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Abstract

Multi-material flow generally describes a situation where several distinct ma-

terials separated by sharp material interfaces undergo large deformations.

In order to model such flow situations in the context of geomechanics and

geotechnical engineering, a theoretical framework is presented which intro-

duces a possible two-phase coupled saturated granular material behavior

among the different materials. This is achieved by extending the technique

of local volume averaging to a hierarchy of three spatial scales, based on

a product of two indicator functions. A homogeneous equilibrium mixture

model is subsequently derived for an example flow consisting of bulk solid,

bulk fluid, and undrained granular material with compressible constituents.

The closure relations are provided at the macroscale, including those describ-

ing granular behavior covering the full frictional-collisional flow regime and

bulk material volume fraction evolution. The paper discusses the advantages

and restrictions of the proposed mixture model and addresses its application

and full-scale numerical implementation.
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1. Introduction

Multi-material flow describes a situation where several pure, physically

distinct materials (solids, liquids, gases) interact and one or more of these

materials undergo large deformations —void, representing empty space or

atmosphere, is generally considered as material. In contrast to multi-phase

or multi-fluid flow [1, 2, 3, 4, 5], the main characteristics of multi-material

flow are the evolution of large-scale material interfaces, including the gen-

eration of new free surfaces or the coalescence of existing surfaces, as well

as the presence of material strength and compressibility. Moreover, in many

situations mass transfer between the materials is of secondary interest, and

momentum and pressure relaxation can be assumed infinitely fast, resulting

in velocity and pressure fields common to all materials of the flow.

The notion of multi-material flow has emerged along with the develop-

ment of efficient numerical simulation techniques to analyze detonation and

impact problems, the dynamics of bubbles and droplets, material processing

and manufacturing, or astrophysical events [6, 7, 8]. The most attractive ap-

proaches use Eulerian or arbitrary Lagrangian-Eulerian (ALE) descriptions

allowing interfaces and free surfaces to flow through the computational mesh

[9, 10, 11, 12, 13, 14]. Mesh cells cut by interfaces (multi-material cells) neces-

sarily arise which contain a heterogeneous mixture of two or more materials.

In order to solve the same equations with the same numerical method, the
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heterogeneous mixture is represented as an effective single-phase material or

homogenized mixture by using physically based mixing rules [15, 16, 17].

The research presented in this paper addresses multi-material flow sit-

uations encountered in geomechanics and geotechnical engineering. Exam-

ples are natural hazards like landslides [18, 19], avalanches and debris flows

[20, 21, 22], liquefaction-induced soil failure [23, 24], and elementary instal-

lation processes like digging, injection, mixing, displacement, or penetration

[25, 26, 27, 28, 29]. Schematic views are shown in Fig. 1. Besides the char-

acteristics common to all multi-material flows, the aforementioned problems

involve a complex coupled behavior of the dense grain-fluid mixture repre-

senting the soil or debris material as well as a hierarchy of distinct spatial

scales [30]. While certain aspects of such geomechanical multi-material flows

can be considered as well understood, a fully-fledged flow model that is able

to predict a time history of the material states for arbitrary compositions

and configurations of the mixture is yet missing.

The paper is concerned with the development of a macroscopic mechani-

cal theory for compressible multi-material flow involving a hierarchy of three

scales. We proceed from the premise not to describe small-scale details in

the flow field, but rather large-scale motions and interactions of bulk mate-

rials. By assuming homogeneous equilibrium between all constituents of the

flow and by making use of local volume averaging, we provide a closed set

of equations that holds at each spatial point and at all interfaces. In con-

trast to two-scale theories which consider the motion of multiple single-phase

materials or that of a single multi-phase mixture, our three-scale approach

incorporates the evolution of interfaces as well as two-phase phenomena as-
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Figure 1: Schematic of complex geomechanical multi-material flow situations. (a)

Liquefaction-induced failure of an earth-fill dam under seismic excitation; in accordance

with [23]. (b) Submarine landslide; in accordance with [18]. (c) Installation of vibro-

injection piles to tie back the base slab of a deep excavation; in accordance with [28].

Reprint from [30, p. 189] with permission of Springer

sociated with saturated granular materials. For simplicity, we ignore any

thermodynamical issue and do not specify any boundary conditions charac-

terizing a particular multi-material flow. Applications and comparisons with

experiments or numerical simulations are not considered.

The structure of the remaining text is as follows. Section 2 derives macro-

scopic balance principles for a mixture of multiple materials consisting of

multiple phases by making use of local volume averaging. The averaging

procedure involves some new aspects regarding the special flow structure.

The description of fluid-saturated granular material is addressed in Section 3.

We take into account compressible constituents as well as rate-independent
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frictional and rate-dependent viscous (collisional) contributions to the stress

tensor. In Section 4, a reduced mixture model is developed for a geome-

chanical multi-material example flow by assuming homogeneous equilibrium

of pressure and velocity. Closure relations are specified in order to render

the reduced model well posed. Section 5 discusses the advantages and re-

strictions of the homogeneous equilibrium mixture model and addresses its

application and full-scale numerical implementation. The paper closes with

concluding remarks and outlook in Section 6.

2. Averaged equations for three-scale mixture

2.1. Averaging procedure

The flow of interest is a three-scale (micro, meso, macro) system consist-

ing of a bulk solid (S), a bulk fluid (F), and a composite material representing

fluid-saturated granular material (G). The granular material is an immiscible

mixture consisting of a solid phase (s) and fluid phase (f). Void is considered

as a particular fluid. The situation is illustrated in Fig. 2.

The granular material is constituted by an assembly of solid grains, whose

typical diameter defines the microscale of the problem, lmicro (Fig. 2 below).

The grain assembly can be represented by a continuum at the mesoscale lmeso,

separated from the bulk solid and bulk fluid by sharp interfaces. Finally, we

assume that the multi-material flow has a representative volume element

(RVE) with characteristic length lmacro referred to as the macroscale (Fig. 2

above). At the macroscale, the immiscible mixture of mesoscale continua can

be equivalently modeled as an effective single-phase material, i.e. homoge-

neous mixture.
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Figure 2: Three spatial scales in a particular geomechanical multi-material flow. Reprint

from [30, p. 195] with permission of Springer

To keep our theory as general as possible, each material k ∈ {S,F,G} def=

{1, . . . ,M} is initially viewed as containing the same phases α ∈ {s, f} def=

{1, . . . , N}, even though the fractional volume of one phase in a particu-

lar material might be zero. A particular phase α in a particular material

k represents an individual, chemically-independent constituent of the flow

and will be denoted by αk. For the particular flow under consideration we

write sS ≡ S and fF ≡ F such that αk ∈ {S,F, sG, fG}. The complete
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nomenclature is found at the end of this paper.

The flow takes place in a domain D ⊂ R3, and the subregions in D

instantaneously occupied by the k-material and the α-phase at time t ∈ [0, T ]

are denoted by Mk and Pα, respectively. We require

D = ⋃
αPα = ⋃

kMk . (1)

The domain of the α-phase in the k-material is given by the intersection

Pα∩Mk. The intersection of each two phases and each two materials, based

on the assumptions above, is either empty or the shared interface.

Let χk be the material indicator function on Mk ⊂ D and χα the phase

indicator function on Pα ⊂ D, with χk, χα : D × [0, T ] → {0, 1}. The

indicator function which picks out the α-phase domain of the k-material

domain is the product χαχk def= χαk:

χαk(x, t) =


1 if x ∈ (Pα ∩Mk) at time t,

0 if x ∈ D\(Pα ∩Mk) at time t.
(2)

This indicator function is unique to our theory and covers arbitrary flow

compositions bounded between the classical cases of mixtures of single-phase

materials (χα = 1) and mixtures represented by a single multiphase material

(χk = 1).

We employ hybrid mixture theory [31, 32, 33, 34, 35] to upscale informa-

tion from the microscale to the macroscale; this and other types of approaches

are reviewed in [36, 37]. The basic idea in hybrid mixture theory is to ap-

ply local volume averaging [38, 39, 5] to the small scale balance equations

and to make the constitutive assumptions needed for closure at the large

scale, i.e. for the averaged balance equations. Consider a macroscale RVE
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of the flow, V(x) ⊂ R3, at all points x ∈ D. At each instant t, the RVE

intersects with the current configuration of materials and phases as well as

with their boundaries. For example, the k-material occupies the subregion

Mk ∩ V def= Vk of the RVE, and (Pα ∩Mk) ∩ V def= Vαk is the subregion oc-

cupied by the α-phase of the k-material. Note that V = ⋃
k Vk = ⋃

k

⋃
α Vαk

by requirement (1).

The V-average of an arbitrary time-dependent spatial microscopic field

q(x, t) is defined through

〈q〉(x, t) def= 1
V

∫
V
q(x+ y, t) dv (3)

for all x ∈ D and t ∈ [0, T ], where dv is the volume density on R3, V def=∫
V 1 dv = const is the volume measure of V , and y ∈ V is a vector. In

particular, we the define volume fractions

fk
def= 〈χk〉 = V k

V
and παk

def= 1
fk
〈χαk〉 = V αk

V k
, (4)

where V k def=
∫
Vk 1 dv =

∫
V χ

k dv and V αk def=
∫
Vαk 1 dv =

∫
V χ

αk dv. While

fk is the volume fraction of the k-material with respect to the RVE, παk

represents the macroscale volume fraction of the α-phase intrinsic to the k-

material, with fk, παk ∈ [0, 1]. Since phase or material overlaps are precluded,

one has ∑
k
fk = 1 and

∑
α
παk = 1 (5)

for all k ∈ {1, . . . ,M}.

For microscopic q defined per unit volume, the corresponding field of the

mixture at the macroscale,

〈q〉 =
∑

k
fkqk =

∑
k

∑
α
fkπαkqαk , (6)
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with

qαk
def= 〈χ

αkq〉
fkπαk

, (7)

follows immediately from (3) and (5). The superscribed αk denotes macro-

scopic (i.e. V-averaged) fields related to the α-phase in the k-material. For

example, if q = ρ is the microscopic spatial mass density, then the intrinsic

or true mass density ραk represents the mass of the constituent αk per unit

volume of that constituent, παkραk is the mass of the constituent αk per unit

volume of the k-material, and fkπαkραk denotes its mass per unit volume of

the mixture.

2.2. Balance equations

On the microscale all constituents of the mixture are regarded as continua,

governed by the equations of continuum mechanics [40, 41, 42]. The balance

equations of the problems under consideration are conservation of mass and

balance of momentum, in conjunction with the interface jump conditions. In

the microscopic balance equations, a single spatial point is viewed as being

instantaneously occupied by a single constituent. For simplicity, we do not

take care of any thermodynamical issue. Moreover, we do not attribute

any mechanical properties to the interfaces, i.e. neither interfacial mass nor

interfacial momentum (surface tension) is supplied.

Each term of the microscopic balance equations is averaged by using the

procedure outlined in the previous section and presented in more detail in

[39, 5]. This leads to the α-phase-k-material macroscopic conservation of

mass
∂fkπαkραk

∂t
+ div(fkπαkραkvαk) = Λαk (8)
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and macroscopic balance of momentum

∂fkπαkραkvαk

∂t
+ div(fkπαkραkvαk ⊗ vαk) =

fkπαkραkbαk + div(fkπαkσαk) + Λαkvm
I + Γ αk ,

(9)

where

Λαk
def=
〈
(ρ(v − vI))[αk] · nαkI

〉
, (10)

Λαkvm
I

def=
〈
(ρv ⊗ (v − vI))[αk] · nαkI

〉
, (11)

Γ αk def= −〈σ[αk] · nαkI 〉 . (12)

The macroscopic field vαk is the spatial image of the material velocity,

ραk is the spatial mass density, bαk is a prescribed body force per unit mass,

and σαk = (σαk)T is the symmetric Cauchy stress. The latter is defined by

the sum of the α-phase-k-material intrinsic volume average of microscopic

Cauchy stress and a residual stress, called Reynolds stress, due to mass flux

relative to the averaging volume [5, sec. 11.2]. q[αk] denotes the limit value of

a field q on the αk-side of the interface, vI is the microscopic interface velocity,

vm
I is its averaged value compatible with (10) and (11), and nαkI is the field

of normals on the interface pointing outward of the α-phase-k-material.

The mass transfer term Λαk denotes the rate of mass supply per unit

volume via the α-phase-k-material interface. The momentum transfer term

Λαkvm
I is due to transfer of inertial mass, whereas Γ αk includes surface drag

forces per unit volume generated by the relative motion of the constituents.

Total mass and momentum of the mixture is conserved, thus
∑

k

∑
α
Λαk = 0 and∑

k

∑
α

(
Λαkvm

I + Γ αk
)

= 0 .
(13)
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From this and the conditions (6), summation of (8) and (9) over all phases

α ∈ {1, . . . , N} and all materials k ∈ {1, . . . ,M} finally yield the macroscopic

conservation of mass and macroscopic balance of momentum of the mixture:

∂〈ρ〉
∂t

+ div〈ρv〉 = 0 and

∂〈ρv〉
∂t

+ div〈ρv ⊗ v〉 = 〈ρb〉+ div〈σ〉 .
(14)

Note that the averaged balance equations (8), (9), and (14) hold at each

spatial point and at all interfaces, that is, a single spatial point is viewed as

being simultaneously occupied by all materials and all phases of the mixture.

The present paper is particularly concerned with the flow situation il-

lustrated in Fig. 2. Materials represent mixtures composed of a solid phase

and a fluid phase such that α ∈ {s, f}. Therefore, we simply define the fluid

fraction or porosity of the k-material, k ∈ {S,F,G}, through

nk
def= πfk . (15)

The solid fraction within the k-material becomes πsk = 1− nk by using (5)2.

In cases where the k-material consists of a solid without significant porosity

(k = S) one has nS = 0. If on the other hand the k-material is a fluid (k = F),

then nF = 1 applies. The mixture representing a single granular material is

characterized by 0 < nG < 1 and fk ≡ fG = 1.

2.3. Lagrangian form of equations

The equations of the previous section are in Eulerian form, referring

to a fixed spatial reference volume instantaneously occupied by the mate-

rial. However, the majority of methods for multi-material flow involve a

Lagrangian step followed by a remap step to advance solution in time [6, 7];
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see also Sect. 5. Therefore, it proofs convenient to display the balance prin-

ciples (8), (9), and (14) in the Lagrangian form.

First, let us define the material time derivative of a α-phase-k-material-

related quantity qαk along the velocity vαk through

q̇αk
def= ∂qαk

∂t
+ vαk ·∇qαk . (16)

The Lagrangian form of balance of momentum (9) is easily obtained under

the assumption that mass is conserved. Clearly, substitution of (16) and (8)

into (9), and using the product rule, yields

fkπαkραkv̇αk =

fkπαkραkbαk + div(fkπαkσαk) + Λαk(vm
I − vαk) + Γ αk .

(17)

By making use of the summation rules, balance of momentum of the mixture,

(14)2, in the Lagrangian form reads

〈ρv̇〉 = 〈ρb〉+ div〈σ〉 , (18)

in which we used the abbreviation

〈c q̇〉 def=
∑

k

∑
α
fkπαkcαkq̇αk (19)

for arbitrary spatial fields c, q.

Concerning the α-phase-k-material conservation of mass, substitution of

(16) into (8) results in

fkπαkρ̇αk + ραk
(
παkḟkαk + fkπ̇αk + fkπαk div vαk

)
= Λαk , (20)

where ḟkαk is shorthand for ∂
∂t
fk + vαk ·∇fk. By this, the Lagrangian form

of (14)1 representing conservation of mass of the mixture becomes

〈ρ̇〉+ 〈ρ〉 div〈v〉 = 0 , (21)
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in which
〈ρ〉 div〈v〉 def=∑

k

∑
α
ραk

(
παkḟkαk + fkπ̇αk + fkπαk div vαk

)
.

(22)

3. Phenomenological description of granular material

3.1. Some distinctive features of mechanical behavior

One unique feature of geomechanical multi-material flow is the presence

of geomaterial (e.g. soil, debris). The specific geomaterial of interest is a

cohesionless granular material in which a single fluid fills the interstitial space.

From a formal rheological viewpoint the material can be addressed as a dense

grain-fluid mixture or “granular suspension” [43]. However, our terminology

is more closely related to soil mechanics because we are particularly concerned

with cohesionless soil (sand). The interstitial fluid can be gas, liquid, or a

suspension of liquid and dispersed fines (slurry).

According to [44, 45, 46, 47], two limiting regimes of dry granular flow

have to be considered. Under static or quasi-static loads the grains are

in close contact and form a skeleton. The contact forces acting between

the grains are dominated by the mean stress and dry friction (granular

solid). Grain inertia effects are negligible, and the material response is rate-

independent plastic. This is called the frictional or quasi-static regime, and it

is the granular flow regime extensively studied in soil mechanics. In the quasi-

static flow regime, the mechanical behavior of cohesionless granular material

is very complex and has several distinctive features [47, 48, 49, 50, 51, 52].

Some of them are:
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• Internal friction: The shear strength increases with the mean effective

stress, depending on the angle of internal friction.

• Dilatancy: Refers to the tendency to expand or contract in bulk volume

because of grain rearrangement due to shear loading.

• Critical state: Under quasi-static monotonic shearing, an asymptotic

state of stress and relative density is reached.

• State dependence: Dilatancy and plastic response depend on the states

of stress and relative density.

• History dependence: The behavior of two specimen of the same granular

material is different once they differ in material history.

At the other extreme characterized by high rates of shear deformation and

smaller solid volume fractions, dry granular material behaves rate-dependent

“viscous” (granular liquid). Grain inertia and instantaneous grain contacts

through collision dominate [53], hence this flow regime is called the collisional

or dynamic regime. In many practical flow situations frictional and collisional

interactions are roughly of the same order, and the contributions of each to

the bulk stress of the mixture cannot be clearly distinguished. Relatively

little is known about this intermediate flow regime, called the frictional-

collisional regime, from both theoretical and experimental viewpoints [54,

55, 56, 57].

Interstitial fluid in granular materials introduces further complexity. Con-

solidation [58, 59, 60] and liquefaction [49, 61] are two phenomena related

to fluid-solid coupling which have been recognized for a long time. Besides
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this, indirect grain interactions generally occur through lubricated contacts

[43, 62, 55, 57]. Lubricated contact is characterized by repulsive viscous forces

due to squeezing and shearing of the interstitial fluid. In general, all the men-

tioned flow regimes have to be considered in the analysis of geomechanical

multi-material flow. However, the description of the mechanical behavior of

a dense grain-fluid mixture for a wide range of flow conditions and material

properties is still an open problem [57].

3.2. Decompositions of stress

In order to treat all materials that might be present in geomechanical

multi-material flow (Figs. 1, 2) in a unified fashion, we recall from [41, 42]

that the stress tensor of any material can be decomposed into a pressure

stress and an extra stress according to

σαk = −pαkI + sαk , (23)

where I is the second-order unit tensor. We assume for simplicity that pαk =

−1
3 trσαk resp. sαk = σαkdev for all constituents, where tr t def= I : t returns the

trace of a second-order tensor t and tdev
def= t− 1

3(tr t)I is its deviator.

Based on (6) we assume that the bulk stress in granular material can be

expressed as

σG = (1− nG)σsG + nGσfG . (24)

The stress tensors of the solid and fluid phases, on the other hand, can be

represented as the linear sum of a rate-independent frictional contribution

and a rate-dependent viscous contribution [44, 54, 46, 48, 63]:

σαG def= σαG
fr + σαG

vi , with α ∈ {s, f} , (25)
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so that σG = σG
fr + σG

vi likewise.

Concerning the frictional part, we introduce Terzaghi’s effective stress

σG′
fr in accordance with [64] as

σG′
fr

1− nG
def= −(psG − pfG)I + ssG

fr , so that

pG′

1− nG = psG − pfG ,

(26)

where psG − pfG is called the excess pressure, pG′ def= −1
3 trσG′

fr is the mean

effective stress, and ssG
fr = (σsG

fr )dev. Note that in a suspension without grain

contacts each grain would be completely surrounded by water, resulting in

psG = pfG and pG′ = 0. Combination of (24) and (26) yields Terzaghi’s

principle of effective stress [50, 49, 65]

σG
fr = σG′

fr − pfGI . (27)

We adopt this particular form of the principle for conceptual reasons, while

noting that various other forms have been postulated. The validity of each

depends on the actual composition of material phases and on the pressure

level, see [66] for a discussion.

In contrast to the frictional part, we assume that the effective stress for the

collisional (dynamic) regime remains unaffected by fluid stresses. Therefore,

by taking into account the principle (27) and (25), the representation (24) of

the total Cauchy stress can be recast into

σG = σG′

fr + σG′

vi + σfG
fr + nGσfG

vi

= σG′ − pfGI + nGsfG ,
(28)

with σG′ = σG′
fr + σG′

vi . We refer to (28) as the principle of effective stress
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for a general grain-fluid mixture. It has been used in [21], for example, to

describe the flow of variably fluidized granular masses.

3.3. Compressible constituents

All constituents of that flows of interest are considered compressible. The

finite bulk modulus, K, of a single-phase, isotropic material is the inverse of

the compressibility and defined by

− 1
V

∂V

∂p

∣∣∣∣∣
M

= 1
ρ

dρ
dp

def= 1
K

resp. ṗ
def= K

ρ
ρ̇ , (29)

where V and M
def= ρV are the total volume and mass, respectively, of a

sufficiently large domain, and |M means that mass is kept constant along

with differentiation.

In the above we are implicitly assuming that V = V (p,M), or equiva-

lently, that total pressure is a function of the density only. However, in a

mixture the pressure of each compressible constituent is generally a function

of the mass density and volume fraction of that constituent. In particular,

the pressure of the solid phase in granular material does not only depend on

the mass density but also on the porosity [67, 68]. If the granular material

occupies only a fractional volume in a mixture of bulk materials, the pressure

of the solid phase of the granular material should moreover depend on fG.

Instead of rigorously deriving relationships between the various com-

pressibilities, pressures, and volume fractions associated with geomechanical

multi-material flow, we adopt a simplified procedure presented in [69] and

repeated in [68]. The basic assumption is V G = V G(pfG, pG − pfG) while

keeping the total mass of the solid phase M sG fixed. That is to say, the total
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volume V G = V sG + V fG of a granular material is a function of two inde-

pendent pressures: the pressure of the fluid phase, pfG, and the difference

between the total pressure and the fluid pressure, pG − pfG, with no solid

leaving the system. From this we get

dV G

V G

∣∣∣∣∣
MsG

= 1
V G

∂V G

∂(pG − pfG)

∣∣∣∣∣
pfG,MsG

d(pG − pfG)

+ 1
V G

∂V G

∂pfG

∣∣∣∣∣
pG−pfG,MsG

dpfG

= 1
V G

∂V G

∂pG

∣∣∣∣∣
pfG,MsG

d(pG − pfG)

+ 1
V G

∂V G

∂pfG

∣∣∣∣∣
pG−pfG,MsG

dpfG

def= − 1
KG

dr
d(pG − pfG)− 1

KG
uj

dpfG ,

(30)

in which pG def= −1
3 trσG

fr , and KG
dr and KG

uj are referred to as the drained bulk

modulus and unjacketed bulk modulus of the granular material, respectively

[67]. KG
uj is measured during an unjacketed test and is approximately equal

to KsG = ρsG∂psG/∂ρsG, the material bulk modulus of the solid phase, under

the assumption of constant solid phase volume fraction. KG
dr is the bulk

modulus of the drained granular material as measured in a jacketed test.

The total differential in (30) can be replaced with the material time

derivative along the velocity vsG. Then, by noting that M sG = ρsGV sG =

(1 − nG)ρsGV G def= ρ̃sGV G, where ρ̃sG is the bulk mass density of the dry

granular material, conservation of mass (8) resp. (20) yields the identity

V̇ G

V G

∣∣∣∣∣
MsG

= −
˙̃ρsG

ρ̃sG = div vsG + ḟG
sG
fG

def= div vsG
∗ . (31)
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By this, (30) after rearrangement takes the equivalent form

ṗG = ṗG′′ + ζGṗfG , where ζG def= 1− KG
dr

KG
uj

(32)

is a coefficient introduced by Biot and Willis [70], and ṗG′′ def= −KG
dr div vsG

∗ .

We use the approximation KG
uj ≈ KsG in what follows.

From (32), (24), and (26) one obtains

ṗG′ = ṗG′′ − KG
dr

KsG ṗ
fG = −KG

dr

(
div vsG

∗ + ṗfG

KsG

)
. (33)

Moreover, a derivation similar to (30), but starting from the relative volume

change dV sG/V sG|1−nG and using the relationships above, yields an equation

for the solid phase pressure in granular material:

ṗsG = − KG
dr

1− nG div vsG
∗ + ζG − nG

1− nG ṗfG . (34)

Under the assumption of locally undrained conditions, for which

vfG = vsG = vG , but pfG 6= psG in general, (35)

conservation of mass (20) for the fluid phase is equivalent to

ṗfG = −ζGQG div vsG
∗ , (36)

with

QG def=
(
ζG − nG

KsG + nG

K fG

)−1

. (37)

Substitution of (36) into (32) finally yields

ṗG = −KG div vsG
∗ , (38)
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in which

KG = KG
dr

1 + (ζG)2

ζG K
G
dr

KsG + nG

(
KG

dr
K fG −

KG
dr

KsG

)
 . (39)

Compressibility relates a change in pressure to a change in volume. Thus

the pressure of one material in a mixture is affected by the presence of the

other materials through the change in fractional volume. The derivations of

this section particularly show that the rates of different pressures in granular

material share the same functional dependence on ḟG
sG = div(vsG

∗ − vsG)fG.

Readers may recover the classical relations of a single porous medium with

compressible constituents [71, 72, 49] from those presented here for the case

where fG ≡ 1, so that ḟG
sG = 0.

4. Homogeneous equilibrium model

The set of balance equations derived in Sect. 2.2 needs to be closed in

order to describe the flow of interest illustrated in Fig. 2. In general, the

following closure relations have to be specified [38, 73]:

1. Transfer relations expressing the physics at the material interfaces.

2. Constitutive relations characterizing the physical behavior of each ma-

terial.

3. Topological relations accounting for the evolution of variables charac-

terizing the interfacial structure.

The crucial relations are those governing the evolution of the volume

fractions fk. In the present paper, we achieve closure by a priori assuming
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homogeneous equilibrium [4, 16, 17]. In particular,

pk = 〈p〉 and vk = 〈v〉 for all k ∈ {S,F,G} . (40)

4.1. Interfacial transfer closure relations

The presence of interfacial transfer is a basic property of multi-phase

and multi-fluid flows. Therefore, a large body of literature concerned with

suitable transfer relations for particular types of flows is available [2, 3, 5, 74].

Here we assume for simplicity that neither mass nor momentum is exchanged

no matter between which constituents, so that

Λαk = 0 and Γ αk = 0 (41)

for all α ∈ {s, f} and k ∈ {S,F,G}.

4.2. Constitutive closure relations

It is beyond the scope of the paper to provide and discuss in detail con-

stitutive equations for the bulk solid, bulk fluid, and fluid-saturated granular

material. We only give hints on what classes of equations might be suit-

able and assume that the reader is somewhat familiar with the principles of

constitutive theory. The latter are treated, for example, in [41, 42, 5, 75].

The objective is to determine for each material k ∈ {S,F,G} the total

stress given by σk = ∑
α π

αkσαk = (1 − nk)σsk + nkσfk, with σαkdev = sαk

and the fluid fraction being either nS = 0 in case of bulk solid, nF = 1

in case of bulk fluid, or 0 < nG < 1 in case of fluid-saturated granular

material. The averaged stress tensor of the mixture then can be calculated

from 〈σ〉 = ∑
k f

kσk = fSσS + fFσF + fGσG.
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4.2.1. Bulk fluid and bulk solid

For bulk materials, various constitutive approaches are available. In our

approach, bulk fluid is represented as a Newtonian fluid. Bulk solid is either

hypoelastic or hypoelasto-plastic, described by a rate constitutive equation

taking the general form [42, 76, 77, 49]

O
σS def= c

S(hS) : 〈d〉 , (42)

where c
S is a fourth-order material tangent tensor, hS def= {hS

1, . . . , h
S
m} is

a (probably empty) set of material state variables, O
σ

def= σ̇ + σ · ω − ω · σ

denotes the Zaremba-Jaumann rate of the considered second order tensor,

ω
def= 1

2(∇v− (∇v)T) is the vorticity tensor, and d def= 1
2(∇v+ (∇v)T) is the

spatial rate of deformation tensor.

The simplest model represented by (42) is hypoelasticty of grade zero

[78, 41],
O
σS def= c

S
e : 〈d〉 = K tr〈d〉I + 2G〈d〉dev , (43)

in which K and G are the constant bulk modulus and shear modulus, respec-

tively, and c
S
e is the constant isotropic elasticity tensor. Despite its lack to

represent properly elastic behavior [79], (43) remains widely used in compu-

tational solid mechanics, especially with reference to inelasticity [75, 77, 49].

Rate-independent elasto-plastic behavior has been traditionally described

by proposing an additive decomposition of spatial rate of deformation into

elastic and plastic parts: dS def= dS
e + dS

p. A hypoelastic constitutive relation

then characterizes the elastic response, e.g. O
σS def= c

S
e : (〈d〉 − dS

p) by using

(43). The yield condition y(σS, . . .) ≤ 0 defines the set of admissible states in

stress space. An admissible state satisfying y < 0 is an elastic state, whereas
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y = 0 is an elasto-plastic state lying on the yield surface. As a simple example

we consider the von Mises yield condition

y(σS, σy) def=
√

3J2 − σy , (44)

where
√

3J2(σS) def=
√

3
2‖σ

S
dev‖ is the von Mises stress, ‖ · ‖ is the Frobenius

norm of a second-order tensor, and σy is the yield stress in pure tension. For

σy = const the behavior is ideal plastic. Condition (44) applies to metals

or plastic soil with zero internal friction and describes a cylinder around the

trisectrix σ1 = σ2 = σ3, with σ1, σ2, σ3 being the eigenvalues of σS (principal

stresses).

The evolution of the plastic strain rate, dS
p, is prescribed by a flow rule,

dS
p

def= λ
∂g

∂σS , (45)

in which g(σS, . . .) is called the plastic potential and λ ≥ 0 is the con-

sistency parameter. An associated flow rule is obtained for g = y. The

hypoelasto-plastic constitutive relation is completed by determining λ from

the consistency condition

λ ẏ(σS, . . .) = 0 . (46)

4.2.2. Fluid-saturated granular material

Concerning fluid-saturated granular material, constitutive equations must

be specified for the fluid phase stress and for the frictional and viscous parts

of the effective stress; cf. Sect. 3. For simplicity, the fluid phase (pore resp. in-

terstitial fluid) is modeled as a Newtonian fluid with deviatoric viscous stress.

In order to account for the fact that the fluid phase is trapped in the granular

23



material we define the dynamic shear viscosity through µfG def= (nG)2µfG
0 in

accordance with [80], where µfG
0 is the shear viscosity of the fluid for nG = 1.

The rate of the fluid phase pressure is determined from (36). The bulk mod-

ulus, K fG, and hence the pressure change are usually negligible if the fluid

phase is a gas. If the fluid phase is a liquid, then K fG generally depends on

pressure, temperature, gas content, and content of dispersed fines.

Different approaches can be employed to model the mechanical behavior

of bulk granular materials. Phenomenological constitutive equations pre-

dicting the effective stress, σG′ = σG′
fr +σG′

vi , are eminently suited to explore

fundamental behavior of complex phenomena in geomechanics [48, 49, 57, 81,

52]. However, an equation accounting for all features of granular material

behavior in the full frictional-collisional regime is still out of reach.

A large number of constitutive relations has been proposed to model the

quasi-static frictional regime for applications in soil mechanics. States of

failure can be adequately modeled by elasto-plastic models employing the

classical Mohr-Coulomb and Drucker-Prager yield conditions [49, 65, 82].

The yield condition of Mohr-Coulomb,

τf
def= σ′ tanφ , (47)

relates the shear stress at failure, τf , to the effective normal stress component

σ′ and the angle of internal friction of the bulk material, φ. The latter is

not directly related to the Coulomb frictional behavior at the grain scale,

but is significantly influenced by grain interlocking effects resulting from

the arrangement and angularity of the grains [65, 57]. The Drucker-Prager

yield condition, on the other hand, describes a cone around the line of equal

principal stresses, with the apex lying at σ1 = σ2 = σ3 = 0 for cohesionless
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soil or debris material:

y(σG′

fr ) def=
√

3J2 + βI1/3 , with I1(σG′

fr ) def= trσG′

fr . (48)

The factor β is a material constant accounting for the mean effective stress

sensitivity. It is related to the Mohr-Coulomb friction angle through β =

2 sinφ/(3− sinφ).

Beyond states of failure in the frictional flow regime, comprehensive stress-

strain relations for granular bulk material have to account for dilatancy,

state dependence, and critical state behavior (cf. Sect. 3.1). In this context

not many models are available, and most of them fall into the categories of

hypoelasto-plastic [83, 84, 85, 86] or hypoplastic [87, 88, 89, 90, 91] rate con-

stitutive equations. They determine an objective rate of the effective stress

as a function of the rate of deformation, the effective stress, the porosity nG

or void ratio eG def= nG/(1 − nG), and a (probably empty) set of additional

state variables hG.

We assume for simplicity that ∇nG ≡ 0 and consider the generic relation

O
σG′

fr
def= c

G′

fr (σG′

fr , n
G,hG) : (〈d〉+ 1

3 ṗ
fG/KsGI) . (49)

Note that rates of volumetric strain resulting from pore pressure changes,

represented by −ṗfG/KsG, are not taken into account because they do not

alter the arrangement of grains. This is in accordance with (33). To give a

particular example for (49), we chose a hypoplastic model frequently applied

in the German and international soil mechanics and geotechnical engineering

community. The full mathematical expressions of the constitutive functions

are attached in the Appendix.
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The majority of constitutive relations for the dynamic contribution of the

effective bulk stress in granular material, σG′
vi , are restricted to particular flow

conditions or to narrow ranges of material properties. In the present research,

we adopt a simple model formulation suggested by Passman et al. [80] and

further investigated in [92, 63]. Its representation in rate form has been used

in [93, 94]:
O
σG′

vi
def= 2µG′ O

〈d〉dev . (50)

Volume viscosity is currently neglected. The dynamic shear viscosity µG′ is

generally a function of the porosity (solid concentration) and shear rate. Re-

lations have been proposed for different flow situations resp. flow geometries,

e.g. [53, 95, 80, 54, 48, 94, 81].

4.3. Topological closure relations

The application of volume averaging entails a loss of information as it

smoothes out details of the flow structure [38, 73]. Topological closure re-

lations are required to restore the lost information. Concerning the present

situation, such relations have to describe the evolution of the porosity nG

of granular material and of the material volume fractions fk, whereas ṅS =

ṅF ≡ 0.

A proper closure relation for volume fraction has to account for the physics

of the problem and particularly has to specify how the volumetric distribution

of the materials change. Although several relations have been formulated

for the evolution of volume fractions in gas-liquid flows [73, 5, 3] or the

compaction of porous materials [96, 97, 98, 88], these do not automatically

carry over to the present situation.
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A simple way to obtain topological closure for multi-material flow is to

assume constant volume fractions. However, such an assumption is inade-

quate for the flows of interest since material compressibilities may differ by

several orders of magnitude, e.g. if the bulk fluid represents air. In following

[16, 17], a more realistic closure model can be derived which uses the assump-

tions (40). To this end, conservation of mass (8) resp. (20) for single-phase

k-material without mass transfer is rearranged to get

ḟk + fk div〈v〉 = −fk ρ̇
k

ρk
. (51)

The assumption (40)1 and the general definition (19) yield〈
ṗ

K

〉
=
∑
k

fkṗk

Kk
= 〈ṗ〉
〈K〉

, with 1
〈K〉

=
∑
k

fk

Kk
. (52)

Moreover, the compression model (29) gives

Kk

ρk
ρ̇k = ṗk = 〈ṗ〉 =

〈
K

ρ
ρ̇

〉
= 〈K〉

〈
ρ̇

ρ

〉
. (53)

By this, (51) in conjunction with the Lagrangian form of conservation of

mass of the mixture, (21), result in the self-consistent balance equation

ḟk + fk div〈v〉 = −fk 〈K〉
Kk

〈
ρ̇

ρ

〉
= fk

〈K〉
Kk

div〈v〉 . (54)

Hence, the topological closure relation for the k-material volume fraction is

ḟk = fk
(
〈K〉
Kk
− 1

)
div〈v〉 . (55)

An evolution equation for the porosity of granular material can be derived

from the mass conservation equation (20) by employing the assumptions of

homogeneous velocity and zero mass transfer:

ṅG = (1− nG)
(
ṗsG

KsG + ḟG

fG + div〈v〉
)
. (56)
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The sum of the last two terms in parentheses represent the effective volu-

metric strain rate of the bulk granular material at constant mass and in-

trinsic mass density (no change of solid phase volume V sG). Thus we define

div〈vG〉
def= div〈v〉+ ḟG/fG in accordance with (31), or, more generally,

〈dk〉
def= 〈d〉+ ḟk

3fk I , for all k ∈ {S,F,G} , (57)

by assuming an isotropic rate of change in material volume fraction and using

the identity div v = trd. Obviously, 〈dk〉 rather than 〈d〉 should be used in

the constitutive closure relations addressed in Sect. 4.2.

4.4. Summary of the model

In combining the macroscopic balance principles derived in Sect. 2 with

the particularizations made for saturated granular material in Sect. 3, and

by using the assumptions (40), (35), and the closure relations specified in the

previous sections, the following homogeneous equilibrium mixture model for

geomechanical multi-material flow is obtained:

div〈s− pI〉+ 〈ρb〉 − 〈ρ〉〈v̇〉 = 0

〈ṗ〉/〈K〉+ div〈v〉 = 0 ,
(58)

where

〈s〉 =
∑
k

fksk = fSsS + fFsF + fG
(
sG′ + nGsfG

)
, (59)

〈p〉 =
∑
k

fkpk = fSpS + fFpF + fG
(
pG′ + pfG

)
, (60)

〈ρ〉 =
∑
k

fkρk

= fSρS + fFρF + fG
(
(1− nG)ρsG + nGρfG

)
,

(61)
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1
〈K〉

=
∑
k

fk

Kk
= fS

KS + fF

KF + fG

KG , (62)

KG = KG
dr

1 + (ζG)2

ζG K
G
dr

KsG + nG

(
KG

dr
K fG −

KG
dr

KsG

)
 , (63)

ζG = 1− KG
dr

KsG , and k ∈ {S,F,G} . (64)

The model is closed by the general constitutive equations for the

a) bulk solid:
O
σS = c

S(σS,hS) : 〈dS〉 , KS = 1
3I :cS :I , (65)

b) bulk fluid:

σF = −pFI + 2µF〈dF〉dev , ṗF = −KF div〈vF〉 , (66)

c) granular material:

O
σG′ = O

σG′

fr + O
σG′

vi , (67)
O
σG′

fr = c
G′

fr (σG′

fr , n
G,hG) : (〈dG〉+ 1

3 ṗ
fG/KsGI) , (68)

ṗG′ = −KG
dr

(
div〈vG〉+ ṗfG/KsG

)
, (69)

KG
dr = 1

3I :cG′

fr :I , (70)
O
σG′

vi = 2µG′ O

〈dG〉dev , (71)

d) interstitial fluid:

σfG = −pfGI + 2µfG〈dG〉dev , (72)

ṗfG = −ζG
(
ζG − nG

KsG + nG

K fG

)−1

div〈vG〉 , (73)
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with

div〈vk〉 = div〈v〉+ ḟk

fk
resp. 〈dk〉 = 〈d〉+ ḟk

3fk I , (74)

by the evolution equations for the material volume fractions,

ḟk = fk
(
〈K〉
Kk
− 1

)
div〈v〉 , (75)

and for the porosity of granular material,

ṅG = (1− nG)
(
ṗsG

KsG + div〈vG〉
)
, (76)

with

ṗsG = − KG
dr

1− nG div〈vG〉+ ζG − nG

1− nG ṗfG , (77)

and by the compression models for each constituent,

ρ̇S = ρS

KS 〈ṗ〉 , ρ̇F = ρF

KF 〈ṗ〉 ,

ρ̇sG = ρsG

KsG ṗ
sG , ρ̇fG = ρfG

K fG ṗ
fG .

(78)

5. Discussion and numerical implementation

5.1. Features of the model

The averaged resp. macroscopic balance equations derived in Sect. 2 de-

scribe, in the most general case, the non-reactive isothermal flow of an immis-

cible mixture of M materials consisting of N phases. Because the equations

include separate physical quantities (stress, mass density, etc.) for each con-

stituent, separate terms representing the interaction (mass and momentum

exchange) between the constituents, as well as the volume fractions of each

material and each phase of a material, the macroscopic balance equations

can explicitly represent diverse compositions or evolving configurations of
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multi-material flow. The mechanical behavior of the mixture results from

the mechanical behavior of its individual constituents and their interactions.

Restrictions have been imposed upon the general equations in Sects. 3

and 4 to describe a geomechanical multi-material example flow of bulk solid,

bulk fluid, and fluid-saturated granular material. The assumption of pressure

equilibrium between bulk materials, (40)1, is adequate because the speed of

sound in each material is large compared with velocities in the problems of

interest. In other words, equilibration is infinitely fast such that pressure

is continuous across a material interface. Pressure disequilibration, on the

other hand, would be associated with highly-dynamic compaction, acoustic

effects, or other processes not considered here.

The assumption (40)2 was very useful with regard to the topological clo-

sure of the developed mixture model. However, it is not generally a rea-

sonable one because equilibration of velocity differences is driven by drag

forces on material interfaces (momentum transfer). As a consequence of the

assumption (40)2, the materials are fully bonded without a contact mecha-

nism, and shear resistance is accounted for only by the constitutive equation

of the materials next to the interface.

For the granular material we have assumed undrained conditions, as for-

malized through (35). In contrast to the pressure distribution between the

materials which is assumed homogeneous, the pressures in the solid and fluid

phases of granular material generally differ. The pressure difference or excess

pressure, (26)2, results from quasi-static grain contacts in a grain skeleton and

is responsible for the frictional behavior of Mohr-Coulomb type; cf. Sect. 3.

Pressures might equilibrate, for example, in a fully liquified/fluidized state
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(pG′ = 0) with no intergranular contacts and where each grain is completely

surrounded by fluid.

The bulk modulus KG given by (39) holds for arbitrary compositions of

saturated grain-fluid mixtures with compressible constituents and homoge-

neous velocity, (35). Particular cases included are: (i) solid without any pores

(nG = 0, KG
dr = KsG, ζG = 0), for which KG = KsG ≡ KS; (ii) fluid without

any solid content (nG = 1, KG
dr = 0, ζG = 1), for which KG = K fG ≡ KF;

(iii) dry granular material (0 < nG < 1, K fG ≈ 0), for which KG = KG
dr; (iv)

uniform suspension of zero friction (KG
dr = 0, ζG = 1), for which psG = pfG

and KG = ((1 − nG)/KsG + nG/K fG)−1, known as Wood’s equation [99,

p. 327].

The assumptions of zero mass and momentum transfer, (41), comply with

the assumption of no phase change or chemical reaction at interfaces and zero

relative material velocity (40)2, respectively. Concerning granular material,

the assumption Γ αk = 0 has at least two interpretations [100, 77]: either the

granular material is dry (ρfG = 0) or locally undrained. In the second case

no consolidation effects take place, and (35) holds.

Despite the restrictions above, no limitations whatsoever exist with re-

gard to the miscibility of the mesoscale continua on the macroscale, in which

the materials maintain their original properties, including the granular mate-

rial. The underlying averaged description of the multi-material flow likewise

captures separated mixtures (cf. Fig. 2; analogy: oil on water) as well as dis-

perse mixtures (e.g. granular material containing secondary voids; analogy:

emulsion of oil and water).

The derived volume fraction evolution equation, (55) resp. (75), naturally
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provides for a mixture compression model and a void collapse mechanism:

the material with the smallest bulk modulus contributes most to the total

volume change. This feature is of particular importance in cases where the

compressibilities of the materials are widely different. Because of (53) and

the basic constraint ∑k f
k = 1, summation of (55) over the materials in the

mixture results in (52). Hence, the topological closure relation also satisfies

the constraint ∑k ḟ
k = 0.

Finally, we remark that the decomposition of stress (23) in conjunction

with a compression model is a fundamental concept of our theory in order

to treat all materials that might be present in geomechanical multi-material

flow, either compressible or incompressible, in a unified fashion. This also

becomes apparent from the mixing rules (59)–(63) as well as from the con-

stitutive equations (65)–(73), where we provide formulas that determine the

associated bulk modulus from a general material tangent tensor.

In case of single-phase incompressible material (i.e. fk ≡ 1, nk ∈ {0, 1})

the bulk modulus in (58)2 becomes infinite, so that pressure plays the role of

a Lagrange multiplier ensuring zero divergence of the velocity field. In case of

a mixture containing both compressible and incompressible bulk materials,

the pressure of the mixture is calculated from (58)2. The volume fraction

evolution equation (75) maintains pressure equilibrium, (40)1, and enforces

zero relative volume change of incompressible materials:

− ρ̇
k

ρk
= div〈v〉+ ḟk

fk
= 〈K〉

Kk
div〈v〉 = 0 (79)

for Kk →∞.
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5.2. Numerical example: isotropic compression

To give an impression of how the models performs, we consider a mixture

of steel (bulk solid), air (bulk fluid), and dry sand subjected to quasi-static

isotropic compression. Under these conditions only the second equation of

(58) needs to be integrated in time; a simple first-order explicit scheme has

been implemented for this purpose. The initial volume fractions are fS
0 = 0.4,

fF
0 = 0.2, and fG

0 = 0.4, respectively, and the initial porosity of the sand is

nG
0 = 0.4. The sand is chosen to be uniform and fine-grained, with an angle

of internal friction φ = 32◦. The initial pressure of all constituents is the

atmospheric pressure at sea level, patm = 101.0 kPa.

Steel under isotropic compression can be regarded hypoelastic, with con-

stant bulk modulus KS = 1.6× 108 kPa. Moreover, we assume for simplicity

that the compressibility of the bulk air and the air trapped in the sand pores

does not change with pressure, hence KF = K fG = patm = const.

We employ Janbu’s power law [101] in order to efficiently model nonlinear

stiffness of the granular material:

Es
def= C

(
−σ′

patm

)a
patm . (80)

Es is the confined stiffness of the bulk granular material as measured in the so-

called oedometer test, achieving one-dimensional compression at zero lateral

displacements. σ′ is the effective stress component in loading direction and

C, a are constants. For uniform fine sand, the values C = 300 and a = 0.6

are reasonable. Jaky’s formula [102] provides a relation between σ′ in the

oedometer test and the mean effective stress, leading to

σ′ = − 3〈p〉
1 + 2(1− sinφ) . (81)
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Figure 3: Example application of the homogeneous equilibrium model: mixture of steel

(bulk solid), air (bulk fluid), and dry sand under quasi-static isotropic compression. Evo-

lution of the volume fractions, sand porosity, and mixture pressure.

Elasticity theory finally relates Es with KG
dr, the drained bulk modulus of the

granular material:

KG
dr = Es

1 + ν

3(1− ν) . (82)

Poisson’s ratio is estimated from ν = (1− sinφ)/(2− sinφ).

The results plotted in Fig. 3 are reasonable. Under isotropic compression

of the mixture the bulk air is compressed first, which does not significantly

change the pressure of the materials and the porosity of the granular ma-

terial. The increase in bulk solid and granular material volume fractions is

approximately the same due to (75) and the fact that mixture compressibil-

ity is relatively high at this stage of compression. Once the bulk air has

been completely compressed, pressure increases exponentially because of the

power law (80) and compaction of the granular material, which in turn gives

more weight to the relatively high bulk modulus of steel in the calculation of
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the mixture bulk modulus, (62).

5.3. Full-scale numerical implementation

In order to analyze real flow situations using the model summarized in

Sect. 4.4, the spatial distribution and constitutive closure relations for each

material have to be specified, and then the set of equations (58) can be

solved in conjunction with (59)–(78) subject to the initial conditions and

boundary conditions defining the problem. However, the complexity and

nonlinearity of the model makes it impossible to derive analytical solutions for

the problems of interest. Therefore, the entire model has to be implemented

into a computer code and solved numerically. One approach to achieve this

is to employ the arbitrary Lagrangian-Eulerian (ALE) methodology outlined

in what follows; see also Sect. 1. Details can be found in [29, 30, 103],

and different numerical approaches for multi-material flows are reviewed in

[6, 7, 8].

The ALE formulation [104, 6, 26] introduces a reference domain which

may move in space at an arbitrary velocityw generally different from the ma-

terial velocity v. For w = v the ALE formulation reduces to the Lagrangian

formulation, and for w = 0 the Eulerian formulation is obtained. The Eule-

rian formulation of the set of equations (58) can be written in compact form

[26, 30]
∂q

∂t
+ divF = S , (83)

where q ∈ {ρv, p} is the quantity under consideration, F is the convective

flux of q, and S is the source term; angle brackets have been dropped for

notational brevity. Instead of solving (83) monolithically, almost all ALE
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after the Lagrangian step after the remap stepinitial configuration

Figure 4: Schematic diagram of a calculational cycle in a typical multi-material ALE

method. The blue area indicates a material zone whose initial configuration is assigned to

a group of computational cells highlighted in red.

methods apply a Lagrange-remap strategy [6, 26, 27]. Conceptually, (83) is

split into two sets of equations which are solved sequentially:

∂q

∂t
= S and ∂q

∂t
+ divF = 0 . (84)

Fig. 4 illustrates the concept.

The first set of equations in (84) includes the sources but ignores the

convective term (i.e. v = w). Therefore, it is equivalent to the Lagrangian

formulation (58) and can be solved e.g. with nonlinear finite element methods

accounting for large material deformations [77, 49, 105]. The rate constitutive

equations representing path-dependent material behavior, (65) and (68), are

conveniently integrated in the Lagrangian step in a frame of reference co-

rotating with the material [75, 26].

The velocity-pressure mixed form of momentum balance represented by

(58) is a consequence of stress decomposition (23) and suitable for both

compressible and incompressible materials [106]; see also discussion in Sect. 5.

However, highly compressible materials such as void may cause numerical

difficulties on the local and global solution levels if a stiffness matrix has

to be inverted. One way to prevent this is to eliminate the nodes that are
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surrounded by zero stiffness cells from the system of equations and to scale

the incremental displacements over a time step at material boundaries [107].

The second set of equations in (84) is associated with the remap step.

During the remap the distortion of the computational mesh is reduced and

then the solution variables are transferred onto the modified mesh. If the

ALE method is run in the Eulerian limit (w = 0), the mesh nodes are

relocated to their original positions. Since mesh topology does not change,

the solution variables can be remapped by using CFD advection algorithms

based on finite difference or finite volume approximations [6, 26]. Time is

advanced only during the Lagrangian step, whereas the spatial distributions

of the solution variables are fixed during the remap step.

In the multi-material ALE resp. Eulerian approach depicted in Fig. 4, in-

terfaces and free surfaces are not necessarily aligned with cell boundaries but

may flow through the mesh [9, 10, 11, 12, 13, 14, 29, 30]. The heterogeneous

mixture in those multi-material cells cut by one or more interfaces is repre-

sented as an effective single-phase material using the mixing rules (59)–(63).

The interfaces can be tracked by different techniques [108, 109, 110]. Volume

of fluid (VOF) methods [111, 9], for example, use the volume fraction data

in the cells as it naturally carries information based on which material inter-

faces can be reconstructed —note that the presence of a k-material interface

in a bounded domain is characterized by a fractional volume of 0 < fk < 1.

6. Conclusions and outlook

A theoretical framework based on hybrid mixture theory has been devel-

oped in order to model the large-scale motions and interactions of immiscible
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compressible constituents in geomechanical multi-material flow. Macroscopic

balance principles have been derived from the corresponding balance prin-

ciples on the microscale by employing local volume averaging as the filter-

ing technique. The averaging procedure involves a product of two indicator

functions through which it is basically an extension of the classical averaging

procedure to a hierarchy of three spatial scales (micro, meso, macro). The

mesoscale has been introduced as an intermediate scale beyond which even

heterogeneous materials in the flow can be represented as continua (bulk ma-

terials). In contrast to common two-scale theories, the proposed three-scale

approach is able to incorporate both the evolution of bulk material interfaces

as well as the two-phase phenomena associated with fluid-saturated granular

material.

As in other hybrid mixture theories, the essential closure relations for in-

terfacial transfer, material behavior, and topological closure have been spec-

ified with respect to the macroscale. Each constituent has been assumed

compressible. The hybrid mixture approach allows for the use of phenomeno-

logical constitutive models describing granular material response for the full

frictional-collisional flow regime. Accordingly, the apparent stress tensors

in the dense grain-fluid mixture have been split into rate-independent and

rate-dependent parts. Topological closure has been achieved by the funda-

mental assumption of homogenous distributions of pressure and velocity, and

has finally resulted in a homogenous equilibrium mixture model governing

geomechanical multi-material flow.

Future work will focus on the application of the homogenous equilibrium

model to specific geomechanical flow situations. For this purpose the author
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and his colleagues currently develop a full-scale multi-material ALE method

that numerically solves the system of equations (58); cf. [28, 29, 30]. By

recalling the basic solution procedure outlined in this paper, we emphasize

that the developed mixture model is particularly suitable for such an en-

deavor because of two facts: (i) the mixture is effectively modeled as a single

component material with homogeneous degrees of freedom at all locations,

and (ii) the material volume fraction is a solution variable based on which

material interfaces can be reconstructed.

Further research is motivated by the assumptions and restrictions asso-

ciated with the present paper. For example, the incorporation of mass and

momentum transfer between the constituents would be of great practical rel-

evance because geomechanical problems are often driven by local drainage

and consolidation phenomena as well as by contact constraints.
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Appendix A. Hypoplastic model for frictional granular material

behavior

This appendix summarizes a comprehensive hypoplastic constitutive equa-

tion for the frictional behavior of granular material that has been proposed in

[87, 88] and extended in [89]. Hypoplasticity, in contrast to elasto-plasticity,

is a framework which neither distinguishes between elastic and plastic rates

of strains nor defines a yield surface or plastic potential [91]. Instead the

constitutive equation for the stress rate is a closed-form expression nonlinear

in the rate of deformation.

In order to simplify the notation of the main text we drop angle brackets

as well as sub- and superscripts in what follows, and write (49) resp. (68) in

the condensed, equivalent form

O
σ

def= c(σ, n,h) : d . (A.1)

The hypoplastic constitutive equation considered here describes the fric-

tional stress-strain behavior of isotropic granular materials under a wide

range of stress states and states of relative density (resp. porosity) by us-

ing only a single set of material constants. Moreover, it accounts for the

density-dependence of dilatancy and strength (peak friction) and explicitly

models asymptotic states, like the critical state (cf. Sect. 3.1). Liquefaction

and other phenomena associated with undrained or constant-volume condi-

tions are well reproduced.

The effective Cauchy stress, σ, and the void ratio, e, are considered as

the material state variables. Since the void ratio is related to the porosity
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by e = n/(1− n), their rates are related by

ė = ṅ

1− n

(
1 + n

1− n

)
, (A.2)

with ṅ given by (76). The hypoplastic evolution of the effective stress is

modeled by
O
σ

def= c(σ, e,d) : d def= L : d+N‖d‖ , (A.3)

where

L(σ, e) def= fb fe

tr(σ̃2)
(
F 2

1 + a2 σ̃ ⊗ σ̃
)
, (A.4)

N (σ, e) def= fb fe fd
aF

tr(σ̃2)
(σ̃ + σ̃dev) , (A.5)

1
def= 1

2 (I ⊗ I + I ⊗ I) , (A.6)

F
def=

√√√√1
8 tan2 ψ + 2− tan2 ψ

2 +
√

2 tanψ cos 3θ
− 1

2
√

2
tanψ , (A.7)

a
def=
√

3(3− sinφc)
2
√

2 sinφc
, (A.8)

tanψ def=
√

3 ‖σ̃dev‖ , (A.9)

cos 3θ def= −
√

6 tr(σ̃3
dev)(

tr(σ̃2
dev)

) 3
2
, (A.10)

σ̃
def= − σ3p , p

def= −1
3 trσ , σ̃dev

def= σ̃ − 1
3 I , (A.11)

fe(σ, e) def=
(
ec

e

)β
, (A.12)

fd(σ, e) def=
(
e− ed

ec − ed

)α
, (A.13)

fb(σ) def=

hs

n

(1 + ei

ei

)(
ei0

ec0

)β(3p
hs

)1−n

3 + a2 −
√

3a
(
ei0 − ed0

ec0 − ed0

)α , (A.14)
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with the characteristic void ratios ei(p), ec(p), and ed(p) being obtained

through Bauer’s formula [88]

ei

ei0

def= ec

ec0

def= ed

ed0

def= exp
(
−
(3p
hs

)n)
. (A.15)

The hypoplastic model contains eight material constants: φc is the fric-

tion angle at critical state (in ◦), hs is a reference pressure called granulate

hardness (in Pa), ed0 and ei0 are the minimum and maximum void ratio at

zero pressure, respectively, ec0 is the void ratio at critical state at zero pres-

sure, and n, α, β are exponents. The determination of the material constants

from experimental laboratory test is described in [89, 90, 112], and sets of

constants for some granular materials are listed in [112, 26].

Nomenclature

Operators and special notations

·, :,⊗ single, double contraction, tensor product

∪,∩, \ union, intersection, and difference of sets

〈·〉 spatial average

˙(·)αk material time derivative of αk-field along vαk

(·)[αk] limit value at αk-boundary
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O

(·) Zaremba-Jaumann rate

‖ · ‖ Frobenius norm

∇(·) covariant derivative, gradient

div(·) divergence

tr(·) trace

Superscripts and subscripts

dev deviator of a second-order tensor

dr drained

e elastic

f, fG, fk fluid phase, in granular material, in k-material

fr frictional (rate-independent) contribution

F bulk fluid; F ≡ fF

G fluid-saturated granular material

G′ related to effective stress in granular material

k k-material; k ∈ {S,F,G} = {1, . . . ,M}

p plastic
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s, sG, sk solid phase, in granular material, in k-material

S bulk solid; S ≡ sS

T transpose of a tensor

uj unjacketed

vi viscous (rate-dependent) contribution

α α-phase; α ∈ {s, f} = {1, . . . , N}

αk α-phase in k-material; αk ∈ {S,F, sG, fG}

Latin symbols

b, bαk, 〈b〉 body force per unit mass

c
S, cG′

fr fourth-order material tangent tensor

dk,dαk, 〈d〉 spatial rate of deformation

〈dk〉 effective rate of deformation of k-material

dv volume density

D modeling domain in Euclidian space R3

eG void ratio

fk k-material volume fractions
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G shear modulus

hS,hG′ set of material state variables

I second-order unit tensor

J2 von Mises stress invariant

Kαk, Kk, 〈K〉 bulk modulus

M number of materials in the mixture

Mk k-material domain in D

nk, nG fluid fraction, porosity

nαkI outward normals on interface

N number of phases in the mixture

pαk, pk, 〈p〉 pressure

pG′ mean effective stress

Pα α-phase domain in D

q, qαk generic spatial field

sk, sαk, 〈s〉 extra stress

v,vk,vαk, 〈v〉 spatial velocity
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vI,v
m
I interface velocity

V, V k, V αk volume measures of V , Vk, Vαk

V representative volume element (RVE)

Vk,Vαk portions of k, αk in V

x points in S

y yield condition

Greek symbols

Γ αk rate of momentum supply via ∂Vαk

ζG Biot-Willis coefficient

Λαk rate of mass supply via ∂Vαk

µfF, µG′ dynamic shear viscosity

παk volume fraction of α with respect to Vk

ρ, ραk, ρk, 〈ρ〉 spatial mass density

σ1, σ2, σ3 principal stresses

σ,σk,σαk, 〈σ〉 Cauchy stress

σG′ effective stress
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τf shear stress at failure

φ angle of internal friction

χk, χα, χαk indicator function

ω vorticity tensor
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