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Abstract
We introduce a new random input model for bipartite matching which we call the Random
Type Poisson Arrival Model. Just like in the known i.i.d. model (introduced by Feldman et
al. [6]), online nodes have types in our model. In contrast to the adversarial types studied in
the known i.i.d. model, following the random graphs studied in Mastin and Jaillet [1], in our
model each type graph is generated randomly by including each offline node in the neighborhood
of an online node with probability c/n independently. In our model, nodes of the same type
appear consecutively in the input and the number of times each type node appears is distributed
according to the Poisson distribution with parameter 1. We analyze the performance of the simple
greedy algorithm under this input model. The performance is controlled by the parameter c and
we are able to exactly characterize the competitive ratio for the regimes c = o(1) and c = ω(1).
We also provide a precise bound on the expected size of the matching in the remaining regime of
constant c. We compare our results to the previous work of Mastin and Jaillet who analyzed the
simple greedy algorithm in the Gn,n,p model where each online node type occurs exactly once.
We essentially show that the approach of Mastin and Jaillet can be extended to work for the
Random Type Poisson Arrival Model, although several nontrivial technical challenges need to
be overcome. Intuitively, one can view the Random Type Poisson Arrival Model as the Gn,n,p

model with less randomness; that is, instead of each online node having a new type, each online
node has a chance of repeating the previous type.
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5:2 Greedy Bipartite Matching in RTPAM

1 Introduction

Online bipartite matching is a problem with a wide variety of applications and has received
significant attention after the seminal work of Karp, Vazirani and Vazirani [10] who showed
an optimal (1− 1/e) randomized algorithm for the unweighted case in the adversarial input
model. Applications such as internet advertising (see the excellent survey by Mehta [13] and
references therein) and job allocation have given rise to problems that are naturally described
as bipartite matching problems and this has been a strong motivation for developing better
algorithms. Most of the work in online bipartite matching is with respect to a vertex arrival
model where vertices on one side of the bipartite graph are known to the algorithm in advance
and vertices on the other side are revealed online along with their adjacent vertices.

Adversarial models are, of course, pessimistic in terms of performance results. For many
applications, more realistic assumptions will lead to significantly improved results. In this
regard, various stochastic input models have been proposed and analyzed. These include the
random order model, known and unknown i.i.d. distribution models, and the Erdős-Rényi
random graph model. We propose a new model (see Section 2) that is closely related to both
the i.i.d. model and the Erdős-Rényi model. The motivation for our model is that in various
applications (e.g. document streams [11] and internet traffic [15]), one often observes the
bursty nature of inputs. One can also think of this as a very restricted form of a Markov
chain model.

Whereas previous work in the i.i.d. models take advantage of the input distributions in
terms of the decisions being made (i.e. as to how to match the online vertices), we follow the
work of Mastin and Jaillet [1] who study the performance of the simplest greedy algorithm
(which we will call Greedy) that always matches (when possible) an online vertex to the
first (in some fixed ordering of the offline vertices) unmatched adjacent neighbor1. We note
that this simple greedy algorithm does not utilize any information about the nature of the
input sequence (including the number of online vertices).

We know that theoretically (i.e. in terms of the expected approximation ratio), that
knowledge of the distribution and/or randomization in the algorithm will allow for online
algorithms with improved performance. However, in simulations with respect to various
stochastic models, we find that the simplest deterministic greedy algorithm is competitive with
more specialized algorithms [5]. We also note that when a type graph is chosen adversarially
in the i.i.d. model, Goel and Mehta [7] show that the approximation ratio of Greedy is
precisely 1− 1/e ≈ .632.

Mastin and Jaillet show that the approximation ratio of Greedy in the Erdős-Rényi
model is at least 0.837. Intuitively, our model introduces correlations between consecutive
online nodes. This causes significant technical difficulties in the analysis that we are able to
overcome. In addition, the correlations do not seem favourable to the Greedy algorithm,
and it is natural to expect Greedy to have worse performance in our model than in the
Erdős-Rényi model. Our results confirm this intuition. Our input model has a parameter
c that controls the expected degree of online nodes. Similar to the work of Mastin and
Jaillet [1], we analyze the performance of Greedy in three different regimes of c: c = o(1),
c = ω(1), and constant c. We compute the exact asymptotic fraction of offline nodes matched
by Greedy in each of these regimes. We also show how to derive an upper bound on the

1 In the version of Greedy that is studied by Mastin and Jaillet, an online vertex is matched to a
randomly chosen available neighbor. Later, we shall see that for our input model, as well as Gn,n,p, the
two versions of Greedy have the same approximation ratio, since they result in the same stochastic
process governing the change in the number of matched offline nodes when an online node arrives.
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size of a maximum matching in our model from the existing upper bounds on the size of a
maximum matching in the Erdős-Rényi model. Combining the two results, we derive a lower
bound on the approximation ratio of Greedy in all regimes of c. Minimizing this lower
bound over c, we find that Greedy has approximation ratio ≥ 0.715 for all values of c in
our model.

Organization. The rest of the paper is organized as follows. Section 2 describes our model
and different views of it, as well as some background material needed for the rest of the
paper. Section 3 is the technical core of the paper and contains the analysis of Greedy in
the three regimes of c: c = o(1), c = ω(1), and c = Θ(1). Section 4 concludes the paper with
a brief discussion of various input models and some open questions.

2 Preliminaries

We shall consider bipartite graphs G = (U, V,E) in the vertex arrival model. The vertices
in U are referred to as the offline vertices and are known to an algorithm in advance. The
vertices in V are referred to as online vertices and arrive one at a time. When a vertex from
V is revealed, all its neighbors in U are revealed as well. A simple greedy algorithm matches
the arriving vertex v ∈ V to the first available neighbor in U (if there is one, according to
some fixed ordering). We shall denote this algorithm by Greedy. We consider the behavior
of Greedy on specific families of random graphs generated by, what we call, the Random
Type Poisson Arrival Model. This model has two parameters: n ∈ N which is equal to |U |
and intuitively measures the size of the instance, and c ∈ R≥0 which controls the density of
edges. The random graph in our model is generated as follows: the offline nodes U are set
to be [n]. Online nodes are generated iteratively and randomly using the following process.
For each i ∈ [n] generate a random type i by including each offline node j ∈ [n] in the
neighborhood of the type with probability c/n independently. Then we sample Zi from the
Poisson distribution with parameter 1 and generate Zi online nodes of type i, and continue.
We shall denote a graph G distributed according to the Random Type Poisson Arrival Model
with parameters n and c as G ∼ RTPAM(n, c). Our model can be viewed in different ways.
We refer to the current view of the RTPAM(n, c) model as the “one-step view.” Next we
describe another view.

The bipartite Erdős-Rényi model is denoted by Gn,n,p. The random graph G = (U, V,E)
in the Gn,n,p model is generated as follows: U = V = [n], and each edge {i, j} is included in
G with probability p independently. Our RTPAM(n, c) model can be alternatively viewed
as a two-step process. At first, we generate a type graph Ĝ = (U, V,E) from the Gn,n,p

distribution where p = c/n. For each type i ∈ V we sample Zi ∼ Poi(1). Secondly, an
instance graph is created by keeping the same U as in the type graph, and replicating each
type i node Zi times (note that this means removing type i when Zi = 0). In the rest of
the paper, we shall freely switch between the two different views of the RTPAM(n, c) model.
Thus, we shall occasionally refer to the type graph of the RTPAM(n, c) graph. We refer to
this alternative view of the RTPAM(n, c) model as the “two-step view.”

Intuitively, in the one-step view, Zi is drawn from the Poisson distribution in an online
fashion whereas in the two-step view, Zi is drawn initially. It should be clear that these
views do not change the model. However, our proofs are facilitated by having these different
views.

We shall measure the performance of an algorithm in two ways: in terms of the asymptotic
approximation ratio, and in terms of the fraction of the matched offline nodes.

APPROX/RANDOM 2018



5:4 Greedy Bipartite Matching in RTPAM

I Definition 1. Let ALG be a deterministic online algorithm solving the bipartite matching
problem over random graphs Gn parameterized by the input size n. We write ALG(Gn) to
denote the size of the matching (random variable) that is constructed by running ALG on
Gn. We write OPT(Gn) to denote the size of a maximum matching in Gn. The asymptotic
approximation ratio of ALG with respect to Gn is defined as:

ρ(ALG, Gn) = lim inf
n→∞

E(ALG(Gn))
E(OPT(Gn)) .

The fraction of matched offline nodes of ALG with respect to Gn is defined as:

µ(ALG, Gn) = lim inf
n→∞

E(ALG(Gn))
n

.

We shall use the following notation for the well-known distributions:

I Definition 2.
Poi(λ) – the Poisson distribution with parameter λ,
Bin(n, p) – the Binomial distribution with parameters n ∈ Z≥0 (number of trials) and
p ∈ [0, 1] (probability of success)
Ber(p) – the Bernoulli distribution with parameter p.

We shall also write Poi(λ), Bin(n, p), etc., as a placeholder for a random variable distributed
according to the corresponding distribution. This is done to simplify the notation when the
name of the random variable is not important and only the parameters of the distribution
are of interest.

I Definition 3. We write I(E) to denote the indicator random variable for an event E.

In the paper, we show how to compute µ(Greedy,RTPAM(n, c)) exactly. In order to
provide a bound on the asymptotic approximation ratio of Greedy we also need to know the
size of a maximum matching in RTPAM(n, c). The size of a maximum matching is not known
even in Gn,n,c/n model, but there is a known upper bound due to Bollobás and Brightwell
that we will be able to use to derive a lower bound on the asymptotic approximation ratio of
Greedy in the RTPAM(n, c) model.

I Theorem 4 ([4]).

E(OPT(Gn,n,c/n))
n

≤ 2− γ∗ + γ∗ + γ∗γ∗
c

+ o(1),

where γ∗ is the smallest solution to the equation x = c exp(−c exp(−x)) and γ∗ = c exp(−γ∗).
See Figure 4 for the shape of this upper bound as a function of c.

We shall later compare our results with the following result giving the performance of
Greedy in the Gn,n,c/n model due to Mastin and Jaillet.

I Theorem 5 ([1]). For c ∈ R>0 we have

µ(Greedy, Gn,n,c/n) = 1− log(2− e−c)
c

.
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3 Greedy Matching in Random Type Poisson Arrival Model

3.1 The Regime of c = o(1)

In this section we show that in expectation Greedy finds an almost-maximum matching
in RTPAM(n, c) when c = o(1). The high level idea is to consider the two-step view of
RTPAM(n, c) and observe that when c = o(1) most of the type graph consists of isolated
edges – edges with both endpoints of degree 1. Thus, no matter how many times an online
node corresponding to an isolated edge is generated in the instance graph, both Greedy and
OPT can match it exactly once (given that it is generated at all). The expected number of
the non-isolated edges is of smaller order of magnitude than the expected number of isolated
edges and can be ignored for the purpose of computing the asymptotic approximation ratio.

I Theorem 6. Let c = o(1) then we have:

ρ(Greedy,RTPAM(n, c)) = 1.

Proof. (similar to the proof of Lemma 2 in [1]) Set p = c/n = o(1/n), and consider the
two-step view of RTPAM(n, c). The probability that an edge between i and j appears and is
isolated in the type graph is:

Pr({i, j} is isolated in the type graph ) = p(1− p)2n−2.

Observe that if type j is generated at least once in the instance graph, i.e., Zj ≥ 1, and
{i, j} is an isolated edge in the type graph then Greedy will include {i, j} in the matching
exactly once. In addition, observe that the events Zj ≥ 1 and “{i, j} is isolated in the type
graph” are independent. Let Wi,j be a random variable indicating whether {i, j} is included
by Greedy. Then, we have:

Pr(Wi,j = 1) ≥ Pr(Zj ≥ 1) Pr({i, j} is isolated in the type graph) =
(

1− 1
e

)
p(1−p)2n−2.

Let M be the matching produced by Greedy. We have |M | =
∑

i,j Wi,j . It follows that:

E(|M |) = E

∑
i,j

Wi,j

 =
∑
i,j

Pr(Wi,j = 1) ≥ n2
(

1− 1
e

)
p(1− p)2n−2.

Let Qj denote the number of neighbors of a node of type j. Observe that in the instance
graph the nodes corresponding to type j can be matched in an optimal matching at most
QjI(Zj ≥ 1) times. Note that Qj and Zj are independent. Let M∗ denote a maximum
matching in the instance graph. Then we have

E(|M∗|) ≤
∑

j

E(QjI(Zj ≥ 1)) =
∑

j

np(1− 1/e) = n2p(1− 1/e).

Combining this with the above lower bound on E(|M |) we get

E(|M |)
E(|M∗|) ≥ (1− p)2n−2 =

(
e−o( 1

n )
)2n−2

= e−o(1) −−−−→
n→∞

1. J

APPROX/RANDOM 2018
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3.2 The Regime of Constant c

Fix a constant c ∈ R>0. We can view Greedy as constructing the matching in rounds.
Consider the one-step view of RTPAM(n, c). During round i, a new type is created and
Zi nodes corresponding to that type are generated. We let Yi denote the number of online
nodes matched by Greedy by the beginning of round i. We also let Xi denote the number
of neighbors of type i that were not matched in any of the earlier rounds. In this section, we
show how to compute the asymptotic fraction of matched offline nodes by Greedy exactly.
More specifically, we derive an asymptotically accurate (implicit) expression for Yn and show
how to compute it for each value of c. In addition, we show that existing upper bounds on
the maximum matching in the Gn,n,c/n model carry over to the RTPAM(n, c) model. This
allows us to derive lower bounds on the competitive ratio of Greedy in RTPAM(n, c).

High level idea. We use the method of partial differential equations (see, e.g., [19, 18, 12])
to derive the asymptotic behavior of Yn. The goal is to write the expression E(Yi+1 − Yi | Yi)
in terms of Yi/n, i.e., E(Yi+1−Yi | Yi) = fc(Yi/n) for some “simple” function fc. This gives us
a difference equation for Yi. Now, pretend that there is a function gc : [0, 1]→ [0, 1] that gives
a good approximation to Yi, i.e., gc(t) ≈ Ytn/n for t ∈ [0, 1]. Consider a syntactic replacement
of the difference equation for Yi with a differential equation for gc, i.e., g′c(t) = fc(gc(t)). In
addition, set the correct initial value condition gc(0) = Y0 = 0. The differential equation
method allows us to conclude that under a mild condition on fc (namely, being Lipschitz),
the solution gc is unique and asymptotically converges to Yn/n, i.e., Yn = gc(1)n + o(n).
In particular, we have µ(Greedy,RTPAM(n, c)) = gc(1). In our setting, we will see that
it is not clear how to write E(Yi+1 − Yi | Yi) as a function of Yi/n. It turns out that the
method still works as long as E(Yi+1 − Yi | Yi) is close to fc(Yi/n) in the following sense:
limn→∞ |E(Yi+1 − Yi | Yi)− fc(Yi/n)| = 0. This is precisely what we do in this section.

The number of nodes matched by Greedy in round i is exactly equal2 to min(Xi, Zi).
By the definition of the RTPAM(n, c) model, we have Xi ∼ Bin(n− Yi, c/n). Therefore, we
have

E(Yi+1 − Yi | Yi) = E(min(Bin(n− Yi, c/n),Poi(1)) | Yi). (1)

Unfortunately, as mentioned above this expectation does not seem to have a nice form and we
do not know how to set up an associated differential equation. Instead, we shall approximate
the difference equation E(Yi+1−Yi | Yi) by another expression that is easier to handle. Those
familiar with the Poisson limit theorem will immediately recognize the following as the most
natural choice:

E(min(Bin(n− Yi, c/n),Poi(1)) | Yi) ≈ E(min(Poi(c(1− Yi/n)),Poi(1)) | Yi).

We need to analyze how accurate this approximation is, but first we show how to derive
a relatively simple expression for the right hand side. Define h(x) := E(min(Poi(x),Poi(1))).
Although the function h(x) does not have a closed-form expression in terms of widely-known
functions such as sin, cos, exp, etc., it does have a closed-form expression in terms of the
modified Bessel functions of the first kind and the Marcum’s Q functions:

2 Observe that this holds in all regimes of c and that this expression remains the same if we consider
the version of Greedy of Mastin and Jaillet, where an online node is matched to a random available
neighbor. Therefore, the exact version of Greedy does not matter for our input model. Similar
argument applies to Gn,n,p.
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I Definition 7. The modified Bessel functions of the first kind are defined as follows:

Ik(x) =
∞∑

i=0

1
i!Γ(i+ k + 1)

(x
2

)2i+k

.

For an integer k ≥ 0, it becomes Ik(x) =
∑∞

i=0
1

i!(i+k)!
(

x
2
)2i+k

. We note that the modified
Bessel functions have the following symmetry property: Ik(x) = I−k(x).

I Definition 8. Marcum’s Q function is defined as follows:

Qn(a, b) = exp
(
−a

2 + b2

2

) ∞∑
k=1−n

(a
b

)k

Ik(ab).

Now, the closed-form expression for h(x) can be derived from the answer on Stats
Stackexchange [16]. For completeness, we reproduce the derivation in Appendix A.

I Lemma 9 ([16]). For x > 0 we have

h(x) =
1 + x− 2e−x−1 (I0(2

√
x) +

√
xI1(2

√
x))− (1− x)

(
1− 2Q1(

√
2x,
√

2)
)

2 .

Thus, in terms of our overview we have fc(x) = h(c(1− x)), because we hope to show
that

E(min(Bin(n−Yi, c/n),Poi(1)) | Yi) ≈ E(min(Poi(c(1−Yi/n)),Poi(1)) | Yi) = h(c(1−Yi/n)).

To apply the method of differential equations we need to analyze the above approximation
and show that fc is Lipschitz. We start by analyzing how good the approximation is.

I Lemma 10.

lim
n→∞

∣∣E(min(Bin(n− Yi, c/n),Poi(1)) | Yi)− h(c(1− Yi/n))
∣∣ = 0.

Proof. We introduce the following useful notation: N = n−Yi, p = c/n, and λ = c(1−Yi/n).
Moreover, we let br = Pr(Bin(N, p) = r) and pr(a) = Pr(Poi(a) = r). Let Wi ∼ Poi(c(1−
Yi/n)). Then the statement of the lemma can be translated into∣∣E(min(Xi, Zi)−min(Wi, Zi) | Yi)

∣∣
The expectation is just a big sum. Let’s consider individual terms and their contributions to
the overall sum.
1. Case: Wi < Xi < Zi. The contribution of Xi = k,Wi = j, Zi = ` when j < k < ` is

k − j.
2. Case: Xi < Wi < Zi. The contribution of Xi = j,Wi = k, Zi = ` when j < k < ` is

j − k = −(k − j).
3. Case: Wi < Zi ≤ Xi. The contribution of Xi = k,Wi = j, Zi = ` when j < ` and

k ≥ ` is `− j.
4. Case: Xi < Zi ≤ Wi.The contribution of Xi = j,Wi = k, Zi = ` when j < ` and k ≥ `

is j − `.
5. Cases: (a) Xi = Wi; (b) Zi ≤ Xi, Wi. The contribution is 0.

APPROX/RANDOM 2018



5:8 Greedy Bipartite Matching in RTPAM

We pair up terms corresponding to (1) with (2) and terms corresponding to (3) with (4).
Define

S1 =
∞∑

k,j,`=0
I(j < k < `) ((k − j)bkpj(λ)p`(1) + (j − k)bjpk(λ)p`(1)) ,

and

S2 =
∞∑

k,j,`=0
I(j < `, k ≥ `) ((`− j)bkpj(λ)p`(1) + (j − `)bjpk(λ)p`(1)) .

Thus, we get that∣∣E(min(Xi, Zi)−min(Wi, Zi) | Yi)
∣∣ = |S1 + S2| ≤ |S1|+ |S2|.

We will show that limn→∞ |S1| = 0. Similar argument implies that limn→∞ |S2| = 0.
We have

S1 =
∞∑

k,j,`=0
I(j < k < `)p`(1)(k − j)(bkpj(λ)− bjpk(λ))

=
∞∑

k,j,`=0
I(j < k < `)p`(1)(k − j)((bk − pk(λ))pj(λ)− (bj − pj(λ))pk(λ))

= S1
1 + S2

1 ,

where S1
1 =

∑∞
k,j,`=0 I(j < k < `)p`(1)(k − j)(bk − pk(λ))pj(λ) and S2

1 = S1 − S1
1 . Again,

|S1| ≤ |S1
1 |+ |S2

1 |. We will show that limn→∞ |S1
1 | = 0, and a similar argument implies that

the same holds for |S2
1 |. We have

|S1
1 | ≤

∞∑
k=0

 ∞∑
j,`=0

I(j < k < `)(k − j)p`(1)pj(λ)

 |bk − pk(λ)|.

By [14], we have limn→∞ |S1
1 | = 0 if and only if

∞∑
k,j,`=0

I(j < k < `)(k − j)p`(1)pj(λ)pk(λ) = O(1).

Lastly, we have
∞∑

k,j,`=0
I(j < k < `)(k − j)p`(1)pj(λ)pk(λ) ≤

∞∑
k,j,`=0

I(j < k < `)kp`(1)pj(λ)pk(λ)

≤
∞∑

k,j,`=0
p`(1)pj(λ)kpk(λ) ≤ λ −−−−→

n→∞
c = O(1). J

Due to space considerations we prove that fc is Lipschitz in Appendix A.

I Lemma 11. The function fc(x) is Lipschitz on [0, 1].

Finally, we have all the necessary ingredients to prove the main theorem of this section. Al-
though this theorem does not give an explicit closed-form expression for µ(Greedy,RTPAM
(n, c)), it gives a simple way to evaluate it numerically for any value of c > 0.
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I Theorem 12.

µ(Greedy,RTPAM(n, c)) = gc(1),

where gc is a solution to the following differential equation:

g′c(t) = h(c(1− gc(t))),
gc(0) = 0,

and h is given in Lemma 9.

Proof. This is a direct application of Wormald’s theorem (Theorem 5.1 in [19]) using
Lemmas 10 and 11. J

Next, we show two upper bounds on E(OPT(RTPAM(n, c))). The minimum of the two
will be used to compute the approximation ratio of Greedy.

I Theorem 13. For all c ∈ R>0 we have

E(OPT(RTPAM(n, c))) ≤ min
(
nc

(
1− 1

e

)
,

(
2− γ∗ + γ∗ + γ∗γ∗

c

)
n+ o(n)

)
,

where γ∗ is the smallest solution to the equation x = c exp(−c exp(−x)) and γ∗ = c exp(−γ∗).

Proof. The first argument in the minimum follows from the proof of Theorem 6. Let Qj

denote the number of neighbors of a node of type j. Observe that the number of nodes of
type j participating in any matching is bounded above by QjI(Zj ≥ 1). Using the fact that
Qj and I(Zj ≥ 1) are independent, taking the expectation and summing over all j results in
the upper bound of nc

(
1− 1

e

)
.

The second argument in the minimum follows from the observation

E(OPT(RTPAM(n, c))) ≤ E(OPT(Gn,n,c/n)) (2)

and Theorem 4. Let α(G) denote the independence number of the graph. By Gallai’s and
Kőnig’s theorems it suffices to prove that

E(α(RTPAM(n, c))) ≥ E(α(Gn,n,c/n)).

Consider the two-step view of RTPAM(n, c). In the first step, a type graph Ĝ = (U, V,E)
is generated from the distribution Gn,n,c/n. Let S be a largest independent set in the type
graph. Write S = S1 ∪ S2, where S1 = S ∩ U consists of offline nodes and S2 = S ∩ V
consists of online types. In the instance graph all nodes from S1 together with all nodes with
types from S2 will form an independent set. In other words, even if a node of a given type is
repeated multiple times from S2, it can be safely included in an independent set. Thus, we
have

E(α(RTPAM(n, c)) | S1, S2) ≥ E

|S1|+
∑
j∈S2

Zj | S1, S2


= |S1|+

∑
j∈S2

E(Zj | S1, S2) = |S1|+ |S2| = |S|,

where the last equality follows because Zj is independent of S1, S2. Taking the expectation
over S proves E(α(RTPAM(n, c))) ≥ E(α(Gn,n,c/n)), since |S| has the same distribution as
α(Gn,n,c/n). J
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3.3 The Regime of c = ω(1)
In this section we show that Greedy matches almost all offline nodes in RTPAM(n, c) model
when c = ω(1). Consider the two-step view of RTPAM(n, c). Recall that Zj refers to the
number of nodes of type j that are generated, and that Xj refers to the number of neighbors
of a node of type j that have not been matched in any of the previous rounds. Also, recall
that Greedy matches E(min(Xj , Zj)) in round j in expectation. We will show that in most
rounds min(Xj , Zj) is very close to Zj . This finishes the argument, since

∑
j E(Zj) = n

is the total number of offline nodes and a trivial upper bound on the size of a maximum
matching.

I Theorem 14. Let c = ω(1) then we have:

ρ(Greedy,RTPAM(n, c)) = 1.

Proof. Let p = c
n and k = n√

c
. Fix a round i and assume that at least k offline nodes have

not been matched in earlier rounds. Then variable Xi has binomial distribution with at
least k trials and the probability of success c/n. We will consider X̃i ∼ Bin(k, c/n) such that
X̃i ≤ Xi. We will show that Pr(X̃i ≥ Zi) = 1− o(1). Since Zi ∼ Poi(1) we have:

P (Zi ≥ c1/100) = 1
e

∞∑
j=c1/100

1
j! ≤

1
c1/100!

≤ 1
2c1/100 .

For X̃i we have Var(X̃i) = kp(1 − p) =
√
c(1 − c/n) and E(X̃i) =

√
c. By Chebyshev’s

inequality

Pr(|X̃i −
√
c| ≥ c1/3) ≤

√
c(1− c/n)
c2/3 = 1− c/n

c1/6 .

From these two bounds, it follows that

Pr(X̃i ≥ Zi) ≥ Pr(Yi ≤ c1/100 ∧ X̃i ≥
√
c− c1/3) ≥ 1− 1− c/n

c1/6 − 1
2c1/100 = 1− o(1).

In addition, it is easy to see that in the first n − 10k rounds Greedy matches at most
n − k offline nodes with probability 1 − o(1). In particular, the probability of matching
more than that is bounded by the probability that

∑n−10k
i=1 Zi > n − k. Thus, we can

condition on having at least k available offline nodes during each of the first n − 10k
rounds. Therefore, the expected size of the matching constructed by Greedy is at least∑n−10k

i=1 E(min(Zi, Xi)) ≥ (n− 10k)(1− o(1)) = n− o(n). J

3.4 Putting it together
In this section, we take a closer look at our results for Greedy in RTPAM(n, c) model. We
already know that Greedy achieves competitive ratio 1 in the regimes c = o(1) and c = ω(1).
Hence, we concentrate on the regime of constant c. In Figure 1 we plot the asymptotic
fraction of matched offline nodes by Greedy (Theorem 12) and the upper bound on the
fraction of offline nodes in a maximum matching (Theorem 13) as functions of c .

By taking the ratio of the two curves in Figure 1 we obtain a lower bound on the asymptotic
approximation ratio of Greedy in the RTPAM(n, c) model as a function of c. We plot this
lower bound in Figure 2. We see that the lower bound achieves a unique minimum on the
interval (0,∞) and that it converges to 1 as c goes to infinity. By numerically minimizing
the lower bound we obtain that the minimum of this curve is achieved at c ≈ 0.667766 and
the lower bound is ≈ 0.715071. Thus, we have the following corollary:
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I Corollary 15. For all regimes of c we have

ρ(Greedy,RTPAM(n, c)) ≥ 0.715.

The shape of the lower bound graph in Figure 2 is a bit strange and it suggests that
our lower bound might not be tight. Therefore, we conjecture that it should be possible to
strengthen the upper bound on the size of a maximum matching in RTPAM(n, c).

It is also interesting to compare the performance of Greedy on RTPAM(n, c) inputs
with its performance on Gn,n,c/n inputs. As stated in the introduction, we expect Greedy
to perform worse in the RTPAM(n, c) model, because the RTPAM(n, c) model has “less
randomness” in the sense of introducing correlations between consecutive online nodes that
are not present in the Gn,n,c/n model. Indeed, this intuition turns out to be correct. We
plot the performance of Greedy in two models in Figure 3 and observe that Greedy on
Gn,n,c/n inputs outperforms RTPAM(n, c) for constant c.

4 Conclusion

We have introduced a new stochastic model for the online bipartite matching problem. In
our model, a random Erdős-Rényi type graph is generated first. Then an input instance
graph is generated in rounds where in the ith round, the corresponding input type node
appears consecutively ni times where ni is distributed according to the Poisson distribution
with parameter 1.

More generally, this model is just a specific case of a broad class of stochastic online models
for graph problems where type graphs are generated by some random or adversarial processes
and then the ith input type node occurs consecutively ni times where ni is determined by
another random process so as to model some limited form of “locality of reference”. More
generally, we could use a Markov process to generate the next type node instance.

The Gn,n,p Erdős-Rényi graphs (where ni = 1 for all i) and i.i.d. models where the type
graph G is determined adversarially or according to a random process (and where the ith

round is drawn i.i.d. from the type graph) fit within this general class of stochastic models.
As in Mastin and Jaillet [1] and Besser and Poloczek [3], we analyze the performance of the

simplest greedy algorithm. As in other such studies, it is often the case that simple greedy or
“greedy-like” algorithms perform well on real benchmarks or stochastic settings, well beyond
what worst case analysis might suggest. Our specific RTPAM model introduces dependencies
between online nodes that do not appear in other stochastic models for maximum bipartite
matching. These dependencies in the RTPAM model result in some technical challenges
in addition to the non-trivial analysis in Mastin and Jaillet. As in Mastin and Jaillet, our
analysis falls into three classes dependening on the edge probabilities p = c/n. As in Mastin
and Jaillet, the regimes c = o(1) and c = ω(1) result in approximation ratios that approach 1
as n increases. And as in Mastin and Jaillet, we obtain an almost precise approximation ratio
(modulo the estimate of the expected size of optimal matching) for the regime of constant
c. Given the input dependencies our worst case bound (i.e. for the c∗ that minimizes the
approximation ratio) is significantly less than in Mastin and Jaillet.

As we have suggested, our RTPAM model is just a specific case of a wide class of online
stochastic models that have not been studied with respect to any algorithm. We believe
that such a study will be both technically interesting as well as becoming more applicable to
many “real-world” settings where there is “locality of reference”. Finally, we have begun an
experimental study of the performance of Greedy in comparison to algorithms that exploit
the underlying type graph in a distributional model (e.g., [6, 17, 2, 9, 5]).
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A Two Technical Lemmas

In this appendix, we prove two lemmas that are used in Section 3. The first lemma gives a
closed-form expression for h(x) := E(min(Poi(x),Poi(1))) in terms of the modified Bessel
functions of the first kind and the Marcum’s Q functions. The derivation relies on the answer
from Stats Stackexchange [16].

I Lemma 16 (Lemma 9 restated,[16]). For x > 0 we have

h(x) =
1 + x− 2e−x−1 (I0(2

√
x) +

√
xI1(2

√
x))− (1− x)

(
1− 2Q1(

√
2x,
√

2)
)

2 .

Proof. A random variable that is equal to the difference between two Poisson random
variables has Skellam distribution. As the first step, we reduce the computation of h(x) to
the computation of the expectation of an absolute value of a Skellam distributed random
variable:

h(x) = E(min(Poi(x),Poi(1))) = E(Poi(x)) + E(Poi(1))− E(|Poi(x)− Poi(1)|)
2

= 1 + x− E(|Poi(x)− Poi(1)|)
2 .

In the rest of the proof, we show how to compute E(|Poi(x)− Poi(1)|). From the PMF of a
Skellam variable, one easily obtains the PMF of the absolute value of our Skellam variable:

Pr(|Poi(x)− Poi(1)| = k) =
{
e−1−x

(
xk/2Ik(2

√
x) + x−k/2I−k(2

√
x)
)

if k > 0,
e−1−xI0(2

√
x) if k = 0.

Then we write down the MGF and simplify it using the Marcum’s Q function to get:

M|Poi(x)−Poi(1)|(t) =e−1−x
(
Q1(

√
2 exp(−t),

√
2x exp(t)) exp(xet + e−t)

+Q1(
√

2x exp(−t),
√

2 exp(t)) exp(et + xe−t)− I0(2
√
x)
)
.

Now, we can take the derivative of the MGF at t = 0 to derive:

E(|Poi(x)− Poi(1)|) = 2e−x−1 (I0(2
√
x) +

√
xI1(2

√
x)
)

+ (1− x)
(

1− 2Q1(
√

2x,
√

2)
)
.

J

In the next lemma we prove that the function defining the differential equation in Section 3
is Lipschitz. This is needed to establish the main result of the paper via Wormald’s theorem.

I Lemma 17 (Lemma 11 restated). The function fc(x) is Lipschitz on [0, 1].

Proof. We prove the statement by showing that the derivative of fc(x) is bounded on [0, 1].
By definition of fc we have fc(x) = h(c(1 − x)). Thus, f ′c(x) = −ch′(c(1 − x)). Hence
bounding |f ′c(x)| on [0, 1] amounts to bounding h′(x) on [0, c]. We compute the derivative of
h as follows:

2h′(x) = 2 + 2e−1−x(I0(2
√

x) +
√

xI1(2
√

x))− e−1−x(3I1(2
√

x)/
√

x + I0(2
√

x) + I2(2
√

x))

− 2Q1(
√

2x,
√

2) + 2(1− x)(Q2(
√

2x,
√

2)−Q1(
√

2x,
√

2))

= 2 + 2e−1−x(I0(2
√

x) +
√

xI1(2
√

x))− e−1−x(3I1(2
√

x)/
√

x + I0(2
√

x) + I2(2
√

x))

− 2Q1(
√

2x,
√

2) + 2(1− x)e−1−xI1(2
√

x)/
√

x

= e−1−x(I0(2
√

x)− I1(2
√

x)/
√

x− I2(2
√

x)) + 2− 2Q1(
√

2x,
√

2),
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where the second equation follows from the definition of the Marcum’s Q function and the
third equation follows by collecting and simplifying terms with the factor of e−1−x together.
We complete the proof of the lemma by bounding each of the terms.

By the definition of the Bessel functions of the first kind we have

I0(2
√

x)− I1(2
√

x)/
√

x− I2(2
√

x) =
∞∑

i=0

1
i!i!x

i −
∞∑

i=0

1
i!(i + 1)!x

i −
∞∑

i=1

1
(i− 1)!(i + 1)!x

i

= 1− 1 +
∞∑

i=1

(
1

i!i! −
1

i!(i + 1)! −
1

(i− 1)!(i + 1)!

)
xi

=
∞∑

i=1

1
i!(i + 1)!x

i ≤
∞∑

i=0

1
i!x

i = ex.

Thus, the first term is bounded by ec. The second term 2− 2Q1(
√

2x,
√

2) is bounded
by 2. This follows from interpretation of the Marcum’s Q function as a probability – in
particular, we have Q1(

√
2x,
√

2) ∈ [0, 1] (see [8]). All in all, we have |f ′c(x)| = O(1) for
x ∈ [0, 1]. J

B Figures

In this appendix, we collect all figures mentioned in the paper.

Figure 1 The exact asymptotic ratio of Greedy to n from Theorem 12, and the upper bound
on the asymptotic ratio of a size of maximum matching to n from Theorem 13. Both results are
plotted as functions of c in the RTPAM(n, c) model.

Figure 2 The lower bound on the competitive ratio for Greedy in RTPAM(n, c) model as a
function of c.
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Figure 3 The exact asymptotic ratio of Greedy to n in RTPAM(n, c) input model ( Theorem 12)
versus the exact asymptotic ratio of Greedy to n in Gn,n,c/n input model (Theorem 5).

Figure 4 The upper bound on the asymptotic ratio of the size of a maximum matching in Gn,n,c/n

to n given in Theorem 4.
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