let Sk := {s ∈ S : lsb(h(s)) ≥ k} so that 2k|Sk| is an unbiased estimator for |S|.
Moreover, for k such that E[Sk] = Θ

( 1
ε2

)
, the standard deviation of 2k|Sk| is O (ε|S|). Let

h2 : [m]→ [B] be a pairwise independent random hash function with B = 100
ε2 . Let ΦB(m)

be the expected number of non-empty bins after m balls are thrown at random into B bins
so that E[|h2(Sk)|] = ΦB(|Sk|).

I Fact 7. Φm(t) = t
(
1−

(
1− 1

t

)m)
Blasiok provides an optimal algorithm for a constant factor approximation to the number of
distinct elements with strong tracking.

I Theorem 8 ([9]). There is a streaming algorithm that, with probability 1 − δ, reports a
(1 + ε)-approximation to the number of distinct elements in the stream after every update
and uses O

(
log logn+log δ−1

ε2 + logn
)
bits of space.

Thus we define an algorithm Oracle that provides a 2-approximation to the number of distinct
elements in the stream after every update, using O (logn) bits of space.

Since we can specifically track up to O
( 1
ε2

)
distinct elements, let us consider the case

where the number of distinct elements is ω
( 1
ε2

)
. Given access to Oracle to output an estimate

K, which is a 2-approximation to the number of distinct elements, we can determine an
integer k > 0 for which K

2k = O
( 1
ε2

)
. Then the quantity 2kΦ−1

B (|h2(Sk)|) provides both
strong tracking as well as a (1 + ε)-approximation to the number of distinct elements:

I Lemma 9 ([9]). The median of O (log logn) estimators 2kΦ−1
B (|h2(Sk)|) is a (1 + ε)-

approximation at all times for which the number of distinct elements is Θ
(

2k
ε2

)
, with constant

probability.

Hence, it suffices to maintain h2(Si) for each 1 ≤ i ≤ logm, provided access to Oracle to find
k, and O (log logn) parallel repetitions are sufficient to decrease the variance.

Indeed, a well-known algorithm for maintaining h2(Si) simply keeps a logm × O
( 1
ε2

)
table T of bits. For 0 ≤ i ≤ logn, row i of the table corresponds to h2(Si). Specifically, the
bit in entry (i, j) of T corresponds to 0 if h2(s) 6= j for all s ∈ Si and corresponds to 1 if



V. Braverman, E. Grigorescu, H. Lang, D. P. Woodruff, and S. Zhou 7:9

there exists some s ∈ Si such that h2(s) = j. Therefore, the table maintains h2(Si), so then
Lemma 9 implies that the table also gives a (1 + ε)-approximation to the number of distinct
elements at all times, using O

( 1
ε2 logn

)
bits of space and access to Oracle. Then the total

space is O
( 1
ε2 logn log logn

)
after again using O (log logn) parallel repetitions to decrease

the variance.
Naïvely using this algorithm in the sliding window model would give a space usage

dependency of O
( 1
ε3 log2 n log logn

)
. To improve upon this space usage, consider maintaining

tables for substreams (t1, t), (t2, t), (t3, t), . . . where t1 < t2 < t3 < . . . < t. Let Ti represent
the table corresponding to substream (ti, t). Since (ti+1, t) is a suffix of (ti, t), then the
support of the table representing (ti+1, t) is a subset of the support of the table representing
(ti, t). That is, if the entry (a, b) of Ti+1 is one, then the entry (a, b) of Ti is one, and similarly
for each j < i. Thus, instead of maintaining 1

ε logn tables of bits corresponding to each
of the (ti, t), it suffices to maintain a single table T where each entry represents the ID of
the last table containing a bit of one in the entry. For example, if the entry (a, b) of T9 is
zero but the entry (a, b) of T8 is one, then the entry (a, b) for T is 8. Hence, T is a table of
size logm×O

( 1
ε2

)
, with each entry having size O

(
log 1

ε + log logn
)
bits, for a total space

of O
( 1
ε2 logn

(
log 1

ε + log logn
))

bits. Finally, we need O
( 1
ε log2 n

)
bits to maintain the

starting index ti for each of the 1
ε logn tables represented by T . Again using a number of

repetitions, the space usage is O
( 1
ε2 logn

(
log 1

ε + log logn
)

log logn+ 1
ε log2 n

)
.

Since this table is simply a clever encoding of the O
( 1
ε logn

)
tables used in the smooth

histogram data structure, correctness immediately follows. We emphasize that the improve-
ment in space follows from the idea of Theorem 6. That is, instead of storing a separate
table for each instance of the algorithm in the smooth histogram, we instead simply keep the
difference between each instance.

Finally, observe that each column in T is monotonically decreasing. This is because
Sk := {s ∈ S : lsb(h(s)) ≥ k} is a subset of Sk−1. Alternatively, if an item has been sampled
to level k, it must have also been sampled to level k−1. Instead of using O

(
log 1

ε + log logn
)

bits per entry, we can efficiently encode the entries for each column in T with the observation
that each column is monotonically decreasing.

Proof of Theorem 1. Since the largest index of Ti is i = 1
ε logn and T has logm rows, the

number of possible columns is
( 1
ε logn+logm−1

logm
)
, which can be encoded using O

(
logn log 1

ε

)
bits. Correctness follows immediately from Lemma 9 and the fact that the estimator is mono-
tonic. Again we use O

( 1
ε log2 n

)
bits to maintain the starting index ti for each of the 1

ε logn
tables represented by T . As T hasO

( 1
ε2

)
columns and accounting again for theO (log logn) re-

petitions to decrease the variance, the total space usage isO
( 1
ε2 logn log 1

ε log logn+ 1
ε log2 n

)
bits. J

4 `p Heavy Hitters

Subsequent analysis by Berinde et al. [8] proved that many of the classic `2-heavy hitter
algorithms not only revealed the identity of the heavy hitters, but also provided estimates
of their frequencies. Let ftail(k) be the vector f whose largest k entries are instead set to
zero. Then an algorithm that, for each heavy hitter i, outputs a quantity f̂i such that
|f̂i − fi| ≤ ε||ftail(k)||1 ≤ ε||f ||1 is said to satisfy the (ε, k)-tail guarantee. Jowhari et al. [52]
show an algorithm that finds the `2-heavy hitters and satisfies the tail guarantee can also
find the `p-heavy hitters. Thus, we first show results for `2-heavy hitters and then use this
property to prove results for `p-heavy hitters.

APPROX/RANDOM 2018



7:10 Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows

To meet the space guarantees of Theorem 15, we describe an algorithm, Algorithm 2, that
only uses the framework of Algorithm 1 to provide a 2-approximation of the `2 norm of the
sliding window. We detail the other aspects of Algorithm 2 in the remainder of the section.

Recall that Algorithm 1 partitions the stream into a series of “jump-points” where f
increases by a constant multiplicative factor. The oldest jump point is before the sliding
window and initiates the active window, while the remaining jump points are within the
sliding window. Therefore, it is possible for some items to be reported as heavy hitters
after the first jump point, even though they do not appear in the sliding window at all! For
example, if the active window has `2 norm 2λ, and the sliding window has `2 norm (1 + ε)λ,
all 2ελ instances of a heavy hitter in the active window can appear before the sliding window
even begins. Thus, we must prune the list containing all heavy hitters to avoid the elements
with low frequency in the sliding window.

To account for this, we begin a counter for each element immediately after the element
is reported as a potential heavy hitter. However, the counter must be sensitive to the
sliding window, and so we attempt to use a smooth-histogram to count the frequency of
each element reported as a potential heavy hitter. Even though the count function is (ε, ε)
smooth, the necessity to track up to O

( 1
ε2

)
heavy hitters prevents us from being able to

(1 + ε)-approximate the count of each element. Fortunately, a constant approximation of the
frequency of each element suffices to reject the elements whose frequency is less than ε

8`2.
This additional data structure improves the space dependency to O

( 1
ε2

)
.

4.1 Background for Heavy Hitters
We now introduce concepts from [13, 12] to show the conditions of Theorem 6 apply, first
describing an algorithm from [12] that provides a good approximation of F2 at all times.

I Theorem 10 (Remark 8 in [12]). For any ε ∈ (0, 1) and δ ∈ [0, 1), there exists a one-pass
streaming algorithm Estimator that outputs at each time t a value F̂ (t)

2 so that

Pr
[
|F̂ (t)

2 − F (t)
2 | ≤ εF

(t)
2 , for all 0 ≤ t ≤ n

]
≥ 1− δ,

and uses O
( 1
ε2 logm

(
log logm+ log 1

ε

)
log 1

δ

)
bits of space and O

((
log logm+ log 1

ε

)
log 1

δ

)
update time.

The algorithm of Theorem 10 is a modified version of the AMS estimator [1] as follows. Given
vectors Zj of 6-wise independent Rademacher (i.e. uniform ±1) random variables, let Xj(t) =〈
Zj , f

(t)〉, where f (t) is the frequency vector at time t. Then [12] shows that Yt = 1
N

∑N
j=1 X

2
j,t

is a reasonably good estimator for F2. By keeping Xj(1, t1), Xj(t1 + 1, t2), . . . , Xj(ti + 1, t),
we can compute Xj,t from these sketches. Hence, the conditions of Theorem 6 are satisfied
for Estimator, so Algorithm 1 can be applied to estimate the `2 norm. One caveat is that
naïvely, we still require the probability of failure for each instance of Estimator to be at most
δ

logn for the data structure to succeed with probability at least 1−δ. We show in Appendix A
that it suffices to only require the probability of failure for each instance of Estimator to be
at most δ

polylogn , thus incurring only O (log logn) additional space rather than O (logn). We
now refer to a heavy hitter algorithm from [12] that is space optimal up to log 1

ε factors.

I Theorem 11 (Theorem 11 in [12]). For any ε > 0 and δ ∈ [0, 1), there exists a one-
pass streaming algorithm, denoted (ε, δ) − BPTree, that with probability at least (1 − δ),
returns a set of ε

2 -heavy hitters containing every ε-heavy hitter and an approximate fre-
quency for every item returned satisfying the (ε, 1/ε2)-tail guarantee. The algorithm uses
O
( 1
ε2

(
log 1

δε

)
(logn+ logm)

)
bits of space and has O

(
log 1

δε

)
update time and O

( 1
ε2 log 1

δε

)
retrieval time.



V. Braverman, E. Grigorescu, H. Lang, D. P. Woodruff, and S. Zhou 7:11

Algorithm 2 ε-approximation to the `2-heavy hitters in a sliding window.
Input: A stream S of updates pi for an underlying vector v and a window size n.
Output: A list including all elements i with fi ≥ ε`2 and no elements j with fj < ε

12`2.
1: Maintain sketches D(pt1 : pt2), D(pt2 + 1 : pt3), . . . , D(ptk−1 + 1 : ptk) to estimate the `2

norm.
B Use Estimator and Algorithm 1 with parameters

( 1
2 ,

δ
2
)
here.

2: Let Ai be the merged sketch D(pti + 1 : ptk).
3: For each merged sketch Ai, find a superset Hi of the ε

16 -heavy hitters.
B Use

(
ε

16 ,
δ
2
)
− BPTree here. (Theorem 11)

4: For each element in H1, create a counter.
B Instantiate a 2− SmoothCounter for each of the O

( 1
ε2

)
elements reported in H1.

5: Let ˆ̀2 be the estimated `2 norm of A1.
B Output of Estimator on A1. (Theorem 10)

6: For element i ∈ H1, let f̂i be the estimated frequency of i.
B Output by 2− SmoothCounter. (Theorem 12)

7: Output any element i with f̂i ≥ 1
4ε

ˆ̀2.

Observe that Theorem 10 combined with Theorem 6 already yields a prohibitively
expensive 1

ε3 dependency on ε. Thus, we can only afford to set ε to some constant in
Theorem 10 and have a constant approximation to F2 in the sliding window.

At the conclusion of the stream, the data structure of Theorem 6 has another dilemma:
either it reports the heavy hitters for a set of elements S1 that is a superset of the sliding
window or it reports the heavy hitters for a set of elements S2 that is a subset of the sliding
window. In the former case, we can report a number of unacceptable false positives, elements
that are heavy hitters for S1 but may not appear at all in the sliding window. In the latter
case, we may entirely miss a number of heavy hitters, elements that are heavy hitters for
the sliding window but arrive before S2 begins. Therefore, we require a separate smooth
histogram to track the counter of specific elements.

I Theorem 12. For any ε > 0, there exists an algorithm, denoted (1 + ε)− SmoothCounter,
that outputs a (1 + ε)-approximation to the frequency of a given element in the sliding window
model, using O

( 1
ε (logn+ logm) logn

)
bits of space.

The algorithm follows directly from Theorem 6 and the observation that `1 is (ε, ε)-smooth.

4.2 `2-Heavy Hitters Algorithm
We now prove Theorem 15 using Algorithm 2. We detail our `2-heavy hitters algorithm
in full, using `2 =

√
F2 and ε-heavy hitters to refer to the `2-heavy hitters problem with

parameter ε.

I Lemma 13. Any element i with frequency fi > ε`2 is output by Algorithm 2.

I Lemma 14. No element i with frequency fi < ε
12`2(W ) is output by Algorithm 2.

I Theorem 15. Given ε, δ > 0, there exists an algorithm in the sliding window model
(Algorithm 2) that with probability at least 1 − δ outputs all indices i ∈ [m] for which
fi ≥ ε

√
F2, and reports no indices i ∈ [m] for which fi ≤ ε

12
√
F2. The algorithm has space

complexity (in bits) O
( 1
ε2 log2 n

(
log2 logn+ log 1

ε

))
.

APPROX/RANDOM 2018



7:12 Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows

Sliding window string S of length n

Block length: 6εn
logn

6εn
logn

6εn
logn

6εn
logn

Elements {0, 1, . . . , (1 + 2ε)i − 1} inserted into piece xi of block i.
Alice: x1 . . . xm, where m = 1

6ε logn.

Each xk is 1
2 logn bits.

Figure 2 Construction of distinct elements instance by Alice. Pieces of block i have length
(1 + 2ε)i − 1.

4.3 Extension to `p norms for 0 < p < 2

To output a superset of the `p-heavy hitters rather than the `2-heavy hitters, recall that an
algorithm provides the (ε, k)-tail guarantee if the frequency estimate f̂i for each heavy hitter
i ∈ [m] satisfies |f̂i − fi| ≤ ε · ||ftail(k)||1, where ftail(k) is the frequency vector f in which
the k most frequent entries have been replaced by zero. Jowhari et al. [52] show the impact
of `2-heavy hitter algorithms that satisfy the tail guarantee.

I Lemma 16 ([52]). For any p ∈ (0, 2], any algorithm that returns the εp/2-heavy hitters for
`2 satisfying the tail guarantee also finds the ε-heavy hitters for `p.

The correctness of Theorem 3 immediately follows from Lemma 16 and Theorem 15.

5 Lower Bounds

5.1 Distinct Elements
To show a lower bound of Ω

( 1
ε log2 n+ 1

ε2 logn
)
for the distinct elements problem, we show

in Theorem 19 a lower bound of Ω
( 1
ε log2 n

)
and we show in Theorem 22 a lower bound

of Ω
( 1
ε2 logn

)
. We first obtain a lower bound of Ω

( 1
ε log2 n

)
by a reduction from the

IndexGreater problem.

I Definition 17. In the IndexGreater problem, Alice is given a string S = x1x2 · · ·xm of
length mn, and thus each xi has n bits. Bob is given integers i ∈ [m] and j ∈ [2n]. Alice is
allowed to send a message to Bob, who must then determine whether xi > j or xi ≤ j.

Given an instance of the IndexGreater problem, Alice first splits the data stream into blocks
of size O

(
εn

logn

)
. She further splits each block into

√
n pieces of length (1 + 2ε)k, before

padding the remainder of block (`− k + 1) with zeros. To encode xi for each i ∈ [m], Alice
inserts the elements {0, 1, . . . , (1 + 2ε)k − 1} into piece xi of block (`− i+ 1), before padding
the remainder of block (`−k+ 1) with zeros. In this manner, the number of distinct elements
in each block dominates the number of distinct elements in the subsequent blocks. Moreover,
the location of the distinct elements in block (`− i+ 1) encodes xi, so that Bob can compare
xi to j. We formalize this argument in Appendix B.

I Lemma 18. The one-way communication complexity of IndexGreater is Ω(nm) bits.



V. Braverman, E. Grigorescu, H. Lang, D. P. Woodruff, and S. Zhou 7:13

I Theorem 19. Let p > 0 and ε, δ ∈ (0, 1). Any one-pass streaming algorithm that returns a
(1 + ε)-approximation to the number of distinct elements in the sliding window model with
probability 2

3 requires Ω
( 1
ε log2 n

)
space.

To obtain a lower bound of Ω
( 1
ε2 logn

)
, we give a reduction from the GapHamming problem.

I Definition 20 ([50]). In the GapHamming problem, Alice and Bob receive n bit strings x
and y, which have Hamming distance either at least n

2 +
√
n or at most n

2 −
√
n. Then Alice

and Bob must decide which of these instances is true.

Chakrabarti and Regev show an optimal lower bound on the communication complexity of
GapHamming.

I Lemma 21 ([24]). The communication complexity of GapHamming is Ω(n).

Observe that a (1 + ε)n2 ≤
n
2 +
√
n for ε ≤ 2√

n
and thus a (1 + ε)-approximation can

differentiate between at least n
2 +
√
n and at most n

2 −
√
n. We use this idea to show a lower

bound of Ω
( 1
ε2 logn

)
by embedding Ω(logn) instances of GapHamming into the stream.

I Theorem 22. Let p > 0 and ε, δ ∈ (0, 1). Any one-pass streaming algorithm that returns a
(1 + ε)-approximation to the number of distinct elements in the sliding window model with
probability 2

3 requires Ω
( 1
ε2 logn

)
space for ε ≤ 1√

n
.

Hence, Theorem 2 follows from Theorem 19 and Theorem 22.

5.2 `p-Heavy Hitters
To show a lower bound for the `p-heavy hitters problem in the sliding window model, we
consider the following variant of the AugmentedIndex problem. Let k and n be positive
integers and δ ∈ [0, 1). Suppose the first player Alice is given a string S ∈ [k]n, while the
second player Bob is given an index i ∈ [n], as well as S[1, i− 1]. Alice sends a message to
Bob, and Bob must output S[i] with probability at least 1− δ.

I Lemma 23 ([58]). Even if Alice and Bob have access to a source of shared randomness,
Alice must send a message of size Ω((1− δ)n log k) in a one-way communication protocol for
the AugmentedIndex problem.

We reduce the AugmentedIndex problem to finding the `p-heavy hitters in the sliding window
model. To encode S[i] for S ∈ [k]n, Alice creates a data stream a1 ◦ a2 ◦ . . . ◦ ab with
the invariant that the heavy hitters in the suffix ai ◦ ai+1 ◦ . . . ◦ ab encodes S[i]. Thus to
determine S[i], Bob just needs to run the algorithm for finding heavy hitters on sliding
windows and expire the elements a1, a2, . . . , ai−1 so all that remains in the sliding window is
ai ◦ ai+1 ◦ . . . ◦ ab. We formally prove Theorem 4 in Appendix B.

References
1 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating

the frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999. A preliminary version
appeared in the Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory
of Computing (STOC), 1996.

2 Arvind Arasu and Gurmeet Singh Manku. Approximate counts and quantiles over sliding
windows. In Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 286–296, 2004.

APPROX/RANDOM 2018



7:14 Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows

3 Brian Babcock, Mayur Datar, Rajeev Motwani, and Liadan O’Callaghan. Maintaining
variance and k-medians over data stream windows. In Proceedings of the Twenty-Second
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS),
pages 234–243, 2003.

4 Nagender Bandi, Divyakant Agrawal, and Amr El Abbadi. Fast algorithms for heavy
distinct hitters using associative memories. In 27th IEEE International Conference on
Distributed Computing Systems (ICDCS), page 6, 2007.

5 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. J. Comput. Syst. Sci., 68(4):702–
732, 2004. A preliminary version appeared in the Proceedings of the 43rd Symposium on
Foundations of Computer Science (FOCS), 2002.

6 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting
distinct elements in a data stream. In Randomization and Approximation Techniques, 6th
International Workshop, RANDOM, Proceedings, pages 1–10, 2002.

7 Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Heavy hitters in streams
and sliding windows. In 35th Annual IEEE International Conference on Computer Com-
munications, INFOCOM, pages 1–9, 2016.

8 Radu Berinde, Piotr Indyk, Graham Cormode, and Martin J. Strauss. Space-optimal heavy
hitters with strong error bounds. ACM Trans. Database Syst., 35(4):26:1–26:28, 2010.
A preliminary version appeared in the Proceedings of the Twenty-Eigth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2009.

9 Jaroslaw Blasiok. Optimal streaming and tracking distinct elements with high probability.
In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, pages 2432–2448, 2018.

10 Jaroslaw Blasiok, Jian Ding, and Jelani Nelson. Continuous monitoring of `p norms in data
streams. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM, pages 32:1–32:13, 2017.

11 Vladimir Braverman. Sliding window algorithms, 2016.
12 Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu Wang,

and David P. Woodruff. Bptree: An `2 heavy hitters algorithm using constant memory.
In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS, pages 361–376, 2017.

13 Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, and David P. Woodruff. Beating
countsketch for heavy hitters in insertion streams. In Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC, pages 740–753, 2016.

14 Vladimir Braverman, Petros Drineas, Jalaj Upadhyay, and Samson Zhou. Numerical linear
algebra in the sliding window model. CoRR, abs/1805.03765, 2018. arXiv:1805.03765.

15 Vladimir Braverman, Ran Gelles, and Rafail Ostrovsky. How to catch `2-heavy-hitters on
sliding windows. Theor. Comput. Sci., 554:82–94, 2014. A preliminary version appeared
in the Proceedings of Computing and Combinatorics, 19th International Conference (CO-
COON), 2013.

16 Vladimir Braverman, Elena Grigorescu, Harry Lang, David P. Woodruff, and Samson
Zhou. Nearly optimal distinct elements and heavy hitters on sliding windows. CoRR,
abs/1805.00212, 2018. arXiv:1805.00212.

17 Vladimir Braverman, Harry Lang, Keith Levin, and Morteza Monemizadeh. Clustering on
sliding windows in polylogarithmic space. In 35th IARCS Annual Conference on Foundation
of Software Technology and Theoretical Computer Science, FSTTCS, pages 350–364, 2015.

18 Vladimir Braverman, Harry Lang, Keith Levin, and Morteza Monemizadeh. Clustering
problems on sliding windows. In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, pages 1374–1390, 2016.

http://arxiv.org/abs/1805.03765
http://arxiv.org/abs/1805.00212


V. Braverman, E. Grigorescu, H. Lang, D. P. Woodruff, and S. Zhou 7:15

19 Vladimir Braverman and Rafail Ostrovsky. Smooth histograms for sliding windows. In
48th Annual IEEE Symposium on Foundations of Computer Science (FOCS) Proceedings,
pages 283–293, 2007.

20 Vladimir Braverman, Rafail Ostrovsky, and Alan Roytman. Zero-one laws for sliding win-
dows and universal sketches. In Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, APPROX/RANDOM, pages 573–590, 2015.

21 Yousra Chabchoub, Christine Fricker, and Hanene Mohamed. Analysis of a bloom filter
algorithm via the supermarket model. In 21st International Teletraffic Congress, ITC,
pages 1–8, 2009.

22 Amit Chakrabarti, Graham Cormode, and Andrew McGregor. A near-optimal algorithm
for estimating the entropy of a stream. ACM Trans. Algorithms, 6(3):51:1–51:21, 2010.

23 Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds on the
multi-party communication complexity of set disjointness. In 18th Annual IEEE Conference
on Computational Complexity, pages 107–117, 2003.

24 Amit Chakrabarti and Oded Regev. An optimal lower bound on the communication com-
plexity of gap-hamming-distance. SIAM J. Comput., 41(5):1299–1317, 2012. A preliminary
version appeared in the Proceedings of the 43rd ACM Symposium on Theory of Computing,
STOC 2011.

25 Timothy M. Chan and Bashir S. Sadjad. Geometric optimization problems over sliding
windows. Int. J. Comput. Geometry Appl., 16(2-3):145–158, 2006. A preliminary version ap-
peared in the Proceedings of Algorithms and Computation, 15th International Symposium
(ISAAC), 2004.

26 Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent items in data
streams. Theor. Comput. Sci., 312(1):3–15, 2004. A preliminary version appeared in the
Proceedings of the Automata, Languages and Programming, 29th International Colloquium
(ICALP), 2002.

27 Jiecao Chen, Huy L. Nguyen, and Qin Zhang. Submodular maximization over sliding
windows. CoRR, abs/1611.00129, 2016.

28 Yun Chi, Haixun Wang, Philip S. Yu, and Richard R. Muntz. Catch the moment: main-
taining closed frequent itemsets over a data stream sliding window. Knowl. Inf. Syst.,
10(3):265–294, 2006. A preliminary version appeared in the Proceedings of the 4th IEEE
International Conference on Data Mining (ICDM), 2004.

29 Graham Cormode. The continuous distributed monitoring model. SIGMOD Record,
42(1):5–14, 2013.

30 Graham Cormode and Minos N. Garofalakis. Streaming in a connected world: querying
and tracking distributed data streams. In EDBT, page 745, 2008.

31 Graham Cormode, Flip Korn, S. Muthukrishnan, and Divesh Srivastava. Finding hierarch-
ical heavy hitters in streaming data. TKDD, 1(4):2:1–2:48, 2008.

32 Graham Cormode and S. Muthukrishnan. An improved data stream summary: the count-
min sketch and its applications. J. Algorithms, 55(1):58–75, 2005. A preliminary version
appeared in the Proceedings of the 6th Latin American Symposium (LATIN), 2004.

33 Graham Cormode and S. Muthukrishnan. What’s new: finding significant differences in
network data streams. IEEE/ACM Transactions on Networking, 13(6):1219–1232, 2005.

34 Michael S. Crouch, Andrew McGregor, and Daniel Stubbs. Dynamic graphs in the sliding-
window model. In Algorithms - ESA 2013 - 21st Annual European Symposium, Proceedings,
pages 337–348, 2013.

35 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream
statistics over sliding windows. SIAM J. Comput., 31(6):1794–1813, 2002. A preliminary
version appeared in the Proceedings of the Thirteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2002.

APPROX/RANDOM 2018



7:16 Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows

36 Mayur Datar and S. Muthukrishnan. Estimating rarity and similarity over data stream
windows. In Algorithms - ESA 2002, 10th Annual European Symposium, Proceedings, pages
323–334, 2002.

37 Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Frequency estimation of
internet packet streams with limited space. In Algorithms - ESA, 10th Annual European
Symposium, Proceedings, pages 348–360, 2002.

38 Marianne Durand and Philippe Flajolet. Loglog counting of large cardinalities (extended
abstract). In Algorithms - ESA, 11th Annual European Symposium, Proceedings, pages
605–617, 2003.

39 Alessandro Epasto, Silvio Lattanzi, Sergei Vassilvitskii, and Morteza Zadimoghaddam. Sub-
modular optimization over sliding windows. In Proceedings of the 26th International Con-
ference on World Wide Web, WWW, pages 421–430, 2017.

40 Cristian Estan and George Varghese. New directions in traffic measurement and accounting:
Focusing on the elephants, ignoring the mice. ACM Trans. Comput. Syst., 21(3):270–313,
2003.

41 Min Fang, Narayanan Shivakumar, Hector Garcia-Molina, Rajeev Motwani, and Jeffrey D.
Ullman. Computing iceberg queries efficiently. In VLDB’98, Proceedings of 24rd Interna-
tional Conference on Very Large Data Bases, pages 299–310, 1998.

42 Joan Feigenbaum, Sampath Kannan, and Jian Zhang. Computing diameter in the stream-
ing and sliding-window models. Algorithmica, 41(1):25–41, 2005.

43 Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frederic Meunier. Hyperloglog: the ana-
lysis of a near-optimal cardinality estimation algorithm. In AofA: Analysis of Algorithms,
page 137–156, 2007.

44 Philippe Flajolet and G. Nigel Martin. Probabilistic counting. In 24th Annual Symposium
on Foundations of Computer Science, pages 76–82, 1983.

45 Phillip B. Gibbons and Srikanta Tirthapura. Estimating simple functions on the union of
data streams. In SPAA, pages 281–291, 2001.

46 Phillip B. Gibbons and Srikanta Tirthapura. Distributed streams algorithms for sliding
windows. In SPAA, pages 63–72, 2002.

47 Parikshit Gopalan and Jaikumar Radhakrishnan. Finding duplicates in a data stream.
In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, pages 402–411, 2009.

48 Nicholas J. A. Harvey, Jelani Nelson, and Krzysztof Onak. Sketching and streaming entropy
via approximation theory. In 49th Annual IEEE Symposium on Foundations of Computer
Science, FOCS, pages 489–498, 2008.

49 Regant Y. S. Hung and Hing-Fung Ting. Finding heavy hitters over the sliding window of a
weighted data stream. In LATIN: Theoretical Informatics, 8th Latin American Symposium,
Proceedings, pages 699–710, 2008.

50 Piotr Indyk and David P. Woodruff. Tight lower bounds for the distinct elements problem.
In 44th Symposium on Foundations of Computer Science (FOCS), pages 283–288, 2003.

51 Piotr Indyk and David P. Woodruff. Optimal approximations of the frequency moments of
data streams. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing
(STOC), pages 202–208, 2005.

52 Hossein Jowhari, Mert Saglam, and Gábor Tardos. Tight bounds for lp samplers, finding
duplicates in streams, and related problems. In Proceedings of the 30th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, pages 49–58, 2011.

53 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the
distinct elements problem. In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS, pages 41–52, 2010.



V. Braverman, E. Grigorescu, H. Lang, D. P. Woodruff, and S. Zhou 7:17

54 Abhishek Kumar and Jun (Jim) Xu. Sketch guided sampling - using on-line estimates
of flow size for adaptive data collection. In INFOCOM 2006. 25th IEEE International
Conference on Computer Communications, Joint Conference of the IEEE Computer and
Communications Societies, 2006.

55 Kasper Green Larsen, Jelani Nelson, Huy L. Nguyen, and Mikkel Thorup. Heavy hitters
via cluster-preserving clustering. In IEEE 57th Annual Symposium on Foundations of
Computer Science, FOCS, pages 61–70, 2016.

56 Lap-Kei Lee and H. F. Ting. A simpler and more efficient deterministic scheme for finding
frequent items over sliding windows. In Proceedings of the Twenty-Fifth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pages 290–297, 2006.

57 Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over data
streams. PVLDB, 5(12):1699, 2012. A preliminary version appeared in the Proceedings of
the 28th International Conference on Very Large Data Bases (VLDB), 2002.

58 Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures
and asymmetric communication complexity. In Proceedings of the Twenty-Seventh Annual
ACM Symposium on Theory of Computing, pages 103–111, 1995.

59 Jayadev Misra and David Gries. Finding repeated elements. Sci. Comput. Program.,
2(2):143–152, 1982.

60 Morteza Monemizadeh and David P. Woodruff. 1-pass relative-error `p-sampling with ap-
plications. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 1143–1160, 2010.

61 Miles Osborne, Sean Moran, Richard McCreadie, Alexander Von Lunen, Martin Sykora,
Elizabeth Cano, Neil Ireson, Craig MacDonald, Iadh Ounis, Yulan He, Tom Jackson, Fabio
Ciravegna, and Ann O’Brien. Real-time detection, tracking and monitoring of automatic-
ally discovered events in social media. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics, 2014.

62 Subhabrata Sen and Jia Wang. Analyzing peer-to-peer traffic across large networks.
IEEE/ACM Trans. Netw., 12(2):219–232, 2004.

63 Mikkel Thorup and Yin Zhang. Tabulation-based 5-independent hashing with applications
to linear probing and second moment estimation. SIAM J. Comput., 41(2):293–331, 2012.

A Full Version

We show that the structure of the F2 algorithm only requires the correctness of a specific
O (polylogn) algorithms in the data structure. Given a vector v ∈ Rm, let F2(v) = v2

1 + v2
2 +

. . .+ v2
m. Recall that the histogram creates a new algorithm each time a new element arrives

in the data stream. Instead of requiring all n algorithms perform correctly, we show that it
suffices to only require the correctness of a specific O (polylogn) of these algorithms.

Let F be the value of F2 on the most recent n elements. For the purpose of analysis, we
say that an algorithm is important if it is still maintained within the histogram when its
output is at least F

2 logn and the algorithm never outputs anything greater than 8F log3 n.
We first show that with high probability, all algorithms correctly maintain a logn-

approximation of the value of F2 for the corresponding frequency vector. Conditioned on
each algorithm correctly maintaining a logn-approximation, we then show that O

(
log6 n

)
algorithms are important. Observe that an algorithm that reports a 2-approximation to
F is important. Furthermore, we show that any algorithm that is not important cannot
influence the output of the histogram, conditioned on each algorithm correctly maintaining
a logn-approximation. Thus, it suffices to require correctness of strong tracking on these
O
(
log6 n

)
important algorithms and we apply a union bound over the O

(
log6 n

)
important

algorithms to ensure correctness. Hence for each algorithm, we require the probability of
failure to be at most O

(
δ

log6 n

)
for the histogram to succeed with probability at least 1− δ.

APPROX/RANDOM 2018



7:18 Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows

I Fact 24. Given m-dimensional vectors x, y, z with non-negative entries, then F2(x+ y +
z)− F2(x+ y) ≥ F2(x+ z)− F2(x).

Although the number of algorithms in the histogram at any given moment is at most
O (logn), it may be possible that many algorithms have output at least F

2 logn only to be
deleted at some point in time. We now show that in a window of size 2n, there are only
O
(
log6 n

)
important algorithms.

I Lemma 25. Conditioned on all algorithms in the stream correctly providing a logn-
approximation, then there are at most O

(
log6 n

)
important algorithms that begin in the most

recent 2n elements.

Proof. Let s1 < s2 < . . . < si be the starting points of important algorithms A1, A2, . . . , Ai,
respectively, that begin within the most recent 2n elements. For each 1 < j < i, let tj be the
first time that algorithm Aj outputs a value that is at least F

2 logn . The idea is to show at
the end of the stream, the elements between sj and sj+1 are responsible for an increase in
F2 by at least cF

2 log2 n
for all j. Since an algorithm is important if it never outputs anything

greater than 8F log3 n, then the F2 value of the substream represented by the algorithm is
at most 8F log4 n, and it follows that i = O

(
log6 n

)
.

Recall that to maintain the histogram, there exists a constant c such that whenever two
adjacent algorithms have output within a factor of c, then we delete one of these algorithms.
Hence, Aj−1 must output a value that is at least cF

2 logn at time tj . Otherwise, the histogram
would have deleted algorithm Aj before tj , preventing Aj from being important. Conditioning
on correctness of a logn-approximation of all algorithms, the value of F2 on the frequency
vector from sj−1 to tj is at least cF

2 log2 n
.

In other words, the elements from time sj−1 to sj are responsible for a difference of at
least cF

2 log2 n
between the F2 values of the substreams represented by Aj−1 and Aj at time

tj . Thus by Fact 24, the difference between the F2 values of the substreams represented
by Aj−1 and Aj at any time t ≥ tj is at least cF

2 log2 n
. By induction, the value of F2 on the

substream from s1 to tj is at least (j−1)cF
2 log2 n

. Recall that the F2 of the substream represented
by any important algorithm is at most 8F log4 n. Therefore, i = O

(
log6 n

)
and so at most

O
(
log6 n

)
algorithms are important. J

I Fact 26. For x > 0 and a, b ≥ 0, (x+a)2

x2 ≥ (x+a+b)2

(x+b)2 .

I Corollary 27. For ai, bi, xi ≥ 0 where
∑
x2
i > 0,

∑
(xi+ai)2∑

x2
i

≥
∑

(xi+ai+bi)2

(xi+bi)2 .

I Lemma 28. Conditioned on all algorithms in the stream correctly providing a logn-
approximation, then any algorithm that outputs a value that is at least 8F log3 n cannot delete
an important algorithm that provides a 2-approximation to F .

Proof. Note that any algorithm A that outputs a value that is at least 8F log3 n must
represent a substream whose F2 value is at least 8F log2 n at the end of the stream, assuming
a logn-approximation of all algorithms. Observe that the substream represented by an
important algorithm B that provides a 2-approximation has F2 value at most 2F at the
end of the stream. By Corollary 27, the ratio between the F2 values of the substreams
represented by A and B must be at least 4 log2 n at every previous point in time. Thus, if A
and B always correctly maintain a logn-approximation of the corresponding substreams, the
ratio of the outputs between A and B is at least 4, so A will never cause the histogram data
structure to delete B. J



V. Braverman, E. Grigorescu, H. Lang, D. P. Woodruff, and S. Zhou 7:19

Hence, it remains to show that with high probability, all algorithms correctly maintain a
logn-approximation of the value of F2 for the corresponding frequency vector. Recall that
Estimator from Theorem 10 uses an AMS sketch so that the resulting frequency of each
element fi is multiplied by a Rademacher random variable Ri.

I Theorem 29 (Khintchine’s inequality). Let R ∈ {−1, 1}m be chosen uniformly at random
and f ∈ Rm be a given vector. Then for any even integer p, E

[
(
∑m
i=1 Rifi)

p] ≤ √pp||f ||p2.
Although we would like to apply Khintchine’s inequality directly, the Rademacher ran-
dom variables Ri used in Estimator are logn-wise independent. Nevertheless, we can use
independence to consider the logn-th moment of the resulting expression.

I Corollary 30. Let z1, z2, . . . , zm ∈ {−1, 1} be a set of logn-wise independent random vari-
ables and f ∈ Rm be a given vector. Then for any even integer p ≤ logn, E

[
(
∑m
i=1 zifi)

p] ≤√
pp||f ||p2.

We now show that each algorithm fails to maintain a logn-approximation of the value of F2
for the corresponding frequency vector only with negligible probability.

I Lemma 31. Let z1, z2, . . . , zm ∈ {−1, 1} be a set of logn-wise independent random variables
and f ∈ Rm be a given vector. Then Pr [|

∑m
i=1 zifi| ≥ (logn)||f ||2] ≤ 1

logn
√

logn
.

Proof. For the ease of notation, let p = logn be an even integer. Observe that

Pr
[∣∣∣∣∣

m∑
i=1

zifi

∣∣∣∣∣ ≥ (logn)||f ||2

]
= Pr

[∣∣∣∣∣
m∑
i=1

zifi

∣∣∣∣∣
p

≥ (logn)p||f ||p2

]
.

By Markov’s inequality, Pr
[
|
∑m
i=1 zifi|

p ≥ (logn)p||f ||p2
]
≤

E[(
∑m

i=1
zifi)p]

(logn)p||f ||p2
. By Corollary 30,

it follows that E[(
∑m

i=1
zifi)p]

(logn)p||f ||p2
≤

√
pp||f ||p2

(logn)p||f ||p2
= 1

logn
√

logn
. J

Therefore, with high probability, all algorithms correctly maintain a logn-approximation of
the value of F2 for the corresponding frequency vector.

B Supplementary Proofs

Proof of Lemma 13. Since the `2 norm is a smooth function, and so there exists a smooth-
histogram which is an

( 1
2 ,

δ
2
)
-estimation of the `2 norm of the sliding window by Theorem 6.

Thus, 1
2

ˆ̀2(A1) ≤ `2(W ) ≤ 3
2

ˆ̀2(A1). With probability 1− δ
2 , any element i whose frequency

satisfies fi(W ) ≥ ε`2(W ) must have fi(W ) ≥ ε`2(W ) ≥ 1
2ε

ˆ̀2(A1) and is reported by(
ε

16 ,
δ
2
)
− BPTree in Step 3.

Since BPTree is instantiated along with A1, the sliding window may begin either before
or after BPTree reports each heavy hitter. If the sliding window begins after the heavy hitter
is reported, then all fi(W ) instances are counted by SmoothCounter. Thus, the count of
fi estimated by SmoothCounter is at least fi(W ) ≥ ε`2(W ) ≥ 1

2ε
ˆ̀2(A1), and so Step 7 will

output i.
On the other hand, the sliding window may begin before the heavy hitter is reported.

Recall that the BPTree algorithm identifies and reports an element when it becomes an
ε

16 -heavy hitter with respect to the estimate of `2. Hence, there are at most 2 · ε16
ˆ̀2(A1) ≤

1
8ε

ˆ̀2(A1) instances of an element appearing in the active window before it is reported by
BPTree. Since fi(W ) ≥ ε`2(W ) ≥ 1

2ε
ˆ̀2(A1), any element i whose frequency satisfies fi(W ) ≥

APPROX/RANDOM 2018



7:20 Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows

ε`2(W ) must have fi(W ) ≥ ε
2

ˆ̀2(A1) and therefore must have at least
( 1

2 −
1
8
)
εˆ̀2(A1) ≥

1
4ε

ˆ̀2(A1) instances appearing in the stream after it is reported by BPTree. Thus, the count
of fi estimated by SmoothCounter is at least 1

4ε
ˆ̀2(A1), and so Step 7 will output i. J

Proof of Lemma 14. If i is output by Step 7, then f̂i ≥ 1
4ε

ˆ̀2(A1). By the properties of
SmoothCounter and Estimator, fi(W ) ≥ f̂i

2 ≥
1
8ε

ˆ̀2(A1) ≥ 1
12`2(W ), where the last inequality

comes from the fact that `2(W ) ≤ 3
2

ˆ̀2(A1). J

Proof of Theorem 15. By Lemma 13 and Lemma 14, Algorithm 2 outputs all elements
with frequency at least ε`2(W ) and no elements with frequency less than ε

12`2(W ). We
now proceed to analyze the space complexity of the algorithm. Step 1 uses Algorithm 1 in
conjunction with the Estimator routine to maintain a 1

2 -approximation to the `2-norm of
the sliding window. By requiring the probability of failure to be O

(
δ

polylogn

)
in Theorem 10

and observing that β = O (1) in Theorem 6 suffices for a 1
2 -approximation, it follows

that Step 1 uses O
(
logn(logn+ logm log2 logm)

)
bits of space. Since Step 3 runs an

instance of BPTree for each of the at most O (logn) buckets, then by Theorem 11, it uses
O
( 1
ε2

(
log 1

δε

)
logn(logn+ logm)

)
bits of space.

Notice that BPTree returns a list of O
( 1
ε2

)
elements, by Theorem 11. By running

SmoothCounter for each of these, Step 7 provides a 2-approximation to the frequency of
each element after being returned by BPTree. By Theorem 12, Step 7 has space complex-
ity (in bits) O

( 1
ε2 (logn+ logm) logn

)
. Assuming logm = O (logn), the algorithm uses

O
( 1
ε2 log2 n

(
log2 logn+ log 1

ε

))
bits of space. J

Proof of Theorem 3. By Theorem 11, BPTree satisfies the tail guarantee. Therefore by
Lemma 16, it suffices to analyze the space complexity of finding the εp/2-heavy hitters for
`2. By Theorem 15, there exists an algorithm that uses O

( 1
ε2 log2 n

(
log2 logn+ log 1

ε

))
bits of space to find the ε-heavy hitters for `2. Hence, there exists an algorithm that
uses O

( 1
εp log2 n

(
log2 logn+ log 1

ε

))
bits of space to find the ε-heavy hitters for `p, where

0 < p ≤ 2. J

Proof of Lemma 18. We show the communication complexity of IndexGreater through a
reduction from the AugmentedIndex problem. Suppose Alice is given a string S ∈ {0, 1}nm
and Bob is given an index i along with the bits S[1], S[2], . . . , S[i− 1]. Then Bob’s task in
the AugmentedIndex problem is to determine S[i].

Observe that Alice can form the string T = x1x2 · · ·xm of length mn, where each xk
has n bits of S. Alice can then use the IndexGreater protocol and communicate to Bob
a message that will solve the IndexGreater problem. Let j =

⌊
i
n

⌋
so that the symbol S[i]

is a bit inside xj+1. Then Bob constructs the string w by first concatenating the bits
S[jn+ 1], S[jn+ 2], . . . , S[i− 1], which he is given from the AugmentedIndex problem. Bob
then appends a zero to w, and pads w with ones at the end, until w reaches n bits:

w = S[jn+ 1] ◦ S[jn+ 2] ◦ · · · ◦ S[i− 1] ◦ 0 ◦ 1 ◦ 1 ◦ · · · ◦ 1︸ ︷︷ ︸
until w has n bits

.

Bob takes the message from Alice and runs the IndexGreater protocol to determine whether
xj > w. Observe that by construction xj > w if and only if S[i] = 1. Thus, if the IndexGreater
protocol succeeds, then Bob will have solved the AugmentedIndex problem, which requires
communication complexity Ω(nm) bits. Hence, the communication complexity of IndexGreater
follows. J



V. Braverman, E. Grigorescu, H. Lang, D. P. Woodruff, and S. Zhou 7:21

Proof of Theorem 19. We reduce a one-way communication protocol for IndexGreater to
finding a (1 + ε)-approximation to the number of distinct elements in the sliding window
model.

Let n be the length of the sliding window and suppose Alice receives a string S =
x1x2 . . . x` ∈ {0, 1}`, where ` = 1

6ε logn and each xk has 1
2 logn bits. Bob receives an index

i ∈ [`] and an integer j ∈ [
√
n]. Suppose Alice partitions the sliding window into ` blocks,

each of length n
` = 6εn

logn . For each 1 ≤ k ≤ 1
6ε logn, she further splits block (`− k + 1) into

√
n pieces of length (1 + 2ε)k, before padding the remainder of block (`− k + 1) with zeros.

Moreover, for piece xk of block (`− k+ 1), Alice inserts the elements {0, 1, . . . , (1 + 2ε)k − 1},
before padding the remainder of block (` − k + 1) with zeros. Hence, the sliding window
contains all zeros, with the exception of the elements {0, 1, . . . , (1 + 2ε)k − 1} appearing in
piece xk of block (` − k + 1) for all 1 ≤ k ≤ ` = 1

6ε logn. Note that (1 + 2ε)k ≤ 3
√
n and

xk ≤
√
n for all k, so all the elements fit within each block, which has length 6εn

logn . Finally,
Alice runs the (1 + ε)-approximation distinct elements sliding window algorithm and passes
the state to Bob. See Figure 2 for an example of Alice’s construction.

Given integers i ∈ [`] and j ∈ [
√
n], Bob must determine if xi > j. Thus, Bob is interested

in xi, so he takes the state of the sliding window algorithm, and inserts a number of zeros to
expire each block before block i. Note that since Alice reversed the stream in her final step,
Bob can do this by inserting (`− i)

( 1
2 logn

)
number of zeros. Bob then inserts (j−1)(1+2ε)i

additional zeros, to arrive at piece j in block i. Since piece xi contains (1 + 2ε)i distinct
elements and the remainder of the stream contains (1 + 2ε)i−1 distinct elements, then the
output of the algorithm will decrease below (1+2ε)i

1+ε during piece xi. Hence, if the output is
less than (1+2ε)i

1+ε after Bob arrives at piece j, then xi ≤ j. Otherwise, if the output is at least
(1+2ε)i

1+ε , then xi > j. By the communication complexity of IndexGreater (Lemma 18), this
requires space Ω

( 1
ε log2 n

)
. J

Proof of Theorem 22. We reduce a one-way communication protocol for the GapHamming
problem to finding a (1 + ε)-approximation to the number of distinct elements in the sliding
window model. For each log 1

ε

2 ≤ i ≤ logn−1
2 , let j = 2i and xj and yj each have length 2j and

(xj , yj) be drawn from a distribution such that with probability 1
2 , HAM (xj , yj) = (1+4ε)2j−1

and otherwise (with probability 1
2 ), HAM (xj , yj) = (1− 4ε)2j−1. Then Alice is given {xj}

while Bob is given {yj} and needs to output HAM (xj , yj). For ε ≤ 1√
n
, this is precisely the

hard distribution in the communication complexity of GapHamming given by [24].
Let a = log 1

ε

2 and b = logn−1
2 . Let w2k = x2k and let w2k−1 be a string of length 22k−1,

all consisting of zeros. Suppose Alice forms the concatenated string S = w2b ◦ w2b−1 ◦ · · · ◦
w2a+1 ◦ w2a. Note that

∑2b
k=2a 2k ≤ n, so S has length less than n. Alice then forms a data

stream by the following process. She initializes k = 1 and continuously increments k until
k = n. At each step, if S[k] = 0 or k is longer than the length of S, Alice inserts a 0 into the
data stream. Otherwise, if S[k] = 1, then Alice inserts k into the data stream. Meanwhile,
Alice runs the (1 + ε)-approximation distinct elements sliding window algorithm and passes
the state of the algorithm to Bob.

To find HAM (x2i, y2i), Bob first expires
(∑2b

k=2i+1 2k
)
− 22i elements by inserting zeros

into the data stream. Similar to Alice, Bob initializes k = 1 and continuously increments k
until k = 22i. At each step, if y2i[k] = 0 (that is, the kth bit of y2i is zero), then Bob inserts a 0
into the data stream. Otherwise, if y2i[k] = 1, then Bob inserts k into the data stream. At the
end of this procedure, the sliding window contains all zeros, nonzero values corresponding to
the nonzero indices of the string x2i◦w2i−1◦x2i−2◦· · ·◦x2a+2◦w2a+1◦x2a, and nonzero values

APPROX/RANDOM 2018



7:22 Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows

corresponding to the nonzero indices of y2i. Observe that each wj solely consists of zeros
and

∑i−1
k=a 22k < 22i−1. Therefore, HAM (x2i, y2i) is at least (1− 4ε)22i−1 while the number

of distinct elements in the sliding window is at most (1 + 4ε)22i while the number of distinct
elements in the suffix x2i−2 ◦ x2i−3 · · · is at most (1 + ε)22i−2. Thus, a (1 + ε)-approximation
to the number of distinct elements differentiates between HAM (x2i, y2i) = (1 + 4ε)22i−1 and
HAM (x2i, y2i) = (1− 4ε)22i−1.

Since the sliding window algorithm succeeds with probability 2
3 , then the GapHamming

distance problem succeeds with probability 2
3 across the Ω(logn) values of i. Therefore, any

(1 + ε)-approximation sliding window algorithm for the number of distinct elements that
succeeds with probability 2

3 requires Ω
( 1
ε2 logn

)
space for ε ≤ 1√

n
. J

Proof of Theorem 4. We reduce a one-way communication protocol for the AugmentedIndex
problem to finding the `p heavy hitters in the sliding window model. Let a = 1

2pεp log
√
n and

b = logn. Suppose Alice receives S = [2a]b and Bob receives i ∈ [b] and S[1, i− 1]. Observe
that each S[i] is 1

2pεp log
√
n bits and so S[i] can be rewritten as S[i] = w1 ◦ w2 ◦ . . . ◦ wt,

where each t = 1
2pεp and so each wi is log

√
n bits.

To recover S[i], Alice and Bob run the following algorithm. First, Alice constructs data
stream A = a1 ◦ a2 ◦ . . . ◦ ab, which can be viewed as updates to an underlying frequency
vector in Rn. Each ak consists of t updates, adding 2p(b−k) to coordinates v1, v2 . . . , vt of
the frequency vector, where the binary representation of each vj ∈ [n] is the concatenation
of the binary representation of j with the log

√
n bit string wj . She then runs the sliding

window heavy hitters algorithm and passes the state of the algorithm to Bob.
Bob expires all elements of the stream before ai, runs the sliding window heavy hitters

algorithm on the resulting vector, and then computes the heavy hitters. We claim that
the algorithm will output t heavy hitters and by concatenating the last log

√
n bits of

the binary representation of each of these heavy hitters, Bob will recover exactly S[i].
Observe that the `p norm of the underlying vector represented by ai ◦ ai+1 ◦ . . . ◦ ab is
exactly

( 1
2pεp (1p + 2p + 4p + . . .+ 2p(b−i))

)1/p ≤ 1
2ε2

b−i+1 = 1
ε 2b−i. Let u1, u2 . . . , ut be the

coordinates of the frequency vector incremented by Alice as part of ai. Each coordinate uj
has frequency 2b−i ≥ ε

( 1
ε 2b−i

)
, so that uj is an `p-heavy hitter.

Moreover, the first log t bits of uj encode j ∈ [t] while the next log
√
n bits encode wj .

Thus, Bob identifies each heavy hitter and finds the corresponding j ∈ [t] so that he can
concatenate S[i] = w1 ◦ w2 ◦ . . . ◦ wt. J


	Introduction
	Our Contributions
	Our Techniques
	Lower Bounds
	Related Work

	Composable Histogram Data Structure Framework
	Distinct Elements
	l_p Heavy Hitters
	Background for Heavy Hitters
	l_2-Heavy Hitters Algorithm
	Extension to l_p norms for 0<p<2

	Lower Bounds
	Distinct Elements
	l_p-Heavy Hitters

	Full Version
	Supplementary Proofs

