
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2004

Mathematical security models for multi-agent distributed systems Mathematical security models for multi-agent distributed systems

Chunyan Ma

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Ma, Chunyan, "Mathematical security models for multi-agent distributed systems" (2004). Theses
Digitization Project. 2568.
https://scholarworks.lib.csusb.edu/etd-project/2568

This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2568&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2568&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/2568?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2568&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

MATHEMATICAL SECURITY MODELS FOR MULTI-AGENT

DISTRIBUTED SYSTEMS

A Thesis

Presented to the

Faculty of

California State University,
i

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in '

Computer Science

by’

Chunyan Ma

December 2004

MATHEMATICAL SECURITY MODELS FOR MULTI-AGENT

DISTRIBUTED SYSTEMS

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

i

by '

Chunyan'Ma

December 2004

Date

1

I
I

© 2004 Chunyan Ma

1

I

ABSTRACT
I

This thesis presents 'the developed taxonomy of the
I

security threats in the agent-based distributed systems.
I

Based on this taxonomy, a jset of theories is developed to

facilitate analyzing the security threats of the mobile-

agent systems. We propose ithe idea of using the developed
I

security risk graph to model the system's vulnerabilities.
i

In a security risk graph, 'an agent or a host is a vertex
!

and their security relationships form each edge. By using

the security risk graph, wp set 'up two mathematical models
i '

to quantitatively evaluate) how secure a mobile-agent
I

distributed system is. i ,
' i

In the probabilistic model,, we calculate the Meani
Time To Failure as the characteristic measure of the

;

security between any two vertices. The Mean Time ToI ■
Failure represents the approximate time used by the

attacker to break into the'target.
i

In the second mathematical model developed in this
I

research, we calculate thejtransition time on the shortest

path between any two vertices to evaluate the approximate
I ,

time for the attacker to reach the target. The diameter of
I

the whole system is used td represent the security measure

of the entire system. In tliis way, we can compare the
i

security level of different! systems.

iii

I

ACKNOWLEDGMENTS

As I approach the completion of this thesis, I cannot

help looking back and express my gratitude to those who

have helped me to make all; these possible.

Many deepest thanks go to my thesis advisor, Dr.
Arturo Concepcion, for hisj always support and guidance.

Thank you for believing in and helping me especially in
1those times I struggled to, continue. Your encouraging

words, valuable advice and unending ideas have inspired me
i

finding solutions to what seems,an impossible work.
I

I would also like to [thank ;my thesis committee
i ,

members, Dr. Owen Murphy aJnd Drj Kay Zemoudeh. Thank you
1 ,

for your continuous support and'valuable advice.
1 I

I would like to thankj Dr. Tonglai Yu. Thank you for

your sincere help and support.

Thank you for the warm-hearted assistance and support
I [

the office staffs of -the Department of Computer Science
i

have offered to me. I
I

The award from the Instructionally Related Programs

Research and Travel Fund and the Associated StudentsI
Incorporated Research and Travel Fund are gratefully

}
acknowledged. The support of the National Science

i
Foundation under award 9810708 is gratefully acknowledged.

iv

]

A special thank goes |to my family. To my dear parents,
I

who have been the sources |of my inspiration, insistence
Iand strength. j

Finally, special thariks give to all of my dear

friends for your continuous inspiration, encouragement,
ihelp and support. j

v

table! of contents
ii

iv

ii

ix

1

4

8

9

10

12

14

15

22

26

27

30

38

ABSTRACT................. 1............................. i
!

ACKNOWLEDGMENTS.......... !.............................I
LIST OF TABLES........... I. vi

LIST OF FIGURES.......... |.............................I
CHAPTER ONE: BACKGROUND iiI

1.1 Introduction ,............................i
. I1.2 Related Works . . . ;............................

i1.3 Purpose of the Thesis

1.4 Context of the Prpblem
I

1.5 Significance of the Thesis

1.6 Organization of the Thesis1
CHAPTER TWO: OVERVIEW AND THE TAXONOMY OF THE

SECURITY THREATS IN THE AGENT-BASED
SYSTEMS ' 1

i
2.1 Introduction '.... 1......................

1 1
2.2 Overview of the Security Threats in the

Agent-based Distributed Systems
2.3 A Taxonomy of the]Security Breaches in

the Mobile-agent ^ysterns

CHAPTER THREE: A PROBABILISTIC MODEL FOR AGENT-
BASED DISTRIBUTED SYSTEM SECURITY
THREAT EVALUATION

l
3.1 Introduction....].......................... ,.

i
3.2 Introduction of tljie Security Risk Graph

3.3 Security Risks AnalysisII
3.4 Mathematical Quantification for Security

Assessment...... I...........................
i
i .: vi

453.5 Illustrative ExampleI ' -
CHAPTER FOUR: DESIGN OF A 'MATHEMATICAL MODEL FOR

SECURITY MEASURING OF AGENT-BASED
DISTRIBUTED jSYSTEMS

4.1 Introduction ■ ■ • ■ j............................ 53
t

4.2 An Advanced Security Model for Security
Evaluation..... >............................ 54

4.3 Quantification Algorithm for Security
Measurement.... j............................. 56II

CHAPTER FIVE: CONCLUSIONS AND FUTURE DIRECTIONS
i

5.1 Conclusions.... 1............................ 85
i

5.2 Future Directions^........................... 89
i

REFERENCES............... !..... i.......:.............. 90I

I

II

!• vn

I

LIST OF TABLES

Table 1.
Table 2.

Table 3.

Summary of Related!Works 7
j ;

List of the Security Risks for the
Agent-to-host Scenarios 17
List of the Security Risks for the Host-to-agent
Scenarios......

Table 4. List of the Security Threats for the
Agent-to-agent Scenarios

19

20
Table 5 List of the Security Threats for the

Agent-to-network Scenarios 21
Table 6. Transition Time, its Corresponding Time

in Weeks, Transition Rate and Graph
Representation. ... J........ 46

Table 7. Part of the MTTF Results, (in Number of Weeks)
Calculated by Using the Proposed Method 52

I viii

LIST!OF FIGURES

Figure 1. Taxonomy of the Security Threats for the
Agent-based Systems............................

Figure 2. An Example of a Security Risk Graph with
Edges Labeled by Security Threats..............

Figure 3. Security Risk Graph Example for Agent-based
System......... J.............................

Figure 4. Security Risk Graph Analyzed the Security
Risks of the Hostih

Figure 5. Security Risk Graph for Agents on the
Platform J............................1

Figure 6.
1

Security Risk Graph for B2 as the Starting
Point and Bx the Target........................

Figure 7. Security Risk Graph for,A as the Intruder
and B as the Targdt . . . j . ..

Figure 8. 1 iSecurity Risk Graj/h for Edge from One Vertex
Goes Back to its Parent Case1

Figure 9.
1

Security Risk Graph for Edge from One Vertex
Goes Back to its Ancestor CaseI

Figure 10 . Security Risk Graph Example with Weight
Demonstrated in Different Line TypeI

Figure 11 . Markov Graph for |B2 as the Attacker and A2 as
the Targetj................. '..........

Figure 12 . Simplified Markov) Graph for Figure 11 by
Using Theorem 2 ahd Theorem 3

Figure 13
1

. Simplified Markov! Graph for Figure 12 Labeled
by Transition Tim'es1

Figure 14 . Graph Showing Shortest Paths for B2 as the
Initial Vertex. . .1............................1

Figure 15 . Graph Showing Shortest .Paths for Ax as the
Initial Vertex. . J.............................I

Figure 16
1

. Graph Showing Shortest Paths for A2 as the
Initial Vertex. .. 1............................

24

30

32

35

37

40

41

43

44

48

49

50

58

62

66

69

ix

Figure 17 . Graph Showing Shortest Paths
Initial Vertex......1

for Bi as the
. .73

Figure 18. iGraph Showing Shortest Paths
Initial Vertex..i...

for b3 as the
. .76

Figure 19.
i

Graph Showing Shortest, Paths
Initial Vertex. .'J......... .

for Di as the
. . 80

Figure 20 . Graph Showing Shortest,Paths
Initial Vertex. .J......... '.

for hosth as the
. . 83

i XII

CHAPTER ONEI
BACKGROUND

i1.1 Introduction
I

Over the years computer systems have successfully
i

evolved from centralized mpnolithic computing devices

supporting static applications, into client-server
i

environments that allow complex forms of distributed
I

computing due to the advances in communication technology
I

and the occurrence of more'powerful workstations. A new

phase of evolution is now under way in which complete
i

mobility of cooperating applications among supporting
I

platforms can form a large iscale, loosely coupled
i

distributed system. The mobile software agent is a new
i I

paradigm for structuring this new phase. A mobile agentI
[15] is a program that represents a user in a computer

I
network, and is capable of migrating autonomously from

node to node, to perform sopie computation on behalf of the

user. Its tasks are determined by the agent application,
I '

and can range from online shopping to real-time device
1

control to distributed scientific computing. ApplicationsJ
can inject mobile agents into a network, allowing them to

I
roam the network either on a predetermined path, or one

that the agents themselves determine based on dynamically

1

I

gathered information. Having accomplished their goals, the
I

agents may return to theiri "home site" in order to report
i

their results to the user. I
j

Dispatching the application to other computers i'n the
i

network can reduce the network communication overhead,I
provide access to more resources and introduce

concurrency. Despite its many practical benefits, mobile
I [_

agent technology results in significant new security
I

threats from malicious agents an,d hosts. A malicious agentI
can steal or corrupt information on its host and in other

agents as well. It

host from stealing

its states or even

security problems

is even[more difficult to prevent a

the information from an agent, changing
i |

killing jit. Therefore, solving the

of multi-[agent' distributed systems is
I

crucial for fully utilizing its advantages. Many efforts

[5, 7, 9, 10, 11, 12, 14, lj5.
I

16’, 18, 19, 22, 23, 24, 25,

26] have been made in this iarea.'However, as of this1 1
Iwriting there is not much work done for a quantitative
I i

evaluation on how secure an1 agent-based distributed system
I ' '

is. Most mobile agent proje'cts provide one or more

cryptographic methods to prjotect the agents or the hosts

directly. Are these methods] effective? How effective are

they? And how safe one system's deployment of a set of

security methods compared with another one, which has a

2

I
I

different set of security (infrastructures? These questions
ii

cannot be easily answered ^without a quantitative security
i

measurement of a system. Citations [1], [2], [6], [13],

[17] include the few attempts to quantitatively measure

the security of the distributed system. Among them, Chan
I

and Lyu [2] is the only paper that proposed a mathematical
I

model to calculate the probability of security breaching

in mobile agent scenarios / In this thesis, we develop the

taxonomy of the security threats in mobile agent-based
|distributed system. Based bn the analysis of the differenti

security' threat situations J that 'occurred in a mobile agent
‘ i

system, we derive probabilistic and further a mathematical
■i

security model for quantitatively evaluating the security
of an agent-based distributed system.

In this research, we use security "risk" and "threat"I
alternatively. The security "risk" is the product of the

i
level of threat with the level of vulnerability. It

i
establishes the likelihood lof a successful attack. And the

security "threat" is a potential for violation of
i

security, which exists whenj there is a circumstance,

capability, action, or event that could breach security

and cause harm. So we use "threat" when we mention the
i

potential violation of security and use "risk" when we

want to express the measurement of the security.

3

1.2 Related WorksII
Presently the security schemes of the most mobile-

agent systems address only the problems of protecting a
I1 I

machine from malicious agent and agents from each other. Ai
growing number of mobile-agent projects are experimenting

with techniques for protecting the underlying network from

malicious agents and protecting agents from machines [10,

20, 24, 25]. While most efforts in security fields are

devoted to cryptographic or isolation methods in
I

protecting the systems, there is an urgent need for a
j !

quantitative assessment tool to 'evaluate how effective

these methods are. There has been research which
J i

concentrates on quantitatively eyaluating the security

level of a system [1, 2, 6,1 13, 17] .
’ i

Brocklehurst, S. and Olovssdn, T. [1] is the first

one who proposed the idea to evaluate how secure a system

is quantitatively. Their goal is' to develop a security
I

measure of a system which can quantitatively represent the
I

ability of the system to resist attacks. It relates the
1

system security with reliability.. The concepts of system
I

reliability are compared with and analogous to those in
I

security, such as, system failure vs. system breach and
!

the mean time to next failJre vs. mean effort to next

breach, etc. By analogy with the reliability function, in

4

I

■Ithe stochastic process of security breach, the
I

distribution function of the effort, e, required for next

breach is

F(e) = 1 - P(E >e) ,

where E is the mean effort to failure,IIP(E > e) is the probability of the mean effort to
Ifailure greater than the effort required for the next

breach. !
I

Continuing the work in Brocklehurst, S. and Olovsson,
I '

T. [1], Jonsson, E. and Olovsson, T. [13] conducted an
I

empirical intrusion experiment to demonstrate the typical
i

attacker's behavior. They divided the attacking processI
Iinto three phases: the learning phase, the standard attack

phase and the innovative attack phase. The probability of

successful attacks during the learning and innovative
I I

phases are small. But it is considerably higher in the
I

standard attack phase. And The collected data shows the

times between breaches during this phase are exponentially

distributed. This implied tjiat traditional methods for
reliability modeling could 'be applicable to the security

evaluation. '
Based on the theories developed in Brocklehurst, S.

and Olovsson, T. [1] and Jonsson,' E. and Olovsson, T.
I[13], Dacier, M. et. al. [6] proposed using privilege

graphs to model the system;'s vulnerabilities and

calculating the characteristic measures of the distributed
I

system security. The most important measure of the system1
security is Mean Time To security Failure, which is

I
calculated by: j

I
MTTFk = Tk + S Pkl * MTTFki; Pkl = Zkl * Tk,

I
where k is the initial states,i ,
Pki is the conditional’ probability transition from

Istate k to state 1, '1 I
Tk is the mean sojourn time' in state k,

I '
Xki is the transition rate from state k to state 1.i
Using the ideas developed in [6], Ortalo, R. et. al.

[17] conducted an experiment for security evaluation. They

modeled a large real system as a privilege graph

exhibiting the security vulnerabilities. A set of tools

has also been utilized to calculate the Mean Time to

Failure. They found that the corresponding measure

provides useful feedback tel the security administrators.

However, the security measure can not be always computed
1

due to the complexity of the algorithm.1I
As summarized in Table! 1, nearly all the works done

i ,
in this area are for the traditional distributed systems.i
Chan and Lyu [2] is the only one. who tried to model the

security of mobile agent system probabilistically. Iti

! 6I .

proposed the idea about coefficient of malice ki of each
Ihost and coefficient of vulnerability of an agent v and
I

used them to calculate the probability of breaches on

agent when it travels around on each host as
j

P(breach at host i) =i 1 - exp(-Xi t±) ,i
where -Xi = vki,

Iiti is the amount of time during which the agent stays
i

on host i. [
i

The agent security E is the probability of no breach
I

at all hosts in its itinerary,

E = e -S-Xiti

Table 1. Summary of Related Works
Security model for ,

11traditional distributed
1

system

Security model for

mobile agent-based

distributed system

Dacier et. al. in [6] j
1

Chan and Lyu in [2]l
Jonsson and Olovsson in

[13] l
1

1

7

I1

1.3 Purpose of the Thesis
i

With the explosive development of networking and
I

powerful workstations, the] agent-based distributed system

technology is becoming morb and'more promising. There is a

great advantage if we can [collect the computer's idle

processing resources by sending out agents also brings
iabout very serious security problems to us. How can we

distinguish an agent from a virus? How much privilege
i

should we grant to the agents running on our computers?

What if the computer destroys the agents running on it?

These are only a few questions among the scores of
i

difficulties come with fascinating mobile agent technology
J i

Thus it would be ideal if we can find a way to
i

quantitatively evaluate how safe an agent is or a host
j

computer is. As discussed in the previous section, we can

see that most of attempts to quantitatively evaluate a

system are for the traditional distributed systems. While

[2] is the only effort,to evaluate the security for theI
agent-based systems, it does not consider the breaches

caused by a malicious agent on the host, on other agentsI
and the underlying network' Also' due to the complexity of

] i
the agent-based system, the question of how to get the

I [
coefficient of malice and vulnerability in [2] seems to be

J]
vague and impractical. The|purpose of the thesis was to

8

I

develop a more practical security measure for the mobileI
agent-based distributed system. This measure can

quantitatively represent the ability of the agent-based

system to resist security attacks.

i
1.4 Contexjt of the Problem

From the empirical data collected in [13], we know
i

that most security attacks' occurred during standard attack
I-

phase. So we are concentrated on the security breach
I

behaviors in this phase. 1i
iThe second model developed 'in this thesis is mainlyi
idesigned for the system administrators who can use this

model to evaluate the system's vulnerabilities. We assume
i j

the system administrators know the topology of the whole
I

system. Thus they can use this model to monitor the
I

security of the systems mobe efficiently. If this model is

used for simulating the behavior of the real attackers, we
I

also assume that the attackers have some ways to be
I j

familiar with the distribution and connections of the

whole system before they strart to launch any attack.

Although our work comes along with theoretical proof,
i

this thesis just proposes the mathematical evaluation
imodels. Future work needs to be done to test its

feasibility on real mobile lagent-based distributed systems.
I

9

1.5 Significance of the Thesis

The agent-based systems have become more and more
!

attractive because this technology can provide us with
I

more flexibilities and abilities to solve wider range of

problems, some of which are not even solvable by using the
i I

1
classical methods. For example, in the sea-of-data

t
applications, a huge amount of information is distributed

i

among different locations.iThe information that is needed
i

by other programs can never leave these locations. Due to

the reasons, such as the ratio of the volume of
t

information and the available bandwidth, the way in which

the information is stored or the1 legal issues(like medical

images in hospitals), the program cannot fetch the

information back and process it.1 When we are in this kind
I

Iof scenarios, agent technology seems to be the only
Jsolution. The price we need to pay for this advanced
i ,

technology includes new sets of problems concerning the
security. The security problem becomes even harder in the

mobile-agent systems, where agents are not static and can
i

migrate from one environment to another to continue the
)

execution instead. 1

Currently, the. majority of the research efforts havei
been emphasized the development of safer architectures or

I
cryptographic applications to tackle the security issues

/z

10

that arise in the mobile-agent systems. But at the samei
time we also desperately njeed a method to evaluate the

iefficiency of those security architectures or systems of
cryptographic applications’. This method should be able to

■iIprovide quantitative measures indicating the security

level of each cryptographic application deployed in
1

mobile-agent systems. With]this method one can tell a

system of cryptographic application works better than

another by comparing thesejmeasures. The aim of this

research is to develop a security model to measure the
i'

security threat of a given [agent'-based distributed
[

computing system and each element in the system.
iI

This research also provides, a taxonomy of the

security risks in mobile-agent distributed systems. This
taxonomy not only helps to jgive a clear view of the

security threats in an agent-based system, but also serves
i

as the basis of the development of our probabilistic model
1

of agent-based system's security measurement.
I

The most significant Contribution of this thesis is

that it proposes a novel concept of security risk graph
i

and uses the security risk Jgraph, to model the security

threats in the mobile-agentj distributed system.

At the time of this writing/ there is only one paper
about security evaluation oif the agent-based distributed

i 11

systems published by Chan and Lyu [2] . As discussed in the

related works section, due to the complicated nature of

the mobile-agent distributed systems, their model seems to

be limited in scope. There is also lack of rigorous proofs

which support the claims in the 'paper. To overcome all

these shortcomings, we provide a set of theories along

with proofs to the validity of the model developed in this

paper. Therefore, this thesis is the first attempt to

present a complete theoretical security measurement model

for the mobile agent-based distributed systems. Using this

model, we can get a quantitative measure to indicate how

secure an agent or a host is. Also as the first attempt in

this field of study, we can evaluate how secure the whole

system is.

1.6 Organization of the Thesis

The thesis is divided into five chapters. Chapter One

provides an introduction to the context of the problem,

related works, purpose of the thesis, and significance of

the thesis. Chapter Two consists of an overview and the

taxonomy of the security threats of the agent-based

distributed systems. Chapter Three presents the

probabilistic model for agent-based system security

evaluation. Chapter Four provides an advanced mathematical

12

model for the security measurement of the mobile-agent

systems developed in this thesis. Chapter Five gives the

conclusion and future directions of the thesis. Finally,

the references for the thesis are presented.

1

13

CHAPTER TWO

OVERVIEW AND THE TAXONOMY OF THE SECURITY

THREATS IN THE AGENT-BASED SYSTEMS

2.1 Introduction

There are many advantages in using mobile-agent

systems. By using agent technology, we can move the code

to the remote data to avoid the difficulty of moving the f
data, especially when the data volume is very large. We

can also send out the agent to access the remote resources

without keeping the network connection alive all the time.
i
i

This is very useful when we have* weak or expensive networkI
links. Task parallelization and allowing the scalability

of processing the information are two other benefits of

using agent technology. These merits of agent technology

are very important in the areas of telecommunication and

massive information processing. However, more security

threats emerge along with this new technology. Some of

them are inherent in agent's nature and many are due to

its mobility. Classic concept of security to support

reliable system protection is based on the traditional
1

taxonomy of the security threats. It is difficult to study

the protection issues in the new mobile-agent scenarios.

So in this chapter, we are going to focus on the security

14

issues in the mobile-agents systems and develop a security

threats taxonomy on which we base our security model in

this new paradigm.

2.2 Overview of the Security Threats in the
Agent-based Distributed Systems

From the point of view of consequence of the security

breaches, the traditional taxonomy of security threats

identifies three main categories [11, 21] as:

confidentiality, integrity and availability.

• Confidentiality is violated when unauthorized

principals can learn protected information. It includes 3

subcategories of threats, they are: anonymity,

traceability and traffic analysis. Common confidentiality

breaches are eavesdropping, password guessing,

masquerading or no password protection, etc.

• Integrity is infringed when unauthorized principals

modify information. The frequent integrity threats are

having improper write access, such as the ability to

intercept or alter the information, or interference with

the communication, etc.

• Availability is breached when the system is

prevented from performing its intended function. Some

common availability security risks are taking all the CPU

15

cycles to denial of service or jamming the communication

channel, etc.

From the point of view of relationships between the

actors in the mobile-agent systems, there are four main

categories identified [15] : threats occurred when an agent

attacks an agent platform; when an agent attacks against

other agents; when an agent platform attacks an agent, and

when an agent attacks the underlying network.

• The agent-to-host category includes the set of

threats in which agents exploit the security weakness of
Ian agent platform to launch attacks against their hosts. A

malicious agent may steal or destroy the information on
I

the host. It can also masqueradei as another agent to the

platform. Because the incoming agent has access to the CPU

cycles and file systems of the host, it can install a

virus or launch denial of service attacks to the host. In

Table 2, there is a list of possible types of attacks we

identified for the agent-to-host scenarios.

16

Table 2. List of the Security Risks for the Agent-to-host
Scenarios

Security threat type Threat's behavior

Masquerade An unauthorized agent claims
the identity of another
agent

Resource exhaustion An agent can consume an
excessive amount of the
platform's computing
resources

Intercept/alter An unauthorized agent
obtains or change the data
or code of the host

Eave s dropp ing An unauthorized agent can1
monitor the communication of
the host and obtain the
confidential information

Repudiation An agent participated in
somp transaction with the
host and later denies that
transaction took place

• The host-to-agent category represents the threats

where platforms maliciously attack the agents running on

them. Since the host controls every step in the execution

of the agent, it can easily eavesdrop on the agent's

communication with other agent or hosts, filch

information, modify the code or state, masquerade as

another platform or deny the services to the agent. As

17

f

I
I

shown in Table 3, we have a list of possible types of•I
attacks we identified when a platform launches attacks to

the agent(s).

• The agent-to-agent category represents the set of

threats in which the agents exploit security weakness to

launch attacks to other agents. An agent participating in

a transaction or communication may repudiate the result by

claiming .the transaction or communication never happened.

An agent may also masquerade as .another agent to gain some

agent's trust. Or an agent may interfere with other agents

by eavesdropping the conversation or falsifying another

agent's data or code. An agent can launch denial of

service attacks by repeatedly sending messages to another

agent too. In Table 4, we find a list of possible types of

attacks when an agent launches attacks to other agents.

18

Table 3. List of the Security Risks for the Host-to-agent
Scenarios !

Security threat type Threat's behavior

Masquerade A platform pretends to be
another platform to an agent

Resource exhaustion A host deliberately consumes
a resource of an agent so
heavily that the service to
other users is disrupted

Intercept/alter A host can change, delete, or
substitute data, code or in
particular, the itinerary of
the agent(s) running on it

Eavesdropping A host can monitor the1
communication of the agent
and obtain the confidential
information

Repudiation A platform participated in
some transaction with the
agent and later denies that
transaction took place

Killing an agent A malicious platform destroys
the running agent on it

False system calls
return values

A host returns the wrong
values for the system calls
initiated by the agents
running on it

Replay A copy of previously sent
agent is retransmitted for
malicious purpose

19

Table 4. List of the Security Threats for the
Agent-to-agent Scenarios

Security threat type Threat's behavior

Masquerade An unauthorized agent claims
the- identity of another
agent

Resource exhaustion An agent deliberately
consumes a resource of other
agents so heavily that the
service to other users is
disrupted

Intercept/alter An agent can change, delete,
or substitute data, code of
the]other agents

Eavesdropping An agent can monitor the
communication between the
other agents and obtain the
confidential information

Repudiation An agent participated in
some transaction with the
other agents and later
denies that transaction took
place

Replay A copy of previously sent
agent is retransmitted for
malicious purpose

Killing an agent An unauthorized agent has
the possibility to end the
life of other agents

20

• The agent-to-network class represents the set of

threats in which the malicious agents get control of the

underlying network and attack the normal communication of

the network. An agent may consume excessive resources in

the network by roaming through the network forever or

creating endless children to exhaust the network

resources. As shown in Table 5, we have a list of possible

types of attacks identified when an agent launches attacks

to the underlying network.

Table 5. List of the Security Threats for the
Agent-to-network Scenarios

Security threat type Threat's behavior1
Masquerade An unlauthorized agent claims

the identity of another agent
Resource exhaustion An ag'ent deliberately consumes1

a resource of the underlying
network so heavily that the
service to other users is
disrupted

Intercept/alter An ag'ent can change, delete,
or substitute data, code
transmitted through the
underlying network

Eavesdropping An agent can monitor the
communication traversed
through the network and obtain
the confidential information

21

2.3 A Taxonomy of the Security Breaches in the
Mobile-agent Systems

As we can see from Tables 2, 3 and 4, for the mobile-

agent systems, we have a new type of security threat-
■1

repudiation, i.e., when one party to a communication

exchange or transaction later denies that the transaction

or exchange took place. Since the repudiation relates with

the trust and credit history, we name a category of

security threats to which it belongs as creditability.

Therefore, now we have four categories of security threats

in the agent-based systems from the point of view of the

consequence of the security breaches. They are:

confidentiality, integrity, availability and

creditability. Here we define the creditability as

following:

• Creditability is violated when principals deny

having performed a particular action. The most common

breaches of creditability is repudiation and using some

programs owned by others, etc.

The basic elements in a mobile-agent distributed

system are the agents and the hosts. The hosts along with

the underlying networks are the basic environment for the

agents to execute. A host consists of a directory service,

an agent manager and a message transport service.

22

Agents are software units executing on the hosts on

behalf of their owners. Agents can be mobile or static,

depending on the need of the agent's tasks.

Based on this structural characteristic of the agent-

based systems, we can partition the security threats into

two broader categories. As shown in Figure 1, security

threats can be towards the host or towards the agent. They

both have two subcategories as shown:

• the security breaches towards the hosts:
I

• the malicious agent against agent platform
I

• against the underlying networkI
I• the security breaches towards the agents:
I,

• the malicious host against agent

• agent against other agents

I
I

23

Security threats
. in agent system

Figure 1. Taxonomy of the Security Threats for
the Agent-based Systems

For each subcategories of the security threats, it

also violates one of the four security requirements from

the point of view of the consequence of the security

breaches except for the agent-against-network category. As

shown in Figure 1, the agent-against-network category will

not violate the creditability security threat. If an agent
has used the network to transfer'information through the1
network connections, it has no possibility to deny that it

has used the service.

24

From the taxonomy in Figure 1, we can develop the

security model by differentiating the security risks of a

host from those of an agent.

I

25

CHAPTER THREE

A PROBABILISTIC MODEL' FOR AGENT-BASED

DISTRIBUTED SYSTEM SECURITY THREAT EVALUATION

3.1 Introduction

Based on the taxonomy of security threats in the

mobile-agent distributed systems, we design a

probabilistic model for evaluating the security threats of
I

the agents and hosts in the agent-based distributed

systems.

Even though Chan and Lyu [£] have attempted to

evaluate the security for the agent-based systems, their

consideration does not include the security threats of

agent-against-host, agent-against-agent and agent-against-
I

network scenarios. Also the concepts of the coefficient of
i

malice and vulnerability in Chan'and Lyu [2] are not well

defined in how to obtain the coefficient of malice andI
vulnerability is not clear. In this chapter, we develop a

probabilistic security model in which all of the 4

security categories identified in the mobile agent system

are taken into consideration. We.develop the security risk
I

graph and use it to set up a probabilistic model to
i

evaluate the security of the mobile-agent systems

quantitatively. i

26

3.2 Introduction of the Security Risk Graph

The basic idea is to use a graph to describe the

security threats that exist in an agent-based system.

Graphs are used because they are well defined

algorithmically and mathematically. The notations used in

graphs are well known and easily adapted to the model we

developed. We start by giving list of fundamental

definitions. A security risk graph consists of a set of

vertices and edges.

Definition 1. A vertex of a security risk graph is an

agent or a host in the agent-based distributed system.
I

Definition 2. An edge in a .security risk graph is an
I

arc from vertex X to vertex Y, represented as (X, Y).

An edge starts from vertex X and ends at vertex Y in

the security risk graph means that a method exists for X

to launch attack to Y.
J

Definition 3. A security threat of type r exists from

vertex X to vertex Y means that there exists a method for

vertex X to perform a type r attack to vertex Y.

For each type of security threat, there is an average

access time to associate with it'. We call it the

transition time of a specific type of security threat.

27

Definition 4. Transition time is the time needed for

a specific type of security threat r to succeed from one
vertex to the next vertex. '

Definition 5. Transition rate is the success rate of

the corresponding attacks, defined as the inverse of the

transition time t of the corresponding attacks.

Here the transition time or the transition rates from

one vertex to another are the parameters we need to know

before we can do our probabilistic evaluation. They can be

obtained from the statistical estimation of agent's and

host's profiles based on the analysis of the agents' and
1

hosts' behavior and of their interaction with each other.

By observing the system, we can get the transition time

(which is the inverse of transition rate) indicate how

hard for one node to perform one particular attack to

another node and assign that value to the same kind of

attack identified from the system we want to analyze.

Definition 6. The weight of each edge is the

transition time of each edge.

Definition 7. A directed path in a security risk

graph is a sequence of vertices ialong with the edges in

between of them such that, for any adjacent pair of edges

ei and e-j, the ending vertex of ei is the starting vertex
I

of ej. In this thesis we call a directed path as path.

28

We can now define the security risk graph, which we

can use to model the security threats in an agent-based

distributed system. 1

Definition 8. A security risk graph of an agent-based

distributed system is a directed and weighted graph G(V,E,

W) where V is a set of vertices,, W is the set of weights

and E is a set of edges between the vertices E = (w(u,v) |

u, v G V, w£W, u ± v} .

Figure 2 shows an example of a security risk graph.

A, B, C, D and E are the vertices and the edges are
1

labeled by the security threat tiypes. Note that only when
I

a path between an attacker and Ja target exists, is there

a possibility that a security breach can occur. For
(

instance, as illustrated in Figure 2, B cannot gain any

access to E. So B cannot be a potential attacker to E.

By formalizing this intuitive idea, we can get the

following lemma.

Lemma 1. A security threat exists from one vertex X

to another vertex Y whenever there is a path that starts

from X and ends at Y.
I

Proof: Let us consider contrapositive statement of this

Lemma. That is, "If there is no path starts from vertex X

and ends at Y, there exists no security threat from vertex

X to Y". Since we know this reciprocal statement holds

29

1) X can read files from Y (intercept);
2) X can guess Y's password;
3) X can get hold of Y's CPU cycle;
4) Y has no password;
5) Y uses a program owned by X.

I
Figure 2. An Example of a Security Risk Graph with Edges

Labeled by Security Threats

I
and the proof follows, we deduce' that Lemma 1 is true. □

I
3.3 Security Risks Analysis

Based on the taxonomy of the agent-based system

vulnerabilities, we can deal with the security situation

for a host and an agent separately.

Combine the security risks related with agent against

host and agent against the underlying network, we can

analyze the security risks a host needs to consider. As

shown in the example in Figure 3, the security risks

labeled in the numerical values and a prime are the

security breaches to the host. Thus when we analyze the

30

J I
security risks of a host, we can discard all the edges

from the host to agents and some of the edges between

agents that do not count for attacking the host and the

underlying network.

We find that the masquerade is a tricky type of

security threat. Since both the agent and the host can

masquerade as another one in the same kind. When vertex X

masquerades as another vertex Y to a third vertex Z, is it

an attack to Y, or Z or both? An example can be seen in

Figure 3. In this example, agent' Bl can masquerade as

agent Al to the host. So that this attack is toward agent

Al only, the host only or both is a question. To solve

this problem, we need to provide more notations and

definitions.

, Definition 9. We call vertex X equals vertex Y if

vertex X's behavior looks the same as vertex Y's behavior,

denoted as X = Y.

Definition 10. Masquerade is the act of imitating the

behavior of vertex X to vertex Y under false pretense,

denoted as X(Y).

I

31

1

1) X can guess Y's password',■
2) X can eavesdrop Y's communication with others;
3) X has write access to Y .(alteration);
4) X can masquerade as another platform to Y;
5) Y uses a program owned by X;
6) X can repudiate the result from Y;
7) X can copy and replay Y's information;
8) Y has no password;
9) X can deny the service to Y;I
1') X can read files from Y;
2') X can write files to Y;
3') X can get hold of Y's CPU cycle;
4') X can get hold of network resources;
5') X can masquerade as another agent Y to the

platform.

Figure 3. Security Risk Graph Example for Agent-based
System

32

From Definition 9 and Definition 10, we know when

vertex X masquerades as Y, its behavior looks the same as

Y's behavior, that is X(Y) = Y. '

Definition 11. The behavior of B as seen by C is

denoted as B y C.

Unlike other kind of security threats, masquerade is

a very special type of security 'threat because it has the

following characteristics. 1

Masquerade Transition Law: '

If Entity A can masquerade as Entity B to Entity C, then
I

that is an attack from Entity A to Entity C.
i .

Proof: To C, Entity B is as itself, so B y C = B.i
l

When under masquerading, Entity A acts as B, so A y C =
I

A(B) y C = B y C, 1I
because A(B) = B. 1I
So we have ByC = AyC = B. ,

Because A behaves itself to Entity C under the name of B,

to obtain the privileges of C, so that is an attack from A

to C. □

Saying that masquerade is special is because other

types of security threats do not necessarily have this

feature. For example, If vertex A can intercept the

information of vertex C, vertex B can also intercept the

33

information of C, then A is not necessarily definitely

able to intercept the information of C. Based on this

Masquerade Transition Law, we can get and prove the

following lemma.

Lemma 2 . If a vertex A can masquerade as another vertex B

to the third vertex C, then this, is a security risk from A

to B, also a security risk from A to C.

Proof: First to prove this is a security risk from A to B

is trivial. Because A masquerade as B, whatever A does

has affected B's reputation. So, it is an indirect
I

security risk from A to B.

Also by using the masquerade transition law, we know it is
i

a security risk from A to C. □ 1
I

Take Figure 3 as an example1, agent Bl can masqueradeI
as agent Al to the host. So that1 is a security risk to

agent Al and to the host as well1. By using Lemma 2, we can

leave agent Bl in the graph for the analysis of the

security risks for the host. Because we discover an agent

could masquerade as another agent to the platform. We

regard it belongs to the security risks a host needs to

face, also as a security attack form between agents.

Then we can isolate the security risks the host will face,

see Figure 4.

34

1) X can read files from Y .(intercept) ;
2) X can write files to Y (alteration);
3) X can get hold of Y's CPU cycle;
4) X can get hold of network resources;
5) X can masquerade as another agent Y to the

platform. 1
I

Figure 4. Security Risk Graph Analyzed the Security Risks
of the Host h

By far, we have used an example to illustrate how to

analyze the security risks a host will face in the system

Our basic idea is to eliminate all the unnecessary edges

and vertices to make all the connections to this host

stand out. To summarize, we can just consider the

connections to the host and the communications between

agents that can cause any breach to the host for
I

analysis of the security risks of the host.

But for analyzing the security of the agents, using

Figure 3 as an example, we cannot just discard all the

35

possibilities in Figure 4. Because one agent can take all

host h's CPU cycles, so as to deny the service to other
I

agents. For instance, as shown in Figure 5, Ai can geti
hold of host's CPU cycle, thus launch denial of service1
attack to every agent running on host h. Note that in

I
Figure 3, we don't have the edges of type 9 from hosth to

each agent. By the process of analyzing the security

"Towards the agent" scenarios, we found that we should add

those edges. In fact, we can gerieralize this observation

into the following theorem for analyzing the security risk
Igraph of the agent-based system.,

36

1) X can guess Y's password;
1

2) X can eavesdrop Y's communication with others;
3) X has write access to Y (alteration);
4) X can masquerade as another platform to Y;
5) Y uses a program owned b]y X;
6) X can repudiate the result from Y;
7) X can copy and replay Y's information;
8) Y has no password;
9) X can deny the service to Y;
3') X can get hold of Y's CPU cycle;
4') X can get hold of network resources;
5') X can masquerade as another agent Y to the

platform.
J

Figure 5. Security Risk Graph for Agents on the Platform

I

37

Theorem 1. If an agent A on host i can take all of host

i's CPU cycles, it can in turn launch denial of service

attack to all of the agents running on this host except

for A itself. If more than two agents on the same host i

can take all of i's CPU cycles, 'the first one which

launches the attack can succeed. 1I
Proof: Since all of the agents running on a host need to

I
utilize CPU cycles for its performance, if the CPU is hold

completely by one agent, then the other agents cannot

function correctly. If the first agent can get hold of all

CPU cycles successfully, all the other agents running onI1
host i can not even function correctly. They would have no

chance to succeed in taking hold of all CPU cycles any
i

more. □ 1 •

3.4 Mathematical Quantification for Security
Assessment

After we have developed the security risk graph of a

system, the Markov model is chosen to quantify the

security risks of a multi-agent distributed system. Among
[

various probabilistic measures derived from the Markov

model, we use the MTTF (Mean Timle To Failure) value which

we define as follows.

38

Definition 12. Mean Time To Failure is the mean

transition time for a potential attacker to reach the

specified target, denoted as MTTF.

The MTTF is obtained by summing all the mean

transition times in the edges leading to the target vertex

that each edge is weighted by the transition rate of each

attack. The mean time in vertex j, denoted as Tj, is given

by the inverse of the sum of vertex j's output transition

rates: I
Tj = 1/ S A. ji, 1 e out (j),,

I
where A j± is the transition rate from vertex j to

vertex 1, and out(j) is the set of all vertices to which j

is connected by an edge where j is the starting'point.
I

The MTTFk is the mean time £o failure when vertex k
i

is the initial vertex and Pki is ,the conditional transition

probability from vertex k to veptex 1. They are defined as

follows: i

MTTFk = Tk + 2 Pki * MTTFki;

Pkl = A, kl * T k.

Though we have set up the way to quantify the

security using the Markov model, before we can really
[

start the calculation, we have sqme more things to do. Due

to the fact that the agent-based distributed system is

39

quite different from the traditional distributed system as

we have several agents running on a single host or a host

can launch several different kinds of attacks to one

particular agent, we face a problem of how to analyze and

calculate the MTTF for this kind of situation. For

example, as shown in Figure 6, when agent B2 is the

attacker and agent Bl is the target, we have an edge loop

back to its ancestor, like hosthAi. How could we calculate

the MTTF for this scenario? In Figure 4 and Figure 5,

agent Al can perform 3 different attacks'1 to host h (in

Figure 4) and host h can launch 'four different attacks to

agent A2 (in Figure 5). Which ope we should choose for

calculating Tj? In responding .to) these problems, we have
I

developed the following theorems, to handle them.

Figure 6. Security Risk Graph for B2 as the Starting Point
and Bi the Target

40

I

Theorem 2. If there are several edges with the same

direction from one vertex to the next in the security risk

graph and suppose the intruders do not know the whole

topology of the system, when calculating MTTF regarding to

these two vertices, choosing the shortest edge with theI
smallest transition time will not affect the MTTF

calculation.

Proof: Without losing generality, as seen in the security

risk graph (Figure 7), suppose A is an intruder and B as a

target. There are several edges'from A to B, ABlz AB2, ...

Abn. Each edge has a transition time tlz . . . , tn associatedI
with it. Suppose t± = min{ ti, ... tn } . Based on the

assumption in Dacier, M. et. al.’ [6], the intruders do not

know the whole topology of the security risk graph. They

only know the attacks that can be directly applied in a

single step. So A has the options tlz t2, ..., tn to attack

B. From the empirical results obtained from Jonsson, E.

and Olovsson, T. [12], the intruder A would always try to

Figure 7. Security Risk Graph for A as the Intruder and B
as the Target

41

perform the attack takes the least time which is ti. □

Theorem 3. If there is an edge from one vertex that goes

back to its ancestor, then this .edge would not be counted

in calculating MTTF.
I

Proof: From the attacker's point of view, he would choose

a route which takes the least time. Reflected in the

privilege graph, the attacker's 'goal is to choose the

branch that takes the least time'.

Case I. Edge from one vertex goes back to its parent.

Without losing generality, suppose there is one branch in

the security risk graph that has an edge from one vertex

Pi goes back to its parent Aiz as1 circled part in Figure 8I
Then the time taken by each of all the other branches is

Ijust the sum of all the edges in that branch. From the

security risk graph, we can see that if the time taken
I

from R go all the way down to T is t (t is chosen by

selecting the smallest value among different routes). Put

if we loop back at Pi,

for route Ai - Pi, total time = t + tBii + tBn, where

tBii + tBii > 0.

So total time > t.

for route A± - Bj - Bi, total -time - t + tBij + tBji +

tBii, where tBij + tBjl + tBn >0.

42

So total time > t.

That means whatever the routes in between vertex Ai

and Bi, total time > t + tBii > t.. So when calculating

METF, we discard the edges that 'loop back to the parent.

Figure 8. Security Risk Graph for Edge from One Vertex
Goes Back to its Parent Case

Case II. Edge from one node goes back to its ancestor.

Similar to case I, the time taken by the branch edge from

one vertex n± goes back to its ancestor is greater than

43

the time taken from R go all the way through Ai, ni down

to T, as in Figure 9. If t is the time taken to loop back

from nj to Ai , t > 0.'

So when calculating MTTF, we discard the edges that loop

back to the ancestor of this vertex ni. □

Figure 9. Security Risk Graph for Edge from One Vertex
Goes Back to its Ancestor Case

44

3.5 Illustrative Example

Now let us use an example to illustrate how this

approach works. We use the example in Figure 3. Figure

10 shows that the edges are assigned different

thicknesses to represent their weight and also to

characterize the difficulty of the breaches: the

thicker the edge, the easier the breach. For the

convenience of calculation, we use one week as the unit

of attack times. So every different transition time can

be digitally quantified ,as weeks, for instance, one day

is approximately 0.2 we,ek. In this way, the transition

rate for each attack is 1 divided by the corresponding

transition time. To represent very easy attacks (quasi-

instantaneous transition firing), the transition rate

is assigned a high value as 5000. Table 6 lists the

transition time, its corresponding time in weeks,

transition rate and the graph representation in the

security risk graph for the identified transition time

of the attacks.

I

45

Table 6. Transition Time, its Corresponding Time in Weeks,
Transition Rate and Graph Representation

Transition Transition Transition Line type in
time Time in

weeks
rate the security

risk graph
Quasi

ins tantaneous

0.0002 5000

one hour 0.02 50

one day 0.2 5
—►

one week 1 1
------- ►

one month 5 0.2
------- ►

one year 50 0.02
------- ►

To illustrate how to calculate the MTTF, we take B2

as the attacker, A2 as the target from Figure 10 andl
generate the Markov graph as in Figure 11.

I

46

hosth1

1) X can guess Y's password1 in one week (one week
-- ►) ; I

2) X can guess Y's password in one month (one monthI
----- ►) ; ■ •, !

3) X can eavesdrop Y's communication with others
(quasi-instantaneous e=^> ')i

4) X has write access to Y -((alteration) (quasi-
instantaneous) ; 1

5) X can masquerade as another platform to Y (one

6) Y uses a program owned by X once in a year (one
year -- ►) ; j

7) X can repudiate the result from Y in one day (one
day -- ;

8) X can copy and replay Y's Information (quasi-
instantaneous) ;

I

47

9) Y has no password (quasi-instantaneous);
10) X can deny the service to Y in one hour;
11) X can deny the service to Y in one day;
1') X can read files from Y in one hour;
2') X can write files to Y 'in one day;
3') X can get hold of Y's CPU cycle in one hour;
4') X can get hold of network resources in one day
5') X can masquerade as another agent Y to the

platform in one month.

Figure 10. Security Risk Graph Example with Weight
Demonstrated in Different Line Type

i

i

I

I

48

2

Figure 11. Markov Graph for B2 as the Attacker and A2 as
the Target ,

i

By using Theorem 3, we can eliminate the edges BiB2,■I
to get Figure 12. Also for transition rate of edge

AiHosth we can choose the one that gives the smallest

transition time based on Theorem 2.

49

Figure 12. Simplified Markov Graph for Figure 11 by Using
Theorem 2 and Theorem' 3

IThen we can calculate MTTF ,as following:

MTTF = Ti + Pi2MTTF2 + P13MTTF3
I

Ti = 1/ (Zi + X2) = 1/ (0.02+5000) = 0.00019999I
Pi2 = Xi * Ti = 0.02 * 0.00019999 = 0.000004

P13 = X2 * Tx = 5000 *■ 0.00019999 = 0.999995

50

MTTF2 = T2 = 1/ X3 +1/ X9 = 1/50 +1/50000 = 0.02 +

0.0002 = 0.0202

mttf3 = t3 + p32mttf4 + P33MTTF5I
T3 = 1/ (X4 + x5) = 1/ (50 + 5.) = 0.01818182

P32 = X4 * T3 = 50 * 0.01818182 = 0.909091

P33 = X5 * T3 = 5 * 0.01818182 = 0.0909091

MTTF4 = 1/ X7 + 1/ X3 + 1/ X'g = 1/0.2 + 1/50 +1/50000

= 5 + 0.02 + 0.0002 = 5.0202

MTTF5 = 1/ X8 = 1/0.2 = 5

MTTF3 = 0.01818182 + 0. 909091 * 5.0202 + 0.0909091 *

5 = 5.036535958

So MTTF = 0.00019999 + 0.00’0004 * 0.0202 + 0.999995 *I
5. 036535958 = 5.03671, which means the average time for

B2 to attack A2 is about 5.03671 weeks.

Part of the result is shown in Table 7. In this

table, we selected 3 vertices as target and calculated the

MTTF other attackers need to spend to reach them. The

MTTF is represented in time duration as number of weeks.

For example, take agent B2 as the attacker and agent B3 as

the target, B2 need 0.2002 weeks)to succeed one attack to

B3.

I

51

Table 7. Part of the MTTF Results (in Number of Weeks)
Calculated by Using the Proposed Method

XTarget Host h'1 a2 b3

Attacker x.

b2 -- 5.0367 0.2002

Ai 0.02 5.148 0.1984

Host h -- 0.0002 0.02

Bi 5.02 ’ 5.1745 0.8916

52

CHAPTER FOUR

DESIGN OF A MATHEMATICAL MODEL FOR SECURITY

MEASURING OF AGENT-BASED DISTRIBUTED SYSTEMS

4.1 Introduction

In this research, we found that the MTTF calculation

is complicated even only with basic security threats taken

into consideration. If we want to evaluate a large network

with numerous machines running, the calculation could be

enormous. Even for the traditional distributed systems,

Ortalo, R. et. al. [17] has proved that the calculation of

MTTF can not be computed sometimes due to the

complications by performing experiments. In order to

overcome this shortcoming, we used the shortest path

algorithm to reduce the amount of computation. Also byI
using the shortest path, we have.the method to find the

diameter of the security risk graph so that we can

evaluate the security of the whole system. The shortest

path was discussed in the study of security risks in the

traditional distributed network in Dacier, M. et, al. in

[6]. They claim that the shortest path can only be the

major contribution to the MTTF calculation. Since an

attacker does not know the whole topology of the network,

they believe that the attacker could not always take the

53

shortest path. They showed that ,the mean time to reach the
i

target using MTTF calculation is, always smaller than the

value calculated using the shortest path. While the MTTF

calculation can only estimate the mean time to failure

between any two vertices, it would be more usable if we

can compare the security between two systems besides just
L

comparing between any two vertices. Especially for the
I

system administrators, after they perform some security

upgrade, they may want to compare the upgraded system
I

security with the original one to see how effective the
I

new methods are. In this Chapter1, we are going to present

an advanced mathematical model developed in the thesis by

using the shortest path. J

4.2 An Advanced Security Model for Security
Evaluation

As we presented in Chapter 3, we have modeled the

system's security risks using the security risk graph.

Based on the analysis of the security threat types, we

developed Lemma 2 and Theorem 1 to identify some special

kinds of attacks and add all the necessary edges. Then the

developed Theorem 2 and Theorem 3 are used to simplify the

generated security risk graph so that we can calculate the

MTTF using Markov model. However, the MTTF calculation is

too complicated and time-consuming and sometimes not even

54

computable by the ordinary computers [17]. Also our goal

is to find a way to evaluate the entire system's security

risk as opposed to finding the security risk between any

two vertices. First we need to know what a shortest path

is in a security risk graph.

Definition 13. Let P be a path containing vertices viz

V2, ... vn, and w(v±, v3) be the weight on the edge

connecting v± to Vj, then the length of path P is defined

as

n-1
|p| = £ w(viz vi+i) . ;

i=1

Definition 14. A shortest path from vertex u to

vertex v is defined as any path with weight 5(u, v) =
. imin{w(P) I P(u ~ v) }, where P(u ~ v) is the set of paths

from vertex u to vertex v, and w,(P) is, the set of weights
I

of each path in P(u ~ v). f

Despite the argument in Dacier, M. et. al. in [6]
I.

that the shortest path cannot be' used for calculating the

MTTF. We assume that if there exists one or more paths

between two vertices in a security risk graph, the attack

time taken from the starting point to the target can be

represented by the sum of the transition times on the
Ishortest path. Because the time on the shortest path

55

describes the least time the attacker will need to use to

break into the target. If the attacker does not know the

topology of the whole system, the time needed to break
I

into the target will be definitely more than the time

calculated from the shortest path or at best is equal to

the time from the shortest path. Also due to the

difference between the agent-based distributed systems and

the traditional distributed systems, the attackers may

have some means to know the shortest path from the

starting point to the target or even the topology of the
I

whole system by probing the vulrierabilities first. In

either case, the shortest path is a suitable measure for

the system administrators to evaluate the system's
I

security level. 1
I

4.3 Quantification Algorithm for Security
Measurement

1
In this section we present 'an algorithm to find the

security measure based on the Dijkstra's algorithm and use

a simple example to show how this algorithm works.

Security risks estimation algorithm:

Input: Weighted graph G, source, destination (G is the

simplified graph using Theorems 2 and 3)

Output: Transition time from source to destination

56

Temp: temporary tree structure to hold the nodes and edges

as we go through graph G i

1. add source, Transition time (source) = 0 to Temp

2. while (destination g Temp)

find edge (u, v), where:

a. u e Temp;

b. v g Temp;

c. minimize the transition time over all (u, v)

satisfies a and b.

The resulted transition time = transition time(u)

+ w(u, v) , where w(u, v) is the ^weight of (u, v) .

Actually, Dijkstra algorithm can find the shortest

path to every vertex to which the source vertex has a

connection besides the target vertex. It has the same time

complexity as the one needed for just finding the shortest

path to the target.

Take Figure 12 as an example, this time we want to

use the transition time instead of the transition rate and

generate the Figure 13.

57

I

Figure 13. Simplified Markov Graph for Figure 12 Labeled
by Transition Times

Following the above algorithm, the example in Figure

13 works as below:

1. Take the source vertex B2 and put it in Temp.

Temp -- {B2}

2. Since B2 connects to Ai and Dx, we mark Ai and Di

as candidates.

3. Compare | B2Ai | = 50 and | B2Di | = 0.0002. Because

| B2Di | is smaller, we take Di into Temp. Now

58

Temp - {B2, Di) and we also get the shortest path

between B2 and Di is B2Di with | B2Di | - 0.0002.

4. Since Di is in Temp, now we need to consider the

vertices connected to Di: Bi and B3. After we mark

them, our candidates are Aiz Bx and B3.

5. Compare:

| B2DiB3 | = 0.0002,+ 0.2 = 0.2002

| B2DiBi | = 0.0002'+ 0.02 = 0.0202

| B2Ai | = 50

Because | B2DiBi] is smaller, we take Bi into Temp

Now Temp = {B2, Di, Bi) and the shortest pathI
between B2 and Bi is B2DiBi with | B2DiBi | = 0.0202

6. Now that Bi is in Temp, we need to consider the
I

vertices connected to Bi-: Ai. After we mark it,

our candidates are Ai, and B3.

7. Compare: 1 ; .
i

| B2D1BiA1 | = 0.000'2 + 0.02 + 5 = 5.0202I
I B2D!B3 I = 0.0002'+ 0.2 = 0.2002l L
| B2Ai | = 50 i

1Because | B2DiB3 | is smaller, we take B3 into Temp

Now Temp = {B2, Di, Bi; Ei3} and the shortest path
I

between B2 and B3 is B2DiB3 with [B2DiB3 | = 0.2002.

59

8. Now that B3 is in Temp, we need to consider the

vertices connected to B3: A2. After we mark it,

our candidates are A2, and Ai.

9. Compare:

| B2DiBiAi | = 0.0002 + 0.02 + 5

= 5.0202

| B2D!B3A2 | = 0.0002 + 0.2 + 5 = 5.2002

| B2Ai | = 50

Because | B2DiBiAi | is smaller, we take A3 into

Temp. Now Temp = {B2z Di, Bi, B3, Ai) and the

shortest path between B2 [and Ai is B2DiB]Ai with1
| B2DiB!Ai | = 5.02 02. 1

10. Since Ai is in Temp, now we need to consider the

vertices connected to Ai: hosth. After we mark it,
i

our candidates are'A2, and hosth.

11. Compare:

| B2DiB3A2 | = 0.0002 + 0.2 + 5 = 5.2002

| B2Aihosth | = 50 + 0.02 = 50.02

[B2DiBiAihosth | = 0.0002 + 0.02 + 5 + 0.02

= 5’. 0402

Because | .B2DiBiAihosth| is smaller, we take hosth

into Temp. Now Temp = {B2, Di, Bi, B3, Ai, hosth)
I

and the shortest path between B2 and hosth is

B2D1B1A1hosth with

60

| BsDiBiAihosth | = 5.0402.

12. Since hosth is in Temp, now we need to consider

the vertices connected to hosth: A2. After we mark

it, our candidates are A2.

13. Compare:

B2DiB3A2 | = 0.0002 + 0.2 + 5 = 5.2002

B2AihosthA2 =50 + 0.02 + 0.0002 = 50 .02 02

B2DiBiA3.hosthA2 | = 0.0002 + 0.02 + 5 + 0.02

+ 0.0002

= 5.0404

Because | B2D!BiAihosthA2 | is smaller, we take A2

into Temp. Now Temp = {B'2, Dlz Blz B3, Aiz hosth, A2}

and the shortest path between B2 and A2 is

B2D1B1A1hosthA2 with 1

| B2DiBiAihosthA2] = 5.0404.

I
By using the above algorithm in all these steps, we

have found all the shortest paths starting from agent B2,

and ending to every other vertex. We illustrate those

shortest paths in Figure 14.

61

Figure 14. Graph Showing Shortest Paths for B2 as the
Initial Vertex '

Next let us take Ai as the initial vertex and try to

find all the shortest paths starting from Ai.

1. Take the source vertex Ai and put it ,in Temp.
I

Temp = {Ai}

2. Since Ai connects to Di and hosth, we mark Di and
I

hosth as candidates.

62

0.02.3. Compare | AiDi | = 0.0002 and | Aihosth

Because | AxDi | is smaller, we take Dx into Temp.

Now

Temp = (Ai, Di) and we also get the shortest path

between Ai and Di is AiDi'with | A]Di | = 0.0002.

4. Since Di is in Temp, now we need to consider the

vertices connected to Di,: Bi and B3. After we mark

them, our candidates are, hosth, Bi and B3.

5. Compare:
I

I AiDiB3 | = 0.0002 '+ 0.2 = 0.2002

| A1D1B3. [= 0.0002 ,+ 0.02 = 0.0202

| Aihosth |=0.02 '

Because | Aihosth | is smaller, we take hosth into

Temp. Now Temp = {Ai, Di,i. hosth) and the shortest

path between Ai and hosth is Aihosth with

| Aihosth |=0.02. 1

6. Now that hosth is in Temp, we need to consider the

vertices connected to hosth: A2, B2, Bi and B3.

After we mark them, our candidates are A2, B2, Bi

and B3.

7. Compare:

| A1D1B1 | = 0.0002 + 0.02 = 0.0202

| AiDiB3 | = 0.0002 + 0.2 = 0.2002

| AihosthB2 | = 0.02' + 0.2 = 0.22

63

| AxhosthBs | = 0.02 + 0.02 = 0.04

Because | A]DiBi | is smaller, we take Bi into Temp

Now Temp = {Ai, Di, hosth, Bi) and the shortest

path between Ai and Bi is A1D1B1 with | A1D1B1 | =
I

0.0202.

8. Now that Bi is in Temp, we need to consider the

vertices connected to Bi: B2. After we mark it,

our candidates are A2, B2, and B3.

9. Compare:
I

| AiDiB3 | = 0.0002.+ 0.2 = 0.2002

| AihosthB3 | = 0.02 + 0.02 = 0.04

| AihosthA2 | = 0.02 + 0.0002 = 0.0202

Because | AihosthA2 | is smaller, we take A2 into

Temp. Now Temp - {Ai, Dx, 1 hosth, Bf, A2} and the

shortest path between Ai and A2 is AihosthA2 with

| AihosthA2 | = 0.0202.

10. Since A2 is in Temp, now we need to consider the

vertices connected to A2Bi and hosth. Since we

have found the shortest, path for both of them, we

do not mark them. Our candidates are B2 and B3.

11. Compare:

| AiDiB3 | = 0.0002 + 0.2 = 0.2002

| AihosthB2 | = 0.02 + 0.2 = 0.22

| AihosthB3 | = 0.02 + 0.02 = 0.04

64

1.0202| A1D1B1B2 I = 0.0002 + 0.02 + 1 =

Because | AihosthB3 [is smaller, we take B3 into

Temp. Now Temp = {Ai, Di, hosth, Blz A2, B3} and the

shortest path between Ai and B3 is AihosthB3 with

| AihosthB3 | = 0.04.

12. Since B3 is in Temp, now we need to consider the

vertices connected to B3|: A2. Since we have found

the shortest path for it, we do not mark it. Our

candidates are B2.

13. Compare:

| AihosthB2 | — 0.02 + 0.2 = 0.22I
| AiDiBiBs J = 0.0002 + 0.02 + 1 = 1.0202

Because | AihosthB2 | is -smaller, we take B2 into

Temp. Now Temp - {Alz Diz hosth, Bi, A2, B3, B2) and

the shortest path between Ai and B2 is AihosthB2

with | AihosthB2 | = 0.22'.

From the above steps, we have found all the shortest

paths starting from agent Aiz and ending to every other
I

vertex. We illustrate those shortest paths in Figure 15.

Let us take A2 as our next initial vertex and try to

find all the shortest paths starting from A2.

1. Take the source vertex A2 and put it in Temp.

65

Temp = {A2}

Figure 15. Graph Showing Shortest Paths for Ax as the
Initial Vertex I

I

2. Since A2 connects to Di, Bi and hosth, we mark Di,
IBi and hosth as candidates.

3. Compare
I

| A2Di | = 0.0002 ,
I

| A2hosth | =0.02;
i

| A2Bi | = 0.0002 ,

Because | A2Di | = | A2Bi | are the smallest, we
I

take Di and Bi into Temp: Now Temp = {A2, Di, Bi}1
and we also get the shortest path between A2 and

Di is A2D]_ with] A2Di | = .0.0002 and between A2 and

Bi is A1B1 with | A2Bi | =.0.0002.

66

4. Since Di and Bi are in Temp, now we need to

consider the vertices connected to Di and Bi: B2,

B3, Ai, Bi and hosth. After we mark some of them,

our candidates are host^, Aiz B2 and B3.

5 . Compare:

| A2hosth 1 - 0.02 i

| A2DiB3 | = 0.0002 + 0.2 = 0.2002

| A2BiB2 | = 0.0002 + 1 = 1.0002

| A2BiAi | = 0.0002 + 5 = 5.0002

Because | A2hosth | is smaller-, we take hosth into

Temp. Now Temp = {A2, Di, Bi, hosth} and the
I

shortest path between A2 and hosth is A2hosth with

[A2hosth |=0.02. '

6: Now that hosth is in Temp, we need to consider the
I

vertices connected to hbsth: Ai, Di, B2, Bi and B3.

After we mark some of them, our candidates are Ax,

B2 and B3 . 1
i

7 . Compare:

| A2DiB3 | = 0.0002 + 0.2 = 0.2002

| A2hosthB3 | = 0.02 + 0.02 = 0.04

| A2BiB2] = 0.0002'+ 1 = 1.0002

| A2hosthB2 | =0.02 + 5 = 5.02

| A2BiAi | = 0.0002 + 5 = 5.0002

| A2hosthAi | = 0.02 + 0.0002 =

67

0.0202

I
I

Because | A2hosthAi | is smaller, we take Ai into

Temp. Now Temp = {A2, Di, Biz hosth, Ai) and the

shortest path between A2i and Ai is A2hosthAi with
I

| A2hosthAi | = 0.0202. i

8. Now that Ai is in Temp, we need to consider the

vertices connected to Ai: Dx and hosth. Since we

have them in the Temp already, we do not mark them.

Our candidates are B2 and B3.

9. Compare:

[.A2DiB3 | = 0.0002 + 0.2 = 0.2002

| A2hosthB3 | = 0.02 + 0.02 = 0.04I
| A2hosthDiB3 | = 0.02 + 0.02 + 0.2 = 0.24

| A2BiB2 | = 0.0002 + 1 = 1.0002

| A2hosthB2 | - 0.02 + 5 - 5.02

Because] A2hosthB3 | is smaller, we take B3 into

Temp. Now Temp = {A2, Diz Biz hosth, Aiz B3} and the

shortest path between A2 and B3 is A2hosthB3 with |

A2hosthB3] = 0.04.

10. Now that B3 is in Temp, we need to consider the

vertices connected to B3!: A2. As we do not need to
I

mark it, our candidates are B2.

11. Compare:

| A2BiB2 | = 0.0002 ,+ 1 = 1.0002

I A2hosthB2 I =0.02 + 5 = 5.02

68

I

Because | A2BiB2 | is smaller, we take B2 into Temp.

Now Temp = {A2, Diz Blz hosth, Aiz B3, B2} and theI
shortest path between A2 and B2 is A2BiB2 with
| A2BiB2 | = 1.0002. i

i

Thus we have found all the i shortest paths starting

from agent A2, and ending to every other vertex. We

illustrate those shortest paths in Figure 16.

Figure 16. Graph Showing Shortest Paths for A2 as the
Initial Vertex

Our next target is to take Bi as the initial vertex

and try to find, all the shortest paths starting from Bi.

1. Take the source vertex Bi and put it in Temp.

Temp = {Ba.}

69

2. Since Bi connects to Ai and B2, we mark Ax and B2

as candidates.

3. Compare

I BiAi | = 5

| BiB2 |=1

Because | BiB2 | = 1 is smaller, we take B2

into Temp. Now Temp = {Bi,. B2} and we also get the

shortest path between Bi and B2 is BiB2 with

| BiB2 | = I-.

4. Since B2 is in Temp, now we need to consider the

vertices connected to B2: Ai and Di. After we mark

some of them, our candidates are Ai and Di

Compare: !

| BiAi | = 5 ;

| BiB2Ai | =1+50 = 51

| BiB2Di | = 0.0002 + 1 = 1.0002

I B1A1D1 1 = 0.0002 + 5 = 5.0002

Because | BiB2Di | is smaller, we take Di into Temp.

Now Temp = {Bi, Di, B2} and the shortest path

between Bx and Di is BiB2Di with | BiB2Di | = 1.0002.

6. Now that Di is in Temp, we need to consider the
I

vertices connected to Di,: B3. After we mark it,

our candidates are Ai and' B3.

7. Compare:

70 i

I BiAi |=5 j
| BiB2Ai | = 1 + 50 != 51

| BiB2DiB3 |=1+ 0.0002 + 0.2 = 1.2002

| BiAiD^ | = 0.0002 + 5 + 0.2 = 5.2002

Because [BiB2DiB3 | is smaller, we take B3 into

Temp. Now Temp = {Bi, Di) B2, B3} and the shortest

path between Bi and B3 is BiB2DiB3 with

| BiB2DiB3 | = 1.2002. ,

8. Now that B3 is in Temp, ,we need to consider the
i

vertices connected to Bj: A2. After we mark it,

our candidates are Ai and A2.II
9. Compare: (

I BxAi |=5

| BiB2Ai I =1 + 50 = 51
I

I B1B2D1B3A2 | = 1 +' 0.0002 + 0.2 + 5 = 6.2002

Because | BiAi | is smaller, we take Ai into Temp.

Now Temp = {Bi, Diz B2, B3z Ai) and the shortest

path between Bi and Ai is B]Ai with

| BiAx |=5.

10. Now that Ai is in Temp, we need to consider the

vertices connected to A/: hosth and Dx. Since Dx

has already been in the Temp, so we only we mark

hosth, our candidates are hosth and A2.

11. Compare:

71 i
I
I

6.2002

| BiAihosth | = 5 +0.02 = 5.02

| BiB2Aihosth | = 1 ,+ 50 + 0.02 = 51.02

| B1B2DiB3A2 | = 1 +, 0.0002 + 0.2 + 5 =
i

Because | BiAihosth | is 'smaller, we take hosth

into Temp. Now Temp - {Bi, Diz B2, B3, Alz hosth}

and the shortest path between Bi and hosth is

BiAihosth with | BiAihosth | =5.02.

12. Now that hosth is in Temp, we need to consider the

vertices connected to hosth: B2, B3, A2 and Di.

Since B2, B3 and Di has already in the Temp, so our

candidate is only A2.

13. Compare: I
] BiAihosthA2 I = 5'+ 0.02 + 0.02 = 5.04

| BiB2DiB3A2 |=l+[0.0002 + 0.2 + 5 = 6.2002

Because | B1A1hosthA2 | is smaller, we take A2 into

Temp. Now Temp = {Blz Dlz B2, B3, Ai, hosth, A2} and

the shortest path between Bi and A2 is BiAihosthA2

with | BiAihosthA2 | =5.04.

By now we have found all the shortest paths starting

from agent Biz and ending to every other vertex. We

illustrate those shortest paths in Figure 16.

72

Figure 17. Graph Showing Shortest Paths for Bi as the
Initial Vertex

I
Next, let us analyze the situations when B3 as theI

initial vertex and try to find all the shortest paths
1

starting from B3.

1. Take the source vertex B3 and put it in Temp.

Temp = {B3}

2. Since B3 connects to A2, we mark A2 as candidate.

3. Since | B3A2 | = 5 and we have nothing to compareI
with it, we take A2 into Temp. Now Temp - {B3, A2}

and we also get the shortest path between B3 and

A2 is B3A2 with | B3B2 | =5.

73

4. Since A2 is in Temp, now we need to consider the

vertices connected to A2: Dlz Bi and hosth. After

we mark them, our candidates are Dlz hosth and Bi.

5. Compare:

| B3A2Bi |=5+ 0.0002 = 5.0002

| B3A2Di | = 0.0002'+ 5 = 5.0002

| B3A2hosth | = 0.2+ 5 = 5.2

Because | B3A2Di | = | B3A2Bi | are smaller, we take

Di and Bi into Temp. Now Temp = {B3, A2, Diz Bi) .

The shortest path between B3 and Di is B3A2DX with

| B3A2Di | = 5.0002 and between B3 and Bi is B3A2B3 .

with | B3A2Bi | = 5.0002.',
I

6. Now that Di and Bi are in Temp, we need to

consider the vertices cqnnected to them: B2, Bi

and Ai. After we mark some of them, our candidates

are Aiz B2 and hosth.

7. Compare:

| B3A2hosth | =0.2'+ 5 = 5.2

| B3A2BiB2 | = 1 + 5 + 0.0002 = 6.0002

| B3A2BiAi | = 0.0002 + 5 + 5 = 10.0002

Because | B3A2hosth] is smaller, we take hosth

into Temp. Now Temp = {B3, A2, Diz Biz hosth} and

the shortest path between B3 and hosth is B3A2hosth

with | B3A2hosth | =5.2.

74

I

8. Now that hosth is in Temp, we need to consider the

vertices connected to hosth: Aiz B2 and Di. After

we mark some of them, our candidates are Ai and B2.

9. Compare: i
I

I B3A2BiB2 I = 1 + 5' + 0.0002 = 6.0002

B3A2BiAi | = 0.00021 + 5 + 5 = 10.0002

B3A2hosthAi | = 5 + 0. 2 + 0.0002 = 5.2002

B3A2hosthB2 | = O.,2 + 5 + 0.2 = 5.4

Because | B3A2hosthAi | is smaller, we take Ai into

Temp. Now Temp - {B3, A2> Dlz Biz hosth, Ax} and the

shortest path between B3' and Ai is B3A2hosthAi with
i

I B3A2hosthAi I = 5.2002. '

10. Now that Ai is in Temp, we need to consider the

vertices connected to Ai: hosth and Di. Since Di

and hosth have already been in the Temp, so our

candidate is only B2.

11. Compare:

| B3A2BiB2 | - 1 +

| B3A2DiBiB2 | = 5

= 6

| B3A2hosthB2 | =0.2

Because I B3A2hosthB2 I is

Temp. Now Temp = {B3, A2,

5 + 0.0002 = 6.0002

+ 0.0002 + 0.02 + 1

0202

+ 5 + 0.2 = 5.4

smaller, we take B2 into

Di, Bi, hosth, Ai, B2} and

75

the shortest path between B3 and B2 is B3A2hosthB2

with | B3A2hosthB2] =5.4.

I
Therefore we have found all the shortest paths

starting from agent B3, and ending to every other vertex.

We illustrate those shortest paths in Figure 18.

Figure 18. Graph Showing Shortest Paths for B3 as the
Initial Vertex

Next, let us take Di as the initial vertex and try to

find all the shortest paths starting from Di.I
1. Take the source vertex Di and put it in Temp.

Temp = {Di}

76

2. Since Di connects to Bi and B3, we mark Bi and B3

as candidates. ’

3. Compare: ,

| DiBi | = 0.02

| DiBa | = 0.2

Because | DiBi | is smaller, we take B3 into Temp.

Now Temp = {Di, Bi) and we also get the shortest

path between Di and Bi is DiBi with | D3B1 | = 0.02.

4. Since Bi is in Temp, now; we need to consider the

vertices connected to Bx: Ai and B2. After we mark

them, our candidates are Alz B2 and B3.
i

5. Compare:

| DxBiAi | = 5 + 0.02 = 5.02

[DiBiB2 I = 0.02 + 1 = 1.02

| DiB3 | = 0.2 i

Because | DiB3 | is smaller, we take B3 into Temp.
I

Now Temp = {Diz Blz B3} . 'The shortest path between

Di and B3 is DiB3 with | D]B3 [=0.2.

6. Now that B3 is in Temp, we need to consider the

vertices connected to it: A2. After we mark it,

our candidates are Aiz B2 and A2.

7. Compare:

I DiB]Ai I = 0.02 + 5 = 5.02

| DiBiB2 | = 1 + 0.02 = 1.02

77

I DXB3A2 I = 0.2 + 5 = 5.2

Because | DiBiB2 | is smaller, we take B2 into Temp

Now Temp = {Dlz Bx, B3, B2} and the shortest path

between Dx and B2 is DiBiB2 with | DiBiB2 | = 1.02.

8. Now that B2 is in Temp, ,we need to consider the

vertices connected to B2: Ai and Dx. After we mark

Ai, our candidates are Ax and A2.

9. Compare:

| D1B1A1 | = 0.02 +(5 = 5.02

| DxB3A2 [= 0.2 + 5 = 5.2

| DiBxB2Ai] = 1 + 50 + 0.02 = 51.02

Because | DxBiAi | is smaller, we take Ax into Temp
I

Now Temp = {Dx, Bx, B3, B2, Ax} and the shortest

path between Dx and Ax is D1B1A1 with

| D1B1A1 |=5.02.

10. Now that Ai is in Temp, we need to consider the
■I

vertices connected to Ai: hosth and Dx. Since Dx

has already been in the Temp, so our candidates

are A2 and hosth-

11. Compare:

[DxB3A2 I = 5 + 0.2 = 5.2

| DiBiAihos thA2 | = 5 + 0.02 + 0.02 + 0.0002

= -5.0,406

I DiB3A2hosth I = 0.2 + 5 + 0.02 = 5.22

78

| DiBiAihosth | - 0.02 + 5 + 0.02 = 5.04.

Because | DiBiAihosth [is smaller, we take hosth

into Temp. Now Temp = {Di, Bi, B3, B2, Ai, hosth}

and the shortest path between Di and hosth is

DiBiAihosth with | DiBiAihosth | - 5.04.

12. Now that hosth is in Temp, we need to consider the

vertices connected to hosth: A2, B3, B2, Ai and Bi.

Since most of them have already been in the Temp,

so our candidate is only A2.

13. Compare:

| DiB3A2 | = 5 + 0.2 = 5.2
t

| DiBiAihosthA2 | = 5 + 0.02 + 0.02 + 0.0002

= 5.0)406

Because | DiBiAihosthA2 | is smaller, we take A2

into Temp. Now Temp = {Di, Bi, B3, B2, Ai, hosth, A2}

and the shortest path between Di and A2 is

DiBiAihosthA2 with | DiBiAihosthA2 | = 5.0406.
I
I

In this way we have found all the shortest paths

starting from agent Di, and ending to every other vertex.

We illustrate those shortest paths in Figure 19.

79

I

t5= 0:02. /. . J, ,

Figure 19. Graph Showing Shortest Paths for Di as the
Initial Vertex i

i
I

Finally, we are going to take hosth as the initial
1

vertex and try to find all the shortest paths starting

from hosth.

1. Take the source vertex hosth and put it in Temp.I
Temp - {hosth) 1

I2. Since hosth connects to every agent running on it
in this example, we marine all of them as candidates.

3. Compare:

80

■ | hosthBi | = 0.2

| hosthB2 | = 0.2 !

| hosthB3 | = 0.02

| hosthAi | = 0.00021
| hosthA2 | = 0.0002

| hosthDi | = 0.02

Because | hosthAi | = | hosthA2 | are the smallest,

we take Ai and A2 into Temp. Now Temp = {hosth, Aiz

A2}. We also get the shortest path between hosth

and Ai is hosthAi with I hosthAi = 0.0002 and the

shortest path between hosth and A2 is hosthA2 with
I

| hosthA2 | = 0.0002. ;
' i

4. Since Ax and A2 are in Temp, now we need to

consider the vertices connected to Ai and A2: Di

and Bi After we mark them, our candidates a]J
Bi, b2 and B3. i

Compare:

1 hosthBi | = 0.2

1 hosthB2 | = 0.2

1 hosthB3 | = 0.02

1 hosthA2Bi | = 0.0002 + 0.0002 =■ 0.0004

1 hosthA2Di | = 0.0002 + 0.0002 = 0.0004

1 hosthAiDi | = 0.0002 + 0.0002 = 0.0004

81

Because | hosthA2Bi | = |' hosthA2Di | = | hosthAiDi |

are the smallest, we take Bi and Dx into Temp. Now

Temp = {hosth, Ai, A2, Dlz Bi) . We also get the

shortest path between hosth and Bi is hosthA2Bi

with | hosthA2Bi | = 0.0004 and the shortest path

between hosth and Dx is hosthA2Di withI
| hosthA2Di | - 0.0004 or hosthAiDi with

| hosthAiDi | = 0.0004.

6. Now that Bi and Di are in Temp, we need to

consider the vertices connected to them: Ai, B2, Bi

B3. After we mark some of them, our candidates are
I

B2 and B3. (

7. Compare: '
i

| hosthB2 |=0.2

| hosthB3 | = 0.02

| hosthDiB3 | = 0.02 + 0.2 = 0.22
I

| hosthA2BiB2 | = 0,0002 + 0.0002 + 1 = 1.0004

| hosthAiDiBsl = 0.0002 + 0.2 = 0.2002

Because | hosthB3 | is smaller, we take B3 into

Temp. Now Temp = {hosth, Ai, A2, Di, Bi, B3} and the

shortest path between hosth and B3 is hosthB3 with

| hosthB3 | = 0.02 .
I

8. Now that B3 is in Temp, j we need to consider the

vertices connected to B3: A2. Since A2 has already

82

been in Temp, we do not .mark it. So our candidate

B2.

9. Compare: '

| hosthB2 | =0.2

| hosthA2B!B2 | = 0.0002 + 0.0002 + 1 = 1.0004

Because | hosthB2 | is smaller, we take B2 into
I

Temp. Now Temp = {hosth,; Ai., A2, Diz Bi, B3, B2} and
I

the shortest path between hosth and B2 is hosthB2

with | hosthB2 | =0.2. 1

In this way we have found all the shortest paths

starting from host hosth, and ending to every other vertex.

We illustrate those shortest paths in Figure 20.

Initial Vertex

83

After all these steps, we have used this algorithm to

find the shortest paths between every pair of vertices of

the entire system.

The shortest minimum length path between any two

vertices represents the weakest security point and the

longest shortest path describes'the ultimate time the

attacker needs to break the whole system at most. Here we

are more interested in the latter one and we have the

following definition.

Definition 14. The diameter of a security risk graph

is the length of the longest shortest path between any two

vertices.

In the above example, since | B3A2hosthB2 | = 5.4 is

the longest shortest path for all the vertices. The

diameter for this example is 5.,'4 weeks. The diameter can

be used to represent the security level of the whole
I

system because it is the least ,time the attacker needs to

break into the whole system because it is the least time
i

needed for the toughest point in the whole system. Thus we

can use the diameters to compare the security of different

system. If after reconfiguration, the diameter of the

whole system increases, we can say that the whole system's

security increases.because the'time needed to break into

the hardest point of the system increases.

84'

CHAPTER FIVE

CONCLUSIONS AND FUTURE DIRECTIONS

5.1 Conclusions

In this research, we have developed security models

to evaluate the security levels of the agent-based

distributed systems by giving a mathematical measure to

tell how secure a system is. First, we presented the

overview of the agent-based distributed systems, security

evaluation of the distributed systems and the summary of

the related works. Then, by identifying the security

threats in the mobile-agent distributed systems, we

developed a taxonomy of the security threats in the

mobile-agent distributed systems. There are four types of

security threats identified in the mobile-agent

distributed systems from the point of view of the

consequence of the security breaches. They are:

confidentiality, integrity, availability and creditability

And they are falling into four categories of security

threats from the point of view of the relationships

between the actors in the agent-based systems: agent-

against-host, agent-against-agent, host-against-agent and

agent-against-network. To facilitate us analyzing and

evaluating the security of the agent-based systems, we

85

combine the agent-against-host and the agent-against-

network scenarios into towards-host category and the

agent-against-agent and the host,-against-agent scenarios

into towards-agent category. We defined the security risk

graph as the basis of our research. By using the security

risk graph, we can put the security threat relationships

between agents and hosts, agents and agents and that of

hosts and hosts into a snapshot graph. After we have

divided the security threats and have set up the security

risk graph to reflect the system's vulnerabilities, we

developed a set of theories to analyze and simplify the

graph so that we can do further calculation.

By using the simplified security risk graphs, we have

set up two models for the security evaluation of the!■
agent-based systems. One is a probabilistic model by using

Markov chain. Another one is a mathematical model based on
I

the shortest path. ,

In the probabilistic model, we calculated the Mean

Time To Failure to evaluate .the approximate time needed

for an intruder to reach the target. As we summarized in

the related works section, currently only Chan and Lyu'si
model [2] deals with agent-based system. Compared with

their method, the . following* characteristics can be

observed in our model:

86

I

• It is more generalized, and complete

The model developed in this paper not only can

evaluate how secure an agent is, but also can evaluate

the security of the host. While Chan and Lyu's method

only considered about the security risk of agent.

• It is more practical and1feasible

The coefficient of malice and vulnerability

proposed by Chan and Lyu [2] ,are hard and vague to be
I

obtained. While in our model, we first generate
!

Markov model from the privilege graph. Then the MTTF

can be calculated accurately by using the set of well-

developed formulas for solving the . Markov Chain

problem in reliability field.

Our method can be used to dynamically monitor the
I

security level of each host and agent in the system.

Combined with the auditing log)history technology, each

host can decide to accept an agent or not based on the

corresponding.MTTF value and the credit history of this

agent as well as its owner. Also, if we want to test

some new technologies to improve the security, we can

compare the MTTF before the 'experiment with that of

after the test to see and analyze that if there is any

enhancement.

87 i

While the Mean Time To Failure can provide a

stochastic evaluation of the intruder's performance, a

measurement of the whole system's security is also needed

form the administrator's view of point. In the

mathematical model using the shortest path, the system's

administrator not only can evaluate the approximate breach

success time (transition time) between any two vertices,

but also can evaluate the whole .system's security risk.

Thus we can have a way to compare the security between

different systems.

This work demonstrated the .security measurement

models that can be used to evaluate the security levels

between any two objects in the agent-based distributed

systems as well as the whole system's security level.

These models can be used to monitor the security evolutionII
of the agents and hosts running ,in the system dynamically.

They can also help the system administrators to manage the

system's security and performance. The system

administrators can evaluate the effectiveness of different

configurations by comparing the values obtained from these

different configurations. ,
i
I
I

" I
I
1

88

5.2 Future Directions

Even though we have achieved the objectives and goals

that we aimed in this thesis, there are still some points

needed to be addressed for future directions due to it

potential practical usefulness.
1

By monitoring the system's risks, we can get the

profile of the transition time ojf each type of security

risks. We plan to use some probabilistic model to process

the empirical data obtained from the observation.

Also, it would be desirable to apply some

probabilistic method to the time value from the

calculation so that it describes, the security measure more

accurately.

We plan to apply these models in Spider III, the

multi-agent distributed system

study its feasibility.

developed in CSUSB to

89

REFERENCES

[1] Brocklehurst, S. and Olovsson, T. , On measurement of
Operational Security, IEEE, 1994, Pages 257 - 266.

[2] Chan, A. and Lyu, M., Security Modeling and Evaluation
for Mobile Code Paradigm, In, proceedings of the Asian
Computing Science Conference,, 1997, Pages 371 - 371.

[3] Concepcion, A. et. al., Spider: A Multi-Agent
Architecture for Internet Distributed Computing
System, In proceedings of the ISCA 15th International
Conference on Parallel and Distributed Computing
System, September, 2002.

[4] Concepcion, A. and Ma, C., A Probabilistic Security
Model for Multi-Agent Distributed Systems, In
proceedings of the 6th International Conference on
Business Information Systems, June 2003.

[5] Cramer, R. and Shoup, V., Signature schemes based on
the strong RSA assumption, ACM Transactions on
Information and System Security, Vol. 3, No. 3, August
2000, Pages 161 - 185.

[6] Dacier, M. et. al., Quantitative Assessment of
Operational Security: Models and Tools, LAAS Research
Report, 96493, May 1996.

I
[7] Fong, P., Viewer's discretion: Host security in mobile

code systems,
ftp://fas.sfu.ca/pub/cs/techreports/1998,
Novemberl998. .

I
[8] Gattiker, U., The Information Security Dictionary,

ISBN: 1-4020-7927-3, 2004.

[9] Gray, R. et. al., D'Agents: Security in a multiple-
language, mobile-agent System, Lecture Notes in
Computer Science on "Mobile Agents and Security",
1419, 1998, Pages 154 - 1871

[10] Hohl, F., Time limited blackbox security: Protecting
mobile agents from malicious hosts, National
Institute of Standards and Technology, 1999.

90

ftp://fas.sfu.ca/pub/cs/techreports/1998

[11] Humphries, J. et. al., Secure mobile agent for
network vulnerability scanning, Proceedings of
the2000 IEEE Workshop on Information Assurance and
Security, United States Military Academy, West Point,
NY, 6-7 June, 2000.)

[12] Jansen, W. and Karygiannis T., Mobile agent security,
NIST Special Publication, 800-19, October 1999.

[13] Jonsson, E. and Olovsson, T,., A Quantitative Model of
the Security Intrusion Process Based on Attacker
Behavior, IEEE Transactions on Software Engineering,
Vol. 23, No. 4, April 1997.'

[14] Kaeo, M. , Designing network security, Macmillan
Technical Publishing, 1999.'

[15] Karnik, N. and Tripathi A., Design issues in mobile
agent programming systems, Department of Computer
Science, University of Minnesota, June 1998.

[16] Karjoth, G. et. al., A security model for aglets,
IEEE Internet Computing, July-August, August 1997,
Pages 68 - 77.

[17] Ortalo, R. et. al., Experimenting with Quantitative
Evaluation Tools for Monitoring Operational Security,
LAAS Research Report, 1997.

[18] Rubin, A. and Geer D., Mobile code security, IEEE
Internet, November- Decembeh, December 1998, Pages 30
- 34.

[19] Sander, T. and Tschudin, C.» Towards mobile
cryptography, International Computer Science
Institute, November 1997. i

[20] Sander, T. and Tschudin, C., Protecting mobile agents
against malicious hosts, Lecture Notes in Computer
Science on "Mobile Agents and Security", 1419, 1998,
Pages 44-60.

[21] SANS: The Trusted Source for Computer Security
Training, Certification and Research
http://www.sans.org/resources/glossary.php

91

http://www.sans.org/resources/glossary.php

[22] Schneider, F., Security in Tacoma Too, In proceedings
of the 1997 DAGSTUHL Workshbp on Mobile Agents,

; September 1997.

[23] Stajano, F. and Anderson, R., The Resurrecting
Duckling: Security Issues for Ubiquitous Computing,
first Security & Privacy supplement to IEEE Computer,
April 2002.

1
[24] Vitek, J. and Bryce, C., Secure mobile code: The

JAVASEAL experiment, University of Geneva, 1999.

[25] Yee, B., A sanctuary for mobile agents, Proceedings
of the DARPA workshop on foundations for secure
mobile code, Monterey CA, USA, March 1997.

]
[26] Ylitalo, J., Secure platforms for mobile agents,

http://www.hut.fi/~jylitalo7seminar99, January 2000.

II

1

92

http://www.hut.fi/%7Ejylitalo7seminar99

	Mathematical security models for multi-agent distributed systems
	Recommended Citation

	I

	1

	I

	I

	J	I

	I	BiAi |=5	j

