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ABSTRACT

This thesis seeks to present the history of non-
convergent series. As we show in this thesis, in the past,
divergent series have played an important role in
mathematics. Euler, Cauchy, Abel, Fourier, Stirling and
Poincare are just aifew df fhe greafest mathematicians who
used them. Today, non-convergent series play a marginal
role in mathematics and are often not mentioned in the
standard curriculum. Most students are not aware that they
can be of any use, though such series are profitably
employed in both physics and mathematics. When I discovered
the text written by Bromwich, I thought it would be very
interesting to learn more about non—convergeﬁt series. The
study of divergent series may be divided into two parts:
one concerning the asymptotic series and the other the
theory of summability. In an asymptotic series the terms
begin to decrease, and reach a minimum, afterwards
increasing. If we take the sum to a stage at which the
terms are sufficiently small, we may hope to obtain an
approximation with a degree of accuracy represented by the
last term retained; it can be proved that this is the case
with many series which are convenient for numerical

calculations, as we will see in Chapter Two. The theory of

iii



summability is concerned with the question as to whether in
any proper sense a “sum” may be assigned to the series,
assumed divergent. One of the most important aspects of the
theory of summability lies in its applications to Fourier
series and other allied developments in mathematical
physics. In this thesis we intend to study the asymptotic

series.
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CHAPTER ONE

INTRODUQTIQN

The definitioﬁs:of'qoqvgrgeQCéwgpdidiVergence-are now
commonplace in eléééﬁéary éh;lysis. The'idéés were familiar
to mathematicians,beforé'Ngwton and peibniz (indeed to
Archimedes)and all the gre;tlmatheméticians of the
seventeenth and eighteenth CQnturies, hdwever:recklessly -
they may seem to have manipulated series, knew well enough
whether the sefies which they used were convergent. But it
was'not until the time of Cauchy that the definitions were
formulated generaily and éxPlicitly; Newton and Leibniz,
the first mathematicians to ﬁse:infiniﬁe series
systematically, had little temptation to use.divergént
series. The temptation became greater as analysis widened
and it was soon found that they were useful and that
operations performed on them uncritically éften léd to
important results which could be verifiédfindependentl?;
There is little wriﬁtep about divérggnt series béfore‘
Euler. Mathematics after Euler movea élowly but'Steaaily
towards the ortﬂodoxy ultimately imposed on'it.by Cauchy,
Abel, and their successors, and divergent‘Series were

gradually banished frdm'analysis, to reappear only in quite



medernftimes They had always had thelr opponents, such asj
d’ Alembert Laplace and Lagrange After-Cauchy, the
, oppes1t10n seemed def1n1tely to have won The analysts nho
»used leergent series mest, after Enlerh Were‘Fourler and
N TdissOnu(whe WaS;almeSt Canchy’s:eqntemperaryy.
sgOur:studyAWilldstart-With.a few histerieal remarks on
fthe dse ef‘nen—epnyergent:series.‘Tn;Chapter Twe we;WiTl,
-give seme general considerations'on nonjeenvergent Series
sudhhas attaching;a7precise meanrng'tp a nen—convergent
"series;dso‘thatssuch‘series‘may be nsed féi pnrpeses of.
«fornaT ealeuiations, under‘preper“restrrctiens.‘The Chapter
A'edntinuesgwith'EulerJS'usenef asymptetic‘series. We_wili:,'
shewaa'few ef hisuresults" Then we are g01ng to nerk w1th
‘Bernoullaan polynomlals to- flnd'the remalnder in Euler’ s‘
‘formula.:We end Chapter‘TWo with”an application:of Euler’S'
‘formula‘tbStirling’S%series.'Varieus integrals of |
JintereSt;fboth inhﬁure‘and Applred'Mathematids, ean be '
calcnlated most readlly by means of: asymptotlc serres In
'Chapter.Threevwe w111 use Integratlen by parts and
: Expans1en of someAfunctlonlln the.lntegral.to thaln a
suitable asymptotic seriesﬂfor a'given'integrai.'A-few
typical.enamplesdwill.be giveni‘the,erroréfunction integrai

and the logarithmic integral. In this process we will be



referring to the Gamma function. Next, we will work with
asymptotic series for integrals containing sines and
cosines: Fresnel’s Integrals and the Sine- and Cosine-
Integrals. In Chapter Four we will investigate Stirling’s
Series independent of Euler’s Summation Formula as well as
Stoke’s Asymptotic Formula. Poincare’s theory of asymptotic
series along with a few of its applications will be studied
in Chapter Five. Finally, in Chapter Six we will show some
examples of the way in which asymptotic series present

themselves in the solution of the differential equations.



CHAPTER TWO

SOME HISTORICAL REMARKS

Historical Remarks on the Use
of Non-Convergent Series

Before the theory of convergence had been developed by
Abel and Cauchy, mathematicians had no hesitation in using
non-convergent series in both theoretical and numerical
investigations.

‘In numerical work, however, they used only series
which are now called asymptotié; in such series the terms
begin to decrease, and reach a minimum, afterwards
increasing. If we take the sum to a stage at which the
terms are sufficiently small, we may hope to obtain an
approximation of the function whose series turns out to be
asymptotic with a degree of accuracy determined by the last
term retained; and it can be proved that this is the case
with many series which are convenient for numerical
calculations.

An important class of such series consists of the
series used by astronomers to calculate planetary
positions: Poincare proved that, despite the fact that

these series do not converge, the results of the



calculations are confirmed by observation. The explanation
~of this fact could be inferred from Poincare’s theory Qf
asymptotic series (Chapter Five).

But mathematicians have often been led to use series
of a different character, in which the terms never
decrease, and may even increase to infinity. Typical

examples of such series are:

(1) 1-1+1-1+1-1+..;
(2) 1-243-4+45-6+...;

(3) : 1-2+422 =22 +2% -2+ .

Euler considered thé “sum” of a non-convergent series
as the finite numerical value of the arithmetical
expression from the expansion of which the series was
derived. Thus he defined the “sums” of the series (1)-(3)
as follows:

__r 1 (3) = 1 1
1+1)* 4 1+2 3

1 1
W=rz=5i @

Proof for (1):

1 2, -
-—~—=§Sx’=l+x+x2+m
1 - X n=0

1 1 =
= =) (%) =1-x+x"—x"+...
1+x 1-(-x) Zo( yi=lmxtx—x



Let x=1. Then —l——=1—1+1—1+...
1+1

and the sum of (1) is %.

Proof for (2):
1-2+3—-4+5-6+.....

——1——=1—x+x2 -x +...=Z(—1)”x"
0

1+x
! ) = _12:=—1+2x—3x2+m
I+x (1+x)
! —=1-2x+3x" —4x’ +...
(1+x)
Let x=1 . Then —-=1-2+3-4+5-...
(1+1)
. 1 1
and the sum of (2) is —=—
(1+1y° 4

Proof for (3):

1-2+22 23424 2%+,

—=l-x+x"—-x +...
1+x

1
Let x=2. Then —=1-2+42>-2+...
1+2
. 1 1
and the sum of (3) is —=—-.
1+2 3
Euler’s definition depends on the inversion of two
limits, which, taken in one order, give a definite wvalue,

and taken in the reverse order give a non-convergent



series. The;efore, series‘(li is:
lim1—-limx+limx* —limx’ +...
as x tends to 1; Euler’s definition replaces this by
lim(l—x+x>—x*+..)
So, generally, if zzfﬂr) is not convergent, Euler would

define the “sum” as Ihn}ijﬂx), when this limit is definite.
X—>C

Callet did not agree with Euler. Callet showed that

the series:
1-1+1-1+1-1+...

can also be obtained by writing x=1 in the series:

l+x (1+xﬂﬂ—x) _1—x2_ ) 1
1+x+x° _(1+x+x2)(1—x)_1—x3 _(l_x )(1—x3)

=(Lif)—x2Uﬁiﬁ)=(1+x3+x6+n)—(x2+x5+x8+“):

=1-2+xX - +x—xt+...

(5)

2 1
where by the left-hand side then becomes 3 instead of Ik

1+x
1+ x+ x?

Lagrange, also, suggested that the series:
should be written as: 140-xX+xX+0-x +x*+0—x*+.. and that
then the derived series would be 1+0-1+1+0-1+14+0-1+...

The last series gives the sums to 1,2,3,4,5,6,..terms as

1,1,0,1,1,0,...



sy =1 s, =1+0-1+1=1
s, =1+0=1 5, =1+0-1+1+0=1
s,=1+0-1=0 ss=1+0-1+1+0-1=0

2 . .
Therefore the average sum is 3 agreeing with Callet’s

result.

In fact, Frobenius pointed out that if }:afﬁ
n=0

is any power series having a radius of convergence equal to

1, then

[+ )
lim ) a,x" =lim
x—1 = n—w n+1

So+ 8 +8, +...8,

where s,=a,+q,+..+a,, putting Lagrange’s remark on a more:

satisfactory basis.

. l n
So, the average sum is ———zzsj.

n+13
mnaaaxnzhm§o+&+ﬂz+uql=Hm1+1+0+1+1+0+m
=150 " n—>o n+1 >0 n+l

Now we can notice that s,+s +s,+..5,=(n+l)—k, where k is
. 1 - .
the integral part of §(n+1). Therefore the average sum is

2
-5, which is the value given by the left-hand side of (5).

In the original series (1), the sums are 1,0,1,0,1,0,..., of

which the average is 1/2, agreeing with Euler’s sum.



Euler and other mathematicians made many discoveries
by using series which do not converge. In faét, the older
mathematicians had sufficient experimental evidence that
the use of non-convergent series as if they were donvergent
led to correct results in the majority of cases when ;hey

presented themselves naturally.

An Example of the Use of a Non—cbnvergent
Series to Obtain a Correct Result

Let us find the Fourier series for the function:

7 sinh x
f(x)— 2sinh 7

According to Fourier f!LﬁLﬂ]-éR

f(x) —+Zan cosnx+Zb sin nx

where
1
=— dx
a,=— l”f(x)cosnx
1
=— in nxdx
— l”f(x)smnx

Fourier found that the coefficient b, of sinnx is:

()7 (2= ()

n nw o n 1+n

which, for n=1 is a divergent series.

To see this, note that



Yoo

sin nxdx = [; 2

__[r 7 sinh x

sin nxdx =

= 2sinh 7w e’ —¢e”

= W”l—_er) [; (e"' - ) sin nxdx

Let

T

I= [;(e"—e"‘)sinnxa’x=—(ex_e—x)cosnx

1 X —-X
+;1— [;(e +e )cosnxdx

-

n

T

n n

_ (e'” —e”)cosmr—(e” —e'”)cos(—n)ﬂ 1 ((e +e” )smnx]
n

—Lz f,, (gx - e"")sin nxdx

n

4

=0, therefore,

But [(e" + e"")sin nx]

n

-

I=2cosnﬂ(e"’——e”)—iz1
» n no-

n? +1 2cosnﬂ(e"” —e”)
1=
n n

- ___2n (e” e’ ) n=odd
2n(cosnr) (e i —e”) _ el
- n’+1 - 2n(e"”—e”) B
T, n=even

Therefore the coefficient of sinnx is

a1

=) ) ()

10



which, by the geometric series expansion, becomes

b, =(-1)" =2 (—1)"“%(1——17+i4—...]=(—1"")(l-—1—+i5—...]

= 3
1+ n? n n n n n

When n=1 we find b which is the coefficient of sinx:

—1—=1—1+1—1+1—1+....
1+1 2 : o
So, we find that the sum of
(1) [-1+1-1+1-1+....

|
is —.

2

As a matter of fact, this is correct, since:
. ) 1 ) .
J-smh xsin xdx = E(cosh xsin x —sinh x cos x)

so that:

T

L
jf(x)smxdx--2

0

Abel and Cauchy did not use non-convergent series'in
their work. They said that the use of non-convergent series
had sometimes led to gross errors. However,the banishing of
non-convergent series from their work was done with soﬁe
hesitation.

Cauchy formulated the asymptotic property of

Stirling’s series by means of a method which can be applied

to a large class of power-series. But the possibility of

11



e

;;obtalnlng other usefnl asymptotlc serles was overlooked by
1ater analysts and after Cauchy, mathenatlolans abandoned:
all attempts at utlllzlng non convergent-serles' In
‘fEngland, h0wever4 Stokes puhlrshed‘three;remarkable papers
“(dated _rsSO', ‘185‘7',‘_18'6'8")!7 in Whlch Cauchy’ s ‘method for
dea;inngith Stirling’s‘seriesfwas applied to a numberiof
other”problehs,;Such as the‘oalculation of Bessel’s
'd'functions.tor large»Valdes of the_variable.
‘Bntinoaééneral theory of.non—COnvergent series was
j.forthcomlng untll 1886, when papers dlscu381ng the subject
Qere nrltten bv Stleltjes and P01ncare'. Since that tlme‘
many researches have been puhllshed on'the theory

i In the follow1ng articles we w111 work with the most
important~examples ofuasymptotlcrserles,_whlch.have.been

' found of importance in calculations.

General Considerations on
' Non-Convergent Series

“inhéenerai the‘“sum"'of a series (convergent or
5d1vergent)was'taken to be the number most naturally
aSSOC1ated w1th 1t from thedstandp01nt of mathematical
'\voperations.'Thrsjconcept( hoWever, naturally led to

‘inconsistency. .

12



The notion of sum as thus loosely conceived was
eventually replaced by the exact definition of Abel and
Cauchy according to which the sum of any series

a,+a +a,+..
is taken to mean the limit

s=lim(a,+a,+a,+..+a,) .

1>
Series for which this limit exists were termed convergent,
all others divergent.

In view of the results obtained in the past by the use
of non-convergent series, it seems probable that we can
attach a perfectly precise meaning to a non-convergent
series, so that such series may be used for purposes of
formal calculation, under proper restrictions.

Of course it is evident that the “sum” associated with
a non-convergent series is not to be confounded with the
sum of a convergent series; but it will avoid confusion if
the definition is such that the same operation, when
applied to a convergent series, yields the sum in the
ordinary sense.

Euler was perfectly aware of the distinction between
his “sum” of a noh—convergent series aﬁd the éum of a

convergent series. Thus he says that the series:

13



'1—‘2_-1--22-—23+24—_,_:'_,1_=_‘1_ ,
ST 1+2 3

. . . . 1 . - . . i o~
obviously cannot have. the sum 3 in the ordinary sense,

: . g ‘ ' 1 :
since the sum of n . terms differs more and more from gas n

becomes larger.

S, =1-2+2"- 23+ +( 1)"‘2"'

'Ana'he_adds‘tpa§ antradictiQns.can be avoided by
attributing a sémé&ﬁéﬁ'dif£é¥éﬁt‘mééning'to the wérd sum.
He definéé the‘sﬁm of any;iﬁfinite seriés as the finite
'expfégsion,-b? thé expénsién of,Whicﬂ the series is
generated. In this-sénSé;theMSUm_of;the:infiﬁite‘series

I-x+x" —x* +...

o 1 . e i .. . o,
will be T———-,because the series arises from the expansion
- I+x : ’ S ' ' L .

..og the fréctién!.whateﬁer numbér-is put'in.plaqe of #..If
-this‘is”aéreed;wthe ﬁew definition of ;he WOra sum
qoincideg With’;heorainary(ﬁeahing'whéna=seriéé - 
fqoﬁvergés},andi;inée-diyé%gent seriés_hgve né éum, infﬁhe ’7
p#opéf ééﬁsé_Qf_the'ﬁéfa;'hb’iﬁéoﬁyenienqe-éaﬁla}iée from

" this ﬁeW‘perminoiogyi

" 14



In practice, Euler used his definition almost

exclusively in the form

. ggau:ﬂggg;aWVV
and if restriqted to this caéé,;Eulér's statéﬁeht ié
corrgct.

The 1egitiméte use of noﬁ~copv¢rgent.series is élWayS
. symbolic; the operations being me;elylconvénieﬁt;.thoﬁgh
justifiable‘abbreviationsbe“mpre_céMpliéated
;ransformations in the béckground.f ” |

| Even though Weﬂmighﬁ'jUStAééiﬁéliuﬁritg the wakviﬁ'

- full, eXperience:shéﬁé_ﬁh;t ﬁhéiﬁsé‘éf ﬁheiaé§mpﬁotié
series often suggests gsgfql tranéfo;mations whiéh -
otherwise mighf never be thbught.éf.

An example of this may b¢‘taken frqm:Eulér’s‘
_correspondence wifh Nicholas Berhoulli;'Eulef Qanted”to;“
' show how to attach a definite meaningyfo the_series:

1- 2434l Sl.
He proves first that the‘series'
| x—1ix2‘+2!x3fé~l!l3c4:+...'

satisfies formally the differential equation

dy .

2

X' =ty=x
dk_y

15



Let

y=x-1x"+21x -3!1x* +...

RN Y I ST
dx T

x2d—y =x2 =21 +31x* - 4155 + ..
dx

Cy=x—U 200 =30

1. 1
x2fll+y'=x and gﬁi+—7y=—
dx X X X
where P=i2, Q=l
. X ox
, . . fpax  fxlax -
The integrating factor is ¢ =e =e*

and the solution

is yeIPdV=J'QeImdx,i.e.

T L S L S B
e = |—e*dx=¢"|—e‘dx=¢" |=e*df=| —e* °d
e et e fltag- [L

Let l—l=t .

X

So, the solution is

4 =X xe”
=~ e dt= | —dt
Y f 1+ xt -E 1+ xt

Therefore, x—(11)x’ +(2!)x3—(3!)x4+..,= flxe"t ,
' +x

16



in agreement with the result found in Chapter Three below,
showing that Euler was right that he had never been led
into error by using his definition of “sum”.

Numerical Evaluation of Non-convergent Series

A very natural method for the numerical evaluation of
non-convergent series is given by Euler’s transformation of
slowly convergent series (Appendix A); as an illustration

we take the series used by Euler:

(4) log,,2~log,,3+1log,,4—...

Starting at log,10, the differences are given in the
table below:

a,, =log,,10=1

a, =log,,11=1.0413927 a,,—a, =-0.0413927

a, =log,12=1.0791812 @, —a,, =—0.0377885 (g, -a,)~(a, —a,)=-0.0036042
a; =log, 13=1.1139434 a;; —a,; =-0.0347622 (4, —a,,)~(a,, —a,,) = —0.0030263
a, =log,,14=1.1461280 a;—a,, =-0.0321846 (q,-a,)-(a,—a,)=-0.0025776
a5 =log, 15=1.1760913 @, —a;5 =-0.0299633 (4, -qa,,)—(a,, —a,;) =—0.0022213
as =1log, 16 =1.2041200 a5 —a,; =-0.0280287 (q, —a,;)~(a,; —a,,) =—0.0019346
a,, =log,,17=1.2304489 a,;,—a,; =—0.0263289

a,, =log,,18=1.2552725 a,, —a;3 =—0.0248236

(@ —2a,, + a,) —(a,, — 2a,, + a,;) = =0.0005779
(a, —2a, +a,) - (a, —2a,, + a,,) = —0.0004487
(ay, —2a, +a,)—(a; —2a, +a;) =-0.0003563
(a; —2a, +a;)~(a, —2a, +a,) =—0.0002867

17



(a, —3a,, +3a, —a,;)—(a,, —3a,, +3a,, - a,,) = —0.0001292
(a, —3a, +3a,;—a,)—(a, —3a, +3a, —a,;) =-0.0000924
(a, —3a,, +3a,, —a,5)—(a,; —3a, +3a,; —a,;) =—0.0000696

(a, —4a,, +6a, —4a, +a,,)~(a, —4a, +6a,, —4a, +a,;) =—0.0000368
(a,, —4ay, +6a, —4a,, +a;5) —(a, —4a,; +6a,, —4a; +a,) = —0.0000228

(a, —5a,, +10a,, —10a, + 5a,, — a,5) - (a,, — 5a,, +10a,, —10a,, + 5a,; —a,;,) = —0.0000140

From Appendix A we know that:

> (=D, = —;—(vo +%Dv0 +21—2D2vO +%D3v0 +...+5,171D”“v0)+
0

+2LP(D”V0 —D?v, +D"%v, —) =

1 1 1 1 1 1 1
=5% +ZDVO +§D2v0 +1—6-D3v0 +2—5D4v0 +?D5vO +—2—7—D6v0 +...
where v,=gq,, v,=a,,..and Dv,=a,—a,, DV, =a,~2a, +a,,..

Therefore, the “sum” from log,10 onwards is approximated by:

.5000000—{%(.0413927)+—;-(.0036042)+%(.OOOS779) +§12-.0001292+

+ %(.0000368) + %(.0000140)} = 5000000 (.0108396)

The sum of the first eight terms in the series is found to

be (taking the terms in pairs)

log,, 2—log,,3+1log,, 4—log,, 5+1log,, 6 —log,, 7+1log,, 8 —log,, 9 =
=-.1760913-.0969100—-.0669467 —.0511525 =—-.3911005

Combining these two results, the sum of the whole series
appears to be: .1088995-.0108396=.098060 ,

which is exact up to six decimal places.
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Euler’s Use of Asymptotic Series
One of the earliest and most instructive examples of
the applica;ion of non-convergent series was given by Euler
in applying his formula of summation (Appendix E) to
calculate certain finite sums.

In general, for any polynomial f and positive integer

SO+ @+t S@) =[£I+ [+ B @)= B ")+

where B, = Bernoulli’s numbers.

We know from Appendix C that

(Zr)! 1
ro. 221‘—1”21' —r an

It is obvious that Euler’s summation formula converges for
polynomials. For non-polynomials, however, we often get

non-convergent (asymptotic) series on the right-hand side.

, 1
For example, taking f(x)=—, and x=n, we find
x

SO+ F @+t S0 =[x 42 £+ B O = BV + =B 1O -..

1 1 1 B B, B
I+—+. +—=logn+ ———-+—4—-—
2 n 2n 2n~ 4n" 6m

Now this series does not converge.
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, , (-1) B,
We are going to prove that the series 2—2—2,——
7

r

diverges

using the ratio test.

r

-1 B
For a,_=( ~ calculate the ratio
ar—l

¥
>
rn’

_B,.2(r—1)n2("_1) B r-1

I

a

r

2r 2
Ia,._1 ] 2rn”' B, _, B,_, rn

1 1
B, (2r)22 ¥ ZF _(2r-1)2r 2,7

. n

B_, (2r=2)12%"g% 1 47> 1
- ( ) zan—z g anl-—z
°°_1__1+L+L+ +L+ >1
e 2r 221' 321‘ n2r o
21 =21 1 .
If r>3, ZT_2<Z—5:—— (See Appendix I)
n=1 1 n=1 1 1_%
2
Therefore

-21_4)(r-1)2r(2r—1):

B B,‘Z(r—l)nz("-l) _B r-1 (1

la,__‘| 2rm”B,_, B, m Ar’ - rn’

r

_15(r=1)(2r-1) _ 15(”1)(“%} N 15(r-1)°

27°n* 16 167%n° 167%n°

20



la, | 15(r-1)
lar > , therefore we see that the terms in the

a_|  16z*n*
series steadily increase in numerical value after a certain
valué of r (depending on n and roughly equal to the integer
next greater than l+nz). We are not sure whether Euler
realized that the series céuld never converge; but he was
certainly aware of the faét-that,it doés not converge for

n=1. He used the series for n=10 to calculate the Euler

constant
. 1 1
C=lim|1+—=+..+——logn
n—>o 2 . n-
C =0.5772156649015328(6060)...
' B B
which he regarded as the “sum” of the series %4~j~—%%+7§~“.
for n=1.

The reason why this series can be used, although not
convergent, is that the error in the value obtained by
stopping at any particular stage in the series is less than
the next term in the series. The truth of this statement
follows from the general theorem proved in the next
section.

To illustrate this point, consider the sums of the

last series, and we find successively, with R, as remainder

21



and u, as the next term after truncation, that.

S2:%-|;%'=.5,833r,< S Ry=C-8,==0061 ‘a.sl,:f%_: ~.0083,

8=y B B 5150, RZC-8,=40022 - w,=L2r= 40040,
2727, RN 6
S, ,

=548, R, =+0024, - ug=+.0076,

CS=5824, T ¢ Re=—005%7

5790, . UR=-0018, - u,=—0042,

aftefiwhich the.terms steadiiy indréasé.in numefai value. -
;ThUs; from this series we cannot_obtain-a-closer o
: apprinmétiOn than S4,.which‘cofrespbnds to stopping ét the
numericélly least term u,.
. 'We quote a few of Euler’s resulﬁS‘for verification:
| ' Example 1. Show that
IRt 1 ST
A+ —+—+...+—==7.48547, if n=1000,
2 3. n : cL
=14.39273, if n=1000000..
Euler éives thé values to 13 decimals.
Proof for (1):
R TS 1 TSP SRS ) DUy 6 L S S ey S
‘ ;f—)oo 2 3 n . [ 2 3 - n n—o
For r=1000, In1000=6.907755279. "
C =0.5772156649

.Therefore
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1+—1—+l+...+l=7.48547
2 3 n

For n=1000000 , In10000000=13.81551056

C =0.57721566

Therefore 1+}~+l4n“+J¥=1439273-
. ' 2 3 n
Example 2. Show that
11 11 B (2-1)B,
i)y 1+—+4—+..+ ~=—(C+logn)+log2+—L-—- ~*...,
gy g (CHloan)Hlog2 o o
and that
- (22-1)B (2*-1)B
ii) —l+—1-—l+...+ ! __L=10g2_i+( '2) 1—(. 22+...,
2 3 4 2n—-1 2n 4n 8n 64n
Proof for (21i):
11 11 B (2°-1)B,
i) I+=—+—+4..+ =—(C+logn)+log2+—L-— +u
gty = o(Crlogn)+log2+ ok o
We know that
1+l+l+...+l=1nn+i— 1?‘2 ‘ B24 = B36
2 3 no 2" 2n° 4n° 6m
If n'is réplaced by 2n, then
1+l+l+...+—1—=c+lh(2n)+1%— B - B, —_—
2 3 2n, 4n 2(2n) 4(2n)
~Ctln24hns— Dy B
54qlk8n, 64n
1 1 1 1 1, 111 1) .C 1 1 B B
Tttt —=—|lt—t—t—F.t—|=—+-Innt+———+—~
2 4 6 2n 2 2 4 n 2 4n 4n° 8n
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1 1 C Inn B, B, B,

1+—+...+ =—+In2+ +—+ T T

3 2n—-1 2 2 8n° 64n" 8n
_C+lnn+BI 2° -1

2 8n® 64n’

B, +

Proof for (2ii):

=(C+ln2+lnn+—l———B]7+ 324 —...]—(C+Inn+i——l—;—‘—+i—...j
4n 8n~ 64n 2

2 4
=m2—l—+2215~2 I
4n  8n

B, +...

Example 3. Find a formula for

1 1 o1
+ + +..t
a+b 2a+b 3a+b na+b

similar to Euler’s formula.
Proof for (3):

We’ll use Euler’s formula of summation (See Appendix E)
' 1 1 , 1 "
SO+ f(2) 4t f(x)= If(x)dx+§f(x)+§B1f (x)-szf (x)+...

for f(x)=;;%;z{ax+bf1.

Then

If(x)dx=ln(ax+b)+67
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(note that C is not Euler’s constant).
f'(x)=—(ax+b)_2a=—a(ax+b)_2
f"(x) =24 (ax+b)_3

fM"(x)=-2-34 (ax+b)_4 , etc.

1 1 1
+ +o =
a+b 2a+b na+b
3

= lln(na +b)+ Il _____Ba 230’5,
a 2(na +b) 2(na+b) 12/_’)/ 4(na+b)

=—1—1n(na +b)+ L ____4 a8, a5, +
a 2(na+b) 2(na+b)’ 4(na+b) 6(na+b)

o 1 : '
Example 4. Taking f(x)=—, prove similarly that
— x

1 ! ! t000:1+
712 (n+1) (n+2) N n

Bl BZ B3
— a2
n n n n

1

Hence we find —+—+—
10 117 12

+...t0 0=.1051663357 and we deduce

2

that ”6 ~1.6449340668 .

Proof for (4):

F)+ F2) 4t (x)=] f(x)dx+% f(x)+2i!BI f'(x)_4l!32 7(2) ...

25



f’(x)=—2x_3, f"(x)=2-3x'4, f"'(x)=—4!x"5, etc.

1§l 1,1 B B

Ll L B 0140.005+0.000166=0.105166
100 117 12 10 2-100 1000
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o [cs] 1
Wehman%Z%,Umszpcﬁﬂrl
[ I

Therefore,

2

2—12——1+—+i2+ + 12+—17+—17+...=1.6449340668
= n 3 9’ 10 11

Example 5. Show similarly that

1+%+3i3+41—3...=1.2020569032 .

} } ] ] 1
Fuler obtained in this manner the numerical values of 2:—7

from r=2 to 16, each calculated to 18 decimals. Stieltjes

has carried on the calculations to 32 decimals from r=2 to

70 .

Proof for (5):

1
Take f(x)=— in Euler’s formula of summation:
x

f(1)+f(2)+ S(x)= J.f x)dx+ f(x)+ Bf(x)——Bf’"(x)+...

f (x) =x7
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-
2x*

If(x)dx=

fl(x)==3x", f"(x)=3-4x"°, f"(x)=-3-4-5x"°, etc.

0 1 n 1 0 1
Z‘,;?=Z;+Z;

n+l

o0 1 o l n 1 . m 1 n 1 _ 1
YT it imd e s

1

0.005525

_(_ 1, 1 3B 5B j_ 1 1 3B 5B
2nr 20 2t 20 ) 2k 2R 20 248
1 &1 &1 1 1 3B 5B,
—+)) =) —= + + -
n §k3 §k3 20 2w’ 20t 2m°
If n=10,
—1—3 % = 1 + ! + 35, =0.005 + 0.0005 +0.000025 =
10° 11 2-100 2-1000 2-10000
But Bl=l.
6

Therefore,

Sl i 1L 0.005025=1.202056986 .
CE 23 9 |

28



Example 6. If f(x)=(l,1—2), prove that
“+Xx

L +__1__l(£_9j_l(L__1_)+
P+12 P+22 7 Pen® I\ 2 2012 PP +n?

r B, sin’@sin26 B, sin‘@sin40
t— 3 +—=- S -
(e -1) 2 ! 4 !
where tan9=£; the constant is determined by allowing »n to

n

tend to o and using the series found in Appendix B.

Proof for (6):

1
I+ x*

We will use Euler’s formula (Appendix E) for f(x)=

_[21 2dx=larctan£+C
I“+x l l

-2x -2
l = = _2x 12 2
f (x) (12 +x2 )2 ( +Xx )

" 2 3.2 . ~
! (X)z_(l2 +ch)2 +'(122+J;2)3 =_2(12 +x2) RS (lz +x2) 3

- 2’x 2% x 2°x? 3x 2% .3x 24.3x%°
T

(P+x) (P+x) (P+x) (P+x) (P+2)
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(12+x‘7')3 Pyt (lz+x2)4
n %:larctan£+c+ 1 _ Bln : —an(lz_n42)
= +E | { 2(12+n2) (12+n2) (lz+nz)

/ l
tanfd =—, arctan—=0
n n

n 1 =z
arctan7=5—¢9 (because arctanx2+arctan—-2-=—)
x

2
tan’@=—  [I*=n"tan’@
n

— |= = +n’
cos“ @

= .2 2
P+n*=n*tan*0+n’ =n’ (1+.tan2 9)=n2 (1+ s 9]_ n2 -
cos” @

Bn _ Bncos'@ Bcos'@ B cos'Otan’d

(12+;12)2 nt n-n’ n-I?
.2
4 ~SIn° 0
_B‘ cos 900529 _Bsin*fcos’@  B;sin’260
nl’ n-l? 4n-I?

_B,sin20sin26 B sin26 2sinfcosftand
4% -n a7 [
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Bn _ Bsin20sin’ 6
(lz‘+ n2)2 2r .

So,

To find the constant C,

D n

1 1 1 4
———=lim » ——=-arctanwo+C=—+C
;12 +k "—mzlz +k 1 21

k=1

& 1 Vi3
C=) —— -
Z12+k2 21

k=1

Use
1 1 1 2x .
=———+>» ———— (See Appendix B)
e-1 x 2 ;x 2 v 4n*a? PP
= = 1 1 1
= = __+._.
Z,:x2+4k2 2 kZ: +4k2 2 =1 x 2
Let x=2Ir
1 > I 1
—"——+—= =4ix - ) —
~1 2z 2 Z4lzﬂ2+4k2 2 Z ( +k*) ﬂle+k2
3 _1( 11 +1J_4__L+1
FrR I\ -1 2n 2) (M -1) 221
Vs 1
Therefore, C=—————
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(1 1 v 6) — B, cos® 0(cos2 @ —sin® 9) _
n’ cos’ 6

Bz”(”z ‘lz) __ B,ncosd _ Byncos' 0
(P+n?) R

_ B,cos’Ocos20 B, cos’@cos20tan’ & _ B, sin’ Gcos26cosf
- . = = =

n N P P

_ B,sin*Osinfcosfcos28 B, sin’ Osin20cos26

P 20
<o Bn(n*~I*) B, sin* Osin 40
' (12+n2)4 4r .
Therefore,
w1 (= n 1(1 1 B, sin’@sin20
Z—z—z=— PR ey o e [l Y
SR I\2 e —1) 2\ P+n?) 2 l
+stin4¢9sin46’__m
4r

Example 7. In particular, by writing /=n (in Example

6) we find

7T =4n ! + ! +..+ 1 +l——47[—+
n’+1 n?2+2* 7 n*+n*) n e -1

B, . B B, B,
+ - + -
1-n2 3.2%2.0% 5.2%.00 7.20.,%

+...
By writing n=5, Euler calculates the value of 7 to 15

decimals.

Proof for (7):

If /=n, tanf=1, 6’=—Z—
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sin26’=sin£=1
2

sin> 0 = ([-2-]2 -
2

1
2
sin* @ =L

2

sindd =sinz =0

It follows that the B, terms become 0.
. 1
s1n66’=§

sin 68 = sin3—ﬂ =-1

From Example(6) we have that

$ L 1z, w11 B 1 B ]
~I2ikr n 4 (2"”_1) 220 2 288 6 2%A7
P < w1 B B
el i e -1 n n* 3.2°.4°
“ 1" 1 4z B B B
7 =4n +—— +1_ i 4 S
;12+k2 n e -1 n* 3.22.n° 5.2°.5°

The Remainder in Euler’s Formula

We have seen (Appendix D) that the Bernoullian

polynomials ¢, (t) satisfy the following relations:

- (x) =2mgp,, , (x), ' (m > 1)
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Bt (¥) = 2m+1) (0 (x)+ (-1)"" B,),  (m=1)

and further, that ¢,(¢) is zero both for t=0 and t=1.

n

I1f t=1, then ¢,(1)=0 (because there is no — in the
n!

t(e'”’ —1)
expansion of - ). If t=0, then ¢,(0)=0.
e —

It follows that if F is any differentiable function,
J’¢2n () F"(t)dt=F' ()¢, (1)), - I¢2n (¢)F'(¢)dt = I2n¢2”l (¢)F' () dt
Similarly

[ ()F (€)= F (). o () F (1) =

__ ](Zn -1) (¢2"_2 (£)+ (—1)"-2 B, )F (¢)dt

0

Combining these two results, we see that
1 ) 1 ) -
[0, () F" ()t = 20201 [[ 4,02 () + (1) B ) (1) e
0 0

or that

lj¢2" (¢)F"(¢)dt—2n(2n-1) lj¢2,,_2 (1)F(t)dt =2n(2n-1B,_ (-1)" IJ.F (¢)dr .

Then, replacing F(¢f) by f*?(x+t),we have

we have
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[, () /2" (x+8)de =

1
=2n(2n-1) J.¢2n_2 (1) /2 (x+t)dt+2n'(2n—1)B" (1" N Ifz” (x+t)de
0
Thus, if we write

ﬁ [, (6) £ (x+1)dt,

we find that

Xn —Xn—l =

- (2n1_2)!(f¢z,,_z (1)1 (e )de+ By (<1)" [£2 (e 0)de = [, (1) 1 ("”)‘”]

=Gy B () j f (x+;)dt . (; ' ( 21; (x+t)|

X, -X, = %( L (x+1) - 7 ()

This relation holds for values of n>1; to complete the

sequence, consider the integral

K= J (o= (0 o) e

0

1

2{(1? —t)f (x+t)] (2t 1)f (x—'kt)dt}:

=—%;[th’(x+t)dt+%;[f’(x+t)dt=
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= (xr ) [ (xr0)d L f(eno) =

=—f(x+1)+ ljf(x+t)dt+-12-f(x+1)“}l,jf(x)
We find
X,= [ eyl (413 7(9)

1

()4 £ (3)) = [£ ()=,

0

and by the change of variables x+t=¢, we have

L)+ £)= Tr(@de-x,

Also, from the general formula

n Bu—l 2n-3 2n-3
X" -Xn—l =(—1) m(f (x+1)——f (JC))
we have
for n=2 —X1+X2=%[f'(x+l)—f’(x)]
for n=3 —X2+X3=—%[f’”(x+l)—f”’(x)], etc.

That is, we have successively

x+1

S+ (] = [r(e)az—x-
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x+1

—ff(f)d§+ [f(x+l) f(x)] X, =

x+]

= If(f)d§+ [f(x+l) f(x)]— [f"'(x+1 f”’(x] X ,etc.

If we now write x=a, q+l,...,b—l where b—a is any positive
integer, and add the result's;, we obtain Euler’s summation
formula (as in Appendix E), but with a remainder term.

Let x=a

[/ () ()] I f(f)d§+ 2Lf(a+)- f(a] [f’”(a+1) £"(a)]--
Let x=a+l |
%[f(a.+2)¥f(a+1)]=

=I r()as+ B F(a+2) 1 as)] -_’j_'[ " (a+2) -'f""k((;;_i)]-..'..»»
et x=a+(b=a)-1=b=1 . . ”
—[f &)+ (b n]= |

-If‘(f Eo [f(b f(b 1)]— [f'"(b) 1 1)]—

f(a)+f(a'{i)%--!erf(b)=.jfk;)‘dg;g[f(a‘)ff(b)]+§__g[ff(b_‘)_ r@l



B 2 m 7 2 n=-3 2n-3
B O @] () G (7 0 1 (@)

where R, is the remainder term and

(2n)'-[¢2 (t)[fz’(a+t)+f (a+1+8)+..+ f2(b- 1+t)]
It is to be noticed also that

R,—R,, =(—2:1—)!1J.¢2,, (O[S (a+0)+ [ (a+1+8) 4ot f2 (b-1+1)|dt-

_—(2;112)! J'¢2n+2 (t)[fz’”2 (a+t)+ 2 (a+141) 4.+ f2 (b—l+t)]dt=

= (22)! ;[¢2,, (t)[fz" (a+1)+ [P (a+141)+.+ f> (b—-1+t):|dt_

- (2n+2)![(2”42)(2”+1) 6[¢2,, (6) £ (a+1t)dt+

+(2n+2)(2n+1)B, (- If (a+t)de+

+(2n+2)(2n+1) ]¢2,, () S (a+1+1)dt+

+(2n+2)(2n+1) B, (-1)"" ljfz" (a+1+t)dt+...|=

(2n)lf¢z (t)[f (a+t)+..+ 2 (b- 1+t):|dt_

—2Ln! J'¢2" (t)[fz" (a+t)+.+ [ (b—1+t)]dt—
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_ﬁb’".(‘—l)"‘+1 ;[[fz"(afrt)f...+f2"(b’—l+t)]dt,= .‘ |

(2 )'B( 1)"[f2"‘1 a+t)| ot [ (b= 1+t)”

- (12)n [fz"l(a+l) fz"’(a)+ fz"l(a+2) SN a1+t fz""(b) f“‘(b ]

So

BBy =B o) g (@]
which gives the ne#t term in Euler7s éummation formﬁla:
Now it has beén_proved {Appepdix D) that the
Bernoullian polynémials @ﬁ@j”and @méﬁ)_are both of
constant sign, bu§»théir-$igﬁs grélppgositel $,, has the
sign of (—Uk. Thu;,{if Qe'aésﬁﬁé that the gigns of fﬁ(xy,
f??(x) are the séﬁé énd ﬁﬁat“their cpmm;n sign:remains»

constant for all values of x from a to b, the integrals

R, . R have oppbsite=signs.

Therefore, IR,|<|R, -

n+1 (2 )“f2n—1(b) on—l( )‘

So, the error involved in omitting R, from Euler’s
summation formula is numerically less than the next term,

and has the same sign; that shows that, in fact, the series
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so obtained has the same property as a convergent series of
decreasing terms, which have alternate signs.
Theoretically, however, the convergent series can be pushed
to an arbitrary degree of approximation, while an
asymptotic series cannot; but in practice it often happens
that an asymptotic series gives a betterlapproximation for
numerical work than a convergent series, as in Examples 5

and 6 of the last article.

Application of Euler’s Formula
to Stirling’'s Series

Taking f(x)=logx in the genefal formula, we find
log(n!): f(1)=logl=0, f(2)=log2, f(3)=log3, .. f(r)=log(n).

f(x)=x7, fM(x)==x7, f;”(x)=2x‘3',l f4(x)=—2-3-x4, fP(x)=2-3-4x7 ,etc.
f(l)+f(2)+f(3)+---+f(n)=':If(ef)df%[f(mf(n>]+§;[f'(n)—f'(l)]—

B R - 0]

" 1 B 1 B B
log2+log3+...+logn= |log(x)dx+=logn+—L-——22p> +3(2.3.4x75}-...
seros s Jg() 2 2T T o )

Therefore, we find that
gy 1 B 1 B 1 B, 1
log(n!)= |logxdx+—logn+—-———2. 4+ 3. +constant
g( ) J & 2 8 2 n 344 6 n’
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where the error at each stage is numerically less than the
next term, because f2"(x) is negative (for all positive

values of x).

This gives, on integration,

log(n!) = xlogx|! - Idx+210gn+£'———-———+—-
1 .

log(n!)=( 2jlogn n+C +—§—%—3B—24nl +%%—

To find the constant C, we use Wallis’s formula which gives

Thus

log(é— )—11m410g(2) +4logn'—2log{(2n)} log(2n+1)=

n—o

—11m{4n10g2+4log(n') 2log{(2n)1} - log(2n+1)}

H—>w

Now our general formula gives

2log ()~ log{(2n)} =(2n +logn- 24 +26,~ 20+ 1 Jiog(2n)+ 2 - ¢, o[ 1] -
=C1+;nlog/n+logn—2nlog2—;n,loﬁ—%1og2_%1ogn+9(%)=

=C, +llogn—(2n+1jlog2+6’[1j
2 2 n

Hence
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n—>o

log (%7:) = lim{4n log2+2C, +logn ——(4n + l)log2 —log (2” +1)} =

=lim {2C1 +logn—log2— log(in + 1)} =

n—w

=1im{2C, ~log2+log—~ }=2C1—10g2+10g—1—=
n—o 2n+1 2

=2C, ~log2-log2 =2C, -2log2

So,
1
log(gﬂ')=2q —2log2
1
thus, 2C, = 210g2+10g(57[j
2C, =log2+lognw =log2x
1
thus C = 510g(27z)

Hence we have Stirling’'s series

1 1 B 1 B 1 B 1
log(nl)=| n+= llogn—n+—log(2z)+2r Lo . L B 1
g(n) ( 2)°g nt s log(2m) T e

in which so far, n is a positive integer.

To obtain the series for log{F(1+x)} we use the product-

formula of Appendix F.

Applying Euler’s summation formula from x f0 x+n for

f(x)=logx,

we have
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logx+log(x+1)+..+log(x+n)=

X+n

I log&dé +— (logx+ log(n +x))+ %(log’(n +x)—log'x) -

_%(IOg”I(n-i-X)—loglllx)-i-...'*'O(;l/l-j =

= Jloggdz+ L (logx+log(n+x))+ 2t 1 _BLL_

X

Ilog§d§+ (log x+log(n+x)) - lfx++3ljlzx —...+0[1]

X

Subtracting this from Stirling’s formula for log(n!)

log(n!)z( 2jlogn n+;10g(2ﬂ')+132n 3i2n

we find

logx+log(x+1)+...+log(x+n)—logl-log2—...—logn =

X+

Ilog§d§+ {logx+log(n+x)} —(n+%jlogn+n—%log(27z)—

— Bl +ﬁ3‘—+0 —1-)
1-2x 3-4x n

1ogx+log(l+%j+log(l+§j+...+log(l+ij =
n

X+n

jlog§d§+ —logx+— log(n+x)—nlogn+n—510gn—llog(27z’)—

X
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—i+i7—...+0(1)
1-2x  3-4x n

10g{(1+%}(1+§)...(1 +£j} =x+f log§d§—%logx—(nlogn—n)—%log(Zﬂ)+
n .

+%{10g(n+x)—1ogn} B LB —...+O(—1—] =

1-2x  3-4x° n
i3 1 | 1 1 x B B 1
= J-logé’df——alogx— jlogfdf—Elog(Zﬂ)+Elog(l+;)~¢+;42?—...+0(;j=
x 0 ‘ :

n+Xx

' n X n 1 1 1
= j1o de + Ilogfdg“—Jlogfddj’—W~Elogx—alog(2ﬂ)+510g(1+%)_

—i+i7—+0(‘l—j
1-2x° 3-4x° . n
i ! 1 1 B B 1
= |logédé— |logédé ——logx——log(27)———+-—"2——..+0| —
"f géds Ofgff ylogr=Slog(2n)— 7o (nj
Making a change of variable £=n+n, we find that the

difference of the two integrals in the last formula is

equal to

+x X

j logéd& - J-log Edé = 'Jtlog(n + ry)dr] —xlogx+x=
n 0 0

= 'Ilogn(1+2jd77—xlogx+x: 'Jllogndn+ 'J‘log(1+ 77)(1’77—xlogx+x =
0 n 0 0

n

=xlogn—xlogx+x+ Ilog(1+17—jd77 =xlogn—xldgx+x+...+0(l]
; n n
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Thus, we find that

wfpor o)

1 1 1 X B B 1
=xlogn—xlogx+x——logx——=log(27)+—log| 1+ — |———+—2_—..+0| —|.
| gxgngng()zg( 77]1-2x3-4x3 (j

Therefore,

s (O UG

1 1 B 1) 1 X
=| x+— |logx—x+=log(27)+———2—-+..+0| = |[+=log| 1+=
(x 2) ogx-x+7log(2n) T (nj 2 g( n)

Now, when n—>», the left-hand side tends to kg{F(L+x»

(See Appendix F) and so we have the result

lhn{xbgn—Jog(k+£](r+£j“(l%f)}=
n—w 1 2 n

,:132{1% (l+x)(2+x)'...(n+x)}ZIOg{F (1+2);

thus,

log{F(l+x)} f(x+%)logx—x+%log(27z)+f—;— 3i2x3 +

which, as might perhaps have been anticipated, is of

exactly the same form as the series originally found for
bg(nD. An independent discussion of this result will be

found in Chapter Four.
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Sometimes it is useful to have a slightly modified
form of the result which can be used when x is of the form

x=m+p, where m is large (not necessarily an integer), and

p may also be large, but is small compared with m.

For this purpose we note that

p p D
- 7T 3
m 2m- 3m

log(m+ p)=logm+
Thus if we take p to be of order «/;,at most, and reject

1 v
terms of order —, we get the formula
m

1 N ‘ : :
[m+p+—)log(m+p)=(m+p+l)logm+p+lp—+l£—l~p—+0(l) ,
2 2 2 m
and

1 1 1p> 1p 1p° 1)
log!T(1+m+ oW =l m+p+2 et — P P 1P ol 2],
og{ ( m p)} (m p+ jlogm m+ 10g(2#)+ + (0]
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CHAPTER THREE

ASYMPTOTIC SERIES AND INTEGRATION

Calculation of Integrals by
Means of Asymptotic Series

Many integrals of interest, both in Pure and Applied
Mathematics, can be calculated by means of asymptotic
series. A few typical examples will be given below.

There are three methods which are usually effective in
obtaining a suitable asymptotic series from a given
integral:

(i) * Integration by parts.

(ii) Expansion of some function in the integral.

(iii)Use of symbolic operators.

We will consider examples of the first two methods; it
is usually impossible to use (iii) unless an estimate can
be made as to the magnitude of the remainder in the
expansion, and we will not give any examples here.

The Error Function Integral

This integral is usually expressed by the abbreviation

erfx, and is defined by the equation

erf x = J'e”’zdt
0
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Method (i) -Integration by Parts. A series suitable for

calculation when x is small is deduced by expanding the
exponential and integrating term-by-term. But this series
is very inconvenient for numerical work when x exceeds 2.

Noting that

an asymptotic series for the integral

0]‘ ‘=——er£x

is found by writing #=s.
First we will prove that
Ie"zdt =[—— .
; 2

By definition,

T(1+x)= [e"r"dt
0
1 .
If x=——2—, we obtain
(-7
Nt
|-

We know from Appendix G that I (

N | =
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Using v=t’, we obtain

J~:wiid :wéﬁznizzw"ﬂd
T JV; Y J t Ie t

t 0

Therefore,

e dt=

ot

Then, writing #*=s we have

-5

u=?€ﬁﬁ:?e ck=%?§”%ﬂk.

2

=

X

To the last integral we apply the transformation of

integration by parts, which gives

49



(1 1 13 135% 1
=" | —— + - e’ —ds =
(Zx 2°x 23x5j 2° ! s”

X

e 1 1 1-3 1-3-5) 1.3.5-7% e_s?
-¢ [2_x_22x3+23x5_24x7)+ 2° js%s

X

Clearly this process can be continued as far as we want.

1

1
—7- —;, the remainder integral in the last

Because  §>x°,

formula is clearly less than

:[—i%ds <% _2[ e ’ds :;!g—e'

2

1:3:5:7 % 1.3:5:7 o
—_I_d e ¢

’

and this is the next term in the series, after those
retained.

Therefore, we see that the error obtained when stopping at
any stage in the asymptotic éeries for the integral u is

less than the following term in the series.

Method (ii) -Method of Expansion. Here we write s=x"+v

and

Then write

50



' 1
2% 2
1+— :
1 _ 1 ( xzj

2 . -
v X
NI x\/1+—
x .

By the binomial expansion,

[

so that

and the remainder at any stage being less than the
following term.

Now

o
Ie”"v"dv =—v'e”
0

[ o
j.v e "dv n n-— 1 J'v” 2edy =...=n!
0 0

and so we obtain again the same results for u and its

asymptotic series.

The Logarithmic Integral

The integral

e % —dv “odv
U:.;[Tdtz‘ J‘—logv T Jlogv
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has often been denoted by the symbol —H(é*).

To obtain an asymptotic series for U, we write

j—dt j——dt+j'—dt j—dt J.—dt+j—dt xjidt;flf—xﬂ

s
_j—dt+j—dt ;]‘eTtdt+6[t ﬂ— ﬁ
oot g

First, we will prove that j(l e i’ wj«f%:c, the Euler’s

1,
constant.

For that, we know that

:C=1im(1+%+...+—1-—lognj .

R—>0 n

But

1+%+...+;1;= feeea +"'+x"_l)d;x.=. Lll:; dx:f[l;(l_;] ]‘f

Therefore,

¢ i‘iﬁ(f[l (1‘;] Jir ﬂfit‘:Jffn EE
(-2 o g ifi}
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- oVt ef. eV dt) s dt e di
=1§2[£[l“(l";) }7“ (l‘_;) 7J=£(1—e l.)?fr? —-
Now, \ o

R e adt
!eT—dt=fC—lo%tll -+6[(1’—e ')—;—=—C—log|x|+6[(1—e )—t—t

To calculate the last integféiuinrthefabove formula, we use

the Maclaurin expansion:

ot 27
! R TIRPYRY
-’ £ .0
t 2! 3l
Then
X v 2 3 2 3 1 .4'
: ; 21 3 4 2V 2 3!3 4} 4
X = x*
=x- = +...
2.2t 3.3! 4-41
Thérefore,
w . ' 2 3 4 .
,) ,Lh=Fiﬁh=—C—bgﬂ+x—lf—+l£¥—lf—+"
ot : 221331 44!

x
where C is-Eu1érfs constant.
When x“is-negafiv; all the integralé inﬂfhe ésymptotic

series for U aré convergent except ]%?,vof which_wé;ﬁuSt,

1

" take the principal value; that is -
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g0

lim( %+ %) = 1irr3|:10g8 +log(—£ﬂ =log(—x)=loglx| .
e—>! E
I -£
But this expansion, although convergent for all values

of x, is unsuitable for calculation when Lﬂ is large, just

as the exponential series is not convenient for calculating
high powers of e.

To overcome this, we may apply methods similar to
those used for calculating the error function integral. If
x 1s positive, we can use the method of integration by

parts easily.

Method (i) -Integration by Parts. If x>0,

© —x - |” Iy
e 9 _ e e 3
—J.t 26t='—-“'— - —ZIZ 36 Idt =
t | ” X t X

AY

_& —[e' —2[t‘3e"dt]=e' ¢4 —t‘3e“’°°—3j't“‘e"dtJ

X

X

1 1 2 ] -
= | ——— 4 |-2.3| ¥ = |+2-3 [ e dr =
73]

g (l__1_+£_zﬁj+2.3jt"5e"dt
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-5

But, since t>x we have ¢’ <x so that

2.3 J't‘Se"dt <23 |x7 e dt = 2—'5§e"" )
! X

R4

Method (ii)-Method of Expansion. To apply the method

of expansion we write ¢t=x+v, and then

T dt ... dv re”
U=Ie'—:je"e“ =e"_[ dv
N ! h xX+v XtV

To calculate the last integral, we use the geometric

series:
1 1 1 v v Y 1y V!
___—2+_3— (_ ) n ( ) n
X+v TRA NE A S x(x+ﬂ
X
Therefore,
«© -v -V 2 -v mon -v
_ e ve ve -1
U=¢e™* ——t— —m+(") dv
Jlox X X (x-kv)
But
on
Ie"”v"dv =nl
0

from which we deduce

U=e—x(l——-l—-+—2—!—3—i-+ ( 1))11(” 1) J+e j-( 1) - dv

x x X x x"(x4—v)

If we let

o0

T e 1
- S
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. S

- ~(n+1

"H;ﬁﬂefdv=iﬂx(“)
; e

tﬁen |R"| <

1When~x isflarge(ﬂthe”ferms of .this series at first
decfeaée very rapidiy. That’s why ,up to a certain degree
of;accﬁrac§,'this'series is Verf convenient for numgriéai
wqu when x is 1af§e;‘but, beCauée'the'terms fiﬁally  
increase beyond all‘iimitskiwe cannot.get~beyond a certain
abpro#imatiqp. | | |

fbr example, withfx;IO, the estiﬁated‘limits for R, R,
are equal énd'are less'than.any ofher femainder; And the
ratio ofvﬁheir coﬁmon'Valﬁe'ﬁb the first term'in ﬁhe séfies
is about 1:2500. To Qet'this degree of accuracyvfrom the
first seriés'We shoﬁld-needtBS térms.,Again; with x=20, the
ratio Qf kw'toA;he fi?st”term is less than 1:10°; but 80
terms of the asceﬁéing:series do not suffice to obtainithis
degree of-apprdximétion.

When x_is ﬂegative, we writé x=—ﬁ’_,§>0 ana

h£x+v=v¥§ and wejfiﬂd;j

U=,._x —v d : g:0':1 -~ 've‘_."_ d -
eojwv'eojvl I —'V'vn
© n—l1 ) «© n_-v
—U=e [ +——+v—+ . ']e"”dv+P.[ nv‘e- dv
, s e e & (V)

:ssq:fu



where P denotes the principal value of the integral.

Thus

where

Stieltjes has proven by an elaborate discussion that

in this case also we get the best approximation by taking n

equal to the integral part of £, and that the value of R,

. 2
ig then of the order é{(%?] )

The two expansions of U can be used to find the
“summation” of =-2143-4 ...

If we write x=1 and equate the series of ascending
powers to the series of descending powers, we find that

1 1 1
+ — +...
2:21 3-31 4-41

U=e'(1-1+21-31441-..)=~C+1-

Therefore, we find that

1!—2!+3~!—4!+...:1+é(c-(1— Lt 1 +D
| 2.21" 3.31 4.4

Lacroix gives the value of 1~243-414..=0.4036526,

which agrees with Euler’s result.
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Asymptotic Series for Integrals
Containing Sines and Cosines

Fresnel’s Integrals

Consider the two integrals

V= J~s1nt

U= J‘COSt

t, (x>0)

which are met in the theory of Physical Optics, and also in

the theory of deep-water waves.

We have
cost+isint *y . RV I A Y
U+iV = I dt = It Vit gt = iy 2| L j't Pt =
Jt J . 23
ei!
= ie*x N2 jt 2edt = +—jt 2 "dt+ £ +—It e'dt | =
X l\/—_ t/
_ei.\' ei_\' _
t 2"dt =
zx/— 212x/ 22 2 -[
ix ix 5 it
—e" e’ 1-3|¢ 2e :

= — + —'[t ’tdt =
ix% 2i2x% 2% i

_ et 1.3 +1'3‘5°j‘t‘72e”dt
ix% 2i2x% 22i3x% 2 ]

Therefore,

Utiv=—| . ! I3 Jlefy, 13 135
l\/> 212x/ 2% / Jx 2ix (21'x)2 (2ix)3

Let us write
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(X -ir)

NE

U+iV =

Then we have

U=—\/1?(—Xsinx+Ycosx), V:%(Xcosx+Ysinx)
where:
Kol 13135 113513579
(2x) (2x) 2x (2x) (2x)

The remainder in the series U+ilV after the four terms

written above is

1-3:5-7%¢€"
—dt .
(21')4 Jt3§

Now we can employ Dirichlet’s test: “An infinite integral
whose integrand oscillates finitely becomes convergent

after the insertion of a monotonic factor which tends to

zero as a limit”,

<Hf(£) , where Iqo(x)

ijf(x)w(x)dx

oscillates finitely and it remains less than C, C fixed for

V¢, H<2C, f(x) is monotonic andlim f(x)—0.

X—>w

Here we have:
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So, the remainder in the series U+iV after the four terms

written above is bounded as

l 3.5.7 2 2 1-3:5-7

e Jx ()

which is twice the modulus of the following term of the

e
21 Ij?

series.

We now wish to find differential equations that are
satisfied by X and Y. To this end is convenient to re-
express X and Y in terms of the Gamma function:

F(l + x) = Ie"txdx .

0

Hence

F(%):I{l—%} J‘evza’v—j\/r Jr (See Appendix G).

On the other hand, for any »n, by repeated integration by

parts we see that

Therefore,

3 2n-3 2n-1 — 13:5-..(2n-1) = %, . av
E . \/;z \/;=6[e vV —

1
2 2 2 2
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and so

1 1.3 1.3.5

X—-iY =1+— + T+
2ix (21x) (2ix)

vl Nt

Therefore,

2 1 %e’ . x*—xvi
X-it = [ {” T } FiEeln ) Elress

the remainder at any stage in the expanded form of the-
integral being numerically less than the following term.

Hence we obtain the formulae

:%I—d(T) , j fdv(x +vj

It is easy to prove that these expressions are equal to the

original integrals by differentiating with respect to x. We

have in fact
°°eit
U+iV = I—dt
\\/;

Then

ix

i(U+iV)—

dx —__J;
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e (x-ir)

U+VV=.
TR
d |ie" e”
— X—-iY)=——F
dx{J;( l)} Jx
Therefore,
2 n\/— .
2JF ie" d e”
X-iY ———~.X' Y —
. ( )+ ( ~iY)= \/J—C
—2e"x —je" ie" d i
X - X—-iY)=
e (i) (x-in) -
—2-6;—16()( zY)+le —(X lY)
2¢"x | 1 ) x _ir)- z—(X ir)=1
2xe™ 2xe
1+—i—)(X—iY)—ii(X—iY):1
2x dx
i—él;j(X_—iY)-k%(X—.iY):i
or
ax _,ay . Y——I—X+——Y=i
dx dx 2x 2x
ﬂ—l—X=—l and g—+Y—1Y—=0
dx 2x dx 2x

It is easy to verify that these equations are

satisfied by the last pair of integrals for X, Y, and that
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these integralsjtend tovl‘ 0. respectlvely'as xséw thus we
may infer that U, V'and X, Ygare actually related 'lu.the
manner suggested by theAforegoing_work} The»integrals'X, Y
Aseem‘to beduelto'eauehyhvaudvthe asymptotiegexpansion'to
. Poisson. | | o

1It is perhapsduertﬂ whiIe5t6‘megeitheVedditional,
remerk that the relation"getween X; Y and d,;Vjafe‘most

naturally suggested by the use of asymptotlc expans1on

R
o ut

The Sine- and Cos1ne Integrals-ﬁ

Here we will find asymptotic:fofmulae.fer the  two

integrals
' cost h sult
P=a, j

:Then_

cost+isint
————————d I__

'. P+zQ j

The asymptotic fofmuls“is,obtaineden"iines‘similap”to'

those used in (1) ebovef

v it e* 1] e" w' Q’wl-sk'irﬂ i
P+iQ= j—dt_— +2 jt ar=-S 1] += [retar =
it |, SRR~ (7 2 I
ie® —e* .2 t3e ‘ie&. e 26 ‘ -
_ +_2__7+7 : J‘t-4etrdt _—_‘——+'7+ - J‘t 4eltdt
x . Itxt i li‘v XX ix’
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X x2 ix_3' AR

e - 23”" 23 £ ”‘ 4 J't“se"dtj—

X

x i i P&iox

ie ie 2ie _23 e’ +2 -3. 4J-t_5 ”dt—y

SR W @ @)

ieix( 1 12 123 1234 ]
1 +...
X

So, P+iQ=ie 1+;l+ 2!2+ 3!3+ 4!4'+...
X\ = (ix) (ix) (ix)

It follows that

ix

; ; ! ! |"
P+iQ z[1+1+2 31 4 ]

e” x| ix (lx) (lx) (lx)
P lQ = (P+iQ)2(cosaf—2ismx) = Pcosx+Qsinx—iPsinx+iQcosx =
cosx+isinx cos” x +sin” x '

1(,, 1,20 3 4 s
=—|i+—+— 4=
x\ x i X 2x' X

Therefore, taking real and imaginary parts, we find

1 31 51 71 ]

Peosx+Qsinx=—| ——S+———+
CX\x X X X

2t 4! 6! 8! )

. 1
~Psinx+Qcosx=—|l-—F+—F——+—...
< X x X x x

on the other hand

costcosx+sintsinx _‘]— (t x)dt
t
X

o0
Pcosx+Qsinx = I
X
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X “tsintcos x —cos¢sin x “sin(t—x
-J%mx+Qamx=I - m=j (t.)m

X

X

Therefore, we find the most instructive formulae

“cos(t— 5]
Iglg—jgdh:Pamx+Qﬁnx:l(l—§;+§;—m)
t X\x x x

X

esin(f—x 21 41
J.—udt =—Psinx+Qcosx=l(1——2+—4—...)
X t X X x

We know that

3 5 7

. X X
sinx=x——+—-—
3150
2 x4 x6
cosx=1-—+———+
21 41 6!

Therefore, we see that the cosine-integral is represented
by a series of reciprocal of the ordinary sine-series, and
vice-versa.

The second formula leads to an easy method for
calculating the maxima and minima of the sine—integral,

which correspond to the values x=n7r; thus we find

' ! n ' '
—Psinnz +Qcosnr =(-1)' O =l(1—2—2+i4~—...]
x\ x* x

o=1I,= ISi?tdt=(—i) (1—2—2!+i4!—...) , X=nrm

X X
nr

Fbr values of n greater than 2, it is found that the

calculations can be easily carried out to four decimal
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places; thus

. 3
13=(_1) RS L P L '44! O = 01040
(37)" (37) 3¢ 3~ 337" 3nx

3z
4
,4=(‘1) 2 M L2 A 00786
r 7 n T a7 d
4 (47)  (4n) 4r 4 4

I, =—0.0631  I,=0.0528

T 1 \ . .
If x=nn4~5=[n+§)ﬂ in the sine-series formula we can

find the corresponding formula for the maxima and minima of

the cosine-integral:

—Psin(nﬂ +%) + Qcos(mr + %j = —P(sin nr cos%+ sing—cos mTJ =

=Py = ()t e=() [

()
n+— |z
2

Thefefore,

0 _ n-1 ‘
j COStdt=( 1) (1—2—2!+4—4!—...j, x=(n+-;—)7r

1 t X N A 4
3 .
(,H_],, ‘
We see that the remainder in the series P+iQ (after the 4

terms) is

.2.3.4% )
1 43 4 It‘se"dt

i

By applying Dirichlet’s test (as we did in (1) before)
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1

for |¢(ﬂkﬁde2' ~f0)=;; monotonic, EELfO):O’ we have that
te’ 2 5
fralss s
and
1:2:3-4%¢" | _|1:2:3:4 2 \21'\ 51
—dt < < <2 .
ST i B B e

Therefore the remainder is less than twice the following

term in each series.

67



CHAPTER FOUR

STIRLING'’S SERIES

Introduction to Stirling’s Series
In this section we will investigate Stirling’s series
without using Euler’s summation formula.

It can be proved that

® arctan —
bgF(L+x) F(x)+2j fch (See -Appendix L)

2;rv

where

F(x)= ( jlogx v+ L1og(2r) .

We have

v_v 1(v 1 el v 2l
arctan—=——— +—| = | -4 (-1) +R,
x x 3 5 2n—1

1 2n+1
where]RJ< (K)
2n+1\ x

ooa.rctanK © 1 v 1 v 3 1 v 5 | 1 v 2a-1
.[T’idv:f — ———( J +—(—) —t(=1)" (——) +R, |dv
5 e =1 se™ -1l x 3 S5\x 2n—-1\x

From Appendix K we have

Hence we have
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xg, L v g, LTV LA
Jez’”'—l dv xJez”V—,ldV Py Je””—ldv-i_st (;[e”"—l V—..+
+(_1)n—1 1 o]' V2n—l‘ dl/+°] .R” dv =
(2n_1)x2n—1 0e27rv_1 OeZm/_l

1B 1 B, 1 B,

n-1 0
x 4 3x3 4‘2+5x5 4.3_---+‘(_ ) (2n_1)x2n—1 4n

1
+R

where R is numerically less than the first term omitted
from the series.

If we take the quotient of two consecutive terms and

B
remark that —&l=

n

(2n’+ 1)(2n + Z)Q

Ax’

, where Q is a factor slightly

less than 1, we see that the least value for the remainder
is given by taking n equal to the integral part of zx; but
the first two terms give a degree of accuracy which is

ample for ordinary calculations.

Stoke’s Asymptotic Expression
We are going to study Stoke’s asymptotic expression

for the series

o T(n+a+1)..T(n+a +1) ,

-3 x
gr(n+b,+1)...r(n+bs+1)x 2%,

where x is real and s>r.
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B ['(n+a +l)._.I'(}1+a,_ +1)
T T(n+b+1)..L(n+b,+1)

tH

n

Write s—r=yu, Zb—Za.:/l, and consider the term X, , where

t+p !

t is large, and p is not of higher order than \/; .

. 1 . .o
Neglecting terms of order ——, we find from Stirling’s

N/

series from Chapter Two that

.2 3
10gF(1+m+p)=[m+p+%)logm—m+%log(27z)+%£—+l£—li+O[l)

logX,,, =(t+p)logx+ilogf(t+p+a,. +1)—zszlog1“(t+p+bj +1)=
i=l1 .

j=1

= (t+p)logx+i{(t+p+ai +%]logt—t+%log(2n)}—
i=l .

—

(t+p+bj +%jlogt—t+%log(2ﬂ)}+

i
J=1

6m

+§:'—2it(p+ai)2 +51t-(p+a,.)— 12 (p+czi)3 +O(%)]—rt_

s [ 1 _ 1 | 1
_;—Z_t(p-f'-bj)z +i2_t(p+bj)‘_6m2 (p-i--[’)j)_3 +?(;):l+st;

=(t+p)logx+rtlogt+rp'logt+[ZaijlogH%rlogH+%r—log(2rz)_

i=1

—splogt—stlogt—(ij}logt—Eslogt—%slog(27r)+%rp2 +§2 a, +
=1 : i=1 .
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1 r r s 2 SP 1 S
+—ya’ + P .——s e ————> b, =
a5 2 2t,1 ' v’ ; ZtZ;’ 2t 2453

1 1 1
:(t+p)logx—,uplogt—ﬂulogt—Elulogt—alulog(%r)—Z,up2 —

2
= (t+p)logx—,utlogt—,uplogt—Mogt—%logt—%10g(27r)+,ut—%

Therefore
1 1 up’
logX,,,=(t+p)logx—u t+ logt+— log(2rr) —(p,u+/?,)logt—57

It is convenient to suppose that x is of the form ¢, where

t is an integer (a restriction which can be removed by

using elaborate methods); and then X, is the greatest term

because logx=pulogt, so that the terms of the first degree in

p cancel. We deduce that

2

logX,,, = (t+p),u10gt—,utlogt—,upldgt—/ﬂogt—%10gt—§10g(275)+,ut—’uz%::

1 “ 1 up’
=yt ——ylog(2xt)y—Alogtr —— -
pt=—p g(27t) gl-o =

Therefore

2 .

1 : U : 2 _up?
X, =ete 2”1°g(2’”)e—/110gte 2 — gt g7 108277 Jlogr™ Ty

t+p —

71



or X,,= € e
(271)>
_H
Let e =gq, %imq=l
Then
ytt—l )
Xy = 3 K q"
(271)2
/Jtt—/l )
X, + X ,=2""g’
(271)2
fu—A
ZXH = c’t - (1+2q+2q4+2q9 +)
(27t)2

Using Cesaro’s theorem of divergent series, it can be

proven that

1

lim(l—q)% (q+q4 +q° +) = %zi .

g1

Therefore, the series in brackets is represented

1 1 2

approximately by x? (1—q)_5, or by (—J
Y7,

1
So, l+g+q*+¢° +..~r7>(1-¢)2.

Thus the asymptotic expression 'is

ty—A 1
et
—— —, where ¢=x".

_,u_—-l_
w2 (2mt) 2

BN | —
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CHAPTER FIVE

POINCARE’S THEORY OF ASYMPTOTIC SERIES

Introduction to Poincare’s Theory

Consider a function J(x) expanded in inverse powers of

a a, a, . )
X, @a+—+—+—5+... The partial sums do not necessarily
x x x

have to converge; but we suppose that taking any initial

partial sum provides an “asymptotic” formula for f. We want

the sum of the first (n+l) terms to give an approximation to

K
J(x) which differs from J(x) by less than —%, where K,

xn+1 !
depends only on n and not on x. Let §, be the partial sum of

the first (n+1) terms. Poincare says that the series is
asymptotic (or semiconvergent) to the function, if, for all
n,

limx"(J-S,)=0

X0

This relation may be denoted by the symbol

a a a
J(x)~a,+L+2+2+...
X X X

In other words, the first (n+1) terms of the series are
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of order

— . Therefore; for a given value of »n, the first
X

(n+l) terms of the series may be made as close as desired to

the function J(x) by making x sufficiently large. For each

value of x and n there is an error of order Since the

n+l °
X

series actually diverges, there is an optimum number of

terms in the series used to represent J(x) for a given wvalue

of x. Associated with this is an unavoidable error. As x
increases, the optimal number of terms increases and the
error decreases. We note that if the original function is
oscillatory (near infinity) then it cannot have an
asymptotic expansion.

Let’s consider an example. The logarithmic integral is

defined as

As we proved in Chapter Three, the asymptotic series for
this function can be generated via a series of partial

integration, obtaining

e, 1 21 3 a (n)! w1 P
U= l—+———+..+(-1) — -1 —dt.
( + + + ( ) xn J + ( ) Jtn+2 z

X x x x
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The infinite series obtained by taking the limit when n-—>®

diverges, since the Cauchy convergence test yields

u,, n+l

ull )

=lim =

H—>®0

lim

n—>w

X

Note that two successive terms in the series become equal
in magnitude for n equal to the greatest integer less than
or equal to x, indicating that the optimum number of terms
for a given x is roughly the integer nearest x. As we

proved in Chapter Three, the error involved using the first

(n-+l)!e"x

n+2
X

n terms is less than , which is exactly the next

term in the series. We can see that as n increases, this
estimate of the error first decreases and then increases
without limit.

Note that the asymptotic series are fundamentally

different to conventional power law expansions, such as

5 7
3 X X

: x
sinx=x—-—+-"—-"+
3t 517

This series representation of sinx converges absolutely for
all finite valﬁes of x. Thus, at any x the error associated
with the series can be made as small as is desired by
including a sufficiently large number of terms. In other

words, unlike an asymptotic series, there is no intrinsic,
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or unavoidable, error associated with a conﬁergent series.
It follows that a convergent power law series
representation of a function is uniqqe-inside the domain of
convergence of the series.

On the other hand, an asymptotic éeries representation
of a function is not unique. It is possible to have two
different asymptotic series representations of the same
function, as long as the difference between the two series
is less than the error associated with eééh series (an
example is the expansion of the conflueﬁt\hypergeometric
function) .

It is to be noticed, however, that the same series may

be asymptotic to more than one function; for example, since

mn(f%*)=0 the same series will represent J(x) and J(x)+e™.

X
Theorem o

1) Asymptotic series can be added and subtracted as if
they were convergent.

2) Asymptotic series can be multiplied together as if
they were convérgent. In particular, we can obtain any
power of an asymptotic series.

3) If the first term of the asymptotic series is less

than the radius of convergence, then we can substitute
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and rearrange an asymptotic series in a power-series,
and the result is an asymptotic series.

4) An asymptotic series can be integrated term by term to
get another asymptotic series for the integral of the

original function.
5) Consider a function J(x) that has an asymptotic
expansion. If its derivative has an asymptotic

expansion, then the expansion of JTx) is the term-by -

term differentiation of the expansion of J(x).

Proof for (1):

It follows immediately from the definition of an
asymptotic expansion.
Proof for (2):

Consider two asymptotic series:

Sy, K (x)~b, +ﬁ+£§—+b—3+....
X X

3
x3 X

J(x)~a, +%+~a—§+

Then the formal product is

C. C. C.
O(x)=cy+2+2+2+...
X X X

where ¢, =ayb, +ab

n—l|

+..+a,b, .
We will show that the product JC@-K(x) is represented

asymptotically by II(x).
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Let

a
S—a0+ + 2+ L

x x X X

b b b b
T =b+—+=2+=>+.+2
n

X X X X

G G
> =g+t +—2+ 4. 4l
n
X X X X

denote the sums of the first (n+l) terms in these three

series. Then we have:

where p,0 are functions of x which tend to zero as x—>®

Now, by definition X coincides with the product ST, up to

1
and including the terms in —

14
4

X

a a, a a b b b b
ST =|ay+L+2+=2+. +L | h+L+2+3 4. +L |=
nn 0 x x2 x} xn 0 x x2 x3 xn

= ayb, + b + by +ot %b, + b, ‘"+"'+a°b" +O( }+1 j+0( ,}+2j+...0[i)
X X X X X

¢ ¢ cC 1 1
ST, =co+—+2+—+..+ Sn +0( )
x"

2
x x x n+l x2n
Thus S,7, z contains terms from —5 to —-.
X x
. B, : . .
We can write ST, = +T' where P is a polynomial in x of
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degree (n —1) .

Therefore,

X" J(x)K (x)-x"J (x)o-x"K(x) p+po=x") +P,

x*" {J(x)K (x)-> } = px"K (x)+0x"J (x)+ P, — po

or "{J(x)K(x) > } PK (x)+0J (x)+ Ki=po

1

X

‘As x>, J(x)>a,, K(x)>b, and p—>0, 00,

lim (x"J (x) K (x)- Y, )_hm =0.

X—H>m X0 x

Therefore, the product J(x)-K(x) is represented

asymptotically by H(x) .
Proof for (3):

Let’s consider the possibility of substituting an

asymptotic series in a power-series. We have:
J(x)=a,+J,(x)

a a, a
J(x)~a,+2+2+=2+
x X x

We know that a power-series Zanx" represents a continuous
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function of x, say f(x) within its radius of convergence

|x|=R . Let us substit;ufe aO{Jl for J in the series
f(J)=¢, +clJ+!ch2 +e S+

and rearrange in powers of J, prqvided that |a0| is less

than the radius of convergence, R; because limJl(x)=0, we

can take x large enough éo |a0|+|Jl|<R. |

. . . a a
Now, let’s substitute the asymptotic series _1+_:§+__,. for J,
; x x
in the series
F(J))=Cy+CJ,+CJ} +CJ +...

Making a formal substitution, as if the series. for J, were

convergent, we obtain:

2
F(J,)=C,+C, (%+%+...}+CZ (%+%+";] +...

. , ' D, D '
Then we obtain some new series Z=Do+.—‘+—22+..‘. where
X x

D,=C,, D,=Ca,, D,=Ca,+Cal, D,=Ca,+2Caa,+Ca, etc.
We will prove that the ‘series Z represents F(Jl)

asymptotically.

: 1
Let §, be the sum of the terms up to — in J;; S

7 n
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represents J, asymptotically.

|
Let z" the sum of the terms up to — in z .

x"

D D a a

— 1 1 e |
E" —D0+—+...——”,—, and §,=—+—=..—%
X X x x x

Now, if

Y G, +CS, +C,S? +..+C,S!

n-n

because
Ca, Ca, +Ca’

=C,+ 2 2 . 2%
n x x

we can write
- Ca, Ca, Ca°
:Co+ Laas B 122+ 221 +....
" X X X

' . 1
We see that z’ and z agree up to terms in —, and
T n x"
' : . .1 :
consequently Z —Z is a polynomial in —, ranging from
h n X
n+ "2
(1Y 1
terms in |— to |—| ; thus
x x :

@ lme(%,-¥, )-0.
Next, if

T =C,+CJ,+C,J}+..C,J!, we have, since S, represents J,

asymptotically, l_imx”(Jl"—S,’,')=0 for r=1,2,... and therefore
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(20 lm¥'(7,-Y )=0.

X0 n

Finally,

F_ﬂ=Q+QL+Cﬂﬁhf{Q+QL+CJﬁﬁQJ”=C Jrlic

n+l* 1 n+2

n+2
J

thus, since F(J) is convergent, |F-T,|<MJ!*, where M is a
constant.
We find that

lim x" (F -7, ) < lim x"MJ;" =0

X—=>0

(3)  limx"(F-T,)=0,

n
X0

n+l
because Hn%kﬁﬂﬁ“)=ﬁm{ﬂlal ]=0.
X—w X—>0 x

By combining (1), (2), and (3) we see now that

lime' (F-Y, )=lmx'(F~T,+T,- Y+, - =0

X—>0 X—>00

Therefore,

limx"(F~Y )=0.

x>
Thus the series 2: represents E(L) asymptotically;

therefore, an asymptoﬁic series may be substituted in a

power-series and rearranged (just as if convergent),

provided that its first term is numerically less than the

radius of convergence.
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Note that we use the convergence of the series f(J) in

two places only, first in order to rearrange in powers of

J

Now this inequality is satisfied if the series

CJ,+C,J +CJ} +... is asymptotic toF(J,); and then we must
suppose that g, is zero in order to get any result at all,
so that J=Jand we can entirely avoid the restriction that

f(J) is convergent. Thus, an asymptotic series, whose first

term is zero may be substituted in another asymptotic
series, and the result may be rearranged just as if both
series were convergent.
Proof for (4):

Let us consider the integration of an asymptotic
series in which q,=0, q,=0.

If
J(x)~_+“3+ .

x

limx"(J-S5,)=0 so, for any £>0 there is n,, such that

X—>00
Hn &
Ix Lf—&)+<8 or [J-8,|<= for any nn,.
x

So,
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|J—S,,|<;fT if x>x,

c].(J—Sn)

X

swj|J—S,,|<wj%

& .
<————, if x>x,

(n—l)x*[’

?Jdn—?&ph

so that ka is represented asymptotically by

o

a. a a -
j(—-i—+—g+—§+...}lx=—a2x :
o X X X

We remark that an asymptotic series cannot, in

o0

© A, _ a a a
_% - I B B
2

. x  2x* 3x

+...

X

general, be differentiated: the existence of an asymptotic

series for J(x) does not imply the existence of one for

J'(x). For example, e*sm(f) has an asymptotic series

0+9+%+....
X X

But its derivative is —é*ﬁn@f)+am(€), which

oscillates as x tends to «; and consequently the derivative
has no asymptotic expansion.

Proof for (5):

This follows by applying the theorem of integration to
JKx).

Another proof can be made using the following Lemma:
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If ¢(x) has.a‘definite finite limit as x tends to\®> thén‘
¢'(x) either oscillates or tends to- zero as a limit.

" Proof for’Lehma:

If ¢(x) ténds‘tb a definite limiﬁ.we can find x, so

that, |¢(x)—¢(x0)‘<8' if x>x,.

Thus, éince  ¢(§)=fiil:ﬁg&)} where x>E>x,, we Find
' ' i ‘/‘X.’._xb ' : :

&

#(¢)<

So, ¢%x) cannot approéch any definite limit
X=X, A ' :

other Fhan zero;‘bﬁt‘thé iast.iﬁeQuality does not exclude
éséillation[,sincelf,ma? not‘take all values greater than
x, as x tends to a>.‘¢1¥), if it has a definite limit, it
must bg)zer@, |

Now, to prove (4), consider

4 a
J(x)~a, +?‘+-x—§+... .
Then wé have :
11mx”“{J(x) ,M(x)}:O‘ o
-and -
) 1m{ ()=5.09- :z:i}

~

Therefore,
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limx"' {J (x)-S$, (x)} =a

n+l °
X0

Thus the differential coefficient
T (x) =S, (2)}+ (n+1) 2" (T (x) =S, (x)}
if it has a definite limit, must tend to O.
But x'{J(x)-S,(x)} >0 so that, lLmx"'{J'(x)-S,(x)}=0 if it
exists. That is, if J'(x) has an asymptotic series, it is

Corollary
We can divide any asymptotic series by another
asymptotic series (assuming that the first term g, is not

zero) as if they were convergent.
Proof:

Let

a a
J ~ TR B
(x) a0+x+x2+

Then

J(x)~a0[1+i+%+...],.

ayx  ayx
and we can write

a,

J(x)=a,(1+K), where K~2 +...

2
ayx  ayx
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Then (J(x))_] =a,’ E-I—I_K =a; i(‘K)”

n=0

(J(x) =a;' (1-K+K>~K+..)
and we can construct an asymptotic series for {J'(x)}_l by

exactly the same rule as if the series for J(x) were

convergent.
Bromwich summarizes the situation thus:

It is instructive to contrast the rules for
transforming and combining asymptotic series with
those previously established for convergent ’
series. Thus, any two asymptotic series can be
multiplied together: on the other hand, the
product of two convergent series is not
necessarily a convergent series. Similarly any
asymptotic series may be integrated term-by-term,
although not every convergent series can be
integrated.

On the other hand, as we have just
explained, we cannot differentiate any asymptotic
series unless we know from independent reasoning
that the corresponding derivate has an asymptotic
expansion; although, in dealing with a convergent
series, we can apply the test for uniform
convergence directly to the differentiated
series, and so infer that the derived function
has an expansion.

These contrasts, however, are not
surprising. In a convergent series, the parameter
with respect to which we differentiate or
integrate is strictly an auxiliary wvariable, and
in no way enters into the definition of
convergence of the series; but in an asymptotic
series, the definition depends on the parameter
x. (An introduction to the Theory of Infinite
Series,346)
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It is sometimes convenient to extend our definition

and say that J is represented asymptotically by the series

a a
O+|ay+—+—=+... |¥
x x

when

L a a
is represented by g ,+—++—3+.., where ® and ¥
x

are two suitable chosen functions of x.

As an example, recall the asymptotic formula deduced from

Stirling’s series in Chapter Four:

® arctan —
logI'(1+x)=F(x +2I xdv—

=( ;jlogx X+= log(27r)+£——3+——...=

B, B B
=lo 27x)2 —x+———2+—3—...
g{ ( ) } 2x 3-4x° 5.6x°

Thus T(l+x) ;x(2ﬂx)2e‘e”'“” e . Since we can substitute an

asymptotic series into the (convergent) exponential series

2

X x
e =l+x+—+...,
2!

2
F(l + x) ~e 'x" (27rx)% (1 +f—'+B—1 + )
x

4x°2!

which may be rewritten:

88



1
I(1+x)~e™x" (27x)? (1+Q+%+%"~...j

X X X

where

1 _BL_ 1
8 288

Poincare’s theory generalizes for x complex and
tending to o in any definite direction. But a non-
convergent series cannot represent asymptotically the same
single-valued analytic function J for all arguments x. In

fact if we can determine constants M, R, such that

‘J—ao~gL<£%; when hb>R, it can be shown that J(x) is a
x

2 7
[+

regular'function of Thus the asymptotic series must

x

actually be convergent.
For different domains for x, we may have different

asymptotic representafions of the same function. This is

illustrated in Stokes’ discussion of the Bessel functions

in Chapter 8ix).

Applications of Poincare’s Theory
A significant application of Poincare’s theory is to
the solution of differential equations. We first obtain a

formal solution in a non-convergent series. Independently
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we show that a solution with an asymptotic representation
exists. (Thus we may either deduce a definite integral from
the series first calculated or we may find a solution as a
definite integral directly, and then identify it with the
series.) Finally, the region of validity of the asymptotic
representation is determined.

Poincare showed that every linear differential
equation which has polynomial coefficients may be solved by
asymptotic series, as long as the independent variable
tends to infinity along a fixed direction. Poincare did not
determine the regions of validity. Horn, in a number of
special cases, filled in the gaps.

Barnes and Hardy applied Poincare’s theory to the
asymptotic representéﬁibn of-funétions given by power-
series, using the theory of contour integration. The method
of Stokes given in Chapter Four is also useful for some
real series.

Bromwich remarks that the ordinary Taylor’s (or

Maclaurin’s) series of the Differential calculus has
. . 1 :
essentially an asymptotic character (— being changed to
x

x), until the remainder has been investigated.

Even when the series
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f(0)+xf’(0)+%x2f”(0)+...
is convergent, its sum is not necessarily equal to f(x);
but we can always show that {f(x)-S,(x)} is of higher order
than the last term in S§,(x). Or, in more precise form, we

can c¢laim that

lim

x>0

7(9-5,(9 _,

which has the same character as the definition from the

beginning of this Chapter.
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CHAPTER SIX

DIFFERENTIAL EQUATIONS

Introduction to Differential Equations
We will give some examples of the way in which
asymptotic series present themselves in the solution of
differential equations.

Let us try to solve the differential equation

%Z=fz+by (b>0) by means of an asymptotic series
X X
y‘=A0+i4i+ﬁ2+...
X x

X X X x X
a A a 24 1-2a

This gives =0, 4 =—, === g4=-"2-_ , etc
g 4 e A =

Therefore, we find the formal solution

2 3
y=-2 1—i+2!(i) —31(ij o
bx bx bx bx

and, as we have seen in Chapter Three, this represents the

integral
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o0 e )
=—q dt,
Y (;[t+bx

and it is easy now to verify directly that this integral

does satisfy the given equation.

The Modified Bessel'’s Equation

Following Stokes, we have the equation in the form

d’y 1ady n
CrL Y I -0,
dx*  xdx ( x* 7

1
and then attempt to find a solution in the form y=e*x 277,

where 1 proves to be an asymptotic series.

1 3 i
d—y=ﬂ,e’“x p——e*x 2n+etx ? an
dx 2 dx
3 3 3

lﬂ:/’ke’“x 277—le’“x 2n+erx 2 dn
x dx 2 dx
d’y a5 1o a3 173 A1 1 i3

=Ae"x 'n——=Ae”x n+Ae"x 2 ——-A—e"x n+
dx’ 7 2 7 X 2 7

3 3 1 3 g2,
+%-%e’lxx 277—%6’1'% 2 fldg+ﬂe“x 2 %ﬁ—%e“x 2 %;Z+e’l"'x 2 %’x—?
X

3 5 3 5 1 2

—_— —_— —_— —_— — n —_—
——en+—xn+Ax n-——xnp—-xn—-—x =0
S €ty n X n 257
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Then

Thus

2
&’ 727 2,1d77 /12—l+lx'2—n—2 n=0
dx dx 4

The equation for 7 is found to be

(Z; +24=1 ‘;xj {(/12 ~1)%’ +(%—n2)}ﬂ =0

If we take A*=1,

LU NPYLIAN (1—n2j77=0
ax’? dx 4 ‘

and then, writing

A
77=1+—l+i§+—3—
X X X

dn__ 4 24, 34

dx x* X X

d’n _1-24,  1.2:34, 3-44,

3 4
X X x°

x2‘(2A1 L234, 3-44, +...j+2/1x2 (_;4%_%_‘%_,,,}

we obtain
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3 4 5

X X X

or
1>
244, =—-n",
4

24 —404, +G—anA1 =0, thus 414, =(%—n2)Al

61A3=£%§—n2]A2, etc.

Thus we may take

14 1 (1—-4n2)(9—4n2)
A= AT (84)’ r ete

leading to the solutions

2 3

1 1 |
g - 4 4, A
y=e"x p=e*x 2(1+—‘+—+ +.--)=
, e

e (1+1_4n2 1 (1-4n2)(9-4n?)

+— > +..|, where A=4%1.
84 1.2 (84x)

It is easy to see that these series cannot converge
for any value of x (unless 2n is an odd integer; and then
the series terminate); they do not agree with any of the

series considered up to the present, but we can write
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o0 ._l
F(n+r+lj=jéﬁ 2dt .
2

0

We know that

r (1 + n) = Ie"vv"dv

0

and

x(x+LKx+2)m(x+n—l)=I(n+x) (Appendix F).

r'(x)

)1—5
and for (l—aéf) we apply the binomial theorem.
x =

In general
2 3
(L+xy5=1+vx+v(v—1)§T+v(v—l)bw—2)§T+“,

Therefore,

i
(L——i—) 2 =1+(1—211)t_{_(1—2;1)(3—2211)1‘2_+
21x 41x 1-2(44x)

Thus the series can be written in the form
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When x is real and positive (n being assumed
positive), this integral has a meaning only if A=-1; and
then the remainder in the binomial expansion is less than
the following term (at any rate after a certain stage), and
thus the same is true of the asymptotic series.

Consequently, for A=-1, the asymptotic series is asymptotic

gl

If we write f+x=xcoshd, and then multiply by the factor

to the integral

1

e"x?, we obtain the solution

n 0

X

y — 1 l .[e—xcosh& Sinth €d0 ,
ZWEF(n+—j° '
2
which can be proved to satisfy the original differential
equation, by substituting and integrating by parts. It may
be expected that the two original series both satisfy the
differential equation; although we cannot obtain a complete

proof without some assistance from the Theory of Functions.
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TRANSFORMATION OF SLOWLY CONVERGENT
ALTERNATING SERIES

@O .
- Let Z:(—l)"_1 v,be an alternating series.

n=]

Let us write: v, —v,, =Dy, and
v,=2v,,+V,,=Dv —-Dv, = D? V),
V" - 3vn+1 + 3vn+2 - vn+3 = (Dvn - Dvn+1 ) - (Dvn+1 —‘Dvn+2)
=Dv,—-2Dv ,+Dv, =D —D%, =D,

and so on.
Then, if |x| <1, we have
(1), = VX +1,x° =) =V, = yx + X" — v, x + v, x— v X" +1,x° —...
=y, —xDv, —x*Dv, +x’Dv, —...
and consequently
_ vy +xDvy—x’Dv +x’Dy;... _

2]
n n 2 3
Z(—l) VX' =V —VX+ VX — VXt

0 1+x
2 3
__% +xDv0 xDv1'+x Dvs...= Vo X {Dvo—xDvl+x2Dv3—...}
1+x 1+x 1+x 1+x
vy )
= +y3Dv, —xDv, + x"Dv,...
e (Dm0 5
where y=—x—~.
1+x

Repeating this operation with v, replaced by Dy

2 p
DV, DY,
successively, we find

Z(—-l)"v”x" = L{vo +yDv, +y*D*vy +...+ y”'lD”‘lvO} +y°f {D”vo —xD*v, +}
0 1+x

It can be proved that in all cases when the original
series converges, the reminder term y”{D”vo—xD”vl+...} tends

to zero as p increases to infinity, at least when x is
positive.

The case of chief interest arises when x=1, and then
we have

Z(—l)” v, = %(vo +%D1}0,+%D2vo +§1-3—D3v0 +...+%D”‘1voj+
. \

+2LP(DPV0 —D?v, + D"%v, —)
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We can write down a simple expression for the remainder, if
v,=f(n), where f(x) is a function such that the p”

derivative f”(x) has a fixed sign for all positive values of

x, and steadily decreases in numerical value as x
increases.

For, Dv,=f(n)-f(n+1)=-[ f'(x+n)dx,
and thus D%, :+£de J;f”(xl +x, +n)dx,
and in general D’y =(-1)/ J:abcl £dx2...£fp (xl +X, ..t x, +n)dxp

Thus the series D’v,—D?v,+D’v,—-.. consists of a succession
of decreasing terms, of alternate signs. Its sum is
therefore less than D’v, in numerical value and consequently

gy, o] 1 | -
20:(—1) V=2Vt 7 DY +§D2v0+...+—27D(” vy +R,

where |Rp| < 21—p’D"vol .
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THE SERIES OF FRACTIONS FOR
cotx, tanx , cosecx

We will show the series of fractions for cotx, tanx,
cosecx , as well as prove the formula:
1 1 1 2x
=— 4 -— .
e -1 x 2 lex2+4nzﬂ2
Let
1 ix !
F"(x)=—_ 1+ 1—— .
_ 2i n n
Then
sinx=lmF,(x) and cosx=lim—=*
n—>om n-o dx
So that
._dF, /dx
cotx=1lim .
n—om F;' (x)
Now we can show if n is odd, say n=2m+l1,
m x2
F(x)=x]]|1-———
r=1 n2 tanzﬂ
n
so that
(x) m 2 xz xz xz
H Fx— 1- 1- 5 1-
n® tan’ W tan? TE * tan®> = ? tan? n® tan
n n n
Thus
CACT S S W U0 S (N
F,(x) T ‘canzz"=‘l--x2/(rz2 tan? Ej X | gt tan? 2
n n n
. dE (x)/dx . |1 & 2
cotx:hm—"()—_hm —+ ad
H—»o E’ (x) s I 2= x2 —n2 tan2 1’1
n
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We apply Tannery’s Theorem (i.e., the comparison test for
convergence) by taking the comparison series

=————, for we have

rT )
x* —n* tan® (—) > i’ —|x|
n

1 1
<

2
1”271'2 '—|)C|

Thus for all values of x, real or complex (except multiples
of 7#), we have

cotx——+z 2 '

n=1 X '—n ﬂ- -

where nis taken as the variable of summatlon, instead of r.
Now we have the following identities:
tanx =cotx—2cot2x

1
cosecx = cot 5 x—cotx

Thus we find, on subtraction

2x J 2-4x
tan x = cotx — 200t2x——+2—__._ —
X n=1 X _nﬂ- X n=l(2X) —na

Thus, we have

Similarly,
2x
cosecx-—+z 1)"—.
-0z
Changing from x to ix, we f:Lnd that
. cosix —icoshx
cotix=——m=— —zcothx————Z—
sinix sinh x x Sxt+ntn
. _sinix _—sinhx © 2ix
tanix = =ztanhx=z 5
cosix icoshx - 1 y
n+—| 7t+x
and
. 1 i
COS ECIX = ——— = — — —zcosehx————Z( l)"
sinix sinh x pam X +n’n’
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Therefore,

We note that
%x-k _%x *+1 2
x e e e
coth —=— —=——=1+—,
"E-\‘ e’ -1 e -1

1.
e’ —e
and accordingly we have

1 I 1 3 2x

P R A N v
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THE POWER SERIES FOR x/(e"-1)
AND BERNOULLI'S NUMBERS

We know that

and the reciprocal function can be expanded in powers

X
)
P ,0 ,0
2! 3! 4!
expansion of reciprocal series). This last condition is
certainly satisfied if: e’<1+2p. This is true for p<1.2.
Thus, we can certainly write:

(1

of x if |x|<p, where —+...<1 (by the Theorem on

=1—§+Azx2+A3x3+A4x4+..., if |x<12

)

A simple computation shows that function

x
+= =1+ 4,3 + 4 + 45" +..

x
(e"—l) 2
even function of x, so that 4,=0, 4 =0, 4,=0, ..

Consequently, we can write

2 4 6 o0 2k
* o1-Z4BX B 4BZ - Z
e =1 2 a1 T4 g 27 (2K)!

where B, are called Bernoulli’s numbers.

It is easy to verify by direct division that

Blzla B, = L » By=— 1 B4=i’ B5=_5_
6 30° 42’ 30 66
It is also known (Appendix B) that
x X < 2x°
:1——+ F———
e —1 2 ,,Z=1: x* +4n*n?

Now if |x|<27z', (27 is the radius of convergence; the

roots of e'=1 are given by x=2nzi, and the least distance

of any one of these from the origin is 27 ), each fraction
can be expanded in powers of x, giving
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2x* 2x* B x° . 1

2 2,2 2 T 5,2 2 2
x +4n'z 4n2”2[1+4x 2) 2n'm 14" :

1
But ——=1-y+y*—y’+...

I+y
therefore
1 B x’ x* x®
S "len'n" 6an‘n’
4n?
So,
2x? _ x (1 x? x* x° N J
P Aann wma | dnml 6wt 6nimt

Further, the resulting double series is absolutely
convergent, since the series of absolute values is obtained
by expanding similarly the convergent series

& 2

n14n77—ﬂﬂ
It is therefore permissible to arrange the double series in
powers of x, and then we obtain

0

A 20 _ 1——+Z _x x x +
(ex—l) 2 X +4n*nt “~on*r? 4n*r? 16n4 “ eantrt

¥ (&1 (&1 x8 < |
=1-24 e e B =l e el
2 27’ (Zan] 87 Zl:n“ 327° Zl:né

which is now seen tO'be,valid for hﬂ<2ﬂ.”

: 1 (&1 3 (&1 45 (51
We find B, =—2(zn—2], B, =?(Zn_4j’ B, =§[ZTJ

7 n=1 n=l1 n=1 11
_ ) &1
and, in general B === =
2 r= ' n21
n=1
From the earlier computation of the Bernoullian numbers, we
obtain asa corollary the results

) 1 2 0 4
_:%, z.i:..ﬂ'_.,etc:.
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BERNOULLIAN FUNCTIONS

The Bernoullian function of degree n, denoted by ¢, (x),

n Xt

. . s . . € .
is the coefficient of — in the expansion of ¢— T which,
n! e —

by the foregoing, can be expanded in powers of t if |t|<27z .
We know that
x x _x x* x8

e"—l=I—E+B15—BZE+B3E—W (Appendix C)

Since

e _l_x_t+ﬂ+@+...

2! 3!

X 2.2 3.3 2 4
¢Z 1= xt+xt +xt + o 1—-£+Blt—~th—+...
e -1 2! 3! 2 2! 4!

Thus we have

) t" x2t2 ¢ t2 t4
Z¢n (X)Z—[xﬁ o +...j(1~5+Bl 5—]32 4—!+...

n=0

’

So that _
g, ()=t Pt 10D pa_n(D(1=2)(13) p
2 ! 41
where the polynomial terminates with either xor x* .

From this formula, or by direct multiplication, we find
that the first six Bernoullian polynomials are:

9 (x)=x,
o, (x)=x2 -x=y,

&, (x) =x ——%x2 +%x =yz,
¢, (x)=x4—2x3 +x7 =y,

by (%) =5 — 224 +20 —x = yZ(y—lj,

2 3 6 3
5 1 1
6 5 4 2 2
X)=x =3x"+—x"—=x"= -
¢6( ) 2 2 y (J’ 2]
1 1lady . 2
where y=x(x-1) and Z=x—=o—, with the last term xor x*.

Since
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Xt {
b (xe) IR YA ) T W (e _1)_ “
,e’_—T(e )l ) gl ) e e
¢,(x+1)-¢,(x) is the coefficient of —"' in the expansion of
n!
o t—l {e(”l)’ — e""} =te" .
But
x2 x3 xn-—l
te" =t+xt* + =+t "+
21 31 ()
so that
¢, (x+1)-¢, (x)=nx""
thus,

b (x+1)=¢,(x)+2x=x" —x+2x=x"+x
3 1 3 1
) (x+1)=¢3 (Jc)+3x2 =x —Exz +j2-x+3x2 =x +5x2 +—2—x

and generally ¢,(x+1) differs from ¢,(x) only in the sign of

the coefficient of x"'.
If we write x=1,2,3,.. in the difference-equation and
add the results, we see that, if x is any positive integer

(n>1)

X

1 : ¢n (2) ~¢n (1) =n
2: ¢,(3)-4,(2)=n-2""
3: ¢,(4)-4,(3)=n-3"

X

X

X: d, (x)—¢” (x—l) = n-(x—l)"_]
x+1l: ¢, (x+1)—¢n (x)=n-x"‘l

(142" +3"7 4L x) = 4, (++1) =4, (1)

Xt

If x=1, then tet—11=t and ¢,(1)=0 for all n.
e.—

Therefore
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1 1 1
1 2n—1 311—1 . n-1 - 1 - n-1 - n-1
+ + +.o+X nﬁix+) n@x +@(ﬂ) n@(ﬂ+x

This gives the formula of Bernoulli for the summation of
the Or—nm powers of positive integers.

More generally, if b-a is any integer,
x=a ¢,(a+1)-¢,(a)=na""
x=a+1 4, (a+2)=¢,(a+1)=n(a+1)"

x=a+(b—a+1)=b—1 ¢n(b)_¢n(b_1)=n(b—1)n_l
x=a+(b-a)=b ¢, (b+1)—¢,(b)=nb

Then, by adding the above, we obtain

n(@+(a+1)" +.+(6-1)") =4, (5) -4, ()
a4 (ar1) ™ +(a+2) et (b-1)" = %(¢,, ()4, ()
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EULER'S SUMMATION FORMULA

As we have seen in Appendix D, if x and n are positive
integers,
- - - 1 H— 1
142" 43" L4+ x" = =g (x)+ X" =—¢, (x+1) =
n n

" 1 n-1 n —1 len—Z _ (n —1)(}1 —'2)(7’2 _3) B2x11—4 +.. ,

:lx +—x"" +—
n 2 2! 4

1
this polynomial containing %(n+2)or 5(n+3) terms.

It is obvious that when f(x) is a polynomial in x, we

can obtain the value of the sum:. f(D)+f(2)+..+f(x) by the
addition of suitable multiples of the Bernoullian functions
of proper degrees. But we can get a compact formula by
using integration. We can write the foregoing polynomial in
the form

1 a’
J.x"_lafx+%x"'l +lBl i(x""1 ) —-—B, —(x""' )+
Hence when f(x) is a polynomial, we have Euler’s summation
formula

SO+ fQ)+..+ f(x)= J‘f(x)dx+%f(x)+%B,f'(x)—4l!32f'”(x)+... ,

where there is no term on the right-hand side (in its final
form) which is not divisible by x.

However, the most interesting applications of this
formula arise when j(x) is a rational algebraic fraction,

or a transcendental function, and then of course the
foregoing method of proof cannot be used; and the right-
hand side becomes an infinite series which may not
converge. We have considered a number of special examples
of this kind in this thesis.
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THE GAMMA-PRODUCT

Theorem. Let P, =(1+4)(1+4a,)..(1+a,), where ag,aq,,q,.. are
numbers between 0 and 1. Then the convergence of the series
EZQ, is necessary and sufficient for the convergence of the

product fjfi.

n=1

Theorem. Suppose u,,u,,u,,.. 1s a sequence such that 28”3
is convergent. Then the infinite product (1+u )(l1+u,)..
converges if Ezu" converges; diverges to infinity if }:un
diverges to +w; diverges to 0 if 2}% diverges to —«;

oscillates if Zzu" oscillates.

It is evident that the product

Rl foegfies) () o

is divergent except for x=0 because

o0

I

1 .
— diverges except for x=0.
n=I n n=1 1

We will first find the limit of Then we are going

n_.\‘.
B
to show the following formulae:
F(n+x)

x(x+l)(x+2)m(x+n—l)=——EZ;Y—

and
T
g T
T (n+ x)
We have
X P X X
—~40g—l—=—~40g[Lh—J>0
n P, n n
Because

0<x-log(1+x)
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B (1+x).. (HHJ(H%)_ .

=1+=

w1 (1+x).. (1 + —j "

Let
1 1
S,=x|1+=+..+—|-logP,
2 n
Then
S —xl+l+ +—LJ—b P
n-1 2 oes n-—-l g n—1
and

n n n

so the expression S, increases with n.
In general,

1
0<u—kgﬂ+u<§u2 for u>0
and

0<u—bg@+u)< for -l<u<0

u2
2(1+u)
Let A be the lower limit of the numbers 1,1+u,1+u,.,1+u,.

2

0< [ log (1 tU,, ) < W

2
um+2

0<u,,, —log(l+u,,,)< m

2

2(i+w,)

0<u, ——log(1+un)<

By adding them, we obtain

O < (um+1 m+2 t+..t un) log{(l + um+1 ) (1 + um+2) (1 t un )}

Therefore, if we consider

1/,
/1 (u i+l +u m+2 +.. +u )

X
u. . =x, u y U, =

X
m+l m+2 5

we obtain

2
s"=x(1+—1—+...+lj—log (1+£)(1+£)...(1+£] <x—(1+iz+...+—12—).
2 n 1 2 n 24 2 n
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1 1 1
We know from Appendix 5 that l+—+—5+.+—5<2.
2° 3 n

Therefore we have that
x 1 1 X
S, <—|1+5+..+—|<—
22 2? n? A
i)
1 2 n

S, =x 1+l+l+...+ L —log P, <X
2 3 n A
where A 1is either 1, if x is positive, or 1+x, if x is
negative.
2

. x
So, §, increases and §,<—.

n

x2

1+x
Therefore, we have an increasing and bounded sequence, so §

n

Hence, S,<x’ or §,<

n

approaches a definite limit § as »n increases to .
Further, from Appendix H

n—->w n

where C is the Euler’s constant.
Therefore,

lim 1+l+l+...+l—lognj=C /
2 3

lim(xlogn—logP,) =1im{S" —x(l+%+%+...+l—lognj} =S-Cx
n—n n
xlogn—~log P, =logn" —logP, = 10g%
. n'
limlog—=S8-Cx
P

n—>o
n

X

loglimX =S -CxeR

nso P

X

So that 2—has also a definite limit; this limit is denoted

by II(x) in Gauss’s notation.
Thus
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I1(x) = lim "~ = lim "

ek, "ﬁw(r+£j(L+£]m(L+£)
1 2 n

I(x) = lim (1+x)(2+;c):..(n+x)

which, again, can be written in Weierstrass’s form,

Thus

nx ) nx
S—Cx=limlog—=log| lim— [=logII(x
nowo g B’ g[n—)oo R’ ] g ( )

1
Cx—S=log——
I1(x)
Therefore,
l =er—S
I1(x)
oS CrtimS. G st —x@+l+mlJ+bgB,
e ="M =" lime™" =e“* lime & =
n—w n—o
1 1 X X X :
. R . log| 1+= |[ 1+5 [} 1+2 X X
=ékhm[é%&e[:2 JJ:e&hm(e [‘IZJ("L”ezme"]:
n—>0 n-->ow0
X X
) X X x) _, = -2
e lm{[l+_j(1+_}..[1+_je e e n}:
n—o 1 2 n
. T X\ = = x) =
—ee [ T(1+ 57 =S (14 7
e r=1 ¥ r=I1 ¥
Thus

o

1 _x
=e&I1(L+£}z” the Weilerstrass’s form
H(x) il r

When x is positive integer, Gauss’'s form gives f“x)=x!
because

(l+x)(2n:;jc!)---("+x ) (l+n)(2f;)!,,,(x+n) ) (l;n)(zzx’i]m(x:nj :

e d )
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I1(x)=lim nn! =lim X! =x!

= (13)(2+2)...(n+x) "%(l+1)(1+2)_..(1+£j

n n n

Although we have found it convenient to restrict (1+x)
to be positive, yet this is not necessary for convergence;
and it is easy to see that the products for H(x) still

converge if x has any negative value which is not an
integer.

It is easy to verify by integration by parts that
Euler’s integral

I(1+x)= '[e"t"dt =—t'¢" ’ZO + Ixt""e"dt = xé“t";‘e"’dt =xI"(x)
0 0

F(l+x) _

F(x)
If x is an integer,
121.2.3 _F(2) F(3) F(4) F(1+x)
x!1=1.2. .m.x_1"(1)'1"(2).1“(3).'". F(x)

Thus F(1+x) has the property of being equal to x! when x is

Thus F(1+x) =xI' (x) or

an integer; and we may therefore anticipate the equation
F(1+x)=H(x)=x! for x positive integer

If we change x to x-1 in the definition of I'(l+x) by the
product P, we find that

[ (x)=TI(x-1) =1111—r)2 x(1+x)(2+x).:.(n+x—1)

but
n'n!
I'(1 =11 =1i
() =10 =l S ) ()
Therefore
F(1+x): - il 'x(1+x)(2+ic)...(n+x—l)=x1im n__.
L(x)  m=(1+x)(2+x)..(n+x) n'nl 10+ X

I'(1+x)=xT(x)
I‘(2+x)=(x+1)F(x+l)

3+x)=(x+2)F(x+2)

-

F(n+x)=v(x+n'—l)1“(x'+rvz~1)_
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By multiplying, we obtain
[(n+x)=x(x+1)(x+2)..(x+n-1)T(x)
It follows that
F(n+x)
I'(x)
and consequently the definition leads to the equation
AR} . n"'nll(x)

I'(x)=li =1
(%) e 2 (14 2) (24 1) (ntx—1) o= T(n+x)

x(x+1)(x+2)...(x+n—l) =

Because
nnl=pn"" (n—l)!n =n' (n—l)!

F(1+x)=x! , F(n)z(n—l)!

nnl= n'T(n)
we have that
['(x)=1lim nT ()L (x) =T'(x)lim nT(n)
1= F(n+x) "—>w1“(n+x)
hence n‘F(n) =1.
> F(n+x)

It i1s often convenient to write the last equation in
the form  »'T(n)~I(n+x). By reversing the foregoing

argument we see that the function F(x) is completely defined

by the properties F(1+x)=xF(x),F(n+x)~n'T(x),F(1)=1.
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EULER AND THE GAMMA FUNCTION

We know that IKx):(x—lﬁ if x is a positive integer.
To generalize the factorial function, initially defined
only for positive integers and then extended to 0!, Euler
began by multiplying by an expression equal to 1.
n+l)(n+2)..(n+N
n!=1-2-3-4-...-n.=1-2-...-n( )( ) ( )=
(n+1)(n+2)...(n+N)

(N+1)(N+2)...(N +n) _

=123 N (Ve2) (N )

2N (D) (Wen)=

—(n+1)(n+2)'"(n+A0(N-l) (N+n)
s v y (N+1)..(N+n)

(N +1)

“(n+1) (n+2) " (mtN) (N+1)..(N+n)
To unsimplify this a bit more, Euler wrote

Ni1=23.4 N
123 N
so that the above expression for n! becomes
oY 2 N (E.E.f. 'NHJH(N+1)(N+2)M(N+n)
C(n+1) (n+2) T (H+N)\L 2 377 N ) (N+D)(N+1)...(N+1)

This holds for any positive integers n and N, and Euler now
wants to hold n fixed and let N tend to infinity. He first

(N +k)

(N+1)
tend to 1 as N grows, since k is fixed. Therefore he
worries only about the first parts of the expression, up to

the exponent. To evaluate that limit he first divides by n,
then has to find the limit as N goes to infinity of the

expression for (n-1)! namely

nl_1 1 2 3 N(234 N+1)"

obsexrves that each factor at the end, of form will

123 N

n nn+tl n+2 n+3 n+N
This he rewrites as

S ol E=HI =)

Euler remarked that each factor in this last expression is
defined for any n except 0,-1,-2,-3,.. so he defined a new
function, the gamma function, by
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where z is any complex number except 0,-1,-2,-3,..
To test whether this is at all sensible, he set out to

compute F(%) by the following, indirect but ingenious

as

approach. By substituting and inverting, he expressed
1
F(Z)F(l~z)
e o) Hoesl Tk
z — — (1 z) — | ..
1 2 2 3 4 2 3
2(1-z)(1+ )(1 2-z 2+zj(g 3+sz=
3
2—-z 24z \(3-z 34z
=z(1- 1+ — - .
£(1-2) (1) 52222252222
1 :Z(L_ij+z)(2—z.2+zj(3—z.3+z]m
r(Z)F(L—Z) 2 2 3 3
Now Euler multiplied out pairs of factor to get
2 2 2
-—1—=z(1—z2) -2 1= 1-% ...,
I'(z)I(1-2) 4 9 16
an expression which he recognized as one he found earlier
for sinzwz

1
. He put in z=— and got
/4 2
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THE LOGARITHMIC SCALE AND APPLICATIONS
TO SPECIAL SERIES

Theorem. The series of positive terms Zan (a,2a,,>0)

n+l
converges or diverges with the integral J-f(x)dx; if
1

convergent, the sum of the series differs from the integral
by less than gq;; if divergent, the limit of (s,,—],,)

nevertheless exists and lies between 0 and g .
Proof:
Consider

1 1 1

—+—+—+..., where aq =n"
v 27 3° !

If p is positive, f(x)=——1;—=x"’
X

X X —p+l ¥ xl‘P -1
J.f (x)dx = Ix“’ dy == = ( )
1 1 -p +1|1 l-p
The integral to « is convergent only if p>1.
RY _1 1
lim | f(x)dx=——-=——
X0 IJ. 1_p p _1

0<lim(S,-1,)<aq,

n—>m

and the sum is then contained between 1/(p-1) and p/(p-1).

LS n"’s—1—+l
p-1 . p-1
If p=1, the integral is equal to logx, which shows that the

harmonic series is divergent.
[fat=[rlat=me =inx
1 1

We infer that the limit:

1hn(L+l+1~h“+}"—bgn)
2 3

H—>0 n
exists and lies between 0 andl1.
This limit is Euler’s constant.
OSHmL&—L)S%

n—w

Osﬁm(k+%+%+mswl—bgnjsl

n—»w n
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The value of the constant is 0.57721.. (see Chapter Two),
and will be denoted usually by C.
It is often convenient to write

1+l+l+...+l—>10gn+c
2 n

Application: 1+J—+la"+14<2

2F 32 n?
Proof:
1
Let f(n) =
Let
n n n 1-p |" nl—p -1
I =|f(x)dx=|—dx= |x"dx= =
1'[ ( ) IJ. f[ 1_p11 I-p
If p>1,
lhnL,=——L—
n—m p_l

L clims, <1 41=_2

In our case p=2, therefore
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APPLICATION OF ABSOLUTE CONVERGENCE

FOR THE SERIES i((—-l)"'l/n”)

n=1

Let ((P) ZS——— be the zeta-function and g’(p) 28( 1)_

n=1 1 n=1
its corresponding alternating series. We can express the

n-1 .
sum of the series 2:( ) in terms of the sum of the

nln
corresponding series of positive terms by the formula

ga(p)=(1 21"); for p>1.

To prove the above formula we use the fact that if a
series }:an is absolutely convergent, its sum is not

altered by derangement.

-1
Hence, because }:L—l is absolutely convergent, its

nln

sum is independent of the order of 1ts terms.
Therefore,

1 1 1 1 1 1 (1 1 1 )
——t———F—— =l =t =ttt |=
2P 3P AP &P 37 57

1 1 1 1 1 1 1
=t —t+—t+—+ -+ =gttt | =
2P oplap  Hp-lgp
1 1 1 1 1 I 1
=l+t—F—+—F+—t+. |+t —+..|=
22 32 47 5 2% 27 3°

(1)(1111)
= l-— || I+t +—+—+...
P 2P 3P 4P 5P

1
Therefore ;;(p)=(1—zp4]§(p).

1
1
271

But 1—§%~<§;(p)<1, therefore ¢(p)<
1—

So, for p=5 we have that z:——«<1 ;4 .
nln
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APPLICATIONS OF UNIFORM CONVERGENCE

An integral IF(xJQdR which converges uniformly in an

a
interval (a;ﬂ) has properties strictly analogous to those of
uniformly convergent series.
Theorem 1. If j(xdﬂ is a continuous function of y in

the interval (a,ﬂ), the integral is also a continuous
function of y, provided that it converges uniformly in the
interval (a,f).

Theorem 2. Under the same conditions as in Theorem 1,

we may integrate with respect to y under the sign of
integration, provided that the range falls within the

interval (a,f).
Theorem 3. The equation ji?f(&y)dx=?§l¥h is valid,
- dy; .0y

provided that the integral on the right converges uniformly
and that the integral on the left is convergent.

Theorem 4.If Mnf(%n)zg(xx limA, = then

n—->m

A, »
lggff(xﬁﬂdxzjé(x)dx, provided that f(Ln) tends to its limit
g(x) uniformly in any fixed interval, and that we can

determine a positive function M(x) to satisfy Lf(xJQLSAI(x)

for all values of n, whilejﬁl(&ﬁk converges.

Application. Consider the integral

o0

. . A dx
J= e—_\y e—zu _e—b.\ wr
for(ee)®
where a, b may be complex, provided that they have their
real parts positive or zero. Then J is uniformly convergent
for all positive or zero values of y.
Proof:

If we differentiate with féspect to y, we obtain

o) oD

2 SR Y. N oo e b
gy—oe'y(e —eb)?x=6|.—xe-(e —e”)7x=—6[e y(e —eb)dx:
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=‘_J'e—(.\jv+mt)dx+ J‘e—(bx+xy)dx . e—.\'(a+y)dx+ '[e—.\'(b+y)dx _
0 0 0 0

e o) [” 1 1

(a+y)’0 —(b+y)|0 a+y b+y
and this integral converges uniformly so long as y=/>0.

, a ,
Its value is therefore equal to d—, in virtue of Theorem 3
'y
above.

dJ 1 1

So,

d_y__a+y b+y
By Theorem 1, limJ=0, so that

y—>eo
Jef L1
J\aty bty

. s Y o ndx 1 1
lmJ“n(( )5 )= Ie -eb)7x=J(a+y‘z:;]dy=

0

0

=O—ln£=ln2
a

aty
b+y|,
In particular, if we write a=1, b=i, we have

o0 o0

J'(e_x_e-ix)ﬂ:w L—Ljdy=ln(l+y)—.fy2_i dy =
Y

= ln(a+y)’:)o —1n(b+y)|: =In

5 x J\d+y y+i oy +1
Ty | 1 o
=1n(1+y)—0yz+1dy+16[y2+1dy=1n(1+y)—51n(y2+1)+ztan by =
| Y +itan”' y _i
. y2+1 . 2
So, ,
T C.ondx 1,
_[(e —cosx+zsmx)——=-—m
d x 2
or
I(e"" —cosx)ﬂ= 0, Isihxﬂ=l7r
0 x 0 x
,///
pd
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INTEGRATION OF AN INFINITE SERIES OVER AN
INFINITE INTERVAL AND THE INVERSICON OF A
REPEATED INFINITE INTEGRAL

Integration of an infinite series over an infinite
interval. Many cases of practical importance are covered by
the following test:

Theorem. If ) f,(x) converges uniformly in any fixed

interval a<x<b where b is arbitrary, and if ¢(x) is

continuous for all finite values of x, then

A= o)1, () a

provided that either the integral ?M(x»{}iLﬂ(xﬂ}dx or the

series ZS?W(xﬂiﬁ(xﬂ is convergent.

Application. Show that

“esinbx b b
I ax dx: 2 2 + 2 +
se -1 a +b (2a) +b°
where a is positive, and b=p+ig, where ML:s<a.

Proof:
Since

1
‘sin (bx)‘ = [sinh2 (gx)+sin’( px)]i < coshsx < e

and the integral
0 8x
? dx
le”~1

is convergent, it follows from the Theorem above that term-
by-term integration is permissible, because the terms in
the series

1 o .
zea\+e 3ax

+e”" +...

~2ax

are all positive.
Thus we have

0 0 —ax 1
=]

Ze"‘“x = (e‘”-" )" = 1 : o e™ —1

r=1 r

dx Ii smbx)e " dx = i J‘e""“' sin bxdx
0 r= 0

r=1

ﬁnbx

°~_,8
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Let

I=|e’™ sinbxdx=—~1— smbx| +£I T cos bxdx =
; ra ra
= E(“Le'm‘ cosbaf; - fer sin bxdx] == i(i —31j
ra\ ra ra ; ra\ra ra
Thus I=———g— r=12,..
(ar) +b*
Therefore
_[Silbxdxz zb 7t f +
set -1 a +b (2a) + b2

In the case when =27, this expression is equal to
“esin bx z b
[

ax x —2_—
Je™ -1 = (2rm) +b°

We know that

1 I 1 < 2x
T A

e -1 = x"+4n 7’
So,
1 1 1 2b
=———
ee=1 b 2 ,.Z=1:b2+4r27r2
Then

>

% sinbx 1( 1 1 1
2 =J' 2rx dx:_ b_ -——+t=
ps b+(2r7r) i~ -1 2\e-1 b 2

The inversion of a repeated infinite integral. We will
prove that

X
» arctan —

Ie"}’()f [%_l_kljdt:zj._z__idx .
5 e-1 ¢t 2 e”™ -1
We know

and

_[e‘y’(—,1 —l+%Jdt= fe "y'dt Sin x1 S
e

27rr _
0
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We will show that last integral is absolutely convergent.
First, we will prove that

c]- ad a’xzﬂ

27x
0

e -1 4r
For that, we take
Q]-Sinbx =J_ 1 Z( 1):r(bx)2n+l z( l)nb2n+1°0 2n+1 7
27!\:_ " 3 (2n+l)' ar (2n+1)‘ 27rx_1

27zx
e -1

On the other hand,

“t sinbx 1( 1 1 1} 1{1 1 & B 4 11 ( 'B, ;241
—dx=— 4= 4 _n___b2n] el n
Iez""'—l 2(6”—1 b 2] (b 2 Z(Zn)! b 2] Z (2n)!

0 n=l

From the last two expression, we obtain that
© 2r-1
x B

OeZﬂ.\’_l _;'
Taking r=1, B,=%, we obtain
% |sin xt Toxt t
IIZIT\? Idx<J‘ 27y dx=—-
se -1 se -1 24
We see that ’e‘y’|=e‘§' if y=&+in.
Thus,

J- Ism xt|

2 ﬂ | as j -« dt-_:jte-ffdt:

_1_1_,”’ l? (1&] 1
12 . s E =& ) 128

which proves the absolute converge; we can therefore invert
the order of integration without altering the value of
integral, and we then find

je_y, 1 1 _) =2J— e"y' s1nxt
; e-1t 2 ¥
We proved earlier that

I= Ie""‘“ sin bxdx = +

; (ar) +5°
If r=1, a=y, b=x, ‘J‘e“'”‘sinxtdt= >
; Y +x

Therefore
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OO_' 1
(75 ) 2Ix+y @)

Now, if we write y=¢&+ip in the last equation, we can
integrate with respect to ¢ under the integral sign,

betweené, and ©; for
e_yt( 1 _l+l)<_£_e_§’
e-1 ¢t 2) 12
and so Idfj

1 1 1
Jee, ( t+§)}dt < 22 (& >0)

so that this double integral is absolutely convergent.
Similarly we find that the right-hand side is absolutely

convergent, since h2+y12§2, so that

TdE xdx 1
J-d J.lx +y! 2/r,\- j .[Zm\ -1 2450

Thus, we find the further equatlon

o1 1 1 _ * xd
(ot sl 1

5% +y

x
» arctan —

X —Vof
which gives je ( ! —l+ljdt=2

————4&ldx where =& +1
; ¢ el _1 ¢ 2 J‘ eZn’.\: _1 yO §O 77

0

136



APPENDIX L

INTEGRALS FOR logI'(1+x)

137



INTEGRALS FOR logI'(1+x)

We have proved in Appendix J above that if the real
parts of a, b are positive,

bt e -\l
log—= I(e “—e ”’)——
a t
Hence, if the real part of l+x is positive, writing
b=r, a=r+x we have.

0

- :’- - _ (e—(1'+x)l __e—u) 6“ e — , r=1,2,3,..

0
If b=n, a=1 then

log

logn= Uj(e“’ —e™ )%
0

We know from Appendix F that

F(l+x)= 'l'l-r>£1°(1+x)(2+x) (%)

Therefore

X
T il n'n! _
0g ( +x) PRt (1+x)(2+x)---("+x)

— lim| logn* + o 1-2:3-.n -
ia| 08 g(l+x)(2+x)...(n+x)

n—>m

=lim| xlogn+ ) lo
[togn+ Sios—— |

Thus we are led to consider the function

S(X,”)=xlogn+ilog : =x°]( - ‘"’ a i]‘ —xt _,,dt
r=1 r+Xx

0 r=l ¢

Now
I o e_' (1_3_"') _ l_e—nt
; = l-e' -1
so that
S(x,n)= x.f "" t y o]‘e + y u:[e e"’
r=l ¢ r=t o
iy o Tl-e™dt e dt
=xflet-e) - P T e T
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it
=8
&
£
=
aQ
—
_ |
I [ %
— 2
+
o
4
m’\
| I
— =
d
~__
s
Il

T —xe " — +

dt % 1-e"\at

¢ Ie x_-e’—l t
0

F(x)- J[

G(x,n)=— Ie—m [x_ 1e < jdt

0

I
=
®

So that,

S(x,n)= I[xe

Let

Then,
S(x,n) =F(x)+G(x,n)
It is to be observed that both in F(x) and in G(x) the

integrands are finite at ¢=0.

From Appendix D ,
1 1.1 & 2t
e,_1=“§+z 2 2_2

t it +4n'w
] X +2 X +2 x+3
l-e™ =—| —xt+ - |=xt— + -
2! 3!
Xt

_ 1 3 2
x—lte =—(x+xﬂt+ﬁ XX
e -1 2 3t 4

_ —Xt
1 x_l ’e .=l(x+x2)t+X1t+X2t2+...
t e -1 2

and similarly for the other integrand.

l-e™
x_

1
Thus, when t<1 £#,£,...t" >0 so p

some fixed value; indepeﬁdent of t; but if ¢>1, this

T cannot exceed
e_

. . e+l o ,
expression 1s less than h}k——T, because k“’<e’ (since the
e_

real part of I+x is positive).
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1 1
——<—,
e -1 e-1

e >e, e€-1>e-1,

1 l—e™
— x—
t |

Thus we can determine a value of X, independent of £, such

that
B —Xt i
l(x—l_,e J<X
t e -1
Then ‘
“ —nt X
|G(x,n)l< _[Xe dt<—
so that llmG(x n) 0.
Hence '

iogf(l+x)—lnnS(xi1 =F(x) = ﬂ: _VJ

H—>0

This integral can be divided into two parts:

o L7 (2) s
W (x):lj‘e—n[ ’1 j 2‘:farctan (y/ x)

e

the last expression follOW1ng from Appendix K.
So,

logT (1+x)=¢(x)+w(x)

arctan(y/ x)
27:\' -1

logI'(1+x) = $(x) +2 [———~

0

When £ —>o, where £=Rex, then liml//(x)=0 because ’t//(x)|<é.

Thus, when &—o, we have limy(x)=0.

It can also be proved using the Analogue of Abel’s Lemma
1

that ‘1// X ‘<—.

&

Therefore limy(x)=0, when 7o, ¢ being
kept positive.
Therefore,

R e e e e P b
Jooe -
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. °]_xe-t P

| I ) _
+ dit+=logx=] x+— |logx—(x-1) .
t N ) g ( ; 2) gx—(x-1)

We know that .
—ax -bx . b

Thus we see that, if A—1+¢(1) ’
| ¢(x) ( )1ogx x+4.
To determine A, we make use . . o _
| log(x+;j+1og1"(x+1)+2xlog2 logl“(2x+1)=%log.7r .
Thus we have, since liniy (¥)=0 | C
lir_n{ﬁ x—5)+¢('x)+2xlog2—‘¢(2'xi):lk=%logﬂ ,
which‘give_s, on >inserti)ng the vélue,- of ¢(x),

lim A+vxlog(1——l—j+l—llog2 =llog7r
i 2x) 2 2 2

or
A= %log (2r) .

Thus we .can write
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