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Abstract
Given a set of clients with demands, the Capacitated Vehicle Routing problem is to find
a set of tours that collectively cover all client demand, such that the capacity of each vehicle is
not exceeded and such that the sum of the tour lengths is minimized. In this paper, we provide
a 4/3-approximation algorithm for Capacitated Vehicle Routing on trees, improving over
the previous best-known approximation ratio of (

√
41− 1)/4 by Asano et al.[2], while using the

same lower bound. Asano et al. show that there exist instances whose optimal cost is 4/3 times
this lower bound. Notably, our 4/3 approximation ratio is therefore tight for this lower bound,
achieving the best-possible performance.
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1 Intro

Vehicle-routing problems address how a service can best be provided to meet the demand
from a set of clients. These problems arise very naturally in both commercial and public
planning. Real world vehicle-routing problems must account for the capacities of the vehicles,
which limit the amount of client demand that can be met in a single trip. We formalize this
problem as finding tours in a graph:

Given a graph G = (V,E), a specified depot vertex r, a client set S, an edge length
function l : E → Z≥0, a demand function d : S → Z≥0 and Q > 0, the Capacitated
Vehicle Routing problem is to find a set of tours of minimum total length such that each
tour includes r and the tours collectively cover all demand at every client and such that no
tour covers more than Q demand. A tour can only cover demand from clients along the tour,
but it may pass by some clients without covering their demand.

There are two common variants of this problem: splittable and unsplittable. In the
splittable variant, the demand of a client can be collectively covered by multiple tours, and
in the unsplittable variant, the entire demand of a client must be covered by the same tour.

Both variants of this problem are NP-hard and therefore unlikely to admit a polynomial-
time exact solution, but constant factor approximations can be found in polynomial time [9].
A natural question is whether better performance can be achieved for restricted graph classes.
One line of research has focused on approximating Capacitated Vehicle Routing in trees.
Though the problem remains NP-hard in trees [12], better constant-factor approximations
have been found than for general metrics.
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3:2 A Tight 4/3 Approximation for Capacitated Vehicle Routing in Trees

Hamaguchi and Katoh [10] noted a simple lower bound for the splittable-variant of
Capacitated Vehicle Routing in trees: every edge must be traversed by at least enough
vehicles to accommodate all demand from the clients that use the edge on the shortest path
to the depot. They then use this lower bound (denoted LB) to give a 1.5 approximation [10].
Following this work, Asano et al. [2] use the same lower bound to achieve a (

√
41 − 1)/4

approximation. They also prove the following lemma (see Appendix C):

I Lemma 1 ([2]). There exist instances of Capacitated Vehicle Routing in trees whose
optimal solution costs 4/3 · LB.

This shows that the best possible approximation ratio using this lower bound would be a
4/3-approximation. Our result, stated in Theorem 2, achieves this ratio, and is therefore
tight with respect to LB. No further improvements over our result can be made until a
better lower bound is found.

I Theorem 2. There is a polynomial-time 4/3 approximation for Capacitated Vehicle
Routing in trees that is tight with respect to LB.

1.1 Related Work
As Capacitated Vehicle Routing generalizes the Traveling Salesman Problem
(TSP) (which is the special case of Q = |V |) it is NP-hard, and in general metrics is
APX-hard [13].

For general metrics, a technique called Iterated Tour Partitioning starts with a TSP
solution, partitions this tour into paths of bounded capacity, and then makes vehicle routing
tours by adding paths from the depot to each endpoint of each path [9]. Iterated Tour
Partitioning results in a polynomial time (1 + (1 − 1/Q)α)-approximation for splittable
Capacitated Vehicle Routing, where α is the approximation ratio of the TSP tour. A
similar approach can be used for the unsplittable variant, resulting in a (2 + (1− 2/Q)α)-
approximation [1]. Using Christofides’ 1.5-approximation for TSP [6], these ratios are
(2.5 − 1.5

Q ) and (3.5 − 3
Q ) respectively. No significant improvements over iterated tour

partitioning are known for general metrics.
Even in trees, splittable Capacitated Vehicle Routing is NP-hard by a reduction

from bin packing [12], and unsplittable Capacitated Vehicle Routing is NP-hard to
even approximate to better than a 1.5-factor [8]. Since depth-first search trivially solves
TSP optimally in trees, iterated tour partitioning already gives a (2− 1

Q )-approximation for
splittable demands in trees and a (3− 2

Q )-approximation for unsplittable demands in trees.
Labbe et al. improved this to a 2-approximation for the unsplittable-demand variant [12].
For splittable Capacitated Vehicle Routing in trees, Hamaguchi and Katoh [10] define
a natural lower bound on the cost of the optimal solution and give a 1.5-approximation
algorithm that yields a solution with cost at most 1.5 times this lower bound. Asano, Katoh,
and Kawashima [2] improve the ratio to (

√
41 − 1)/4 using this same lower bound. They

also show that there are instances whose optimal cost is, asymptotically, 4/3 times this lower
bound value (see Appendix C for such an instance). This implies that if a 4/3-approximation
algorithm exists that uses this lower bound it would be tight (i.e. best possible). In this
paper we resolve the question as to whether or not such an an algorithm exists.

All of the above results allow for arbitrary capacity Q. Even for fixed capacity Q ≥ 3,
Capacitated Vehicle Routing is APX-hard in general metrics [3]. For fixed capacities,
Capacitated Vehicle Routing is polynomial-time solvable in trees, but is NP-hard in
other metrics. For instances in the Euclidean plane (R2), polynomial-time approximation
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schemes (PTAS) are known for instances where Q is constant [9], Q is O(logn/ log logn) [3],
and Q is Ω(n) [3]. For higher-dimensional Euclidean spaces Rd, a PTAS is known for when
Q is O(log1/d n) [11]. While a quasi-polynomial-time approximation (QPTAS) is known for
arbitrary Q on instances in the Euclidean plane (R2) [7], no PTAS is known for arbitrary Q
in any non-trivial metric.

Recently, the first approximation schemes for non-Euclidean metrics were designed.
Specifically, a quasi-polynomial time approximation scheme is known for planar and bounded-
genus graphs when Q is fixed [5], and a polynomial-time approximation scheme is known for
graphs of bounded highway-dimension when Q is fixed [4].

1.2 Techniques
Our work extends the techniques introduced by Asano et al. [2] which itself was an extension
of the work of Hamaguchi and Katoh [10]. Specifically, Hamaguchi and Katoh describe a
very natural lower bound that arises on tree instances [10]: the number of tours that traverse
each edge must be at least enough to cover all demand in the subtree below the edge (the
tree is assumed to be rooted at the depot). This introduces a minimum traffic value on the
edge. Multiplying this value by two (each tour crosses each edge once in each direction)
times the weight of the edge and summing over all edges provides a lower bound on the cost
of any feasible solution.

The algorithm of Asano et al. [2] proceeds in a sequence of rounds. In each round, a set
of tours is identified such that the cost-to-savings ratio, namely the ratio of the cost (of these
tours) to the reduction to the lower bound that results from taking these tours, is bounded
by some constant α. The key is that although a given tour itself may cost more than α times
its reduction to the lower bound, collectively the set of tours has the desired ratio. If after a
round ends, no uncovered demand remains, then the union of these sets of tours is a feasible
solution with cost at most α times the lower bound, which is at most α times the optimal
cost. For Asano et al. [2], α = (

√
41− 1)/4. We use a similar approach to achieve α = 4/3.

Asano et al. [2] also introduced the idea of making safe modifications to the instance.
That is, modifying the structure of the instance in such a way that does not increase the value
of the lower bound or decrease the optimum cost (although it may increase the optimum
cost) and such that a feasible solution in the modified instance has a corresponding feasible
solution in the original instance. These modifications can be made safely at any point in the
algorithm. Our algorithm also makes use of safe modifications, although the ones that we
define differ somewhat from those defined by Asano et al. [2].

These modifications allow us to reason better about how the resulting instance must be
structured. The idea is that the modifications can be made until one of a few cases arise.
Each case has a corresponding strategy to find a set of tours with the desired cost-to-savings
ratio.

Specifically, the algorithm of Asano et al. [2] classifies the leafmost subtrees containing
at least 2Q units of demand into one of a few cases. The main obstacle in extending their
algorithm to a 4/3-approximation is that one of the cases does not seem to have a good
strategy. On the other hand, modifying the algorithm to instead classify the leafmost subtrees
containing at least βQ units of demand for some β > 2 can greatly increase the number of
cases that arise.

We overcome this obstacle by generalizing the difficult case into what we call a p-chain
(See Figure 2). Our key insight is that even arbitrarily large p-chains can be addressed
efficiently in sibling pairs and at the root. Our algorithm effectively delays addressing the
difficult case by pushing it rootward until it finds a pair or reaches the root and is thus easy

APPROX/RANDOM 2018



3:4 A Tight 4/3 Approximation for Capacitated Vehicle Routing in Trees

to address. To keep the number of cases small, we address easy cases as they emerge, and
require that any remaining difficult case must have a specific structure that the algorithm
can easily detect in subsequent rounds.

2 Preliminaries

We use OPT to denote the cost of an optimization problem. For a minimization problem, a
polynomial-time α-approximation algorithm is an algorithm with a runtime that is polynomial
in the size of the input and returns a feasible solution with cost at most α ·OPT .

When the input graph G is a tree it is assumed to be rooted at the depot r. Let P [u, v]
denote the unique path from u to v in the tree. Recall that the problem gives a length
l(e) ≥ 0 for each edge e, and let l(P [u, v]) =

∑
e∈P [u,v] l(e) denote the shortest path distance

between u and v.
For rooted tree T = (V,E), and v ∈ V let Tv denote the subtree rooted at v and d(Tv)

be the total demand from vertices in Tv.
The parent of a vertex v is the vertex u adjacent to v in P [v, r], and the parent of r is

undefined. An edge labeled (u, v) indicates that u is the parent of v. The parent of an edge
(u, v) is the edge (parent(u), u) and is undefined if u = r. If v has parent vertex u, we call
B = Tv ∪ {(u, v)} a branch at u, and edge (u, v) the stem of the branch. The parent of a
branch at u with stem e is the branch at parent(u) with stem parent(e) and is undefined if
u = r. A vertex (resp. edge, branch) with a parent is said to be a child vertex (resp. edge,
branch) of that parent.

2.1 Lower Bound
Here we describe the lower bound introduced by Hamaguchi and Katoh [10] and Asano
et al. [2] and adopt similar terminology. Since all demand must be covered and each tour
can cover at most Q demand, each edge e = (u, v) must be traversed by enough tours to
cover d(Tv) demand. We call this value the traffic on the edge e, denoted f(e). Namely,
f(e) = dd(Tv)

Q e tours. Each such tour traverses the edge exactly twice (once in each direction).
We say that the lower bound LB(e) of the contribution of edge e = (u, v) to the total solution
cost is therefore,

LB(e) = 2 · l(e) · f(e) = 2 · l(e)dd(Tv)
Q
e

and that the lower bound LB on OPT is

LB =
∑
e∈E

LB(e)

For convenience, we scale down all demand values by a factor of Q and set Q = 1. We also
assume that the vertices with positive demand are exactly the leaves: If some internal vertex
v has positive demand d(v) we can add a vertex v′ with demand d(v′) = d(v) and edge (v, v′)
of length zero and set d(v) to zero. Alternatively, if some leaf v has zero demand, no tour
in an optimal solution will visit v, so v and the edge to v’s parent can be deleted from the
graph. Finally, we assume that no non-root vertex has degree exactly two, as no branching
would occur at such a vertex, so the two incident edges can be spliced into one.

A very high level description of the algorithm is as follows: iteratively identify sets of
tours in which the ratio of the cost of the tours to the reduction in cost to the lower bound,
LB, is at most 4/3. We call such a set of tours a 4/3-approximate tour set.
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We say that a 4/3-approximate tour set removes the demand that the tours cover. If
such a tour set removes all demand from a branch, we say that this branch has been resolved.
After a branch is resolved, it is convenient to think of it as having been deleted from the tree
and proceed with the smaller instance.

We note that any 4/3-approximation algorithm for Capacitated Vehicle Routing
trivially generates a 4/3-approximate tour set. The converse, is also straightforward:

I Lemma 3. If, after iteratively finding and removing demand from 4/3-approximate tour sets,
no demand remains, then the union of all tour sets is a 4/3-approximation for Capacitated
Vehicle Routing.

Given this, we make one more simplifying assumption that each leaf v has demand
d(v) < 1. Assume to the contrary that for some leaf v, d(v) ≥ 1. A tour that goes directly
from r to v and back and covers one unit of demand at v is in fact a 1-approximate tour
(and thus also a 4/3-approximate tour). If ever such a leaf exists, we can greedily take such
tours until no more such leaves exist [2].

2.2 Safe Operations
We say that an operation that modifies the graph is safe if it does not decrease OPT or change
the cost of the lower bound LB and it preserves feasibility. Note that a 4/3-approximate
tour set in the modified graph is therefore also a 4/3-approximate tour set in the unmodified
graph.

The algorithm proceeds iteratively. In each iteration, the algorithm performs a series of
safe operations and takes a sequence of 4/3-approximate tours.

We now define the operations (see Appendix A for proofs of safeness). Note that our
operations and simplifying assumptions generalize the operations that appear in [2] with
different vocabulary (see Appendix B for a comparison).

Condense: If edge e = (u, v) has traffic f(e) = 1 and v is not a leaf, add a vertex v′
and replace e and Tv with an edge e′ = (u, v′) with l(e′) = l(e) +

∑
e′′∈Tv

l(e′′) and set
d(v′) = d(Tv) (see Figure 1a).
Unzip: If edge e = (u, v) has traffic equal to the sum of the traffic on child edges
(v, w1), (v, w2), ..., (v, wk), then delete v and add edges (u,w1), (u,w2), ..., (u,wk) with
lengths l((u,wi)) = l(e) + l(v, wi) for all i ∈ {1, 2, ..., k} (see Figure 1b).
Group: If vertex u has at least four children, including three leaf children v1, v2, v3, such
that 1.5 < d(v1) + d(v2) + d(v3) < 2, add vertex u′, edge (u, u′) of length zero, and for
i ∈ 1, 2, 3, replace (u, vi) with (u′, vi) (see Figure 1c).
Unite: If vertex u has leaf children v1 and v2 such that d(v1) + d(v2) ≤ 1, delete
v1 and v2 and add vertex v0 with demand d(v1) + d(v2) and edge (u, v0) with length
l((u, v1)) + l((u, v2)) (see Figure 1d).
Slide: If edge e0 = (u, v) has child edges e1 = (v, w1) and e2 = (v, w2) such that traffic
f(e0) = f(e1), then delete edge e2 and add edge (w1, w2) of length l(e2) (see Figure 1e).

3 Algorithm

Exhaustively applying safe operations is called simplifying the instance. Note that none of
the operations cancel each other, so this process terminates.

APPROX/RANDOM 2018



3:6 A Tight 4/3 Approximation for Capacitated Vehicle Routing in Trees

(a) Condense (b) Unzip

(c) Group (d) Unite (e) Slide

Figure 1 Safe Operations. Traffic values are shown in rectangles.

We say that a problem instance is simplified if no more safe operations are available,
no internal vertices have demand, no non-root vertex has degree two, and for every leaf v,
0 < d(v) < 1. We say that a branch is simplified if these conditions hold for the branch.

Recall that a branch consists of a subtree along with its parent edge (stem). If the branch
has traffic p, we call it a p-branch.

A simplified 2-branch with stem e0 = (u, v) such that v has exactly three children
w1, w2, w3, all of which are leafs and such that 1.5 < d(w1) + d(w2) + d(w3) ≤ 2 is called a
2-chain.

I Lemma 4. In a simplified problem instance, all 2-branches are 2-chains.

Proof. Consider any 2-branch in a simplified problem instance. Clearly no edge in the branch
can have traffic greater than two. If more than one child edge of the stem had traffic two,
then the traffic of the stem itself must be greater than two. If the stem had exactly one child
edge with traffic two, then a slide operation would have been possible. Therefore every child
edge of the stem has traffic one. Each of these edges must be leaf edges or else they could be
condensed. If there were exactly two such edges, then the stem could be unzipped. Since no
two of these edges can be united, then the demand of every pair sums to more than one, so
there are exactly three such edges and their demand sums to more than 1.5. J

3.1 p-Chains
We now generalize the notion of a 2-chain. For p ≥ 3 a p-chain is a simplified p-branch with
stem e0 = (u, v) such that v has exactly three children w1, w2, w3, in which w2 and w3 are
leaves with 1 < d(w2) + d(w3) ≤ 1.5 and (v, w1) is the stem of a (p− 1)-chain (see Figure 2a).

For convenience, we define a labeling scheme for p-chains. Each vertex vj
i is doubly indexed

by level i and rank (child-order) j. We use ej
i to denote the parent edge of vj

i , ∀i, j. A 2-chain
with parent u has stem e0

2 = (u, v0
2) leaves v0

1 , v1
1 , and v2

1 such that l(e0
1) ≥ l(e1

1) ≥ l(e2
1). For

p > 2, a p-chain with parent u has stem e0
p = (u, v0

p), and children v0
p−1, v1

p−1, and v2
p−1, such

that e0
p−1 is the stem of a p− 1-chain, and v1

p−1 and v2
p−1 are leaves with l(e1

p−1) ≥ l(e2
p−1)

(See Figure 2a).
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(a) p-Chain. Traffic values are shown in
rectangles, and d denotes demand.

(b) Cascade. The first four tours of a cas-
cade tour set are depicted.

Figure 2

We further classify some p-chains as long p-chains: All 2-chains are long, and for p ≥ 3
a long p-chain is a p-chain in which l(e2

p−1) < l(P [v0
p, r]) and e0

p−1 is the stem of a long
(p− 1)-chain. A p-chain in which l(e2

p−1) ≥ l(P [v0
p, r]) is called a short p-chain.

Long p-chains are particularly convenient because they can be resolved individually at
the root and in sibling pairs for internal vertices, as described in the following lemmas (which
we prove in Section 5).

I Lemma 5. Long p-chains can be resolved at the root.

I Lemma 6. A long p-chain and long p′-chain can be resolved together if they are sibling
branches.

As in [2], our algorithm proceeds in a series of iterations. Each iteration performs a set
of safe operations and identifies a 4/3-approximate tour set.

I Lemma 7. Iteration i runs in polynomial time and either finds a nonempty 4/3-approximate
tour set or finds that every branch at the root is either a long p-chain or 1-branch.

Proof. See Section 4. J

These iterations continue until every branch at the root is either a long p-chain or 1-branch.
The algorithm then solves the remaining instance, using the result from Lemma 8.

I Lemma 8. There is a polynomial time 4/3-approximation algorithm for instances of
Capacitated Vehicle Routing on trees in which every child branch of the root is either
a long p-chain or a 1-branch.

Proof. The cost of a tour that traverses a 1-branch at the root is equivalent to the reduction
to lower bound LB that results from removing the demand of the branch, so such a tour is a
1-approximate tour (and thus also a 4/3-approximate tour). The lemma result then follows
from Lemma 3 and Lemma 5 J

Putting these steps together, gives our overall 4/3-approximation result described in
Theorem 2.

APPROX/RANDOM 2018



3:8 A Tight 4/3 Approximation for Capacitated Vehicle Routing in Trees

I Theorem 2. There is a polynomial-time 4/3 approximation for Capacitated Vehicle
Routing in trees that is tight with respect to LB.

Proof. Let m denote the total amount of demand in the graph. Since each iteration removes
demand, there are at most m iterations, each of which runs in polynomial time. By Lemma 7,
after iteration m, every branch off the root must be a long p-chain or a 1-branch. By
Lemma 8 there is a polynomial-time 4/3-approximation for these branches. Combining this
approximation with the collection of tours identified during the iterations results in an overall
4/3 approximation, by Lemma 3. J

All that remains is to prove the above lemmas. In Section 4 we describe the iteration
subroutine and prove Lemma 7. In Section 5 we prove Lemmas 5 and 6.

4 Description of Iteration i

We say that a p-branch B is settled if it is either a 1-branch or a long p-chain. Otherwise we
say that B is unsettled. We say that a p-branch B is minimally unsettled if it is unsettled
and all of its child branches are settled.

Each iteration consists of the following subroutine:
1. Simplify the instance (i.e. exhaustively apply safe operations)
2. If all branches at the root are settled, terminate iteration.
3. Otherwise, find a minimally unsettled branch B.

(i) If B has at least two child branches that are long p-chains, apply Lemma 6.
(ii) Otherwise, if B has at least three child branches that are 1-branches, apply Lemma 9
(iii) Otherwise, B is a (short) p-chain. Apply Lemma 10.

I Lemma 9. A simplified, minimally unsettled branch B with at least three child branches
that are 1-branches admits a 4/3-approximate tour set.

Proof. Let (u, v0) be the stem of B, and let (v0, v1), (v0, v2), and (v0, v3) be three (child)
1-branches. Since the branch is simplified, v1, v2, and v3 are leaves. Since the unite operation
is unavailable, d(v1) + d(v2) + d(v3) > 1.5, and since B is unsettled, it is not a 2-chain.
Furthermore, the group operation is unavailable, so 2 < d(v1) + d(v2) + d(v3) < 3. Let
a = l(P [v0, r]), w1 = l(v0, v1), w2 = l(v0, v2), and w3 = l(v0, v3). Without loss of generality,
assume w1 ≤ w2 ≤ w3.

If a ≤ w1 +w2 +w3, then for i ∈ {1, 2, 3}, let ti be the tour that travels from the depot to
vi, covers all demand at vi, and then returns to the depot. The length of ti is 2(a+wi). The
total cost of the tour set {t1, t2, t3} is 2(3a+w1 +w2 +w3). This tour set covers all demand of
the leaves and also reduces demand along P [v0, r] by two, since 2 < d(v1) +d(v2) +d(v3) < 3,
so the reduction to LB is 2(2a+ w1 + w2 + w3). The ratio of the cost of the tour set to the
reduction to the cost of LB that results from taking these tours is therefore,

2(3a+ w1 + w2 + w3)
2(2a+ w1 + w2 + w3) = 1 + a

2a+ w1 + w2 + w3
≤ 4

3

where the final equality comes from a ≤ w1 + w2 + w3.
Otherwise, a > w1 + w2 + w3. Let t be the tour that travels from the depot to v1,

covers all demand at v1, travels to v3, covers as much demand as possible at v3, and then
returns to the depot. The cost of t is 2(a+ w1 + w3). Note that since the unite operation is
unavailable, then d(v1) + d(v3) > 1, so the vehicle is full, and some demand remains at v3.
Since the vehicle is full, then t reduces demand along P [v0, r] by one, so the reduction to
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LB is 2(w1 + a). The ratio of the cost of the tour set {t} to the reduction to the cost of LB
that results from taking these tours is therefore,

2(a+ w1 + w3)
2(w1 + a) = 1 + w3

w1 + a
≤ 4

3

where the final inequality comes from a > w1 + w2 + w3 ≥ 3w3. J

I Lemma 10. A short p-chain admits a 4/3-approximate tour set.

Proof. Let a = l(P [v0
p, r]), b = l(e2

p−1), and c = l(e1
p−1). By construction, c ≥ b, and since

the p-chain is short, b ≥ a. Let t1 be the tour that goes from the depot to v1
p−1, covers all

demand at this leaf, and then returns to the depot. Similarly, let t2 be the tour that goes
from the depot to v2

p−1, covers all demand at this leaf, and then returns to the depot. Tour
t1 has cost 2(a+ c) and t2 has cost 2(a+ b). Tour set {t1, t2} has total cost 2(2a+ b+ c).
This tour set covers all demand at these leaves, which sum to greater than one by definition
of p-chain, so these tours reduce the demand along P [v0

p, r] by one. Therefore the reduction
to LB from this tour set is 2(a+ b+ c). Therefore the ratio of the cost of the tour set to the
reduction to the cost of LB that results from taking these tours is,

2(2a+ b+ c)
2(a+ b+ c) = 1 + a

a+ b+ c
≤ 4

3

The final inequality comes from a ≤ b ≤ c. J

Finally, we prove Lemma 7, which we restate here for convenience.

I Lemma 7. Iteration i runs in polynomial time and either finds a nonempty 4/3-approximate
tour set or finds that every branch at the root is either a long p-chain or 1-branch.

Proof. To prove this lemma, we first must show that any minimally unsettled branch B in
a simplified instance must be in at least one of the three identified cases. Let B be such a
branch. B must have child branches, since it is unsettled. Since it is minimally unsettled,
every child branch is settled (i.e. either a 1-branch or a long p-chain).

If B has at least two long p-chains as child branches, then case i holds.
If B has no long p-chains as child branches, then all child branches are 1-branches. By

Lemma 4, in a simplified instance all 2-branches are 2-chains. Since all 2-chains are long, and
thus settled, B must be a j-branch for some j ≥ 3. Since the unzip operation is unavailable,
then there are at least four 1-branches as child branches of B, so case ii holds.

If B has exactly one long p-chain as a child branch and case ii doesn’t hold, then B must
be a short p′-chain. If there were no 1-branches as child branches, then the degree-two vertex
could be spliced. If there were exactly one 1-branch then either p = p′ and a slide operation
would be available, or p = p′ − 1 and an unzip operation would be available. Since case ii
doesn’t hold, there are exactly two 1-branches as child branches. Since an unzip operation is
unavailable, p = p′ − 1, and since a unite operation is unavailable, the demand of the two
1-branches (which are both leaves by the condense operation) sum to greater than one. Since
the instance is simplified, then B is a p′-chain. But since B is unsettled, it must be a short
p′-chain. Therefore case iii holds.

Since B is covered by some case, then the corresponding lemma (Lemma 6, 9, or 10)
guarantees a nonempty 4/3-approximate tour set.

If no unsettled branch can be found, then all branches at the root must be settled.
Finally, to see that the iteration runs in polynomial time, note that each operation

can be performed in constant time. Condense, unite, unzip, (and splicing) all make the
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graph smaller, so they are exhausted in linear time. Subsequently, if condense and unite
are unavailable, then each slide results in a degree two vertex remaining to be spliced, also
making the graph smaller. After all other operations are exhausted, each leaf can participate
in at most one group operation in a given iteration. Each of the three cases can likewise be
handled in linear time. J

5 Resolving p-Chains

5.1 Cascades

In order to prove Lemmas 5 and 6 we describe a specific group of tours that collectively
covers the demand of a long p-chain.

The labeling on p-chains gives a natural bottom-up ordering on the leaves: v0
1 , v

1
1 , v

2
1 , v

1
2 , v

2
2 ,

..., v1
p−1, v

2
p−1, where the order is determined first by level and then by rank. For a long

p-chain, we define a cascade to be the sequence of p tours in which each tour considers the
leaves in this bottom-up order and:
1. Visits and covers all demand from the first leaf with remaining demand.
2. While the vehicle has spare capacity and there is unmet demand in the branch, determines

the lowest level i with leaves with unmet demand and covers as much demand as possible
from v2

i .
3. Returns to the depot.

Let the resulting tours be t1, ..., tp. Tour t1 first covers all demand from v0
1 and then covers

1− d(v0
1) demand from v2

1 . Since by definition, a p-chain is simplified, the unite operation is
unavailable, so d(v0

1) + d(v2
1) > 1, implying the vehicle is full. The second tour t2 covers all

demand from v1
1 , covers all remaining demand at v2

1 (since d(v0
1)+d(v1

1)+d(v2
1) < 2) and covers

some demand at v2
2 . Since the slide operation is unavailable, d(v0

1)+d(v1
1)+d(v2

1)+d(v2
2) > 3,

so the vehicle is full. Note that both vehicles have been full, and after two tours no demand
remains at level 1. This pattern continues. Tour ti for 3 ≤ i < p covers all demand at v1

i−1,
all remaining demand at v2

i−1, and some demand at v2
i . Inductively, since slide operation is

unavailable and all previous vehicles have been full, this vehicle must also be full. After ti,
no demand remains below level i. Since all vehicles have been full, there is less than one
unit of demand remaining for tp (and no demand remains below level p− 1), so tp covers all
demand from v1

p−1 and all remaining demand from v2
p−1. (See Figure 2b).

This cascading pattern results in i tours traversing e0
i , one tour traversing e1

i , two tours
traversing e2

i for all i, and p tours traversing all edges in the path from the depot r to v0
p.

Note in particular that these values match the lower bounds given by the edge traffic, for e0
i

and e1
i . The excess cost, therefore, comes from doubling the traffic lower bound on the e2

i

edges as well as extra traffic along the path to the depot.

5.2 Proofs of Lemmas 5 and 6

We restate the lemmas here for convenience. Recall that a branch is resolved if all of its
demand is covered by a 4/3-approximate tour group. That is, a set of tours whose total cost
is at most 4/3 times the reduction to the lower bound LB that results from removing the
demand of the branch.

I Lemma 5. Long p-chains can be resolved at the root.
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Proof. Let B be a long p-chain at the root (depot). Consider the cascade on B. As described
in Section 5.1, the cost of the p tours in the cascade is

2
(
p · l(e0

p) +
p−1∑
i=1

i · l(e0
i ) + 2l(e2

i ) + l(e1
i )
)

since the cost of the path to the depot is zero. Additionally the cascade covers all demand in
B, so the reduction to LB after covering B is:

∑
e∈B

LB(e) =
∑

e=(u,v)∈B

2 · l(e) · dd(Tv)e = 2
(
p · l(e0

p) +
p−1∑
i=1

i · l(e0
i ) + l(e2

i ) + l(e1
i )
)

Taking the ratio of cost to reduction in cost of LB gives our result:

2
(
p · l(e0

p) +
∑p−1

i=1 i · l(e0
i ) + 2l(e2

i ) + l(e1
i )
)

2
(
p · l(e0

p) +
∑p−1

i=1 i · l(e0
i ) + l(e2

i ) + l(e1
i )
) = 1 +

∑p−1
i=1 l(e2

i )
p · l(e0

p) +
∑p−1

i=1 i · l(e0
i ) + l(e2

i ) + l(e1
i )

≤ 1 +
(
l(e2

1)
)

+
(∑p−1

i=2 l(e2
i )
)(

l(e0
1) + l(e1

1) + l(e2
1)
)

+
(∑p−1

i=2 l(e2
i ) + l(e1

i ) +
∑p

j=i+1 l(e0
j )
)

≤ 1 +
(
l(e2

1)
)

+
(∑p−1

i=2 l(e2
i )
)(

3 · l(e2
1)
)

+
(∑p−1

i=2 3 · l(e2
i )
) ≤ 4

3

Where the second to last inequality comes from the fact that because B is a long p-chain,
l(e2

i ) < l(P [v0
i+1, r]) =

∑p
j=i+1 l(e0

j ), and because l(e2
i ) ≤ l(e1

i ) by construction. J

I Lemma 6. A long p-chain and long p′-chain can be resolved together if they are sibling
branches.

Proof. Let u be a vertex with child branches B a long p-chain and B′ a long p′-chain.
Consider the cascades on B and B′. The cost of these p+ p′ tours is

2
[(
p · l(e0

p) +
p−1∑
i=1

i · l(e0
i ) + 2l(e2

i ) + l(e1
i )
)

+
(
p′ · l(e′0p′)

+
p′−1∑
i=1

i · l(e′0i ) + 2l(e′2i ) + l(e′1i )
)

+ (p+ p′)l(P [u, r])
]

Additionally the cascade covers all demand in B and B′, so the reduction to LB is∑
e∈B∪B′ LB(e) =

∑
e∈B∪B′ 2 · l(e) · f(e), which is

2
[(
p · l(e0

p) +
p−1∑
i=1

i · l(e0
i ) + l(e2

i ) + l(e1
i )
)

+
(
p′ · l(e′0p′)

+
p′−1∑
i=1

i · l(e′0i ) + l(e′2i ) + l(e′1i )
)

+ (p+ p′ − 1)l(P [u, r])
]

Note that the p+ p′ − 1 factor in the reduction to the edges along P [u, r] arises because by
definition the total demand in a p-chain is between p− 0.5 and p, so covering all demand
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in B and B′ reduces the demand in Tu by at least p+ p′ − 1. Rearranging the terms, this
reduction to the lower bound is greater than:

2
[( 2∑

i=0
l(ei

1) +
p−1∑
i=2

l(P [v0
i+1, r]) + l(e2

i ) + l(e1
i )
)

+
( 2∑

i=0
l(e′i1) +

p′−1∑
i=2

l(P [v′0i+1, r]) + l(e′2i ) + l(e′1i )
)

+ 3l(P [u, r])
]

= 2(X + Y +X ′ + Y ′ + Z)

Where

X =
2∑

i=0
l(ei

1)

Y =
p−1∑
i=2

l(P [v0
i+1, r]) + l(e2

i ) + l(e1
i )

X ′ =
2∑

i=0
l(e′i1)

Y ′ =
p′−1∑
i=2

l(P [v′0i+1, r]) + l(e′2i ) + l(e′1i )

and

Z = 3l(P [u, r]).

The ratio of cost to reduction in cost of LB is therefore at most,

1 +
∑p−1

i=1 l(e2
i ) +

∑p′−1
i=1 l(e′2i ) + l(P [u, r])

X + Y +X ′ + Y ′ + Z
≤ 4

3

Where the final inequality comes from noting that, by construction, l(e2
1) ≤ X/3 and

l(e′21) ≤ X ′/3, and by definition of a long p-chain, l(e2
i ) ≤ min{l(e1

i ), l(e2
i ), l(P [v0

i+1, r])} for
all 2 ≤ i < p, so

∑p−1
i=2 l(e2

i ) ≤ Y/3 and
∑p−1

i=2 l(e′
2
i ) ≤ Y ′/3.

J
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A Showing That Safe Operations Are Safe

In this section we show that safe operations are actually safe. Recall that an operation that
modifies the graph is safe if it does not decrease OPT or change the cost of the lower bound
LB and it preserves feasibility.

The condense operation replaces a branch B in which every edge e has traffic f(e) = 1
with a single edge eB of length

∑
e∈B l(e) and traffic f(eB) = 1, so the lower bound LB

remains unchanged, since the branch contributes 2 ·
∑

e∈B l(e) · 1 = 2 · l(eB) · 1 toward LB
both before and after the operation. The operation is equivalent to requiring any tour that
covers any client demand in B to traverse all of B, which clearly preserves feasibility and
possibly increases, but cannot decrease, OPT .

Before the unzip operation, the contribution to LB of edges involved in the modification
is 2 · l(e) ·

(∑k
i=1 f((v, wi))

)
+
∑k

i=1 2 · l((v, wi)) · f((v, wi)) which equals
∑k

i=1 2 · (l(e) +
l((v, wi))) · f((v, wi)), the contribution to LB of involved edges after the operation. The
length and traffic values (and thus also the contribution to LB) of all other edges remain
unchanged. The operation is equivalent to requiring every tour that traverses c child edges
of e to traverse e a total of 2c times. This redundancy may increase the value of OPT but
cannot decrease it. Since any tour can be extended to cover e multiple times, the operation
also preserves feasibility.

The group operation simply inserts an edge of length zero, resulting in an equivalent
instance, and clearly has no affect on LB, OPT , or feasibility. The operation is merely for
convenience.
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The unite operation is equivalent to first inserting an edge of length zero (and traffic
one) and then performing a condense operation, both of which are shown above to be safe.
The composition of safe operations results in a safe operation.

The slide operation essentially moves an edge without changing the length or traffic
values of any edge, which clearly preserves the value of LB. The operation is equivalent
to requiring every tour that traverses edge e2 to also traverse edge e1, which may increase
OPT , but cannot decrease OPT . Since the tree is connected, any tour can be extended to
include e1, so feasibility is preserved.

B Reforming Operations from Asano et al. [2]

Asano et al. introduce seven safe Reforming Operations [2]. In this section we compare these
to the safe operations we use in this paper.

Reforming operation R1 greedily takes a tour at full capacity to any vertex with demand
greater than one. After exhaustively applying R1, no vertex has demand greater than one.
Reforming operation R2 moves any demand at internal nodes to leaves, by adding edges of
length zero when necessary.

In this paper, we use simplifying assumptions to accomplish the same result as exhaustive
application of these two operations. That is, we assume that the input graph already has
the property that leaves are the only vertices with demand, and that the demand of every
leaf is at most one. Our algorithm does not also need do use these operations, because these
properties of the demand are never undone by our algorithm.

Reforming operation R3 addresses the specific case of a vertex u with a leaf vertex v of
demand at most one as its only child, by contracting the edge (u, v), increasing l((p(u), u))
by l((u, v)), and setting d(u) = d(v). Reforming operation R4 similarly contracts an entire
subtree with total demand at most one to a single leaf. In this paper, our condense operation
generalizes both R3 and R4 as it operates on branches rather than subtrees. Note that R3
also addresses the case where 1 < d(u) + d(v) ≤ 2, but this case never arises in our algorithm
because of our simplifying assumptions.

Reforming operation R5 merges leaves if their combined demand is at most one and if
the parent vertex u of the leaves has no other child v such that the subtree rooted at v has
total demand at least two. In this paper, our unite operation generalizes R5.

Reforming operation R6 addresses the case where a vertex v has exactly two children v1
and v2 that are leaves such that 1 < d(v1) + d(v2) < 2. If v has parent u, R6 removes v and
adds edge (u, v1) of weight l((u, v)) + l((v, v1)) and edge (u, v2) of weight l((u, v)) + l((v, v2)).
Our unzip operation generalizes R6 to accommodate more than two children, non-leaf
children, and larger demands.

Finally, reforming operation R7 addresses the case where a vertex v has children v1 and v2
such that v2 is a leaf and the subtree rooted at v1 has total demand d1 such that 1 < d1 < 2
and such that the subtree rooted at v has total demand d such that 1 < d < 2. R7 replaces
edge (v, v2) with edge (v1, v2) of length l((v, v2)). Our slide operation generalizes R7 to
accommodate larger demand values.

C Example Showing Tightness

In this section we present the example of a tree instance that has cost at least 4/3 · LB that
was given by Asano et al. [2].
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They define a tree T with root r, in which r has a single child q, and q has 2n+ 1 children
v1, v2, ..., v2n+1 that are all leaves. Edge (r, q) as well as edges (q, vi) for all 1 ≤ i ≤ 2n+ 1
have length one. That is, T is a tree of height two in which all edges have unit lengths.
Furthermore, the demand of each leaf vi is 0.5 + ε, where ε < 1/(4n+ 2).

For this instance, the traffic of every edge (q, vi) is one, and the traffic of edge (r, q) is
n+ 1, so LB = 2 · 1 · (n+ 1) + (2n+ 1) · 2 · 1 · 1 = 2n+ 2 + 4n+ 2 = 6n+ 4.

An optimum solution for this instance consists of 2n+ 1 tours t1, t2, ..., t2n+1 in which
tour ti goes from r to vi, covers all demand at vi and then immediately returns to the depot.

The cost OPT of this optimum solution is OPT = (2n+ 1) · 4 = 8n+ 4.
The ratio of OPT to LB is 8n+4

6n+4 which tends to 4/3 as n goes to infinity [2].
Note that there are in fact many other optimum solutions for this instance. For example

consider the following solution consisting of n+ 1 tours t1, t2, ..., tn+1. For i ∈ {1, 2, ..., n}, ti
goes from r to v2i−1, covers all demand at v2i−1, then covers as much demand at v2i as possible
before returning to r. Tour tn+1 then covers all demand at v2n+1 and then all remaining
demand at leaves v2i for i ∈ {1, 2, ..., n}. The cost of this solution is 2 · n · 3 + 2 · 1 · (n+ 2) =
6n+ 2n+ 4 = 8n+ 4.

APPROX/RANDOM 2018


	Intro
	Related Work
	Techniques

	Preliminaries
	Lower Bound
	Safe Operations

	Algorithm
	p-Chains

	Description of Iteration i
	Resolving p-Chains
	Cascades
	Proofs of Lemmas 5 and 6

	Showing That Safe Operations Are Safe
	Reforming Operations from Asano et al. [Asona et al., 2001]
	Example Showing Tightness

