
California State University, San Bernardino California State University, San Bernardino 

CSUSB ScholarWorks CSUSB ScholarWorks 

Theses Digitization Project John M. Pfau Library 

2004 

The use of divergent series in history The use of divergent series in history 

Alina Birca 

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Birca, Alina, "The use of divergent series in history" (2004). Theses Digitization Project. 2591. 
https://scholarworks.lib.csusb.edu/etd-project/2591 

This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has 
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. 
For more information, please contact scholarworks@csusb.edu. 

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2591&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/2591?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2591&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu


THE USE OF DIVERGENT SERIES IN HISTORY

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

Of the Requirements for the Degree

Master of Arts

in

Mathematics

by

Alina Birca

December 2004



THE USE OF DIVERGENT SERIES'IN HISTORY

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

by

Alina Birca

December 2004

Approved by:

Dr. Chetan Prakash,
Committee Chair

Date

Dr. Charles Stanton, 
Committee Member

Dr. Belis^io Ventura,
Committee Member

Dr. Peter Williams, Chair 
Department of Mathematics

______
Dr. Terry Hallett,
Graduate Coordinator 
Department of 
Mathematics



ABSTRACT

This thesis seeks to present the history of non-

convergent series. As we show in this thesis, in the past,

divergent series have played an important role in

mathematics. Euler, Cauchy, Abel, Fourier, Stirling and

Poincare are just a few of the greatest mathematicians who

used them. Today, non-convergent series play a marginal

role in mathematics and are often not mentioned in the

standard curriculum. Most students are not aware that they

can be of any use, though such series are profitably

employed in both physics and mathematics. When I discovered

the text written by Bromwich, I thought it would be very

interesting to learn more about non-convergent series. The

study of divergent series may be divided into two parts:

one concerning the asymptotic series and the other the 

theory of summability. In an asymptotic series the terms

begin to decrease, and reach a minimum, afterwards

increasing. If we take the sum to a stage at which the 

terms are sufficiently small, we may hope to obtain an 

approximation with a degree of accuracy represented by the 

last term retained; it can be proved that this is the case

with many series which are convenient for numerical

calculations, as we will see in Chapter Two. The theory of

iii



summability is concerned with the question as to whether in

any proper sense a "sum" may be assigned to the series, 

assumed divergent. One of the most important aspects of the 

theory of summability lies in its applications to Fourier

series and other allied developments in mathematical 

physics. In this thesis we intend to study the asymptotic

series.
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CHAPTER ONE

INTRODUCTION

The definitions of convergence and divergence are now 

commonplace in elementary analysis. The ideas were familiar

to mathematicians, before Newton and Leibniz (indeed to

Archimedes)and all the great mathematicians of the

seventeenth and eighteenth centuries, however: recklessly

they may seem to have manipulated series, knew well enough

whether the series which they used were convergent. But it

was not until the time of Cauchy that the definitions were

formulated generally and explicitly. Newton and Leibniz,

the first mathematicians to use infinite series

systematically, had little temptation to use divergent 

series. The temptation became greater as analysis widened 

and it was soon found that they were useful and that 

operations performed on them uncritically often led to 

important results which could be verified independently. 

There is little written about divergent series before

Euler. Mathematics after Euler moved slowly but steadily 

towards the orthodoxy ultimately imposed on it by Cauchy, 

Abel, and their successors, and divergent series were 

gradually banished from analysis, to reappear only in quite
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modern times. They had always had their, opponents, such as

d'Alembert, Laplace and Lagrange. After Gauchy, the

opposition seemed definitely to have won. The analysts who

used divergent series most, after Euler, .were Fourier and

Poisson (who was almost Cauchy's contemporary). -

Our study will start with a few historical remarks on

the use of non-convergent series. In Chapter Two we will.

give some general considerations on non-convergent series

such as attaching.a precise meaning to a non-convergent 

series, so that such series may be used for purposes of 

formal calculations, under proper restrictions. The Chapter 

continues with Euler's use of asymptotic series. We will

show a few of his results. Then, we are- going to work with •

Bernoullian polynomials to find the remainder in Euler's

formula. We end Chapter Two with an application of Euler's 

formula to Stirling's series. Various integrals of

interest, both in Pure and Applied Mathematics, can be

calculated most readily by means of asymptotic series . In 

Chapter Three we will use Integration by parts and 

Expansion of some function in the integral to obtain a 

suitable asymptotic series for a given integral. A few 

typical examples will be given: the error-function integral 

and the logarithmic integral. In this process we will be

2



referring to the Gamma function. Next, we will work with

asymptotic series for integrals containing sines and

cosines: Fresnel's Integrals and the Sine- and Cosine-

Integrals. In Chapter Four we will investigate Stirling's

Series independent of Euler's Summation Formula as well as

Stoke's Asymptotic Formula. Poincare's theory of asymptotic 

series along with a few of its applications will be studied

in Chapter Five. Finally, in Chapter Six we will show some 

examples of the way in which asymptotic series present 

themselves in the solution of the differential equations.

3



CHAPTER TWO

SOME HISTORICAL REMARKS

Historical Remarks on the Use 
of Non-Convergent Series

Before the theory of convergence had been developed by

Abel and Cauchy, mathematicians had no hesitation in using

non-convergent series in both theoretical and numerical

investigations.

In numerical work, however, they used only series 

which are now called asymptotic; in such series the terms 

begin to decrease, and reach a minimum, afterwards

increasing. If we take the sum to a stage at which the

terms are sufficiently small, we may hope to obtain an

approximation of the function whose series turns out to be

asymptotic with a degree of accuracy determined by the last

term retained; and it can be proved that this is the case

with many series which are convenient for numerical

calculations.

An important class of such series consists of the

series used by astronomers to calculate planetary

positions: Poincare proved that, despite the fact that

these series do not converge, the results of the

4



calculations are confirmed, by observation. The explanation 

of this fact could be inferred from Poincare's theory of

asymptotic series (Chapter Five).

But mathematicians have often been led to use series

of a different character, in which the terms never

decrease, and may even increase to infinity. Typical

examples of such series are:

(1) 1—1+1—1 + 1 —1 + ...;

(2) 1-2 + 3-4 + 5-6 + ...;

(3) 1-2 + 22 -23 + 24 -25 + ...;

Euler considered the "sum" of a non-convergent series

as the finite numerical value of the arithmetical

expression from the expansion of which the series was

derived. Thus he defined the "sums"- of the series (1) - (3)

as follows:

(1) = (2) = (l + l)2 (3) =
J.
31 + 1

£
2 4 1 + 2

Proof for (1)

1 w
— = Yx''=i l-x h + X + X +.

— =-- --- = Y(-x)"=l-x + x2-x3+.
1 + x l-(-x)

5



Let x = l . Then —= 1-1 + 1-1 + ... 
1+1

and the sum of (1) is
2

Proof for (2):

1-2+3-4+5-6+

-x!+... = £<-!)• x'--- = 1 - x + x1 2 - X'
1 + x

---- — — — 1 + 2x—3x2 +...

(1 + x)2

— 1 — 2x + 3x — 4x +...(1 + x)2

Let x = l . Then —-—7 = l-2 + 3-4 + (l + l)2

and the sum of (2) is ——- = — (l+l)2 4

Proof for (3):

1-2 + 22 -23 +24 -25 +...
1 23------= 1 — x + x — X +...1 + x

1 9 3Let x = 2 . Then -- — 1 — 2 + 2 —2 +...
1+2

and the sum of (3) is -- = —
1+2 3

Euler's definition depends on the inversion of two

limits, which, taken in one order, give a definite value,

and taken in the reverse order give a non-convergent

6



series. Therefore, series (1) is:

lim 1 - limx +limx2 -limx3 +...

as x tends to 1; Euler's definition replaces this by

lim(l - x + x2 - x3 +...)

So, generally, if ^/,(c) is not convergent, Euler would 

define the "sum" as lim V f.(x), when this limit is definite
x->c

Callet did not agree with Euler. Callet showed that

the series:

1-1 + 1-1 + 1-1 + ...

can also be obtained by writing x = l in the series: 

1 + x _ (l + x)(l—x) _l-x2_1 + x _ (l + x)(l-x) _l-x _/ 2\ 1
1 + x + x2 (l + x + x2)(l-x) l-x3 4 '(l-x3)

1
(5) -x (]-/)

= 1 — x2 + x3 — x3 + x4 — x* + ...

+ x3 + x3 + ...) —(x2 + x5 * * + x8 + •••)=

2 1where by the left-hand side then becomes — instead of —
3 2

Lagrange, also, suggested that the series: 1 + x
1 + x+x

should be written as: 1 + 0-x +x +0-x +x +0-x + ... and that

then the derived series would be 1 + 0—1 +1 + 0 — 1 +1 + 0 — 1 +...

The last series gives the sums to 1,2,3,4,5,6,... terms as

1,1,0,1,1,0,...

7



50=l
s, =1 + 0 = 1 
s2 = 1 + 0-1 = 0

Therefore the average sum is

result.

=1 + 0 —1 + 1—1 
s4 =l + 0-l + l + 0 = 1 
s5 =l + 0-l + l + 0-l = 0

2—, agreeing with Callet's

co

In fact, Frobenius pointed out that if anx"
H=0

is any power series having a radius of convergence equal to

1, then

co

a„x = lim
n-*<x>

sQ+sx+s2+...sn 
n + l

where sn =a0+a,+... + an, putting Lagrange's remark on a more

satisfactory basis.

1 ”So, the average sum is ---Vs. .« + l^

v n 5n + S, + 5, + ...S 1+1 + 0 +1 +1 + 0 +...lim > anx = lim ---- ----- - ----- -  = lim-------------------------
n + l "->a> n + l

Now we can notice that +5, + s2 + ...sn = (n + l)-A: , where k is

1
the integral part of —(n + l) Therefore the average

, which is the value given by the left-hand side

sum is

of (5) .

In the original series (1), the sums are 1,0,1,0,1,0,..., of

which the average is 1/2, agreeing with Euler's sum.

8



Euler and other mathematicians made many discoveries

by using series which do not converge. In fact, the older 

mathematicians had sufficient experimental evidence that 

the use of non-convergent series as if they were convergent 

led to correct results in the majority of cases when they 

presented themselves naturally.

An Example of the Use of a Non-convergent
Series to Obtain a Correct Result

Let us find the Fourier series for the function:

7i sinh x 
2 sinh

According to Fourier f: [-7r,7r] —> R

/(x) = —+ cos«x + ^Z?)( sinnx
2 i i

where

an = — j* f (x) cos nxdx 

bn= — £ f (x) sin nxdx

Fourier found that the coefficient b of sinnx is

pi)-1 Lpip'UU
V * 2 * * * * 7 \n n n J V 7 1 + n

which, for n = l is a divergent series.

To see this, note that

9



L(ex
, 1 (w vsinhx . , r ' •
b„ = — ---------- sm nxdx - —------------ sin nxdx --

" v J-* ? sirih tt J-x M - F”

= ——------ r r (ex - e v 1 sin nxdx
2(e’c’

Let

I = £ [ex -e x) sin nxdx = -
(ex -e X^cosnx

+ — £ (ex+e X^cosnxdx
n

(e *-e^cosnF ~(eK-e *)cos(-H)/r i '(ex+e A')siIsm/ix

n

—y £ (ex-e X)sinnxdx

But
sinztx

n /
= 0, therefore,

2 cos n7i\e ~-e") i 
i=-----------41

n n

n2+1 2 cos nF ” -e*)

n

2n(cos nF)(e * -e*)
2n(e* -e

n2+l
n2+l : 

2n(e~x

n=odd

n2+l
n=even

Therefore the coefficient of sinztx is

b.

10



which, by the geometric series expansion, becomes

1 + n2 n\ n2 n4 J ' \n n3 n5 j

When n = \ we find b, which is the coefficient of sinx

b, =-J— = — = 1-1 + 1-1+1-1 + .... 
1 + 12

So, we find that the sum of

(1) 1-1+1-1+1-1+.

is — . 2

As a matter of fact, this is correct, since:

Jsinh x sin xdx = — (cosh x sin x - sinh x cos x)

so that:

— f/(x)sinxe?x = —
7T Q 2

Abel and Cauchy did not use non-convergent series in

their work. They said that the use of non-convergent series 

had sometimes led to gross errors. However,the banishing of

non-convergent series from their work was done with some

hesitation.

Cauchy formulated the asymptotic property of 

Stirling's series by means of a method which can be applied 

to a large class of power-series. But the possibility of

11



obtaining other useful asymptotic series was overlooked by 

later analysts; and, after Cauchy, mathematicians abandoned 

all attempts at utilizing non-convergent series.'. In 

England, however, Stokes published three, remarkable papers 

(dated 1850, 1857, 1868), in which Cauchy's method for 

dealing with Stirling's series was applied to a number of

other problems, such as the calculation of Bessel's

functions for large values of the variable.

But no general theory of non-convergent series was 

forthcoming until 1886, when papers discussing the subject 

were written by Stieltjes and Poincare'. Since that time 

many researches have been published bn the theory..

, .In the following articles we will work with the most 

important examples of asymptotic series, which have been 

found of importance in calculations.

General Considerations on 
Non-Convergent Series

In general, the "sum" of a series (convergent or 

divergent)was taken to be the number most naturally 

associated with it from the standpoint of mathematical 

operations. This concept, however, naturally led to 

inconsistency. . . ..

12



The notion of sum as thus loosely conceived was

eventually replaced by the exact definition of Abel and

Cauchy according to which the sum of any series

+ ZZj + + • • ■

is taken to mean the limit

5 = lim(a0 + a,+a2+...+a ) .

Series for which this limit exists were termed convergent,

all others divergent.

In view of the results obtained in the past by the use

of non-convergent series, it seems probable that we can

attach a perfectly precise meaning to a non-convergent 

series, so that such series may be used for purposes of

formal calculation, under proper restrictions.

Of course it is evident that the "sum" associated with

a non-convergent series is not to be confounded with the

sum of a convergent series; but it will avoid confusion if

the definition is such that the same operation, when 

applied to a convergent series, yields the sum in the 

ordinary sense.

Euler was perfectly aware of the distinction between

his "sum" of a non-convergent series and the sum of a 

convergent series. Thus he says that the series:

13



' l-2 + 22 - 23 + 24-... = —= - 
1 + 2 3

obviously cannot have the sum in the ordinary sense,

since the sum of n.terms differs more and more from —as n 
■' 3 ■

becomes larger.

S„ = 1 - 2 + 22 - 23 +... + (-1)"“' 2”~'

s. =Z(-l)‘2‘=g(-2)‘
k=0 k=0 1

And he adds that contradictions can be avoided by 

attributing a somewhat different meaning to the word sum. 

He defines the sum of any .infinite series as the finite 

expression, by the expansion of which the series is

generated. In this sense the sum of the infinite series

1—x + 2 — x3 + ...

will be —— ,because the series arises from the expansion l'+x

of the fraction, whatever number is put in.place of x. If 

this is agreed, the new definition of the word sum 

coincides with the ordinary meaning when a; series 

converges;, and since divergent series have no sum, in the

proper sense of the word, no inconvenience can arise from

this new terminology.'

14



In practice, Euler used his definition almost

exclusively in the form

n=0 x n=0

and if restricted to this case, Euler's statement is

correct.

The legitimate use of non-convergent series is always 

symbolic; the operations being merely convenient, though

justifiable abbreviations of more complicated

transformations in the background.

Even though we might just as well write the work in

full, experience shows .that the use of the asymptotic 

series often suggests useful transformations which 

otherwise might never be thought of.

An example of this maybe taken from Euler's

correspondence with Nicholas Bernoulli; Euler wanted to

show how to attach a definite meaning to the series:

l-2!+3!-4!+5!-...

He proves first that the series

x-l!x2+2!x3-3!x4+...

satisfies formally the differential equation

2 dy -x — + y = x . 
dx

15



Let

y = x-l!x2 + 2!x3 -3!x4 + ...

— = l-2!x + 3!x2-4!x3+... 
dx

x2^ = x2_2!x3 +3,x4 _4!%5 +.
dx

y = x-l!x2+2!x3-3!x4+...

2 dy n dy 1 . 1x-- Hy-x and ~ + ~y = —
dx dx x x

where P = ~, Q- — 
■ x x

, f Pdx f x 2dxThe integrating factor is eJ =eJ =e

, f/YZv f f Pdx tis yeJ ~ IQe ax, i.e.

and the solution

ye
- 1 -1 1 1 -I - 1 -- .V 1 ---
* = J—e Xdx = ex $—e Xdx = e' j—e d% = £ —ex $d% 

x x i j

1 1Let----= t .

x

So, the solution is

y = - L el p^— dt = £ ^—dt
1 + xt 1 + xt

'=1 xe
1 + xt

-dt

Therefore, x-(l!)x2 +(2!)x3 -(3!)x4 +...= £(« xe
1 + xt

-dt

16



in agreement with the result found in Chapter Three below, 

showing that Euler was right that he had never been led 

into error by using his definition of "sum".

Numerical Evaluation of Non-convergent Series

A very natural method for the numerical evaluation of

non-convergent series is given by Euler's transformation of 

slowly convergent series (Appendix A); as an illustration 

we take the series used by Euler:

(4) log10 2-log,0 3 + log,0 4-...

Starting at log1010, the differences are given in the

table below:

0io =logI010 = l 
a„ = log1011 = 1.0413927 
a,2 = log,012 = 1.0791812 
a,3 =log1013 = 1.1139434 
a14 = log,014 = 1.1461280 
a15 =log1015 = 1.1760913 
aI6 = log,016 = 1.2041200 
a]7 =log1017 = 1.2304489 
a18 =log1018 = 1.2552725

0io “0u = -0.0413927 
0n -a12 = -0.0377885 
0i2 “0i3 =-0.0347622 
0i3 “ fli4 = “0-0321846 
fli4 “0i5 “ -0.0299633 
fli5 “0i6 =-0.0280287 
0i6 “ fli7 -0.0263289 
0i7 “0i8 =-0.0248236

(a,0 — a,2) = -0.0036042
(a,, -a,2)-(a,2 -a,3) =-0.0030263 

(0i2 “ ai3) “ (ai3 “ 0i4) = -0.0025776 
(a13 -al4)-(al4 -a,5) = -0.0022213 
(<714 -aI5)-(a15 — a,6) =—0.0019346

(a,0-2a,, + a,2)-(a,, - 2a,2 +a,3) = -0.0005779 
(a,, - 2a,2 + a,3) - (aI2 - 2a,3 + a,4) = -0.0004487 
(a,2 - 2a,3 + a,4) - (a13 - 2a14 + a,5) = -0.0003563 
(a,3 - 2a,4 + a,5) - (a,4 - 2a,5 + a,6) = -0.0002867

17



(a,0 -3a,, + 3a,2 -a,3)-(a,, -3a,2 + 3a,3 -a,4) = -0.0001292
(a,, -3a,2 +3a,3 -a,4)-(a,2 - 3a,3 +3a,4 -a,5) = -0.0000924
(a,2 -3a,3 +3a,4 -a,5)-(a,3 -3a,4 + 3a,5 -a,6) = -0.0000696

(a,0 -4a,, +6a,2 -4a,3 +a,4)-(a,, -4a,2 +6a,3 -4a,4 +a,5) = -0.0000368
(a,, -4a,2 + 6a,3 -4a,4 +a,5)-(a,2 -4a,3 + 6a,4 -4a,5 +a,6) = -0.0000228

(a,0 -5a,, +10a,2 -10a,3 + 5a,4 -a,5)-(a,, -5a,2 +10a,3 -10a,4 + 5a,5 -a,6) = -0.0000140

From Appendix A we know that:

X= |( v„ +Tv„ + Id\ ++D\ 1 +

+L(D'v„-D'v, +D'v2-...) =
2P

= -v0 + -£>v0 + -Z)2v0 + —D\ + \d\ +^D\+\d\+. 
2 4 8 0 16 25 0 26 0 27

where v0 = a,0, v, = a„,... and Dv0 = al0-a,,, D\ = a,0-2a,, + a,2,„.

Therefore, the "sum" from log,010 onwards is approximated by:

.5000000-jJ-(.O413927)+ |(.0036042) + A(.0005779) + 0001292 +

+ A (.0000368) + (.0000140) j = .5000000 -(.0108396)

The sum of the first eight terms in the series is found to 

be (taking the terms in pairs)

log,0 2 - log,0 3 + log,0 4 - log,0 5 + log,0 6 - log,0 7 + log,0 8 - log,0 9 =
= -.1760913 - .0969100 - .0669467 - .0511525 = -.3911005

Combining these two results, the sum of the whole series

appears to be: .1088995-.0108396 = .098060 ,

which is exact up to six decimal places.

18



Euler's Use of Asymptotic Series

One of the earliest and most instructive examples of

the application of non-convergent series was given by Euler

in applying his formula of summation (Appendix E) to

calculate certain finite sums.

In general, for any polynomial f and positive integer

x ,

/(i)+/(2)+...+/(x) = j/+1/(x)+15,/V) - j; +...

where Bj = Bernoulli's numbers.

We know from Appendix C that

(2r)! A 1

It is obvious that Euler's summation formula converges for 

polynomials. For non-polynomials, however, we often get 

non-convergent (asymptotic) series on the right-hand side.

For example, taking /(x) = —, and % = /?, we find 
x

(3) 1W + -^53/(5)(x)-

1 + — + = log n H---2 n 2n
+ ...

2n2 4n4 6n6

Now this series does not converge.
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5- (-1)' Br
We are going to prove that the series I % diverges

using the ratio test.

(-1)' BFor a,.--—— calculate the ratio 
' 2m2''

a,.

2(,-l)a..
a.

r-l

Br2(r-f)n
2m2rBr_x

Br r-l 
Br_x rn2

si
B, = = (2r-l)2r

Br_x (2r— 2)\22'~xf2’ 1 4tt2 y1

si

2r-2

yp 1 1 1 1 1ZjTIF -1 + + ^2? + ••• + 71F + - > 1
n=■ n

1 CO J |
If r>3 , =-----f (See Appendix I)

»=, n n=i n i__
24

Therefore

a,.
_^.2(r-l)»2('-1) Br r-l j 24K 0

a,. 2m2'Br_A Br_{ rn2 4f2 ■ fn2

15(r-l)(2r-l) 
2F2n2 -16 16/r2n2

15V-l£
i6F2n2
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, therefore we see that the terms in the
ar_x Ibnfif

series steadily increase in numerical value after a certain

value of r (depending on n and roughly equal to the integer

next greater than l + 7i7r) . We are not sure whether Euler

realized that the series could never converge; but he was

certainly aware of the fact that,it does not converge for

n=l. He used the series for ra=10 to calculate the Euler

constant

C = lim In 1-...-I-----logw
2 . 7Z J

C = 0.5772156649015328(6060)...

1 B B Bwhich he regarded as the "sum" of the series —+ —--
2 2 4 6

for 7i = 1 .

The reason why this series can be used, although not

convergent, is that the error in the value obtained by

stopping at any particular stage in the series is less than

the next term in the series. The truth of this statement

follows from the general theorem proved in the next

section.

To illustrate this point, consider the sums of the

last series, and we find successively, with Rn as remainder
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and un as the next term after truncation, that.

. 5, = — + — = .5833,2 ;2 2 ,
5'3=-+A-^.= .575O,
3 .2 2 4

54 =.579O,
. S5 =.5748, ,
S6 = ,5824, '

R2= C—S2 =-.0061,

R2 = C - S,= +.0022,:•

7?4=-.0018,
/?,=+.0024,
R(,=-.W52,

u. QQ83,

. 4
m4 = —= +.0040, 

6
u5 = -.0042, 
m6 = +.0076,

after, which the terms steadily increase in numeral value.

Thus, from this series we cannot obtain a closer

approximation than S4, which.corresponds to stopping at the

numerically least term m4 .

We quote a few of Euler's results for verification:

Example 1. Show that

l + - + - + ...+- = 7.48547, if n = 1000,2 3 n -

’ =14.39273, if « = 1000000.

Euler gives the values to 13 decimals.

Proof for (1):

1 1 1 1 1 1C = liml 1 + —+ — + ... + —-In «J = lini 1 + —+ — + ...+
2 3 n j 2 3 nj

-limlnn«->00

For n = 1000 , In 1000 = 6.907755279

C = 0.5772156649

Therefore
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1 + - + - + ...+ - = 7.48547 2 3 n

For n = 1000000 , In 10000000 = 13.81551056

C = 0.57721566

Therefore 11 11 + -+ -+... + -= 14.39273 2 3 n

Example 2. Show that

1 1 1 1 fi, (2‘
i) 1+ - + - + ... + ——- = -(C + log«) + log2 + —------ r-^+...,3 5 2n-l 2V ’ %n 64n4

and that

1 1 1 1 1 1 (2J-l)S,
ii) 1—+---- + ...-I---------------= log2--— +2 3 4 2»-l 2n 4» 8«2 64n4 + .

Proof for (2i):

1 1 1 1
11 I+3+I+-+PPi=5tc+lo8'’)+log2+^

We know that

A. t2’-1)^,
464n

.11 1 . 1 B, B, B,
. 1 + —+ — + ... + —= lnn +------- Ar + ^r----- v + -' * 2" 2n2 4n4 6n62 3 n

If n is replaced by 2n, then

B-,

1 + - + - + ... + — = C + ln(2n) + --------
2 3 2n V 7 4n 2(2n)z 4(2«/

= C + ln2 + ln« + —-----~y+~
4n , 8n2 64«4

-+^

1 1 1 1 1 1 1 1 1- + — + - + ... + — = - 1+-+-+- + ...+- 
2 4 6 2n 2\ 2 3 4 nj

C 1 1 A B„= — +—lnn + —------v + —r2 2 4n 4n2 8«4
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.1 1 C , _ In n B, B7 By1+ - + ...+---- = — + ln2 +--- + —V + —
3 2„-l 2 2 8n2 64/? 8«4

Cd-Inn 5, 2-1- + - 4 28n2 64«
B„ +...

Proof for (2ii) :

^111 1 A f 1 1 1 1Id 1 1 h...d-- — 2 1 1—• + ... + -,111 11 +--- + ... +----2 3 4 2«-l V 234 2nJ {2 4 6 2n

< , „ , 1 B, By j < , 1 B, By
\ 4n 8n2 64n4 J 2n 2n2 4n4

, „ 1 22-l n 24-l— In 2-------1---- — B.-----------------------7- By +...

4n Sn2 64n4

Example 3. Find a formula for

1 - + - 1 - + - 1 - + ... + - 1
a + b 2a+ b 3a+ b na + b

similar to Euler's formula.

Proof for (3):

We'll use Euler's formula of summation (See Appendix E)

/(l) + /(2) + ... + /(x) = J/(x)Jx + j/(x) + l51/'(x)-l52r(x) +

for f(x) - —-— = (ax + b) V 7 ax + b V 7

Then

$f(x)dx = ln(ax + Z>)
a

+ C
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(note that C is not Euler's constant)

/'(x) =-(ax + h) 2 a = -a(ax + b) 2

f"(x) = 2a1 (ax + 6)

/'"(x) = -2-3cc‘ (ax + Z?) 4, etc,

1 1 1 - +---- + ... + -
a + b 2a+ b na + b

1. z , x 1 B.a (2+2a3 Bo

= -Inina + b) + —------- ?-------- ’-----7 +------5------- 1-----T -...
a 2\na + b) 2(na + b} 1- -^(na + b)

1. , , x 1 aB. a3B, a5B.

= - In (na + b) + —--------------------------- -------------------------------- 5—T -------------------------------- 3—7
a -2[na + b) 2(na + b) A(na + b) 6(na + b)

+

Example 4. Taking f(x) = ~> prove similarly that

1 1 1 -+-«2 +(h + 1)2 (« + 2)2
1 1 B. B, B,

.to co = —+ —- + -1--2- + -L-...
n 2n n n n

1 1 1Hence we find —-+—-d -+...to oo = .1051663357 and we deduce102 ll2 122

71that — = 1.6449340668 6

Proof for (4)

/(l) + /(2)+.../(x) = J/(x)«fc+I/(x)+l51/’(x)-ii!2rW+...
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/w=?= -2

J/(x) = -x"

/'(x) = -2x3, /"(x) = 2-3x~4 , /'"(x) =-4!x 5 , etc.

, 1 1 1 1 B, B,
1 + U7 + - + —“ + 7T r + “T“-2 n n 2n n n

\ K i K «+l k2

CO f « 1 HI

y—=y—-Y—£m2 ^k2 ^k2

co 1 n 1
y-T=iimy-T=°

H + l
J_=I_ J,
k2 n 2n2 n3 n5

1^1 1 1 B.
—r+/ -T = - + —7 + —r--- r + -
n Ta k n 2n n3 n5

If n = 10 ,

1 1 1
—T “I—I —7 "F • 102 ll2 122

1 I.= — + - - + - B,i 
10 2-100 1000

0.1 + 0.005 + 0.000166 = 0.105166
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1 03 1 oo 1 __2
We know 7?,=—V—, thus V —= ^2K =— 

1 qi i gn y n

Therefore,

111 1 1— = T ± = 1 + J- + J- + ... + D-+_^ + ^- + ... = 1.6449340668 
6 22 32 92 102 ll2

Example 5. Show similarly that

1 + -4 + 4+4-... = 1.2020569032 
2 3 4

Euler obtained in this manner the numerical values of ^—7

from r=2 to 16, each calculated to 18 decimals. Stieltjes

has carried on the calculations to 32 decimals from r=2 to

70 .

Proof for (5)

Take /'(x) = A 
x

in Euler's formula of summation:

/(l) + /(2) + .../(x)=J/(x)dI+i/(x)+lB,/'(x)-iv(x)+...

/(x) =x 3
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-1
2x2

/'(x) = -3x-4, /" (x) = 3 • 4x~5, (x) =-3 • 4 • 5x-6, etc.

CO 1 HI 00 1
Y-r=X-T+Y-rZ-i 7,3 4-1 7 3 i 31 /V 1 /v „+l /v

co 1 oo 1 HI nt 1 HI Hl

Y-r = lYnY-r = fonY-y-Y-y = “Y^tM3 ^k3 ^k3 »^k3 ^k3 ^k3

1 1 35, 5B2
2n2 2n3 2b? 2z?

1 1 | 3B' 5B2 !
2n 2/? 2« 2n/

1 tA 1 1 1 1 35, 55,
—r "t z —r — z —r — —T "I--- r "1---- 1------ t + • • •
n3 k3 k3 2n2 2n3 2z? 2z?

If n = 10 ,

-ir + +... = —1— +---- -----+ — = 0.005 + 0.0005 + 0.000025 = 0.005525
103 ll3 2-100 2-1000 2-10000

But 5, = — .
1 6

Therefore,

Y-4 = l + 4 + -4 + - + 4+0.005025 = 1.202056986 
V k3 23 33 99
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1Example 6. If f(x) = —-----
(Z~ + x J

1 1 1 1

prove that

• + -t;-- Z- + ...+Z2+l2 Z2+22 Z2+«2 Z --0 + 2 J 2{l2 l2+n2)

tt B, sin2 6 sin 26 B7 sin4 (9 sin 4#+ —-- r-- 1-----;----+ —----- ?----73 4 Z5Z(e2fe-l) 2 Z3

where tan# = —; the constant is determined by allowing n 
n

tend to co and using the series found in Appendix B.

to

Proof for (6):

We will use Euler's formula (Appendix E) for /(x)=
l2+x2

J- 1,1 X------- dx = - arctan — + Cl2+x2 I I

/'(*) = —2x

(i2+x2 y = -2x(Z2 + x2)

2 23x2+ 3 = -2 (Z2 + x2 f2 + 23 x2 (l2 + x2 )~3
(Z2+x2) (Z2+x2)

/'«=-

x 23x 24x 24x2-3x 23-3x 24-3x3
/ (*) = -------------v + -

(Z2+x2) (Z2+x2) (Z2+x2) (Z2+x2) (Z2+x2)
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23-3x (. 2x2 'j 23-3x(Z2-x2)

(Z2 +x2) Z2+x2y (Z2+x2)4

1 1 n „ 1 B.n B2n(l2-n2)
> -5---- 7 = - arctan - + C +  --------------------* 1-------------- ---------Z—l j2 , ;,2 -
k=\ *k=\ + M I I l{l2+n2} {f+n2') (/2 + n2)4

tan# = —, arctan— = 9 
n n

n n „ ,, , 1 n.arctan—=---- 9 (because arctanx + arctan— = —)
Z 2 x2 2

tan2 9 = ~y Z2 = «2 tan2 9 
n

I2 +n2 = n2 tan2 9 + n2 = n2 (l +,tan2 9} = n2 1 + sin 9 n
k cos 9 y cos 9

l2+n2

B{n _ Bgi cos4 9 _B] cos4 9 _BX cos4 9 tan2 9 
(l2+n2>) n4 n-n2 n-l2

D 4/3 &1U 07
1 C°S cos2 9 _ Bi sin2 9 cos2 9 _BX sin2 29 

n-l2 n-l2 4n-l2

5, sin 29 sin 29 _ Bx sin 29 2 sin 9 cos 9 tan 9 
4l2 -n ~ 4Z2 Z
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So, Bgi _ Bx sin 26 sin 0

(l2 + n2} 2l3

To find the constant C,

v- 1 v v- 1 1 „ n „2 —-- - = lim y —-- - = - arctan co + C = —H Ctr/2+k2 <^»tr/2+k2 / 21

c=£y
A=1 1

1 71
2+k2 21

Use

At = ~~T + Z 2 2,X2 2 (See Appendix B) -1 x 2 j^x + 4n7T

£
t=l

2x

X2+4k27T2

= 2XX

k=\

2x
X2+4k27T2

1 1 1 
ex-1 x + 2

Let x = 2l7t

1
e2/;r-l

1 J_ 
217i 2

= 41t2£
k=l

1
4l27T2+4k27T2

=j£
4tt2 (l2 + k2 ) 7T

1
l2+k

oo

£1
1

I2 +k2
71 { 1 1 , 1 1 _ 71 1 , k
1 U2te-1 _ 2hr + 2 ) ~ /(e2fa-l)” 212 + 21

Therefore, C =
7C

/(e2fa-l) 2l2
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B2n(n2-l2) B2ncos&0 B2ncos* 0 ( 2 2,_2n\ #2 cos8 tf(cos2 0-sin2
(f+n2)4 ~ ns ~ n* * tan

B2 cos 0 cos 20 _ B2 cos 0 cos 20 tan 0 _B2 sin 0 cos 20 cos 0 
n5 ~ T5 ~ ?

B2 sin 0 sin 0 cos 0 cos 20 _ B2 sin 0 sin 20 cos 20
T5 " 2?

So,
B2n (n2 -12} _ B2 sin4 0 sin 40 
(Z2+n2)4 4?

Therefore,

Z7A=1 I

1 If tt

2+k2 l\2
-0 +

71 1
Z(e2te-l) 2 VZ2 Z2+«2y

B, sin2 0 sin 20
T T~ -+1 1

+ 7?2sin40sin4#
41

Example 7. In particular, by writing l=n (in Example

6) we find

7r = 4n —----- h
1 j 1 4ti

n2+l n2+22 
B, B

2wr

-+
B< B.

1-n2 3-22-n6 5-24-n10 7-26-n14

1 1 + ... + - + -
n2+n2 ) n ez"*-l- +

+ - + ...

By writing n = 5, Euler calculates the value of 7t to 15

decimals.

Proof for (7) :

If I = n , tan6* = 1, 0 = — 
4
71
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sin 2d = sin — = 1

sin2 d -

sin4 d = —

sin 4d ~ sin it = 0

It follows that the B2r terms become 0.

sin6 d = 23

sin 6(9 = sin— - -1 
2

From Example(6) we have that

1 1 71
—+

Z-=1 I

7T 1 1 B, 1 B, 1-- L-- r + - ‘
+ k2 n 4 2 2n2 2 2n3 6 23n7

4ntii2+k2 = 7T +
1 Bx B2

„2nx i „ 2 "I” □ <\2 6

e — I n n 3-2 -n

n - 4»y^~
4=1 I

1 1 4ti B, B,
2+k2 n e^-i n2 3-22-nb 5-24-n2n/r 2 6c n4 10

v 2 J 2

+ - - + - - + B<

The Remainder in Euler's Formula

We have seen (Appendix D) that the Bernoullian 

polynomials ^, (/) satisfy the following relations:

^m(x) = 2^2„,_I(x), (w>l)
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$„,+i (*) = (2m +1) (x) + (-1)'""' Bm), (m > l)

and. further, that is zero both for £ = 0 and t = l.

t"If t~l, then (l) = 0 (because there is no — in the

r(er'-l) , ,
expansion of —5-----} . If t = Q, then <j)n (0) = 0 .

e -1

It follows that if F is any differentiable function,

jk (<)^(')<*=(0[ - K =- W„-, (<)/=•’(<)*
0 0 0

Similarly

(0 a'(>)*,=f(<m4 - K' (()F(0<*=

= - j(2„ -1)(^2,.2 (z)+(-1)"-2 B,_, )f(z) dt

0

Combining these two results, we see that

K (') F" (<) dt = 2n(2n -1) 'j(2„_2 (z) + (-1)'' B„_, \F(t)dt

0 o'

or that

i i i
J^2„ (t)F’\t)dt-2n(2n-l)fy2ll_2 (t)F(t)dt = 2n(2n-Y)Bii_l (-1)” $F(t)dt
0 0 0

Then, replacing F(?) by /2',_2(x+^) ,we have

we have
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>2„(z)/2"(x+()4( =
0

= 2n(2« -1) p2„_2 (t) f2"-2 (x+t)dt + 2n(2n -1) (-l)"'2 j/2"’2 (x+t)dt

o o

Thus, if we write

we find that

\^n 0 0

-T-1 , B ,(-i)" \f2"-2(x+t)dt = B"-'( /2"~3(x+r)|
(2n-2)! "lV 7 f / (2«-2)!7 V 7|'

x’~x-' =7^(hd+i)-k"-!M) ■

This relation holds for values of n>l ; to complete the 

sequence, consider the integral

+ = | p20)/"(*+()‘*=| K'2-<)rti+<)*=
0 0

z L o

•j i -j i

= — fetf'(x + t)dt + — (x + t)dt =
2 o 0
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0
= -Zf(x + f)|°+ J/(x + Z)<* + y/(x + f)

0

= -/(x+l) + £/(x+z)<fr+|/(x+l)-|/(x)
0 Z Z

We find

= J/(x+O^-y/(x+l)-|/(x) 
o Z Z

|(/(x + l) + /(x)) = J/(x + /)^-X,
2 o

and by the change of variables x+t=%, we have 

|(/(x + l) + /(x))=
X

Also, from the general formula

X.-X,., = (-1)” (*+1) - f1-1 W)

we have

for n = 2 _^i+X2=|l[/'(x + 1)-/'(x)]

for n = 3 _X2+X3=-^-[/"'(x+l)-/'”(x)], etc.

That is, we have successively

1 x+1
-[/(x+l) + /(x)] =

.V
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*+' /?- jH) /(A), A> .
X

A+] Z? . D
- f i i 7'(A • I) ./ • ( A) I “[/>+!) - /'(a)]-X,. etc.

If we now write x = a, a + 1, ...,b-l where b-a is any positive

integer, and add the results, we obtain Euler's summation

formula (as in Appendix E), but with a remainder term.

Let x = a

a *

Let x = a + 1 . ?

|[/(« + 2) + /(a + l)] =

a+2 n R
= J +-i.\_f'(a + i)-f(a +1)]-Jf" (a + 2)-f(a + l)]

rt+1 • Z. K-. - ,

Let x = a + (b-a)-l = b-l

A-l . 4. . . +• * • • • , ; ■

Adding, we find ' . ..

/(a)+/(« + l) + .., + /(i)=j'/(4)^+I[/(a) + /(*)]+|L[f(6)-/’(a)i-
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where Rn is the remainder term and

= (2«)i fa" (a + t^ + -^2" (a + l + f) + - + /2" (6-l + /)]fifr

It is to be noticed also that

R„ ~ ^«+l = /9 j^2n (0 \_f2n (a + 0 + f2'' (fl +1 + /) + ... + f2" (b -1 + ?)] dt - 

~(2n + 2)! fa"+2 (a + t) + f 2"+2 (« + ! + /) + ... + f2,1+2 (b-1 + /)]dt =

~(2n)l fa“ W[/2" (a + () + f2“ (a + l + i) + ... + f2n (fe-l + z)] Jf-

1
(2n + 2)\

(2« + 2)(2n + l)p2n(0/2"(« + 0^
o

+

+(2n + 2)(2n +1)B„ (-1)"+1 Jf2n (a+t)dt +
o

i

+ (2n + 2)(2« +1) p2n (t)f2n (a+\ + t)dt +
0

1
+ (2n + 2)(2n +1)Bn (-l)"+1 Jf2" (a + l+t)dt + ...

o

= (2n)! fa" l-^2” (fl + 0 + -• + f2" “1 + 0]dt ~

~22i\ fan fa*" (a+t)+-+fln (b ~1+0] dt ~
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B.(-1)’'*' j[/2" («+')+-•+j"(*-1 + ')>-

B.^[r’Va+i)-r--'(a)+r’i(a+2)-z"(<>+i)+...+/!'-'(i)’:rM(i>-')]

So

R- ~R-"

which gives the next term in Euler's summation formula:

Now it has been proved (Appendix D) that the 

Bernoullian polynomials ^2„(0 an<d ^2„+2(0 are both of 

constant sign, but their signs are opposite. </>2k has the 

sign of (-1)* . Thus, if we assume that the signs of /2"(x) ,

f2"+2 (%) are the same and that their common sign. remains 

constant for all values of x from a to b, the integrals

5n+1 , Rn have opposite signs.

Theref ore, l/?„ < |5n - R, n+l

So, the error involved in omitting Rn

summation formula is numerically less than 

and has the same sign; that shows that, in

from Euler's

the next term,

fact,, the series
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so obtained has the same property as a convergent series of

decreasing terms, which have alternate signs.

Theoretically, however, the convergent series can be pushed 

to an arbitrary degree of approximation, while an

asymptotic series cannot; but in practice it often happens

that an asymptotic series gives a better approximation for 

numerical work than a convergent series, as in Examples 5

and 6 of the last article.

Application of Euler's Formula 
to Stirling's Series

Taking /(x) = logx in the general formula, we find 

log(«!): /(l) = logl = 0, /(2) = log2, /(3) = log3, ... f(n) = log(«) .

/'(x) = x_1, /"(x) = -x-2, f'"(x) = 2x“3, /’4(x) = -2-3-x”4, /5(x) = 2-3-4x“5 ,etc 

/(i)+/(2)+/(3)+...+/(„)=j/(^^+i[/(i)+/(»)]+^[/’(«)-r(i)]-

log2 + log3 + ... + log« = Jlog(x)<7x+—log« +A.2__j?2_2«“3 +—(2-3-4x~5)-...
i 2 2 n 4! 6!

Therefore, we find that

1 B, 1
—r+—2--------t- -... + constant
n3 5-6 n5

log(n!)= flog xdx + —log n + —--------?-■
v ’ / 2 2 n 3-4
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where the error at each stage is numerically less than the 

next term, because f2" (x) is negative (for all positive

values of x).

This gives, on integration,

T / l\ 1 I" f J 1 1 -B] 1 .Z?2 1 B3 1

v ' 6 11 J 9 2 n 3-4 n3 5-6 n51

B, 1 B„ 1 B3 1 
.2 n 3-4 n3 5-6 n5

log(n!) = [n + — logn-n + C,+ —• —- ——— —

To find the constant Ct , we use Wallis's formula which gives

n 2 2 4 4 5 7 ' (2"«!)
—  --------------------- ...to co = lim---——
2 1 3 3 5 6 6 -J>(2n!) (2n + l)

Thus

log = l°g(2)" + 4 log n!- 2 log {(2n)!} - log (2n +1) =

= lim |4n log 2 + 4 log (n!) - 2 log {(2n)!} - log (2n +1)|

Now our general formula gives

21og(n!)-log|(2n)!j = (2n + l)logn-z2^ + 2C, -f 2n + -^-jlog(2n) + z2ff-C1

1 1C, + ^log5T+logn-2nlog2-^Uog5T- —log2-—logn + &

1 ( n m
= C,+ —logn- 2n + — Iog2 + B —

2 \ 2J \n)

Hence
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log^-TZ^ = lim (4/2 log 2+ 2C, +log«-(4n + l)log2-log(2n + l)} 

= lim {2C, + log n - log 2 - log (2« +1)) =

n

- lim 2C, - log 2 +log
2n + l

= 2C,-log2 + log—=

= 2C, -Iog2-log2 = 2C, -21og2

So,

logflJ = 2C1-21og2

thus,

thus

2C, = 21og2 + log( ^7t

2C, = log 2 + log n — log 2n

C, =|log(2^)

Hence we have Stirling's series

, z A ( lY 1. M , B, 1 B2 1 B3 1
V 7 2) 2 V 7 1-2 n 3-4 n3 5-6 Y

in which so far, n is a positive integer.

To obtain the series for log(r(l + x)j we use the product 

formula of Appendix F.

Applying Euler's summation formula from x to x + n for

/(x) = logx ,

we have
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log x + log (x + !) + ...+ log (x + n) =

X+>1 1 D
= J log^ + -(logX + log(/2 + x)) + -^-(log'(/2 + x)-log'x)-

A
4!

(log"'(/2 + x)-log"'x) + ... + of— j =

= f log^ +Alog x +log (« + x)) + ^—-----
J 5 * * * 9 2! n + x 2 x

B2 2 B2 2 _( 1 .
—------ o +-77 —+ - + °l - 1 =n.4! (n + xy 4! xJ

B, By

= Jlog^ + -(logx + log(/2 + x))-^—+ —
4x3

Subtracting this from Stirling's formula for log(n!)

B, B^log(«!) = | n + — jlog«-« +—log(2^) + —— 
I 2 j 2 1-2/22n 3-4z/3

we f ind

log x + log (x +1) +... + log(x + «) - log 1 - log 2 -... - log n =

x+" 1 ( 1 j 1= J log^<7^ + — (logX + lOg(/2 + x)j -^/2 + _jlog/2 + /2- — log(2^)

5, *2 -...+ofb- + -
1 • 2x 3 • 4x W

log X + log ^1 + Aj + log ^1 + +... + log ^1 + —

•»+« 11 11
= J log£d<j + — logX + — log(/2 + x)-/2log/2 + /2----log/2---- log(2^)
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B2
l-2x 3-4xJ

-... + 0J,

log ■uX'+j-- x+n | j
= J log%d%—logx-(zzlogn-n)—log(2^) +

+ |{log(n + x)-logn}-^- + B-^-... + 0 

3-4x3
f-

j log^-Aogx- Jlog^-Aog(2^)+Aogfl+-V-^-+—+
nJ l-2x 3-4x

R
I

- + -

1

"+-v Xr 1 1 7? D ( 1= Jlog^-Jlog^--logx--lOg(2g-T^-+^?-... + Oy

Making a change of variable j = n + r], we find that the

difference of the two integrals in the last formula is

equal to

W+.T X X ' '

J log^J^- flogjdf= Jlog(« +7)^77-xlogx + x =
» 0 0

= Jlogn 1+— d/j-xlogx + x = JlogT7<77 +
0 v nJ 0

1+— k/77-xlogx+.
n J

= xlogn-xlogx + x + J 1 + — \dij = xlog«-xlogx + x + ... + <?[ 1 
n
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Thus, we find that

log ' xV x^ f x 

< lA 2j n

11 1= xlogn-xlogx + x-—logx-ylog(2^r) +—log
( x> 5, 5, m
1+- 1 + 2 , ... + 0

I 7 J 1 • 2x 3 • 4x3

Therefore,

1 + -xlogn-log k 2j I n

= x + —

I 2y logx-x + -log(2^) + ^
B, B,

-+...+O 11 1- +-k>g 
\n) 2• 2x 3 • 4x3

Now, when zz—»<x>, the left-hand side tends to log}r(l + x)} 

(See Appendix F) and so we have the result

lim xlogzz-log^l + y 1+*

lim-;
zi—>co

log
zr n\

(l + x)(2 + x)...(zz + x)

j+i

= log {f (1 + x)}

1

1 1

1 + *
, 2y

thus,

log{r(l + x)} = ^x+j^lQgx-x+|log(2^)+^-y^-r + ...

which, as might perhaps have been anticipated, is of 

exactly the same form as the series originally found for 

log(zz!) . An independent discussion of this result will be 

found in Chapter Four.
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Sometimes it is useful to have a slightly modified

form of the result which can be used when x is of the form

x-m+p, where m is large (not necessarily an integer), and

p may also be large, but is small compared with m.

For this purpose we note that

2

log (m + p) = log m + — —— 
m 2 m

Thus if we take p to be of order fm ,at most, and reject

terms of order —, we get the formula 
m

and

46



CHAPTER THREE

ASYMPTOTIC SERIES AND INTEGRATION

Calculation of Integrals by 
Means of Asymptotic Series

Many integrals of interest, both in Pure and Applied

Mathematics, can be calculated by means of asymptotic

series. A few typical examples will be given below.

There are three methods which are usually effective in

obtaining a suitable asymptotic series from a given

integral:

(i) ' Integration by parts.

(ii) Expansion of some function in the integral.

(iii) Use of symbolic operators.

We will consider examples of the first two methods; it 

is usually impossible to use (iii) unless an estimate can

be made as to the magnitude of the remainder in the

expansion, and we will not give any examples here.

The Error Function Integral

This integral is usually expressed by the abbreviation 

erfx, and is defined by the equation

.V
erf x = dt 

o
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Method(i)-Integration by Parts. A series suitable for

calculation when x is small is deduced by expanding the 

exponential and integrating term-by-term. But this series 

is very inconvenient for numerical work when x exceeds 2.

Noting that

an asymptotic series for the integral

is found by writing t2=s .

First we will prove that

By definition,

co

r(l + x)= \e‘txdt

If x = - we obtain

dt

1

0

We know from Appendix G that T — =
\2)
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Using v = t2 , we obtain

fn = f—i=dv = (-—^-dt = 2 j"e ' dt
tfv oJ t 0

Therefore,

Then, writing t1 = s we have

hu 2 J

To the last integral we apply the transformation of

integration by parts, which gives

1
u = — —e

4~s
1 _v2 1 “re

= —e2 2 b3'2 ?2 J2x 22 2S3/2

w 3”
2x 22 - je^s^ds

1

= e
1 j 1 _v2 1 3 “re’\

2x) 22 x3 23 j sA

= e 1 . 1 jVT?+7

- e
1 1 > 1-3+ —-

2x 22x3
-e A ? 2 AJ c/2

= e-a( 1 1^1-3+ -
2x 22x3 ) 2

1-3-5 “r 1

k X 7
[e~s-ffds =
J c/2
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= e
1 1 1-3- + -

2x 22 x3 23x5/
1-3-5 f 1[e~s-2ds =

J ci /2

1 1 1-3 1-3-5 i 1-3-5-7‘re
g bx 22x3 +23x5 24x7 y 25 h^s

Clearly this process can be continued as far as we want.

2 1 1Because s>x, the remainder integral m the last
s/2 x

formula is clearly less than

co -s
'e

1-3-5-7
25

< 1-3-5-7
25x9

1

z

and this is the next term in the series, after those

retained.

Therefore, we see that the error obtained when stopping at

any stage in the asymptotic series for the integral u is

less than the following term in the series.

Method(ii)-Method of Expansion. Here we write s=x2+v

and

u
co —5 00 j co

x2 ly S 0 2"v X +V 0 2y.X +v
rdv

Then write
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1

I

1

By the binomial expansion,

_i_
V 1 2i+4 =1- £ 1 2 22 

2x2 2'2’2’x4
j_ J_ 3 5 A. 
3! 2 2 2 x6

so that

1 _ 1 1 v £ 2 £_i 2 2 —
y/x2 +v x 2 x3 2 4 x5 2 4 6 x7

and the remainder at any stage being less than the

following term.

Now

Je Vv"dv — -v"e v|o +«Jv" le Vdv = n(n-l) fv" 2e Vdv = ... = n\
0 0 0

and so we obtain again the same results for u and its

asymptotic series.

u - e
<0 -» Z —v —v 1 n —v 2’lie e v l 3 e v '

21 x 2x' 2 4 x5
, v i i i-3
dv=e--------w + -

2x 22x3 23x5
- + -

The Logarithmic Integral

The integral

co —/ 0 7 e x 1re , r -dv r dvu= i—dt= f——=- fJ t J — Inav . Jlogv 0 l°gv
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has often been denoted by the symbol -li(e .

To obtain an asymptotic series for U, we write

M -I 1 -I CO -I X -I 1 -1 CO -f . X -I X j, X

\—dt = \—dt + l-dt- f— dt = \— dt+ \-dt- \—dt + f—- f- 
J t if J t J t J t J t J t J t J t- L 0 * 1 * 0* 0 * 1 * 0 * 0 0 *

1 -t 00 -t x -t x i, 1 1, xre re re cat cat catJv‘"+J dt-J—A+J J J
0 1 I 1 o' o' o' 1 '

First, we will prove that J(l-e-Je' —= C , the Euler'

constant.

For that, we know that

<11
C = lim Id----H...+— log«"-ra v 2 n

But

1 + — + ... + — = f (l + xd-x2 +... + x" 1)jx= f-——Bx=f 
2 n ■’n / . Jo 1 — x *>

Therefore,

T .

1-
< zY^
1 —

< nj y
dt
t

at + p az .pi i Z | dt pdt 
t ■» i . M n) t^ t
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f f ( tf\dt 

1- 1-- alflim
H->00 k nJ

< k 7

£- rfi-Ffk =
.t H n) t ■bV ’ t ■ * t

—t \ f° —t $

Now,

\ dt

J—Jr = -C-log^+J(l-e')—= -C-log|x|+J(l-e')— 
x t .. 0 f 0 f

To calculate the last integral in the above formula, we use

the Maclaurin expansion:
t t2 t3 ■ " ' '

l-e"'=---—
1! 2! 3!

i-e~‘ t r

t 2! 3!

Then

/(’--'ly-Jl1
0 “ . 1 ok

'f t t2 t3 

1—
2! 3! 4!

V i t2 X ,
113

dt = x --- H-------------

) 2! 2 0 313

1 ?----- h.
4! 4

X2 X3 X4 
— X------------ 1------------------------■-------- h.

2-2! 3-3! 4-4!

Therefore,

“re ‘J TT re , , i i 1 x 1 x 1 x
. U - I—dt = -C-log x +x---- +— ------- + ...

J ( . 1 1 2 2!. 3 3! 4 4!

where C is Euler's constant.

When x is negative all the integrals in the asymptotic

series for U are convergent except of which we must

take the principal value; that is
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(erdt. Xrdt>
lim -+ - = lim loge + log —
£—>0 <1 1 £->0 L 1 A J

= log(-x) = log|x|

But this expansion, although convergent for all values

of x, is unsuitable for calculation when x is large, just

as the exponential series is not convenient for calculating

high powers of e.

To overcome this, we may apply methods similar to

those used for calculating the error function integral. If

x is positive, we can use the method of integration by

parts easily.

Method(i)-Integration by Parts. If x > 0 ,

00 J# 00°° 00 _v -t ” 00
- fr2e-' =--------------

J X
e -4 ~3e^‘dt

.v V X -V
J

U2
X

= e

e~x ex 2ex 
----------------------------r+—r~XX X

1 1 2 
--------------------2+~

(
3e~‘dt e ' e’ +2 -t~3e

J

co

x x2

-2.3J
.Y

ffe^dt =

( 00
-2-3 e~‘dt

\ -V

I x
^Aj + 2-3j?5eT/Z =e~x l-±+4 -2-3 

\X X X J

= e 1 12 2-3
X X2 X3 X4

oo
+ 2 • 3 J7 c dt

X
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But, since t>x we have t5<x5 , so that

w a; Q Q
2 • 3 <2-3 ^x~5e‘dt = ex .

Method (ii)-Method of Expansion. To apply the method

of expansion we write t-x+v, and then

co —veU = fe~' — = fe-re-v — = ex f— dv 
' t J x + v J x + v

To calculate the last integral, we use the geometric

series:

1 1 V V / F (=w+---+(->) yr+H) -
X + V f , V ) X X‘ X x l + — x (x + v)

Therefore,

ou
U=ej

—v —v 2 —ve ve v e
X X2 X3

(-!)" vnev 
x"(x + v) dv- + -

But

CTJ
^e~'v"dv = n!

from which we deduce

U = e ------------------ Z- + —-—- + ...+(-1) + e P—----- — dvx x2 x3 x4 x" J ' x"(x + v)

If we let

co -v„,n 1 _ Jf 1 00
R„ I = f_--- - dv = — f—-- V dv = — fy-^- dv

•x"(x + v) x'''ev(x + v) x" "(x + v)
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then I/?, I <—^-.fx"e Vdv = n\x 2"+1)
/" o

When x is large, the.terms of this series at first

decrease very rapidly. That's why ,up to a certain degree 

of accuracy, this series is very convenient for numerical

work when x is large; but, because the terms finally

increase beyond all limits, we cannot get beyond a certain 

approximation.

For example, with x = 10, the estimated limits for

are equal and are less than any other remainder. And the

ratio of their common value to the first term in the series

is about 1:2500 . To get this degree of accuracy from the 

first series we should need 35 terms. .Again, with x = 20, the 

ratio of 7?l0 to the first term is less than l:106 ; but 80

terms of the ascending series do not suffice to obtain this

degree of approximation.

When x is negative, we write x = -% (>Q and

t=x+v=v-£ and we find

m — ye OO —V2 e OO —veU —e x f——dv = es' f--- dv--es f——dv
"X+V

00 , —v

U-y,
»(■ -j 2 • h—1 \ co n —vf 1 V V V ,, , r ve ,I -—I——r + ..;H----------e dv+P—-—:——dv
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where P denotes the principal value of the integral.

Thus

1 1 2! («-l)!--1--7 d--7 +... d------
£ ¥ f

+ R

where

” v"e vR„ = P f— 
" J Fn dv

Stieltjes has proven by an elaborate discussion that 

in this case also we get the best approximation by taking n 

equal to the integral part of £, and that the value of Rn

is then of the order e
^2^

The two expansions of U can be used to find the

"summation" of 1!—2!+3!—4!+... .

If we write X = 1 and equate the series of ascending 

powers to the series of descending powers, we find that

C/ = e-1(l-l + 2!-3!+4!-...) = -C + l---- — + 1
2-2! 3-3! 4-4!

- + .

Therefore, we find that

1 1l!-2!+3!-4!+... = l + e C- 1---- +
2-2! 3-3! 4-4!

- + ...

Lacroix gives the value of 1!—2!+3!—4!d-... = 0.4036526 , 

which agrees with Euler's result.
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Asymptotic Series for Integrals 
Containing Sines and Cosines

Fresnel's Integrals

Consider the two integrals

(x > 0)

which are met in the theory of Physical Optics, and also in

the theory of deep-water waves.

We have

U + i).T. rcosZ + zsinZ , "(• -X u . . it-U
iV = ----------------dt = Z 72 e dt = -ie t 7i

1 ft '

CO *

-- [t~72e“dt-
,v 2 J

. ft -X 1 f-K/zj -e,x l 1-ie’ x 72 H— Z /2e dt-—;=• + — Z 72 e dt-\—2z * ifx 2z * 2z

-e,x ea 1-3 r-5/,
iJx 2i2x^2 22z

+ -TT \t~/2eudt = 
?2;2 J

Hi <JX

ix/2 2i x

e" 1-3 + ■
zJS 22z2

z'^e'7 5co
f -7\t~72eudt+ -

+ — [f^'dt
2i ,JIt

-eix e'x l-3e'A 1-3-5 7-3
V. _ o 3/ , 5/ + ~3,2

j?^e'7z/Z
ix'2 2z2x/2 22i3x'2 2 z

Therefore,

\ . ,v f
f/ + /p = -e'1 1 1 1-3

+------ xr +--------rr + ...
ifx 2i2x/2 22i3x/2

ie'x
fx

1 1-3 1-3-5
2zx (2zx) (2zx)

1 + 2 +777YT + -

Let us write
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U + iV = 1A=(X-iY) 
y/x

Then we have

U = -A(-Xsinx + ycosx), V = -A(Ycosx + rsinx)
Vx Vx

where:

1-3 1-3-5-7 1 1-3-5 1-3-5-7-9
(2x)2 (2x)4 2x (2x)3 (2x)5

The remainder in the series U+iV after the four terms

written above is

l-3-5-7"fe"
(»)

dt

Now we can employ Dirichlet's test: "An infinite integral

whose integrand oscillates finitely becomes convergent

after the insertion of a monotonic factor which tends to

zero as a limit", t)(p(x)dx < where

oscillates finitely 

V£, H <2C, /(x) is

and it remains less than

monotonic and lim f(x) —> 0 .
x-»co '

RM

C, C fixed for

Here we have:
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So, the remainder in the series U+iV after the four terms

written above is bounded as

1-3-5-7 1-3-5-7 2 _ 2 1-3-5-7 
" 24 77 (2x)4

which is twice the modulus of the following term of the

series.

We now wish to find differential equations that are

satisfied by X and Y . To this end is convenient to re

express X and Y in terms of the Gamma function:

oo

r (1 + x) = fe'ffdx . 
o

Hence

co 1 co —v

= fe“VV 2dv= \^-j=dv = y[7T 
0 oVv

(See Appendix G).

On the other hand, for any n , by repeated integration by

parts we see that

\e v
co

= ^e~vv"~^dv =
0

co

o

"4 co

0

7
2/J 2 o

1
n — 

2

Therefore,

I 2 
2-2

2n-3
2

2n-l
2

7^= 1-3-5 ..-(2n-l) co

0
v"

dv
74
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and so

v v 1 1 b3 b3,5X-lY = 1 +------- - +--- r + ...
2zx (2zx) (2z'x)

1 00-=J-=Jv = l 
Jf J y/v

1 00 —vI re vre v 1 1 “re i
—j=—dv = —j=?—\—i=vdv = —, etcJ - Hi 7V - Itt 1V * - A, 2/XF ~y[v IX F IX

Therefore,

1 00 z>“v
x-iY‘Jz\rdv 1 v v l+—+-

ix (ix)

1 00

a/X /a/v x + z'v
=_L r.14v

w -v 2e , x —xvi 
dv- 2 2 X +V

-+... X

the remainder at any stage in the expanded form of the

integral being numerically less than the following term.

Hence we obtain the formulae

00 "~v x2
kF ty/v ^X +V2;

CO

Y (e^v 4vd\ 
ylF ' 2 2 

X +v

It is easy to prove that these expressions are equal to the 

original integrals by differentiating with respect to x. We

have in fact

zF= L^dtU+i
”•4

Then

dx Jx
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U + iV = ~(X~iY) 
yJX

A
dx NX

Therefore,

■fx

i2e'x
------------- 2A (X - ;y)+l-?r—(x-iY) =-^=

X yjx dx yjx

-2elxx~ieix , v .v, ieix d , ,vA eix 
---------1=—(X-iY) + -j=—(X-iY) =—=

2xNx nx dx Nx

2g' X 1C'X (X -iY)+ieix—(X- iY) = -eix 
2x v 7 dx ’

—+ AL \(X-iY)-i—(X-iY) = l 
2xelx 2xea Y ’ dx' ’V

or

dX ■ dY Tr 1 i• 1-- h iX + Y — —x+—Y = i
dx dx 2x 2x

dY Y dX TZ X
------X = -l and —+y-

dx 2x dx 2x

It is easy to verify that these equations are 

satisfied by the last pair of integrals for X, Y, and that
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these integrals tend to 1, 0 respectively as x—>&>; thus we

may infer that U, V and X, Y are actually related in the

foregoing.work. The ■integrals X,

, and the asymptotic expansion to

manner suggested by the

seem to be due to Cauchy

Y

Poisson.

It is perhaps worth while'to make the additional

remark that the relation between X, Y and U, V are most

naturally suggested by the use of asymptotic expansion.

The Sine- and Cosine-Integrals. '

Here we will find asymptotic formulae for the two

integrals

et Jsin/ dt .

Then

■ ' rcos/ + z'sin/ , . “re"
P + iQ =J -— ; dt = }—dt.

The. asymptotic formula is obtained on lines similar to

those used in (1) above.
°° pu p'1 °° 1 00 ‘ ■ pix 1 (pil °° 9 ”

P + iQ = f— dt = — + - f/~2e"dt = +- f/"3e"ti/
; / it i z ix i it i •

f~3e'‘ie'x -e'x 2

-- ' + T“T +x i x i

+ -Sffd'dt = - + ^ + ^- + ^2 |?V<// =
j J v v2 j'v3 jX X IX
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ie,x e'x 2e“’ 2-3
'— + ~ + TT + T 
x x ix i

'ffe1' Adr,^d'dt
i if\ X X y

ieix ie,x lie* 2-3 elx 2-3-4
+ • 2 + *2 3 3

x ix ix i i x
,4 +' *4

w
JrV dt -

ze
x

ix(\ 1 1-2 1-2-3 1-2-3-4
1 + —+---- 7 +-----r +------— + .

ix (ix) (ix) (ix)

So, P+iQ = ^—

x

1 2! 3! 4!
,2' + 777T + 'ix (ix) (ix) (ix)

1 + —+
V

It follows that

, 1 2! 3! 4!
1 “I-------- 1--------7 "I--------7 "I  7 + • • ■

ix (ix) (ix) (ix)

P+iQ (P+iQ)(cosx-i3rsxx)

-------------------------------------------------=  --------------------------- ----------------------------------------------------------  = P cos x + Q sin x - iP sin x + iQ cos x ■

cosx + zsinx cos x + sin x

1< 1 2! 3! 4! 5!
z+—+~+i7_r+tr_7+.4 5••• XV X IX IX IX IX

Therefore, taking real and imaginary parts, we find

1<1 3' 5! 7' >Pcosx + 2sinx = — ——+ —-—-+...
X<X X X X ,

D . „ 1<1 2! 4! 6! 8! 'j-/’smx + !gcosx = — 1—7 + ———7- +—...
x< x x x x )

On the other hand

_ . “fCosZcosx + sinZsinx , °°fcos(z-x)
P cos x+Q sin x - ------------------------- dt = ----------------dt

J t Jt

P + iQ _ z 
x

\
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-Psinx + gcosx = sin t cos x - cos/ sin x

Therefore, we find the most instructive formulae

dt - P cos x + Q sin x = -1
x I x x3 x5

t

We know that

-- 1-------h ...
2! 4! 6!

Therefore, we see that the cosine-integral is represented

by a series of reciprocal of the ordinary sine-series, and

vice-versa.

The second formula leads to an easy method for

calculating the maxima and minima of the sine-integral, 

which correspond to the values x = nn thus we find

-Psinn7r + gcos«;T = (-l)" 8 = —\ 1—i + ~i 
X \. X X

X = n7T

For values of n greater than 2, it is found that the

calculations can be easily carried out to four decimal
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places; thus

\3 (

P =
 (“I)

3ft

, 2! 4!1---- T + -

P = (-1)'

V

4 (

(3*)

2! 4!
4ft

- + -
(4ft) (4ft)

-1—+ 
3ft

2! 4!
q3 3
J ft

<5 q4 4 5-5 ft

1 2! 4!
+ 45^54ft 4V

+ ^^-... = -0.1040

/5 =-0.0631 I6 = 0.0528

If x = nft + — = ( n + — )ft in the sine-series formula we can
2 I 2)

find the corresponding formula for the maxima and minima of

the cosine-integral:

■ 1 <
-Psin nft + — +Ocos nft + —

I 2/ I 2.

Therefore,

= -P
ft . ft 

Sin7J7TCOS —+ sm —COS727T =
2 2 )

cos/ (-1)" 2! 4!
------dt = ±—— 1—- + —r-..

X . X2 X4

(«4>

x=\n+-\ft

We see that the remainder in the series P + iQ (after the 4

terms) is

i • z • 3 • r _5 it ,—— y e dt
. X

By applying Dirichlet's test (as we did in (1) before)
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for |</?(/)| = |e"|<2 , /(0 = _T monotonic, lim/(/) = 0, we have that

"“5 5
X X

and

03 Jt1-2-3-4 fe‘ 1-2-3-4 2 2i

(ix)
<2- 5!

(zx)
< <

Therefore the remainder is less than twice the following

term in each series.
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CHAPTER FOUR

STIRLING'S SERIES

Introduction to Stirling's Series

In this section we will investigate Stirling's

without using Euler's summation formula.

It can be proved that

oo arctanY
logr(l + x) = 7?(x) + 2J———dv (See Appendix L)

o e

series

where

/ i > i
p(x)= x + —jl°gx-x +—l°g(2^)

We have

1 r 'A' 1 ( Vv v I (v
arctan— =--------------- —

X X 3\Xy

s2h-1

UU1 - X

1 V,2«+l

where \R„ <-
2tz + 1

«> arctan —30 CXI VLCiXJ. 00 -f_____Xdv = f-1—
c^-l 42w-l ^x 3<xJ 5^x/ 2n-lI x

.111-1

dv
?

1 + /?.

From Appendix K we have

. v2'"1 Rf—--- dx = —
nJe2*x-l 4r

Hence we have
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V

arctan—
x

B.__ 1 1 B,

where R'n is numerically less than the first term omitted

from the series.

If we take the quotient of two consecutive terms and 

B . (2n + l)(2n + 2)Qremark that —— = ----- , where Q is a factor slightly4^2

less than 1, we see that the least value for the remainder

is given by taking n equal to the integral part of 7tx; but

the first two terms give a degree of accuracy which is

ample for ordinary calculations.

Stoke's Asymptotic Expression

We are going to study Stoke's asymptotic expression

for the series

r(»+a,+i)..r(M+gr+i)^ = y x

where x is real and s>r .
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r(zz + a, +i).,.r(» + ar +l) n 
L"~ rjn+vO-r^+^+i)X

Write s-r = p, -^a. = / , and consider the term X , where

t is large, and p is not of higher order than ft .

Neglecting terms df order -A, we find from Stirling's 
ft

series from Chapter Two that

logr(l + m + p) = | m + p + — jlog«z-m + — log(2^) + — + — -~ + O

I 2 J 2 2 m 2 m 6 m
4/

r s
=0+p)iogx+^iogr(r+p+a,.+i)-^iogr^+p+^.+i) =

>=i 7=1

= (^ + p)logx + X;=1
P

t + p + aj+- logf-f + Aog(2x)

-L
7=1

^t + p+bj +£)logr-/+|log(2x) +

J=1

-X
7=1

fP + V> +I(p + a,)-J,(p + a,)3 + £>(l

fp+b'( f(p+bXp/p+bJ+o

— rt —

+st =

( r A | |
:(f + />)logx + rilog? + r/?logf+ logr +—rlogr + +—rlog(2^)-

\ hi J

-SpXogt - St\ogt- Tbj logr-^-slogr-^-slog(27z-) + Arp2 +1^^ +
<7=1 7 2t t /=i
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pi flp 1 1

t 2t 2t 2t

2

Therefore

2 t
1 PP2

It is convenient to suppose that x is of the form t" , where 

t is an integer (a restriction which can be removed by 

using elaborate methods); and then Xt is the greatest term

because logx = /zlogZ, so that the terms of the first degree in

p cancel. We deduce that

2
log Xj+p = (/ + p) plogt - fJ.t\Ogt - pp\ogt - 2 log 7-^-logt-ylog(2^-) + pit ~~~ -

= pt-^plog(27Tt)-Jilogt-^——

Therefore

t+p
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or xt+p = ei up
21

(2xt)

Let e 21 = q , limg = 1

Then

xl+P-
(2ttz)

1
X,^„+X,_„ =2------- -qpt+p t-p

(2ttZ)

- -------- -(l + 2q + 2q4 +2q9 + ...)
(2^z)

Using Cesaro's theorem of divergent series, it can be

proven that

«->i' ' >2

Therefore, the series in brackets is represented

approximately by tt20 —<y) 2 z or by
< B 2

So, l + # + </4 +q9 +...»ri2 (l-#) 2

Thus the asymptotic expression is

e'V1

p2 (2.7lt)
A-l

, where t = x,J
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CHAPTER FIVE

POINCARE'S THEORY OF ASYMPTOTIC SERIES

Introduction to Poincare's Theory 

Consider a function J(x) expanded in inverse powers of

a, a, a, , . n

x, a0+ —+—y+—1-+.... The partial sums do not necessarily 
XXX

have to converge; but we suppose that taking any initial 

partial sum provides an "asymptotic" formula for f. We want 

the sum of the first (n + l) terms to give an approximation to

K

J(x) which differs from /(x) by less than —, where Kn 
X

depends only on n and not on x. Let Sn be the partial sum of

the first (n + l) terms. Poincare says that the series is

asymptotic (or semi convergent) to the function, if, for all

n,

limx" (/-£„) = 0

This relation may

J(x)~ao+ —+ A + “T+— •

X X X*

In other words, the first (n + l) terms of the series are
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of order —— . Therefore, for a given value of n , the first

(«+l) terms of the series may be made as close as desired to 

the function J(x) by making x sufficiently large. For each

value of x and n there is an error of order —b . Since the 
x"+1

series actually diverges, there is an optimum number of 

terms in the series used to represent J(x) for a given value

of x. Associated with this is an unavoidable error. As x

increases, the optimal number of terms increases and the

error decreases. We note that if the original function is

oscillatory (near infinity) then it cannot have an

asymptotic expansion.

Let's consider an example. The logarithmic integral is

defined as

As we proved in Chapter Three,

this function can be generated

integration, obtaining

the asymptotic series for

via a series of partial

U = -
-xf, 1 2! 3!

1----+ ~—y+ ••• +
XXXx k
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The infinite series obtained by taking the limit when «-»oo

diverges, since the Cauchy convergence test yields

n + 1lim«->oo
W+l lim«->■» = oo

Note that two successive terms in the series become equal

in magnitude for n equal to the greatest integer less than

or equal to x, indicating that the optimum number of terms

for a given x is roughly the integer nearest x . As we

proved in Chapter Three, the error involved using the first

(n + l)!ef*
n terms is less than --- r-- which is exactly the next

x"+2

term in the series. We can see that as n increases, this

estimate of the error first decreases and then increases

without limit.

Note that the asymptotic series are fundamentally

different to conventional power law expansions, such as

x3 x5 x7

sinx = x-------------- 1----------------------------h....

3! 5! 7!

This series representation of sinx converges absolutely for 

all finite values of x. Thus, at any x the error associated

with the series can be made as small as is desired by

including a sufficiently large number of terms. In other

words, unlike an asymptotic series, there is no intrinsic,
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or unavoidable, error associated with a convergent series.

It follows that a convergent power law series

representation of a function is unique inside the domain of

convergence of the series.

On the other hand, an asymptotic series representation

of a function is not unique. It is possible to have two 

different asymptotic series representations of the same 

function, as long as the difference between the two series

is less than the error associated with each series (an

example is the expansion of the confluent hypergeometric

function).

It is to be noticed, however, that the same series may

be asymptotic to more than one function; for example, since 

lim(x"e“A) = 0 the same series will represent J(x) and 7(x) + e”A .

Theorem o

1) Asymptotic series can be added and subtracted as if

they were convergent.

2) Asymptotic series can be multiplied together as if

they were convergent. In particular, we can obtain any

power of an asymptotic series.

3) If the first term of the asymptotic series is less 

than the radius of convergence, then we can substitute
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and rearrange an asymptotic series in a power-series,

and the result is an asymptotic series.

4) An asymptotic series can be integrated term by term to

get another asymptotic series for the integral of the

original function.

5) Consider a function J(x) that has an asymptotic 

expansion. If its derivative has an asymptotic 

expansion, then the expansion of J'(x) is the term-by -

term differentiation of the expansion of </(x) .

Proof for (1):

It follows immediately from the definition of an

asymptotic expansion.

Proof for (2):

Consider two asymptotic series:

J(x)~ao + —+-j-+-j-+..., K(x)~b0+-+-p+-^+....
XXX XXX

Then the formal product is

n(x)-CQ + — + ^- + -y + .
XXX

where c„ = aob„ + a,bn_, +... + a„b0 .

We will show that the product J(x)-K(x) is represented 

asymptotically by n(x) .
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Let

„ a. a2 a, a

Y=0o+-+4-+4+-+4
XXX X

„ j b, b2 b3 b

1n T 2 T 3 T...T
XXX X

C. c2 c, C
° X x2 x3

denote the sums of the first (n + l) terms in these three

series. Then we have:

KL)=T,1

v\-

where p,cr are functions of x which tend to zero as x—> oo .

Now, by definition 2n coincides with the product SnTn up to

and including the terms in . i X

S„T„= k+^ + 4 + ^ + - + -
1 xxx

Zj, h, b. b„}
bo + ^- + —+—+2 3 n/ V X X X X /

= aobo +
0o^+^o0i + ...+ aA+sA.,+...+aA+of_^>

X

1 1
yl=0o+-+4+4+-+—+<9 +1,- 2"" ° X X2 X3 x" lx"+1 X2"

Thus ST-'}' contains terms from —to -4 
« " «+l 1,2n

X X

JLJ
We can write STjt = y +—£-, where Pn is a polynomial in x of
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degree («-l) •

Therefore,

x"j(x)-p x"K(x)-a x2"'^ill+R„

x2"J (x) K (x) - x"J (x) a - x"K (x) p + pa = x2" +Pn

= px"K (x) + ax" J (x) + Pn~ pa

or x"{j(x)^(x)-^H } = pK (x) + a J (x) + P”

As x—>oo, J(x)->a0, K(x)-+ba, and p—>0, a -> 0 ,

limfx"j(x)A'(x)-Y ) = lim—= 0.

Therefore, the product J(x)-K(x) is represented

asymptotically by n(x) .

Proof for (3):

Let's consider the possibility of substituting an 

asymptotic series in a power-series. We have:

7(x) = a0+7,(x)

j(x)~«0+^+a+4+-
XXX

We know that a power-series ^a„x" represents a continuous
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function of x, say /(x) within its radius of convergence 

|x| = R . Let us substitute a0+7, for J in the series

f (■/) — Cg + CjJ + C, J + £3^ f ...

and rearrange in powers of f , provided that |a0| is less 

than the radius of convergence, R; because limJ1(x) = 0, we

can take x large enough so w+w<«-

, , . , . . a. a2Now, let's substitute the asymptotic series —+—y+.,. for J
x x

in the series

F (j\ ) = Cq + Cff + + Cyf3 + ...

Making a formal substitution, as if the series,for J, were

convergent, we obtain:

F(J,) = C0+C,
a2 ) ~ f a, a2 Y

-^+4-+... +c2p+4-+... +...

kx X ) \X X )

Then we obtain some new series

29q — Co , £>, = CjtZj , D2 = CjtZj + C2ZZ| •,

We will prove that the series

asymptotically.

v-i D, D2

> =Dn +—-L + —y + — where 
xx

D3 = C}a3 + 2C2a,a2 + C3a3 , etc

^2 represents F(jf)

Let S„ be the sum of the terms up to — in J, ; SII Jr II 1 ' II
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represents Jx asymptotically.

Let the sum of the terms up to -L in 7

y =Z>+A+..A and S 3.+A..A
n u n ' H 2 II

XX XXX

Now, if

Xy,+cls,+CA+-+c,s:.

because

C]fl| C,a2 + C26Z2X.=C»+-++ ..2
X

+ .

we can write

—A1 i ^1<3i i , ^2fli=C-0 T ■+■ 2 2 •
XXX

We see that 7... and 7,.. agree up to terms in -2-, and 

consequently y,-l„ is a polynomial in —, ranging from

lY+1 <l
terms in I — to — | ; thus

x) lx.

a) !™x’(Y,-L, )=°

Next, if

Tn =C0+CxJx+C2Jx +...CnJ" , we have, since Sn represents Jx 

asymptotically, limx" (J'x -S') = 0 for r = l, 2,... and therefore
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(2) )=o-

Finally,

r-j;,=c0+c/l+c2^+...-(c,+c/l+c2j?...+c.j;')=c„ljrl+c„!jr!...

thus, since F(7,) is convergent, |F-fy|<MJ’ff, where Af is a

constant.

We find that

lim x" (F - T) < lim x"MJ"+' = 0

X—>00 ' ' X—>00

(3) limx"(F-7j,) = 0 ,

because lirnffllx"J,n+1) = lim

X—>00 ' ' X—>co

< z."+1 A
M — = 0

x

By combining (1), (2), and (3) we see now that

SSa”(f-2, )=ita*”(F-r,+r,)=°

Therefore,

limx"(F-Y ) = 0.

Thus the series Y represents asymptotically;

therefore, an asymptotic series may be substituted in a

power-series and rearranged (just as if convergent), 

provided that its first term is numerically less than the 

radius of convergence.
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Note that we use the convergence of the series /(/) in

two places only, first in order to rearrange in powers of 

J, , and secondly to establish the inequality |F-7^| <MJ'(+X . 

Now this inequality is satisfied if the series

C}J{ + C2J( + Cyfi +... is asymptotic to^fj,) ; and then we must

suppose that a0 is zero in order to get any result at all,

so that J = J\ and we can entirely avoid the restriction that

f(j) is convergent. Thus, an asymptotic series, whose first

term is zero may be substituted in another asymptotic 

series, and the result may be rearranged just as if both 

series were convergent.

Proof for (4) :

Let us consider the integration of an asymptotic

series in which ao=O, a,=0.

If

limx"(J-S ) = 0 so, for any e>0 there is n, , such thatv—Xrr, ' ? W

x" < s or |J-for any «>«0.

So,
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CO CO

^Jdx - Js^Jx < («-i)—, if x>x0

so that Jjdx is represented asymptotically by

XXX ,
i°° a

-a2x Lx~2
a0 a, a,

.. = —+ ^7 + -^ + . 
x 2x2 3x3

We remark that an asymptotic series cannot, in

general, be differentiated: the existence of an asymptotic 

series for 7(x) does not imply the existence of one for 

J'(x) . For example, e“rsin(e’:) has an asymptotic series

„ 0 00 d---- 1---7 + ... .
X X

But its derivative is -e~x sin(ev) + cos(er) , which

oscillates as x tends to oo; and consequently the derivative

has no asymptotic expansion.

Proof for (5):

This follows by applying the theorem of integration to

J (x) .

Another proof can be made using the following Lemma:
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If ^(x) has a definite finite limit as x tends to co, then

^'(x) either oscillates or tends to zero as a limit.

Proof for Lemma:

If ^(x) tends to a definite limit we can find x0 so 

that, |^(x)-^(x0)| <g if x.>x0.

,,01x1- n x.)Thus, since = —1—L. where x>£>x0, we find
■. X~Xg

|^'(^)|<———. So, ^'(x) cannot approach any definite limit 
X — Xg

other than zero; but the last inequality does not exclude 

oscillation, since £ may not take all values greater than 

x0 as x tends to co . ^'(x) , if it has a definite limit, it

must be zero.

Now, to prove (4) , consider

J(x)^a0+—+—y + .... . 
x x

Then we have , * •

. limx"+I{7(x)-4i+i(x)} = °

and

limx"+,<
X->00

a.
h+i!;„+l

Therefore,

= 0
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limx"+1{7(x)-5„(x)} = a„+1

Thus the differential coefficient

x.fl+i {Z (x) - S'n (x)} + (n +1) x" {J (x) - S„ (x)}

if it has a definite limit, must tend to 0.

But x" {j(x)-S„ (x)j —» 0 so that, limx"+1 |Z(x)-5„ (x)j = 0 if it

exists. That is, if Z(x) has an asymptotic series, it is

a} 2a2 3a.

Corollary

We can divide any asymptotic series by another

asymptotic series (assuming that the first term a0 is not

zero) as if they were convergent.

Proof:

Let

J(x)

Then

.2 + ...

and we can write

7(x) = a0 (l + Z) , where K
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-1Then (JW)' 1
l + 7£ n=0

(/(x))"‘ = a’1(l-K + K2-K3+...)

and we can construct an asymptotic series for {/(x)} ' by

exactly the same rule as if the series for J(x) were

convergent.

Bromwich summarizes the situation thus:

It is instructive to contrast the rules for 
transforming and combining asymptotic series with 
those previously established for convergent 
series. Thus, any two asymptotic series can be 
multiplied together: on the other hand, the 
product of two convergent series is not
necessarily a convergent series. Similarly any 
asymptotic series may be integrated term-by-term, 
although not every convergent series can be 
integrated.

On the other hand, as we have just 
explained, we cannot differentiate any asymptotic 
series unless we know from independent reasoning 
that the corresponding derivate has an asymptotic 
expansion; although, in dealing with a convergent 
series, we can apply the test for uniform 
convergence directly to the differentiated 
series, and so infer that the derived function 
has an expansion.

These contrasts, however, are not 
surprising. In a convergent series, the parameter 
with respect to which we differentiate or 
integrate is strictly an auxiliary variable, and 
in no way enters into the definition of
convergence of the series; but in an asymptotic 
series, the definition depends on the parameter 
x.(An introduction to the Theory of Infinite 
Series,346)
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It is sometimes convenient to extend our definition

and say that J is represented asymptotically by the series

<D + a. a,a0+-+7+...

A X X j

when --- — is represented by a0+-+^j- + ..., where O and ¥
x x

are two suitable chosen functions of x .

As an example, recall the asymptotic formula deduced from

Stirling's series in Chapter Four:

w
logr(l + x) = B(x) + 2 J-

arctan—

xdv =
-1

B,= | x + 2 jlogx-x + 2log(2^) + —----- —+ + - ,
I 2 J 2 V 7 2x 3-4x3 5-6x5

= log<xT(2zrx)2 B, B, B, 
}--x+—------+ + -

2x 3-4x3 5-6x5

Thus r(l + x) = xx (2ttx)2 e xe
1 A g2 , +

~xa2x 3-4? 5-6.r5 Since we can substitute an

¥

¥

asymptotic series into the (convergent) exponential series

x
e — 1 + X d--- h... ,

2!

T (1 d- x) ~ e xxx (2ttx)2 14--- 1-- --- h...
2x 4x22!

which may be rewritten:
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C, C, C,r(1 + x) ~ e xxx (2^x)2 Id—- + —y +
x /

where

1A J_
2 12 '

C = -%=■

2 8 288
etc.

Poincare's theory generalizes for x complex and

tending to oo in any definite direction. But a non-

convergent series cannot represent asymptotically the same 

single-valued analytic function J for all arguments x. In

fact if we can determine constants M, R, such that

J-aQ—— <—2, when |x| > R , it can be shown that J(x) is a 
x |x|

regular function of — . Thus the asymptotic series must 
x

actually be convergent.

For different domains for x, we may have different

asymptotic representations of the same function. This is

illustrated in Stokes' discussion of the Bessel functions

in Chapter Six).

Applications of Poincare's Theory

A significant application of Poincare's theory is to

the solution of differential equations. We first obtain a

formal solution in a non-convergent series. Independently
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we show that a solution with an asymptotic representation

exists. (Thus we may either deduce a definite integral from 

the series first calculated or we may find a solution as a 

definite integral directly, and then identify it with the 

series.) Finally, the region of validity of the asymptotic

representation is determined.

Poincare showed that every linear differential 

equation which has polynomial coefficients may be solved by 

asymptotic series, as long as the independent variable

tends to infinity along a fixed direction. Poincare did not

determine the regions of validity. Horn, in a number of 

special cases, filled in the gaps.

Barnes and Hardy applied Poincare's theory to the 

asymptotic representation of functions given by power-

series, using the theory of contour integration. The method

of Stokes given in Chapter Four is also useful for some

real series.

Bromwich remarks that the ordinary Taylor's (or

Maclaurin's) series of the Differential calculus has

essentially an asymptotic character (— being changed to 
x

x), until the remainder has been investigated.

Even when the series
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/(0) + x/'(0) + Ix2/’(0)+...

is convergent, its sum is not necessarily equal to /(x); 

but we can always show that (x)-Sn (x)} is of higher order

than the last term in Sn(x) . Or, in more precise form, we

can claim that

f(x)-S„(x)
,v->0 xn

which has the same character as the definition from the

beginning of this Chapter.
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CHAPTER SIX

DIFFERENTIAL EQUATIONS

Introduction to Differential Equations

We will give some examples of the way in which

asymptotic series present themselves in the solution of

differential equations.

Let us try to solve the differential equation

— = — + by (b>0) by means of an asymptotic series 
dx x

A 4 A,
y=4+—+-t+-

X X

dy _ Ay 2A2 3A3
dx x2 x3 xA

On substitution, we find

A. 2A, 3A, a ( A. A,

•• = -+* 4>+—+p+-XV XX

A} aThis gives An=0,A.=-—, A,=-— = -^-, A,=-^-L-

1 b b b2 3

Therefore, we find the formal solution

y = —

2 A 1 •2a
b3

etc.

a 1 n,m2 J'r 3

1-— + 2! — -3! + ...
bx bx <bx J \

and, as we have seen in Chapter Three, this represents the 

integral
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and it is easy now to verify directly that this integral 

does satisfy the given equation.

The Modified Bessel's Equation

Following Stokes, we have the equation in the form

d2y 1 dy 
dx2 x dx

7 = 0,

and then attempt to find a solution in the form y = e^x 2ti , 

where 77 proves to be an asymptotic series.

dy_
dx
^g- = keAxx 2Tj ——e2xx 2rj + e2xx 2 — 

dx

1 dy , zv 4 1 u 4 av “I dr]

------ = iex 2rj— e x 2rj + e x 2 —
x dx 2 dx

d2y z.v 4 dr] . 1
■ = 2r1-Fke'-xx2r1 + 2e'-xx2^L-kFe'-xx2T1 +

dx2 2 dx 2

1 3 ,a.v„-L 1 J dq
4-------------e ' x £r) —e x

2 2 n
2 2V+2exvx2 

dx dx 2 dx
nbt

dx

1 1

1

v A y

Then

~ d\ 
dx2

+
1 j -1 1 -2 _2

kx 2 —X 2 +4x 2 —X 2 + x 2
2 2 j

—+ 42x 2rj-—Zx 2rj- 
dx 2

2 4 3 4 3,5 1 21
— 1 — — n —

—e 2tj +—x 2jj + Zx 2q—x 2rj-x 2q—-x 2q-0 2 4 2 x
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Then

dx I 2 2 J dx

k2 +—x 2 -—x 2 -1-

Thus

dx dx
72>

Z2-\+-x-2-d- 
X j

The equation for r] is found to be

C Jl

dx dx
h2-1) X2 +

rl 2
---- n
k4

7 = 0

.2 \

X

= 0

+ S 7 = 0

If we take k2=l,

+ <1 •>
dx dx y

— n 
<4 y

7 = 0

and then, writing

, A. A, A,7 = 1 + —+ ~4 + ^- + ..
X X2 X3

dq _ Al 2 A, 3A3 
dx x2 x3 x4

d2q _l-2Al 1-2-34 3-4X
dx2

+ -- +

24 2-34,3-44 , / 4 24 34
3 + 4

v x x
- +---^ + ... +2kx —j----- 4-----r_-| +

x ) \ x x x

+ (1 2^ C 4441+—+-f+-4+...14 J(xxx J

we obtain

= 0
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24 2-34 3-4X
3 '+ 4

X X
+ 7+- .22 4+2A_3A_ . +

X X )

+
fl 2

— n 
k4

2 4 4 41+~+ 2 + 3 +•
< X X X

= 0

or

22A = --n2,

24-424+(~w2 )4 =0 » thus 424 =fa~n2 J 4

624 f 25 -n 4/ etc.

Thus we may take

4 =
1-4«2 , 1 (l-4n2)(9-4»2)
82 ^1-2 (82)2

leading to the solutions

y = e2xx2rj = e2xx2 (l + ^ + ^ + ^- + ...\ =

X x2 x3

l-4«2 1
— —j= 1 d-------------- 1---------4^ 82 1-2

It is easy to see that

for any value of x (unless

the series terminate); they 

series considered up to the

(l-4«2)(9-4z?2)
(82x)2

these series

2n is an odd

do not agree

present, but

+ . where 2 = ±1
7

cannot converge

integer; and then

with any of the

we can write
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rf n + r + — 'I = Je ‘t 2dt

We know that

ou

T(l + «) = fe~vv''dv

and

z \z \ z \ r(w + x)
x(x + l)(x + 2)...(x + «-l) = —y2- (Appendix F)

Thus

co 1
e ‘t 2JZ = rfn + r +A = rfn +++ +A...f« + Ar-l

0

=r
< P 
n + — 

v 2y
-^(l + 2w)(3 + 2n)(5 + 2w)...(2r-l + 2n)

and for
' t Y^
1---— I we apply the binomial theorem.

22.x,

In general

(l + x)V=l + VX + v(v-l)|^ + v(v-l)(v-2)|y + .

Therefore,

!___t_Y2 =! + Q-2A + (l-2»)(3-2n)f2 +.
k 22.x) 42x l-2(42x)2

Thus the series can be written in the form
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1 co 1 /
-K le t 2 
IV

t 2
dt .

22xri n+— |0

When x is real and positive (n being assumed

positive), this integral has a meaning only if 2 = -l; and

then the remainder in the binomial expansion is less than

the following term (at any rate after a certain stage), and

thus the same is true of the asymptotic series.

Consequently, for 2 = -l, the asymptotic series is asymptotic

to the integral

1 00+4' z(/ + 2x)

r| n+~10 2x

\ 1 «— A 2

dt .

If we write Z + x = xcosh0, and then multiply by the factor

e~xx 2 , we obtain the solution

y = —r-4---1 k'vc°sh<? sinh2" 9d9 ,

which can be proved to satisfy the original differential 

equation, by substituting and integrating by parts. It may 

be expected that the two original series both satisfy the 

differential equation; although we cannot obtain a complete 

proof without some assistance from the Theory of Functions-.
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TRANSFORMATION OF SLOWLY CONVERGENT 
ALTERNATING SERIES

Let S(_1)"’lv»be an alternating series.
„=i

v»-v„+x=-Dv„ andLet us write:
v„ ~ 2v„+i + v„+2 = Dv„ ~ Dv,m = D\,
v„ ~ 3v„+1 + 3v„+2 - v„+3 = (Dv„ - Dvli+]) - (Dvn+l - Dvn+2)

= Dvn - 2Dvn+y + Dvn+2 = D\ - D\+y = D\
and so on.
Then, if |x| < 1 , we have

(l+x)(v0 - v,x + v2x2 -...) = v0 - v,x + v2x2 - v3x3 + vox - VyX2 + v2x3 - ...
= v0 - xDv0 - x2Dvy + x3Dv2 -...

and consequently
■A 1V, „ 2 3 v0+xDv0-x2Dv,+x3Dv3...X (-1) v„x" =v0 - VyX + v2x2 - v3x3 +..= -5----- ------!----- 3— =

o 1 + x

= —0- 
1 + x 
V,

xDvn -x2Dv, +x3Dv,...3... _= ——+ --- {£>v0-xDVy +x2Dv3 -...}
1+x 1 + x' ’

—A + y (l)v0 -xDvy +x2Dv3...|

+ -
1 + x

where y = 1 + x
Repeating this operation with vn replaced by Dvn,D2vn,...Dpvn 
successively, we find
Z(_1)"v»x" =rMvo +yDvc +/£>2v0 +... + yp~xDp-\'\ + yp{DpvQ-xDpVy + ...}

It can be proved that in all cases when the original 
series converges, the reminder term yp (Dpv0-xDpVy+..^ tends
to zero as p increases to infinity, at least when x is 
positive.

The case of chief interest arises when x = l , and then 
we have

=|^0+Iflv0+Lfl\+l-Dsv0+...+hT£,A

+L(D”V«-D++D'v2-...)

v0 +
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We can write down a simple expression for the remainder, if 
v„=/(n), where /(x) is a function such that the pth 

derivative /p(x) has a fixed sign for all positive values of
x, and steadily decreases in numerical value as x
increases.
For, Dvn = /(n)-/(n+l) = -^/'(x,+«)<&,

and thus D1vn = + dx} f" (x( + x2 + n)dx2

and in general Dpvn =(-l)p dx, ^cZx2...J^/p(x1 +x2 +... + xp + nfxp

Thus the series Dpv0-Dpvl+Dpv2~... consists of a succession 
of decreasing terms, of alternate signs. Its sum is 
therefore less than Dpv0 in numerical value and consequently

2P

where 5 <—| P| QP | 0|
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THE SERIES OF FRACTIONS FOR 

cot x , tan x , cosecx

We will show the series of fractions for cotx, tanx , 
cosecx , as well as prove the formula:

1 _ 1 1 y 2x
ex-1 x 2+ , x2+4«2tt2.2 '

Let
1+^1 - IX

n ,

Then
dF

sin x - lim F (x) and cos x = lim —- .

So that
dFJdx

cot x = lim — .

FA*}

Now we can show if n is odd, say « = 2/w + l,
7 >

fy,(x) = xf[ 1-
z-1

so that

dF„ (*)
dx n

z-I

2 , 2n tan —

n ;

2 + 2 rnn tan —

y
d+ x---
dx

7

1 —
2 , 2n tan —

1-
2 2n tan —

1-- 2 . 2 mitn tan ----------

1 — x x x

n ; n l n 7 n 7

Thus

dFn(x)ldx _1 -2x
F"M x «2 tan2 — , =11 - x2 /1 n2 tan2

^dFAxVdx

rn i x 
n

in4+z 2x
;■=! 2 2 i 2x -n tan —

cot x = lim —" vy --- |im 
4(x) zi—>co z- 2x

x x2-n2tan2 — 
n 7

1

\

- +

n 7
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We apply Tannery's Theorem (i.e., the comparison test for 
convergence) by taking the comparison series

2 x

M.. =

2 2 II2r n - x
, for we have

x2 - zi2 tan2 —

x2 - n2 tan2
' r7t\
(n )

22 II2' r Ti - x

2 2 II2>r 7i - x

Thus for all values of x, real or complex (except multiples 
of ti ) , we have

1 2xcot x = — + y j___ 2 2 2 'X —\X -n 7T
where «is taken as the variable of summation, instead of r 
Now we have the following identities:

tan x = cot x - 2 cot 2x 
1cosecx = cot — x - cot x 

. 2
Thus we find, on subtraction

„ „ 1 2x 1 2 • 4x
tanx = cotx - 2cot2x = — + ---- yy------ JLx „=1 x

Thus, we have
tanx = ^2

-H7T x zf(2x) -n27T2

2x
1 ”° ^2-x2

Similarly,
1 z \ n 2xcosecx = - + 2/-l) —-- —
X 1 X -n 7T

Changing from x to ix, we find that 
coszx -zcoshx . zcot ix = ■

tan ix =

sin ix sinh x 
sinzx -sinhx

■ = -i coth x =------£ 2zx
___ 2 2 2x — x +n n

coszx zcoshx
= z‘tanhx = ^2- 2zx

n=0 I 1 I 2 2
I « + — | 71 +X

<

and

cos eczx = ■ 1
sinzx sinhx

= -zcosehx = - £ (_l)” 2zx
«=i 2 2 2x + n 7i
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Therefore
i 1 57 2x

cothx = - + 2J—---- —
x , x +n 7t

tanhx = 7 2x

0 9 , 1 I 2X +| « + - | 7T

cosecx = — + (-1)"
X 1

2x
x2 +n27T

We note that
, x ez +e 

coth — = —:------
e2 -e 2

er+l . 2------ = 1 + -
ex -1

and accordingly we have 
1

ex-1

1 1 2x=—+y?
eA-l x 2 , x2 + 4nxxx
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THE POWER SERIES FOR x/(ev-l)
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THE POWER SERIES FOR x!(ex -1) 
AND BERNOULLI'S NUMBERS

We know that
X 3 A- - A -A- A= > — = 1+—+—+—+ ... “• 1! 2! 3!
Ax"
„=o n

X X2 X3

(e“l) X X2 X3
2--- 1 = 1+—+—+—+...

X 2! 3! 4!
xand the reciprocal function U->) can be expanded in powers

2 3

of x if Ixl < p , where — + — + — + ...<1 (by the Theorem on 11 2! 3! 4!
expansion of reciprocal series). This last condition is 
certainly satisfied if: ep <1 + 2/7 . This is true for /?<1.2 
Thus, we can certainly write:

7--- r = l + A,x2 + N,x3 + A,x4 +..., if x <1.2
(er-l) 2 3 4 11

x
4— — 1 + A2x2 + A3x3 + A4x4 +...U->) 2

xA simple computation shows that function (e-'-l) 2

even function of x, so that A} = 0, A5=0, A7-0, ... 
Consequently, we can write

+— is an

X ’ x ’'1--b2—+b3— 
2! 4! 6!

= 1-- + B,

ex—1 2
x> 2k

2^ k (2k)\
X

where Bt are called Bernoulli's numbers.
It is easy to verify by direct division that

B, =-, B2 =—, B3 = — , B4 =—, B, = — 

1 6 2 30 3 42 4 30 5 66
It is also known (Appendix B) that

X X v"’’--- = 1—+ >
a -1 2

2x2
e ‘ -1 2 x2 + 4n2^2

Now if x<2tt,(2^ is the radius of convergence; the
roots of ex =1 are given by x = 2nni , and the least distance 
of any one of these from the origin is 2;r ) , each fraction 
can be expanded in powers of x, giving
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X2 A
1 + -

2x2 2x2 x 1

1

2_2x + 4n ti 2 _2

But 1 + y 
therefore

So,

4h27T2

= 1-y + y2 -y3 +...

1

2x2

1+

1+- 2 _24n 7t
2n 7T X

2_24n 7t

= 1- - + - x X

4n2^2 16rc47T4 64n6^6 + ...

4«V

2 /

x2+4«2tt2 2n27T2
1 —

X

-+-
X

4n2'7ri \6rf7A 64n°7T
- + ...

Further, the resulting double series is absolutely
convergent, since the series of absolute values is obtained 
by expanding similarly the convergent series

-A 2|xl2
„=1 4h2tt - |Xl

It is therefore permissible to arrange the double series in 
powers of x, and then we obtain

2 00 2 f 2 4 6 x2x , x x-' x „ x x xX * X x-"'7----1 = 1--- H z(ev-l) 2 £ xz + 4n2;r2
= P+x

, x x = 1—- + —v 2 2tt2

2 2n27T2
2 f

1— + - 4_4 6_64h2tt2 16n'tzr‘* 64n°7t
..4 /

Z4 —Ar L
„=i n 1 o7T „=i

x6 ?
k»=l n

, 1 + ,
4 1 32zr6

+ ...
7

which is now seen to be valid for x<2tt.'

We find

and, in general

B^~27t k n=I n y
’ ^2 = ' 11 4

7T k«=l n J

45
2p k„=i n y

CO -jzA
k»=i n J

CO 1
-Y— ■

n~' £(n2'
From the earlier computation of the Bernoullian numbers, we 
obtain asa corollary the results

co 1 _2^-1 1 7T

n 0H=1
CO 1x^ 1 7F / —r= — / etc. 
tM4 90
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BERNOULLIAN FUNCTIONS

The Bernoullian function of degree n, denoted by K (*) 

t" ex> -1is the coefficient of — in the expansion of t—-- , which,
n! e — 1

by the foregoing, can be expanded in powers of t if |f| < 2f . 
We know that

2 4 6
X X X X X
—+ B.——B?— + B,--------------- ...

ex-l 2 '2! 2 4! 3 6! (Appendix C)
Since

P-1

T, ! (xrf (XA
r-l = — + 1—^- + 1—c- + ... , 

1! 2! 3!

e{-1
f x2t2 x3f3 ( t „ t2
xt + + ’!■. 1--- 1- B, — 2^9-- h ...

k 2! 3! 7 k 2 2! 2 4! J

tn

Thus we have

„=0 n-
( x2t2 ( t n t21--- h B, — 13^---- b ...1 2! J k 2 2! 2 4! J

So that
A(x)=z-Pth/-_"("-i)("-4("-3)b „-4 +
"v 7 2 2! 4!

where the polynomial terminates with either x or x2 . 
From this formula, or by direct multiplication, we find 
that the first six Bernoullian polynomials are:

^,(x)=x,
^2(x)=x2-x = y,

, ( \ 3 3 2 103(xj=x ~~x +~x = yz,

fa (x) =x4 - 2x3 + x2 = y2,

, / \ 5 5 4 5 3 1 | 1®,(xl=x —x +—x —x-yz\ y—5V 7 2 3 6 P 3j

4(x)=x6-3x5+|x4-|x2

where y = x(x-l) and z = x-—= ——, with the last term 
2 2 dx

x or x

Since
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?'-P > e'-P ' e'-P > e-1 = tex‘ ,

<f>n (x + l) —(x) is the coefficient of — in the expansion of
n\

^\e{x^‘ -ex,\ = text 
'-P >e 

But
Yt 9 X -3 X A

te — t + xt 4---------1 4---- 1 +
H-l

2! 3! "(n-l)!
tn + ...

X

so that

^(x + l)-^(x) = «x"‘

thus,
(x + l) = (x) + 2x = x2 - x + 2x = x2 +x

^3 (x + l) = ^3 (x) + 3x2 = x3 ~~x2 + yx + 3x2 = x3 + -^-x2 + ~x

and generally jZ)H(x + l) differs from ^„(x) only in the sign of 
the coefficient of x"-1 .

If we write x = 1,2,3,... in the difference-equation and 
add the results, we see that, if x is any positive integer 
(w>1)

x = l: ^(2)-^,(l) = n 
x = 2: ^(3)-^(2) = n.2"-’
x = 3: ^,(4)-^(3) = «.3"-'

x: (Z5„(x)-^,(x-l) = «-(x-l)"

x + l: (/>n (x + l) —(x) = o-x"“‘

If x = l , then 
Therefore

n (l + 2-1 + 3-1 +... + x-1) = A (x+l)-(1) 
ex' -1

t—-—- = t and ^„(l) = 0 f°r a^-1 n-
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1 + 2"_1 + 3"’1 +... + x"-‘ = (x +1) = -(nx"’1 + <f>„ (x)) = -(Z5„ (x) + x"^1
n zzv n

This gives the formula of Bernoulli for the summation of 
the (zz-l)zA powers of positive integers.

More generally, if b-a is any integer, 
x-a f>ffa+\}-</>n(a) = nan-'

x = a + l 0n(a + 2)-0n(a + l) = zz(a + l)" 1

x = a + (b-a + l^-b-l <j)n (Zz)-</>n (b-1) = n(b-l)" 1
x = a + (b-a) = b <)n{b + \)-(ill{lj) = nb

Then, by adding the above, we obtain

a.-l+(a+,)”-'+(a + 2y... + (A_1)-'=I(A(;,)_A(a))
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EULER'S SUMMATION FORMULA

As we have seen in Appendix D, if x and n are positive 
integers,

1 + 2"-‘ + 3"-1 +... + x'”1 = - 4 (x) + x"’1 = - 4 (x +1) = 
n n

1 H 1 ii_i n — 1 „ „_2— — X ’ d---- X" +
2!

-4+.
4! 2

1 1this polynomial containing — («d-2)or — (/Jd-3) terms.

It is obvious that when /(x) is a polynomial in x, we 
can obtain the value of the sum: /(1) + /(2) + ... + /(x) by the 
addition of suitable multiples of the Bernoullian functions 
of proper degrees. But we can get a compact formula by 
using integration. We can write the foregoing polynomial in 
the form

Hence when 
formula

fx"-1 dx + - x"-‘ +—B. — (x"-') -—B2 (x"-') +...

J 2 2! 1 dxV 7 4! 2 dx3 ' 7

/(x) is a polynomial, we have Euler's summation

/(l)+/(2)+... + /« = + + + ,
where there is no term on the right-hand side (in its final 
form) which is not divisible by x.

However, the most interesting applications of this 
formula arise when /(x) is a rational algebraic fraction,
or a transcendental function, and then of course the 
foregoing method of proof cannot be used; and the right
hand side becomes an infinite series which may not 
converge. We have considered a number of special examples 
of this kind in this thesis.
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THE GAMMA-PRODUCT

Theorem. Let Pn = (l + a,)(l + 6Z2)...(l + £ZH) , where ax, a2, a3,... are 
numbers between 0 and 1. Then the convergence of the series

is necessary and sufficient for the convergence of the
00

product •
«=i

Theorem. Suppose ux,u2,u3,... is a sequence such that ^u2 

is convergent. Then the infinite product (1 + m1)(1 + m2)„. 
converges if converges; diverges to infinity if
diverges to +oo; diverges to 0 if ^_un diverges to -co ; 

oscillates if oscillates.

It is evident that the product
... 1+ x > -1

is divergent except for x = 0 because
Y — = xY — diverges except for x = 0. 
»=i n ,=, nn=l

We will first find the limit of

to show the following formulae: 

x(i + l)(x + 2)...(x + n-l) = A^p

Then we are going

and
«T(n)

lim v 7 = 1 . 
«^.co r (h+x)

We have
x

n

x . Y P — log 1 + - 
n 1 n)

>0

1

X

Because
0 < x-log(l + x)
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A o44K) 1+x

P„A n(1+*H’+4i

Let
( 1 1>

S = x 1+-+...+-l 2 n) logP,

Then
s„-\ -xfl + - + ... +-- -

\ 2 n-i
and

xSn -Y-! =--(logP -logp,.I) = --log| 1 + 
n n 1

so the expression Sn increases with n.
In general,

1

and

>0
nJ

0<u-log(l + w <^-u2 for w>0

u0<M-log(l + n)<—-- - for -l<w<02(l + u)

Let 2 be the lower limit of the numbers 1,1 + m1,1 + u2...,1 + mh...

0<wm+i-1°g(1 + M„1+i)<

0<MM+2-log(1 + w»,+2)<

m+l
2(1 + 0,,,+.) 

0L2
2(l + w„,+2)

0<Hn-log(l + W„)<- U„

2(1 + “.)
By adding them, we obtain
0 <(U,„A +0,„+2 +- + M«)-log{(1 + M„,+l)(1 + Mm+2)-(1 + M„)} <^j(m2,«+1 +u2,„+2 +- + 02„)

Therefore, if we consider

we obtain

s„=2i+i+...+i -log

U„,A = U.m+2 .U = ■
n

4 4 c x^ ( 41+- 1+- . • 1+- rK iJ 2)
X (. 1 1
221 22 n2

X

u
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We know from Appendix 5 that 1 + -A + -A + ...+ -A < 2 
22 3 n

Therefore we have that

5.. < ■221

. 1 n x21+—7 + ... + —7 <’2
\fl+u... 

2)

Sn=x 1 + - + - + ...+ 
2 3

-log/;, <
( 1 1

n
f

2
i+i

<

2
where 2 is either 1, if x is positive, or 1 + x, if x is 
negative.

So, Sn increases and Sn <
2

Hence, Sn < x2 or Su <
1 + x

Therefore, we have an increasing and bounded sequence, so Sn
approaches a definite limit S as n increases to oo .
Further, from Appendix H

lim | 1 + — + — + ... + — -log n 

n2 3
where C is the Euler's constant. 
Therefore,

lim (x log n - log Pn) = lim S — X f 1 4-- 1-- h ... 4--- lOgZZ
" I 2 3 n .

-S-Cx

= C ,

x log n - log Pn = log nx - log Pn = log -

lim log— = S-Cxn->oo p

nloglim— = S -Cx<= «->00 P

nSo that —has also a definite limit; this limit is denoted

by n(x) in Gauss's notation. 
Thus
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Thus

n (x) = lim — = lim
h-»oo P n-*<x>

n(x) = lim-

n'

nx ■ n!
„->» (l + x)(2 + x)...(zz + x) 

which, again, can be written in Weierstrass's form,
H

S-Cx- lim log — = log
//—>CO p

44
H->00 P k h J

=iogn(x)

Therefore,

Cx-S = log
n(x)

nW = eCx-S

eaes = ec‘e'~s- = ea lim e~s- = eCx lim 444

= eCx lim«->ooeCx lim
n->oo

e>ogF„e I 2 «

k 7
/ / < 4 X X

ec*lim< 1+* 1+h... 1 + * e~xe 2 ...c n

n—>oo k 1J k 2 J k n)

=4%nl4k7-cri(i4

Thus
r)

1

r=Tk r)

= eCvJ-[[ 1 + — le r the Weierstrass' s form
n(x)

When x is positive integer, Gauss's form gives n(x) = x! 
because

ti n\ n' xi
(l + x)(2 + x)...(« + x (l + «)(2 + n)...(x + «)

X!
4 + nA ( 2 + n) ' x + n'
I n ) I n J { n )

x!
*4 - 4
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x! = x!n(x) = lim
n n\ = lim-

»->00 (l + x)(2 + x)...(h + x) "_>cc[ j_j_ J_ 11 2 +—

I nJ
Jl+T

Although we have found it convenient to restrict (l + x) 
to be positive, yet this is not necessary for convergence; 
and it is easy to see that the products for Il(x) still
converge if x has any negative value which is not an 
integer.

It is easy to verify by integration by parts that 
Euler's integral

co co oo •

T(1 + x) = ^e~'txdt = -txe~' | + ^xt'~le~‘dt - x Y'e'dt = xT (x)

Thus r (1 + x) = xr (x) or

If x is an integer,

T(l + x)
r« = X

x +(2) ID) r(4) r(M 
- ' • •' ir.i'n.’i'ii?!" 11,i

Thus r(l + x) has the property of being equal to x! when x is 
an integer; and we may therefore anticipate the equation 
T(l + x) = n(x) = x! for x positive integer
If we change x to x-1 in the definition of T(l + x) by the 
product Pn , we find that

nx 1«!
r(x) = n(x-i) = iim«^«° x(l + x)(2 + x)...(n + x-l)

but
T (1 + x) = n (x) = lim n' n\

Therefore
r(l + x)-P ■ 7=lim
r(x)

n' n\

(l + x)(2 + x)...(n + x)
r (i+x) = xr (x) 

r(2+x)=(x+i)r(x+i) 

r(3 + x) = (x + 2)r(x + 2)

(l + x)(2 + x)...(« + x) 

x(l + x)(2 + x)...(« + x-l)
= xlim- n

it n\ «-*’> n + x
■ = x

r(n+x)=(x+«-i)r(x+«-i)
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Because

By multiplying, we obtain
r(« + x) = x(x + l)(x + 2)...(x + n-l)r(x)

It follows that
x(x + l)(x + 2)...(x + ,,-l) = fPd

and consequently the definition leads to the equation
r, r «v”'n! r «'v'‘n!r(x)
i (x) = lim —---- —------ r— --------- r = lim — -----

"->cox(l + x)(2 + x)...(z? + x-l) r(« + x)

«A_1«! = nx~x («-l)!« = nx («-l)! 

r(l + x) = x!, r(n) = (n-l)!
nx~xn\ = zzT(n)

we have that
, x , nT(«)r(x) , x nxr(n)r(x) = lim-----; 7 \ 7=r(x)lim- V 7

r(«+x) >r(«+x)
, »T(n)

hence lim —-—= 1 .«->■” r (n+x)
It is often convenient to write the last equation in 

the form «T(n)«r(n+x) . By reversing the foregoing 
argument we see that the function r(x) is completely defined 
by the properties f(l + x) = xT(x) ,r(« + x) ~ nT(x),r(l) = 1 .
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EULER AND THE GAMMA FUNCTION

We know that r(x) = (x-l)! if x is a positive integer. 
To generalize the factorial function, initially defined 
only for positive integers and then extended to 0!, Euler 
began by multiplying by an expression equal to 1.

(n + l)(« + 2)...(« + TV)
(h + 1)(« + 2)...(m + TV)

.(Y + l)(V + 2)...(7V+«)

n! = l-2-3-4-...-n.= l-2- •n-

= l-2-3-...-N
(N + l)(V+2)...(TV + n)

1 N
(n + l) (n + 2) 

1 2
(n + N)

(V + l)...(V + n) =

N z v,(Y + l)...(V + n) 
(n + Ny 7 (7V + l)...(V + n)(n + l) (n + 2)

To unsimplify this a bit more, Euler wrote 
, 2 3 4 7V + 1

12 3 N
so that the above expression for n! becomes

1 2 N (2 3_ 4 JV + lY (V + l)(V + 2)...(jV + n)
_(n + l)'(n + 2)''"’(n + 7V)b 23 N J (7V + 1)(V + 1)...(7V+1)n\

This holds for any positive integers n and N, and Euler now 
wants to hold n fixed and let N tend to infinity. He first

observes that each factor at the end, of form (TV + fc) 
(W + l) ’ will

tend to 1 as N grows, since k is fixed. Therefore he 
worries only about the first parts of the expression, up to 
the exponent. To evaluate that limit he first divides by n, 
then has to find the limit as N goes to infinity of the 
expression for (zz—l)! namely

n!_J_ _1___ 2__________________________
n n n + l n + 2 n + 3 n + 2V\l 2 3 N J

N (2 3 4 V+lY

This he rewrites as
1 1 2 n Lu_f4Yl
n n + l

Id
n + 2 bJ n+3^3)

Euler remarked that each factor in this last expression is 
defined for any n except 0, -1, -2, -3,... so he defined a new 
function, the gamma function, by
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r(z)=-
z+lll z + 2 v 2 z + 3v3

where z is any complex number except 0,-1,-2,-3,...
To test whether this is at all sensible, he set out to

compute T 1 by the following, indirect but ingenious

approach. By substituting and inverting, he expressed 
1

r(z)r(i-z)
as

z + 1 z + 2 (i-z)J,
z + 3

z(l-z)(l + z)
f 1 2-z 2 + z^ (2 3-z 3 + z^
U 1 2 ) 1,3 2 3 J

2—z 3 — z l-z

j\

r(z)r(i-z)
= z(l-z)(l + z)

= z(l-z)(l + z)

f 2-z 2 + z^3-z 3 + z 
~3 F”

42-z 2+zV3-z 3 + z

Now Euler multiplied out pairs of factor to get
-yz-1---- r = z(l-Z2)[l- —
(z)r(i-z) ' 1 4 J

2\( 2\T
l~Z- 

9V 7

.2 A
1--

v 16
an expression which he recognized as one he found earlier

sin ft z . 1

for ---- . He put in z = — and got
ft 2
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THE LOGARITHMIC SCALE AND APPLICATIONS 
TO SPECIAL SERIES

Theorem. The series of positive terms ( an > a/l+l > 0 )
X

converges or diverges with the integral J/(x)rix; if
i

convergent, the sum of the series differs from the integral 
by less than <7, ; if divergent, the limit of (s„-/„) 
nevertheless exists and lies between 0 and a, .
Proof:
Consider

1 1 1-- 1--- 1--- h... ,r 2p 3p

If p is positive, f(x) — — — x~p

where a., = n

^f(x)dx = Jx pdx = —------
1-p

The integral to co is convergent only if p>l .
x —1 1

lim \f(x)dx =-------=--------
.V->CO J [-p p-\

0<lim(5 -/ )<a,
/z—>00 ' z

and the sum is then contained between 1/(73—l) and p/(p-l).

—<yp<—+1
p-1 . p-1

If p = l, the integral is equal to logx, which shows that the 
harmonic series is divergent.

X X
^f(t)dt = jf'dt = ln^j1 =lnx 

1 1

We infer that the limit:
lim| 1+—+ — + ... + — -log« |

2 3 n )

exists and lies between 0 and 1 .
This limit is Euler's constant.

0 < lim (S',,-/,,)< a,

0<lim

«->oo
1 1 1Id---- 1----H...4----- log« <1
2 3 n
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The value of the constant is 0.57721... (see Chapter Two),
and will be denoted usually by C.
It is often convenient to write

, 1 1 1 .1+ - + - + ... + >logn + C
2 3 n

1 1 1Application: ! + — 2
n

Proof:
Let f(n) = ± 

Let
rr

n n , n l-p
In = J/ (x) dx - J— dx — fx~pdx = —

If P>1,

n'~p-l

1-P

»->“> p _ 1
0 < lim (S,,-/„)<«,

1 <limS.—P + 1 = - P

p-1 " p-1 p-1
In our case p-2, therefore

1 1 11 d-- 7d-- d---------------— < 2
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oo

FOR THE SERIES ((-l)"'1 /np)

71=1
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„=1

APPLICATION OF ABSOLUTE CONVERGENCE
oo

FOR THE SERIES £((-1)"'' ! np)

„=i

Let Y(h) = X— be the zeta-function and
=i n«=i

its corresponding alternating series. We can express the
(-1)M-l

sum of the series y~—- in terms of the sum of the
n=l

corresponding series of positive terms by the formula 
< 1
1-

2P~
To prove the above formula we use the fact that if a 

series y a„ is absolutely convergent, its sum is not 
altered by derangement.

Hence, because / -—~ 1S absolutely convergent, its 
„=i n

sum is independent of the order of its terms.
Therefore,

1 2P+3P 4P+5P 1 + 3P+5P + "

, 1111— 1 4--- 1--- 1--- 1--- h ... — 2
2P 3P 4P 5P

r i i 1
-- 1--- 1--- h.

{2P 4P 6P
f 1 1 1 + — + —+ .

, 1111 
— 1 4------- 1------- 1------- 1-------h... ■

2P 3P 4P 5P
_1_
)p-i

2P 4p 6p
1 1 

+
2P 2P 2P~ 3P

, 1111 1
— 1 4-------- 1------- 1-------- 1------- h ...--------r

2P 3P 4P 5P 2P~1
,11 I1 4------- 1------- h ... —

, 2P 3P

1- 2P-!
11111 4------- 1------- 1------- 1------- H.2p 3p 4p 5p

=i n

^W =

1 1 1 1

1

Q for p >1 .

1 1

7
- + ...! =

Therefore £,(/?) = •

But 1-^-<^(h)<1 , therefore ^(p)<-- -
1

2P-!1-
« J J

So, for p — 5 we have that V —<--- -r •
tfn5 1-2-4
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APPLICATIONS OF UNIFORM CONVERGENCE
CO

An integral jA(x,y)Jx which converges uniformly in an
a

interval (a,/3) has properties strictly analogous to those of 
uniformly convergent series.

Theorem 1. If f(x,y) is a continuous function of y in 
the interval , the integral is also a continuous
function of y, provided that it converges uniformly in the 
interval (a, ft) .

Theorem 2. Under the same conditions as in Theorem 1, 
we may integrate with respect to y under the sign of 
integration, provided that the range falls within the 
interval .

J, co co fTheorem 3. The equation —\f(x,y)dx = \-d-dx is valid, 
dy „ a dy

provided that the integral on the right converges uniformly 
and that the integral on the left is convergent.

Theorem 4. If lim f(x,n) = g(x), lim/L„=oo then
//—>CO ' 7 v 7 >C0

lim ^f (x,n)dx= Jg(x)Bx, provided that f(x,n) tends to its limit
a a

g(x) uniformly in any fixed interval, and that we can 
determine a positive function M(x) to satisfy |/(x,«)| < M(x)

co

for all values of n, while (x)dx converges.
a

Application. Consider the integral
y = je-w -e~bx)—

o ■ • x
where a, b may be complex, provided that they have their 
real parts positive or zero. Then J is uniformly convergent 
for all positive or zero values of y.
Proof:
If we differentiate with respect to y, we obtain
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= _Je-4-)Jx+ Je44jx = _ =
o

r,-N« + y)

o
,-■'(*+7)

+ - 1 1- + -(« + y)0 -(b+y)

and this integral converges uniformly so long as y>l>Q 
dJ_ 

dy
Its value is therefore equal to

above.
So, dJ 1 1 - + -

dy a + y b + y 

By Theorem 1, limJ = 0, so that
>CO

J = -
1

a + y b + y 

ly so Ion 

, in virtue of Theorem 3

1
a + y b+y

lim/ = (e^-e~bx)— 1 = /(e"111 -e~bx)— = ff—
7->o ' > x j F ' x . a +

1
x "(a + y b + y

dy =

= ln(a + y)|” — ln(Z> + y)|” = ln
a + y

b + y
= 0-ln—= ln—

b a
In particular, if we write a = l, b = i, we have
co i o° / 1 1 A oo.

J(e’v-e’“)—= J  ------------ - Jy = ln(l + y)-=
4 'x 0\l + y y + i) 4+1ok

co co -« .«

= ln(l + y) - + i= ln(l + y)--ln(y2 +1) + itan’1 y =
0 k 0 k_ k

f , k, 1 + yIn+ z tan yVk2+i
7

17T
~2

So,
4 _v . . sdx 1 .e ’ -cosx + zsinx— =—m
4 ’ x 2

or
f(e A — cosx)—— = 0 , f . dx 1sinx--- = — 7T

J X 2

/

/

131



APPENDIX K

INTEGRATION OF AN INFINITE SERIES OVER AN

INFINITE INTERVAL AND THE INVERSION OF A

REPEATED INFINITE INTEGRAL

132



INTEGRATION OF AN INFINITE SERIES OVER AN 
INFINITE INTERVAL AND THE INVERSION OF A 

REPEATED INFINITE INTEGRAL

Integration of an infinite series over an infinite 
interval. Many cases of practical importance are covered by 
the following test:

Theorem. If ^fH(x) converges uniformly in any fixed 
interval a<x<b where jb is arbitrary, and if ^(x) is 
continuous for all finite values of x, then

P (x) [XI (*)] dx = X P (x) f> (x) dx
a a

00
provided that either the integral J|^(x)|{X|-^< or the

series X Jl^(x)|'k'(x)l is converlent-

Application. Show that
“r sin fox . b

---------dx =
J P-l

+ - + ...P+P (2a) +b2 
where a is positive, and b = p + iq, where |</| = 5 < a .

Proof: 
Since

|sin(Z?x)| = |^sinh2 (gx) + sin2 (/?x)J2 < coshsx < e8' 
and the integral

» y g8.v <
J p-l

dx

is convergent, it follows from the Theorem above that term- 
by-term integration is permissible, because the terms in 
the series

1
P-1

■ = eax+e2‘a+e3ax+...

are all positive. 
Thus we have

r=l /•=!
-ax xixp-l

jsin&x _ Jy ,'<lWx = Y Je '“ sinZzxz/x
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Let

o
b

ra

Thus

Therefore

co < r 00
I = sin bxdx =----- e~rax s in bx\” H-----fe”"’r cos bxdx =

n ra ra ]

—e '“cos 6x|"—— fe rax sin bxdx 
ra 0 ra •

! = ■
(arf+b2

7 sin fox , 
--------dx = -„Je“-l

r = l, 2,....

+ -

b \ b
ra k ra ra

+ ...
a2+b2 (2a) +b2

In the case when a = 2x , this expression is equal to 
•sin£>x , A b

+ b2
sin fox , A b
--------dx= > -------- 4^(2rx)2

We know that
1 1 1 A--- =---- + >

V-l x 2
2x

2_2

So,
„=1 x + 4n n

2b

Then

1 _1 i A
ebb 2 + ^b2+4r27r2 

b ___l___j_ J_
,.=IA2+4rV ~eb-i b + 2 

b °r sin bx

2Z
§p+(2r^)2 r sm ox ,

■ A------ dx =Je2xr-1 o e 1

1 A-Ai
2 ?-l b 2.

The inversion of a repeated infinite integral. We will 
prove that

" f arctan—
Tofe Y-----i+I\dt = 2 f , dx .

J le — 1 t 2) e2™-l
We know

1 1 1 _■ r sinxr ,----- + —= 2 —----dx'-1 t 2 )e2xx-l
sinx/

and
sinx/

> le'-l t 2 J ,J k2“-l dx
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We will show that last integral is absolutely convergent. 
First, we will prove that

4r
For that, we take 

sin foer sinox , r 1 v1
o e 1 0 e 1 „=0

II/I__ \2«+l

(2» + l)!
(-l)'Pn l2«+1 «. x2"+1

S (2« + l)!
J; -efo .

On the other hand, 
sinfoe , 1 ( 1r sino.x , i

—------- dx = —
le2*x-\ 2

1 1---- 1--
-16 2

1< 1 1 B.. 1 1
,h 2 tt(2n)! b. 2

= Iv tlZAfo2"-1 
~2h (2n)\

From the last two expression, we obtain that
“ A.2’'-' Df—---- dx = — .ie2,IX-l 4r

Taking r = 1, 5, = — , we obtain

f Sinfi , (• xt tP--- -dx< -t--- dx = —nJe2xx-l Ze2rrx-1 24

We see that 
Thus,

e yl\ = e if y = j + irj .

2 fie y‘\dt f-L-——dx< fe & —dt = — \te x‘dt = 
„JI 1 Je^-1 J 12 12 J

1
T

t a. If C/ , 1 4 e~^
---- e^' + — le ’’ dt

12 0 5 0 J _12
<■
12P

which proves the absolute converge; we can therefore invert 
the order of integration without altering the value of 
integral, and we then find

Mb-Kb# sinx/ , , ’ yt —------ dxdt„2kx0 0 e -1
We proved earlier that

/ = fe rax sin bxdx =
0

co

If r = 1, a = y, b = x , jb' sinxtdt =

b
(arf+b2

x

2 2 y +x

Therefore
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„-yt 1 1 1 
z'-l t 2

JZ = 2( xdx
0J(x2+y2)(e2,rT-l)

Now, if we write y = ^ + irj in the last equation, we can 
integrate with respect to S, under the integral sign, 
between 4 and co ; for

1 1 0 -- + _
7e'-l t 2

<—e 
12

-H

and so 1 1 1 U---- 1— \dt <
1 (£,>0)

I e'-l t 2,

so that this double integral is absolutely convergent. 
Similarly we find that the right-hand side is absolutely 
convergent, since |x2+y2|>4, so that

xdx < mrdg°°r xdx _ 1“fr j7rL27rx-i_244

fo 0

co co

pfjl
o [a2 + J2|(e2ri l) 4 0 

Thus, we find the further equation

124

co Z -1 1 \ 00 oo j coUr K

244

xd%
x2+y2

f
which gives I-

00 ey"‘

e'-l t 2
= 2 J-

arctan — 
Yo

ItCX -1 dx where y0 = 4 + di
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INTEGRALS FOR logT(l + x)

We have proved in Appendix J above that if the real 
parts of a, b are positive,

lo4=K -at -bt \ dt
e -e — 

! t

Hence, if the real part of 1+x is positive, writing 
b = r, a = r + x we have

-‘Yy - k" Y ->)t ■ 1 ='■ 2>t
If b = n, a = 1 then

log/? = -e dt

We know from Appendix F that
T (1 + x) = lim n' n\

»->c°(l + x)(2 + x)...(?? + x)
Therefore

log r (l + x) = lim log
(l + x)(2 + x)...(/? + x)

Now

= lim

= lim //—>«

log/?' + log- 1-2-3-.../?
(l + x)(2 + x)...(/? + x) 

x log n + £ log •
A r=i r + xj

Thus we are led to consider the function 
, dtS(x,n) = xlogn + ^Ylog—-— = x J(e ' -e J(l -e xt)e " —

r=\ r + •* o t r=l o t

z-l

so that
\-e‘ e'-l

-rt dt : _rt dt\ rz ~t -nt\dt Y-i f _rt dt p _v( _rt diS(x,n) = xJ(C '-e ")--Np - + Z > e T
(1 1 r=l 0 1 r=l n '

l-e~"‘ dt
’t J e'-l t nJ e'-l

n n

v
f n „ A

e = •
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=1
0
00

= J xe~‘-

xe ' — xe~"‘ -

xe

1-e-'" e xt -e-x,e-"'}dt

e'-l

1-e

e'-l

e'-l
dt
t

So that,

S(x,n) = J

Let

■rt A At “l-e-v' \dtai t 1-e dt
e‘-1 t e'-l

1 _ £>~XlF (x) = (j xe-' -
e'-l

x‘ydf 

t

- + -

Y
- + -

o V
-A? \

xe -■

” ( 1 — 0~Xt G(x,n) = - Je-'" I x——— dt

Then,
S(x,«) = F (x) + G(x,n)

It is to be observed that both in F(x) and in G(x) the
integrands are finite at t=Q .
From Appendix D ,

1 _ 1 1 2/ 
e'-l“/ ~ + ~\t2 +4n27T2

l-e-r'= — x2 + 2 x + 2 x + 3-x/4------ ... =xt------------ 1--
v

l-e-v' 
e
l-e-v'

2!

6? 1 / 2 \ 2--- = x—(x + x )/ + /
'-1 2V ’

— = -(x + x2)/ + /2 
'-1 2V 7

2! 3!

4_xf _ 
,3! 4,
4_x^
4! 4

1-e -xt A I= ’—(x + x ) / + Y,/+ Yj/ +...x-- ;--

and similarly for the other integrand.

Thus, when / <1 /,/,...,/"—> 0 so 1-e
e'-l

cannot exceed1 x —-

some fixed value, independent of t; but if />1, this
expression is less than x +——, because e-*' <e' (since the 

e-1 1 1
real part of 1+x is positive).
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e >e , e‘-l>e-l ,
1 1< < x +

e'-l e-l'

( 1-e-^
x--

e'-l
e + 1
TU

Thus we can determine a value of X, independent of t, such 
that

-xt \

x—-
1-e
e'-l

<X

Then

so that
Hence

|G(x,n)|< \Xe"‘dt< — 
o n

limG(x,«) = 0 .

COf
logr(l + x) = lim5'(x,n) = F(x) = J xe

1-e-^
0 V e ~ 1 2

This integral can.be divided into two parts:

dt

ou
o=j xe ' -

dt
te' — 1 v 2)

1 1 l}dt _ 7arctan (y / x)
e2^-l0 x - — 2 - 0 

the last expression following from Appendix K. 
So,

log F (l + x) = (x) + i// (x)
[•arctan (y / x)

dy

logr(l + x) = (A(x) + 2 J-
e2?r'v-l

-dy

1 - + 1 1

When ^-+oo, where ^ = Rex, then lim^/(x) = 0 because |y/(x)|<—— 
12^

Thus, when f —><x> , we have lim^/(x) = 0.
It can also be proved using the Analogue of Abel's Lemma 
that |(Z/(x)| < -Y—j-. Therefore lim^(x) = 0, when 7—»co, f being

kept positive.
Therefore,

^(x)-(A(l)= j-
0
00

=J<
0

xe — -
.+lLiV

e'-l U 2.
1 1

dt21 r
T’-n -+

e'-l U 2.
dt
t

1 1 1
0
dt _ 
t
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00 -1 -1 —Xt -trxe -e e -e

We know that
"o' t

2 J/+ylogx = f x + ijlogx-(x-l) .

«> „~bx rf xe -e , , b 

—■-----------------------------------dx = In —
o.

Thus we see that, if A = 1
l\

^(x)= x+— logx-x+4-k 2;
To determine A, we make- use .

< P
log x + — 

k 2y
+ logF(x+1) + 2xlog 2 - logf (2x +1) = —logTr .

Thus we have, since limy/(x) = 0,

lim x~~ j + ^ (x) + 2xlog2-^(2x) = ilogx ,

- + -

a

1

which gives, on inserting the value of ^(x) ,

lim r oil,
A+xlog 1-— log2

2x) 2 2
=—logTr 

2

A = |log(2x) .
or

Thus we can write
f P 1

logr(l + x)= x + — logx-x +—log2x + ^(x)

, . c°farctanP/x) , i / \i 1where <y(x) = 2j---2 1 ' dy and |y/(x)|<—-
o e 1
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