
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2004

A secure client/server java application programming interface A secure client/server java application programming interface

Tawfik Lachheb

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Lachheb, Tawfik, "A secure client/server java application programming interface" (2004). Theses
Digitization Project. 2561.
https://scholarworks.lib.csusb.edu/etd-project/2561

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2561&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2561&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/2561?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2561&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

A SECURE CLIENT/SERVER JAVA APPLICATION

PROGRAMMING INTERFACE

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Tawfik Lachheb

March 2004

A SECURE CLIENT/SERVER JAVA APPLICATION

PROGRAMMING INTERFACE

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Tawfik Lachheb

March 2004

Approved by:

Dr. Tt/ng Lai Yu^/Chair, Computer Science Date

Dir; Josephine G. Mendoza

Dr. Richard J. Botting

ABSTRACT

Nowadays, computers constitute a very important part

of our modern life; the Internet has transformed today's

world to a 'Global Village'. Computers are involved in

about every aspect of our life, from e-mail to instant

messaging to shopping and banking. An increasing number

of people are connecting to the Internet to pay bills,

transfer money or trade stocks; this would be impossible

without secure computer systems. But the growth of

computer systems use is coupled with a growth in computer

crime opportunities. Computer applications must run in a

secure environment; they should prevent unauthorized

people from accessing private data. It must be

infeasible for a hacker to withdraw money from someone

else's bank account and an unauthorized stock trader must

be unable to deny buying or- selling shares. Secure

systems are designed so that the cost in money or time of

breaking any component of the system outweighs the

rewards; in other words, the security of a system should

be proportional to the resources it protects.

Secure computer systems must ensure confidentiality;

secret data exchanged between different components need

to be encrypted to ensure that data will not be modified

iii

in transit even if the data were snooped by a hacker

during transit. These systems should also prevent

unauthorized subjects from discovering private

information on a host computer. Secure systems must use

authentication to make sure that the sender is really who

he or she is claiming to be and make it possible to know,

when needed, the identity of parties involved; user

authentication can also provide non-repudiation if a

digital signature is used.

The purpose of this project is to develop a generic

Java Application Programming Interface (API) that allows

applications to provide secure functionalities such as

data transfer, key management and digital signature etc.

The API is easy to use and encapsulates all security

operations so that a developer does not need to worry

about its inner working. It exposes simple methods; a

user needs to know very little about computer security to

use it. The API contains two parts: a server side and a

client side. The server side manages users and user

keys; the client side includes encryption and decryption

capabilities as well as methods to communicate with the

server side. The project also provides a sample online

E-mail application that uses this API. The E-mail

iv

application contains a friendly web interface for the

users to send, receive E-mails and manage their E-mail

accounts in a secure manner; it also allows users to

manage public keys belonging to their correspondents.

The server side of the E-mail application manages user E-

mail accounts and the communication with mail servers for

sending and receiving E-mails.

The Java secure API was developed to work in any

environment capable of running a Java Virtual Machine

(JVM) version 1.4.2 or higher; the sample E-mail

application is intended to work within Microsoft Internet

Explorer browsers version 6.0 and above or Netscape

Navigator version 7.0 and above. We will assume that the

client machines have browsers with the Java Plug-in

version 1.4.2 or higher installed to run the E-mail

client application.

The API was fully validated with included test

programs. On the client side, individual algorithms are

tested for integrity with other encryption/decryption

software, such as PGP 8.0 trial version. The server side

was validated using a test client that generates random

inputs and verifies the outputs.

v

TABLE OF CONTENTS

ABSTRACT.. iii

LIST OF TABLES....................................... X

LIST OF FIGURES ..xi

CHAPTER ONE: INTRODUCTION 1

Purpose of the Project 3

Project Products 4

API Source Code and Compiled Classes ... 4

API User Guide............................ 5

E-mail Sample Application 5

CHAPTER TWO: REQUIREMENTS AND SPECIFICATION

Project Components 6

Security Client 6

Key Manager Service 9

Sample Application 10

Validation Criteria 11

CHAPTER THREE: PROJECT APPROACH

Introduction 13

Security Client Design and Implementation ... 14

Key Manager Service Design and
Implementation 15

E-mail Application Design and
Implementation 17

vi

CHAPTER FOUR: SECURITY CLIENT DESIGN AND
IMPLEMENTATION

Conventional Encryption 18

Data Encryption Standard.................... 22

IDEA.. 22

Blowfish............. 22

Public Key Encryption 23

Hash Functions2 6

Digital Signature 27

Pretty Good Privacy............................... 29

Implementation 33

CHAPTER FIVE: KEY MANAGER SERVICE DESIGN AND
IMPLEMENTATION

Java Cryptography Architecture 35

Public Key Management in PGP 37

Graph Theory/Dijkstra............................. 39

Web Services40

E-R Model and Database Design.................... 43

Java Database Connectivity 47

Implementation 49

Define the Web Service Interface 49

Write and Test the Interface
Implementation 50

Deploy the Sample Service 52

vii

CHAPTER SIX: SAMPLE APPLICATION IMPLEMENTATION

Java Applets53

Java Servlets......................................55

Java Server Pages Technology 58

JavaMail API 59

Server Implementation 60

Client Implementation 63

Mailbox Tab 63

Publish a New Key Tab 64

Compose E-mail Tab...........................64

Address Book Tab............................. 65

Creating a New Account 65

CHAPTER SEVEN: TESTING THE API

JUnit . 67

Unit Tests .. 67

Integrity Tests 68

CHAPTER EIGHT: USER MANUAL

Security Client 72

Message Digests 72

Key Pairs 72

Encryption and Decryption 73

Digital Signature 74

Key Manager Service........................ .. . 74

viii

Deploying the Key Manager Service 74

Extending the Key Manager Service 74

E-mail Application 75

Deploying the E-mail Servlet 75

Using the E-mail Client 7 6

CHAPTER NINE: CONCLUSION

Summary..84

Looking Forward 85

APPENDIX A: RESTRICTION ON APPLETS WITHIN THE JAVA
SANDBOX 88

APPENDIX B: SAMPLE CLIENT CODE......................... 90

APPENDIX C: SAMPLE SERVER CODE98

APPENDIX D: SAMPLE E-MAIL APPLICATION CODE 129

APPENDIX E: SERVICE DEPLOYMENT DESCRIPTOR 140

REFERENCES..142

ix

LIST OF TABLES

Table 1. Comparaison of Conventional Encryption
Algorithms23

Table 2. User Entity................................... 43

Table 3. Public Key Entity............................ 43

Table 4. Private Key Entity 44

Table 5. Trust Relationship 44

Table 6. Public Key Ownership 45

Table 7. Public Key Signature 45

Table 8. Public Key Publication 46

Table 9. Key Pair Relationship........................ 46

Table 10. Unit Test Results.............................69

Table 11. Integrity Test Results 71

x

LIST OF FIGURES

Figure 1. Overall View of the Project
Components.................................15

Figure 2. Symmetric Encryption................. .. . 18

Figure 3 . Public Key Encryption24

Figure 4. DSA Digital Signature Process 29

Figure 5. DSA Digital Signature Verification 30

Figure 6. Web Services Components 41

Figure 7. E-R Diagram of the Key Manager
Service47

Figure 8. Trust Graph Example 51

Figure 9. Structure of the E-mail Servlet 61

Figure 10. Action Factory Getlnstance Method 62

Figure 11. New Account Screen......................... 77

Figure 12. Random Seed Generation 79

Figure 13. Public Key Submission Screen 80

Figure 14. Contact Update Screen 81

Figure 15. Composing E-mail Screen 82

Figure 16. Mailbox Screen 83

xi

CHAPTER ONE

INTRODUCTION

Most computer users interact with secure systems

such as online banking systems where large amounts of

money transferred daily are at stake. But there are many

scenarios where security is not a common part of computer

systems such as E-mail or instant messaging. The

motivation for this project came from the idea of making

computer security a more important part of users'

experience with computer systems. Some users might want

to secure their hard disks, exchange secret E-mails or be

able to use instant messaging without fear that someone

might be eavesdropping. The Secure API is developed

using the Java programming language. The Java language

offers the unique advantage of a "Write Once, Run

Anywhere" capability. Java programs are written to run

on a Java Virtual Machine (JVM); a programmer can develop

a program and expect it to run on the JVM of different

computers. In the Java programming language, the notion

of the Java sandbox makes it possible to ensure that Java

programs respect their hosts. By default, programs are

prevented from reading privileged files, consuming too

1

many resources or communicating over sockets on behalf of

the host computer. Permissions are required, to be

explicitly granted for the programs to do so,. In early

Java versions, Java security applied only to applets

running within a Java enabled browser under strict

security limits. But in the Java 2 Platform, the sandbox

security model can apply to both Java applications and

Java applets running under Java Plug-in. As a part of

the built-in libraries included in the Java Developer Kit

(JDK), a default'security API implementation is available

to allow encryption, digital signature and other security

related functionalities. The Java security model is

designed to allow different implementations of the

security API [5]; it is implemented as a set of abstract

Java interfaces. The implementation of these interfaces,

also known as providers, can be plugged in seamlessly for

use with any application. Developers are able to select

different security providers for their applications.

Java 2, version 1.4.2 comes with two security providers:

one implements DSA-based algorithms and one implements

RSA-based algorithms for encryption [1,6]. It also comes

with two other security providers: one with JCE and one

with JSSE [1,5]. The secure API developed in this

2

project utilizes an implementation of the Pretty Good

Privacy (PGP) which is not part of Java's security

extension. PGP is a hybrid cryptosystem that combines

some of the best features of both conventional and public

key encryption. When a user encrypts text with PGP, the

text is first compressed in ZIP format then encrypted

using a one-time session key generated from random mouse

movements or keystrokes from the user; finally the

session key is encrypted using the recipient's public key

and transmitted along with the ciphertext. To decrypt a

message, PGP recovers the session key using the user's

private key and decrypts the ciphertext using the session

key. The Secure Client/Server API we developed provides a

simple way to implement solutions for users seeking more

security in their computer systems. The API will allow

developers to focus on specific aspects of their

applications rather than design and implement the

security features of their products.

Purpose of the Project

The purpose of this project is to implement a

generic Java API that allows application developers to

easily incorporate security functionalities into their

3

applications. Currently, development of security

functions using the Java language requires good knowledge

of the Java security model. Furthermore, Java's security

extension does not provide support for the PGP security

protocol that has proven to be very secure and efficient.

The Java Secure API we developed provides a PGP

implementation of security features such as encryption,

decryption, key management and digital signature. The

API can be used to secure any Java application with

minimal effort. The API is easy to use and hides all the

details of security operations that are irrelevant to the

user. The project also provides a sample online E-mail

application that uses this API; this E-mail application

presents a good reference for the usage of this secure

API.

Project Products

This project delivered the following:

API Source Code and Compiled
Classes

The source files contain the implementation of all

the security methods provided by the API as well as

comments within the source for relevant statements and

methods. We also deliver the compiled classes in a Java

4

Archive (JAR) file that developers can easily include in

their projects.

API User Guide

The user guide contains documentation of this

project's products. Detailed instructions are provided

for:

• Using security functions.

• Using the API client.

• Deploying the API server.

• Using the E-mail client.

• Deploying the E-mail application on a server.

The user guide includes sample code for reference as

well as the JavaDoc for all classes in the API.

E-mail Sample Application

To illustrate the usage of the API we deliver a

sample online E-mail application that developers can

adapt to their project along with reference to the user

guide. The secure E-mail client consists of a web

interface implemented as a Java applet using the client

side of the API; the server side is implemented as a Java

servlet that processes requests originating from the

client application.

5

CHAPTER TWO

REQUIREMENTS AND SPECIFICATION

Project Components

The mission of this project includes the design and

implementation of a security client/server API. This API

provides classes and methods to perform security

operations such as encryption, decryption and digital

signature. The project can he divided into three

components: the API client side referred to as the

security client, the API server side referred to as the

key manager service and a sample online secure E-mail

application; this sample application demonstrates the use

of the secure API. The Borland JBuilder Version 8

personal edition is the coding platform used to implement

this project. JBuilder is a cross-platform environment

for building software; it improves productivity of

developers thanks to features like integrated JSP/Servlet

support, integrated tools for database development and

support for many version control systems.

Security Client

The security client consists of a library of Java

classes that can be used by an application to perform

6

security operations and interact with the key manager

service. The security client provides the following

functionalities:

• Public key encryption/decryption methods: these

methods take a plaintext or■a ciphertext and a key

as inputs and return the encrypted/decrypted data.

Typically, the encryption/decryption key would be

retrieved from the server using key manager service,

but a key unknown to the server can also be used.

PGP private keys are encrypted using a secret

passphrase known only by the key's owner; hence, the

user's passphrase is required to recover the private

key for decryption. Two public key encryption

algorithms are supported: RSA and ElGamal. RSA was

developed by Ronald L. Rivest, Adi Shamir, and

Leonard M. Adleman in 1977; it uses exponentiation

modulo a product of two large prime numbers to
I

encrypt and decrypt (See chapter 4). Elgamal was

developed by Taher ElGamal and is based on the

discrete logarithm problem [2].

• Conventional encryption/decryption methods: these

methods take a plaintext or a ciphertext and a key

7

as inputs and return the encrypted/decrypted data.

For confidentiality reasons, secret keys are not

saved on the server; they are managed by the

security client. The following symmetric encryption

algorithms are supported: IDEA, DES and TripleDES.

These algorithms have proven to offer the best

trade-off between speed and security.

• Digital signature methods: these methods generate a

digital signature of user data using a provided

private key. The private key used can be downloaded

from the server or provided by the security client.

The digital signature algorithms supported are:

MD5WithRSA, SHAlwithRSA and DSA. MD5WithRSA and

SHAlwithRSA combine RSA with the strongest message

digest algorithms we support.

• Message digest methods: these methods are used to

generate the message digest of a user data based on

a selected message digest algorithm. Message digest

algorithms supported are: MD2, MD4, MD5, SHA, SHAO

and SHAl. These algorithms are the most commonly

used and thus are more likely to be needed from the

API we develop.

8

• Methods to communicate with the key manager service:

these methods provide an interface to the key

manager service. A client application is able to

publish a key pair on a server or retrieve a user's

public key etc.

Key Manager Service

The key manager server is implemented as a Web

service accepting requests through a Simple Object Access

Protocol (SOAP) interface [15]. The key manager service

is developed in a way that allows plugging in custom

implementations of the service interface. This project

provides an implementation that manages server

information in a Relational Database Management System

(RDBMS); other implementations can proceed differently

but keep the interface unchanged from the security

client's point of view. For example, the public keys

could be stored in a remote key server. The key manager

service provides the security client with the following

services:

• User management: the key manager service holds and

provides information about users having their keys

published on the server.

9

• Key management: client applications are able to

publish public keys or PGP key pairs and get other

information on a public key. The security client

can request a list of users each of whom has signed

a certain key or information about the owner of a

public key.

• User trust: the server keeps trust information

between pairs of users. The trust level of a user

represents the level of legitimacy of public keys he

or she introduces. The security client has the

ability to retrieve the trust level of one user to

another. The security client can also request the

key manager service to compute the legitimacy level

of a user's public key based on all trust

information available on the server.

Sample Application

The sample application consists of a secure online

E-mail management tool. It allows sending and receiving

encrypted and unencrypted E-mails as well as publishing

public keys to the server. The client E-mail application

is implemented as a Java applet running on the Java plug­

in version 1.4.2 or higher; the server side of this

10

application is developed as a Java servlet running on the

Sun One Application Server version 7. Information

related to this application is stored in a MySQL version

4.0.15 RDBMS. Database connections are managed by a

connection pool provided by the application server. The

E-mail servlet handles communication with the mail

servers using the JavaMail API. The client E-mail

application includes checking for E-mails, reading E-

mails, sending E-mails, as well as the communication with

the key manager service for submitting keys to the

server, signing keys and setting trust values between

users.

Validation Criteria

Prior to being put into practice, all parts of the

project were verified to meet all the requirements stated

previously in this section. The following validation

tests were performed:

• Unit Tests: test the individual method

implementations to ensure that they perform as

desired. The unit tests were performed using the

JUnit testing framework.

11

• Integration tests: test the interfacing of different

components of the system after they are assembled.

These tests ensure that the system elements were

properly integrated and will perform as expected.

12

CHAPTER THREE

PROJECT APPROACH

Introduction

The project consists of the development of a secure

client/server API and a sample application that

illustrates its usage. The server side of the API is

exposed as a Simple Object Access Protocol (SOAP) web

service that allows plugging-in custom implementations of

the web service interface. A default implementation is

provided in this project; it utilizes a database and

standard SQL to manage user keys and other data. In

order to efficiently implement the interaction with the

database, the Java Database Connectivity (JDBC) is used.

JDBC-based programs are written once to run on any

platform connecting any local or remote relational

database; this reduces maintenance overhead and improves

flexibility [16]. The client side of the secure API

contains security methods such as encryption and digital

signature as well as the ability to communicate with the

key manager service through SOAP client stubs. The

sample application consists of a web e-mail application

with a user interface implemented using HTML, JSP, applet

13

and JavaScript technologies. The server side is

developed as a Java servlet that manages users' E-mails

and account information using a database. Similar to the

key manager service, the servlet implementation is

database independent. Figure 1 illustrates the structure

and relationships between the components of this project.

Security Client Design
and Implementation

The security client functionality can be decomposed

into two types of methods: security methods such as

encryption/decryption and methods for communication with

the key manager service interface. In the design phase

of the security client, we start by identifying the

security methods to be exposed; the methods are then

grouped based on the type of security operations they

perform; for example, all message digest methods using

different algorithms are grouped into a single package.

The interface for communication with the key manager

service is designed simultaneously with the design of the

key manager service; to each method in the key manager

service corresponds one method in the security client

used to invoke the service. Finally, once all the

14

Figure 1. Overall View of the Project Components

methods are implemented, the security client is validated

using classes of unit and integrity tests.

Key Manager Service Design
and.Implementation

The key manager service design phase starts by

defining the interface for the service. The methods

’ 15

exposed provide the means to manage users' information,

publish and retrieve public and private keys. The

implementation we provide manages keys and users'

information using a database. Since the key manager

service publishes a Java interface, the security client

is independent of the service implementation; the

security client can perform unchanged when the service

implementation is changed. The entity-relation (E-R)

model is designed before proceeding to the service

implementation. The E-R Model contains a concise

description of the entities involved in a system,

relationships and required constraints. The E-R model is

visually represented by an E-R diagram. The next step

consists of normalizing the E-R model. Normalization is

the process of decomposing the system's entities and

relationships by breaking up their attributes into

smaller entities and relationships that possess desirable

properties; this is to ensure that insert, update and

delete anomalies do not occur in the system's database

over time [16, 19]. The goals of the normalization

include minimizing redundant data, reducing inconsistent

data and designing systems to be easier to maintain.

16

The security manager service is then developed to

run as a web service that fulfills requests from the

security clients via SOAP messages. Finally the security

manager service is validated using classes of tests.

E-mail Application Design
and Implementation

The sample E-mail application is implemented in two

components: a web client that runs as a Java applet

within a browser and a Java servlet that runs on a

servlet container and receives requests from the applet.

The applet communicates with the servlet by sending and

receiving messages using the HTTP protocol. The servlet

uses a database to store information. The E-R model is

defined before implementing the servlet.

17

CHAPTER FOUR

SECURITY CLIENT DESIGN

AND IMPLEMENTATION

Conventional Encryption

Until the development of the public-key encryption,

there was only one type of encryption involving the use

of a single key: conventional encryption, also referred

to as symmetric encryption [10]. The encryption process

consists of an algorithm and a key; it converts an

original message known as plaintext to an apparently

random message referred to as ciphertext. Once produced,

the ciphertext is transmitted then decrypted at the

destination using the same encryption key (See Figure 2).

There are two characteristics of the ciphertext that can

be used to deter statistical cryptanalysis: diffusion and

18

confusion [2]. In diffusion, the statistical structure

of the plaintext is dissipated into large portions of the

ciphertext whereas confusion consists of making the

relationship between the statistics of the ciphertext and

the encryption key as complex as possible.

The encryption process can be seen as a function

parameterized by the encryption key. Therefore, if we

consider a plaintext X = [Xi, X2, ... Xm] where the m

elements are in a finite alphabet,- a key K = [KlzK2, ... Km]

and a ciphertext Y = [Yi, Y2, ... Yn] then the encryption

can be written as:

Y = Ek(X) (1)

The decryption process can be represented by:

X = Dk(Y) (2)

The earliest known use of a cipher was by Julius

Caesar [7]. The Caesar cipher is a substitution cipher

where each letter is replaced by the third letter further

in the alphabet. In general, a substitution cipher

consists of shifting the alphabet k times; this can be

represented by:

Yi = Xi + k mod(26) for i = 0 ... m

and Xi = Yi - k mod(26) for i = 0 ... m

19

In the 19th century, Lewis Carroll developed a

substitution cipher where letters in the plaintext are

shifted differently based on their location. Given a key

k = (Ki, K2,..., Km) and a plaintext X = (Xx, X2,Xn) , the

ciphertext Y is computed by encrypting X in blocks of m

letters. A letter Yi in a block of the ciphertext is

computed as Yi = Xi + ki mod(26) . This cipher is harder to

break than the Caesar cipher especially as the size of

the key increases.

The Hill cipher, developed by Lester Hill in 1929,

is an improvement of the substitution ciphers [7]. It

consists of taking m consecutive letters frokm the

plaintext at a time and replacing them with m ciphertext

letters. It is represented by m linear equations; for

m = 3, the cipher can be defined by:

C = KP (mod 26)

where P = (Pi,P2,P3) is a vector of 3 letters from the

original plaintext that is transformed into a new vector

of three letters C = (Ci,C2,C3) using the key K

represented by a 3X3 matrix:

'cP f

C2 =

V

k\\
kl\
£31

£12
£22
£32

£13
£23
£33

Pp
P2
P3

(mod 26)

20

Decrypting the message requires computing the inverse K

of the matrix K defined by KK"1 = K"1K = I, where I is the

identity matrix. In this cipher, diffusion is achieved

by using three letters of the plaintext to produce one

letter in the ciphertext; in other words, information

consisting of a character in the plaintext is diffused in

three characters in the ciphertext. A higher level of

confusion is achieved by using a linear combination to

compute each letter in the ciphertext; this is more

complicated than the simple addition of a constant number

in a substitution cipher.

More powerful encryption can be achieved by

subjecting the plaintext to multiple stages of

encryption. Rotor machines are based on this principle.

They were used in Germany's Enigma and Japan's Purple

machines in the Second World War. In 1938, William

Friedman built an identical purple machine to decode

Japanese secret messages; it provided decisive

intelligence to the United States military that resulted

in victories such as the one in battle of Midway. Marian

Rejewski determined the wiring of the Enigma's rotors in

the winter of 1932, since then, Poland was able to read

thousands of German secret messages. In July of 1939,

21

France and Great Britain were delivered replicas of the

Enigma machine; this played a major role in the allies'

victory in the Second World War [2]. Rotor machines

contribute significantly in the Data Encryption Standard

(DES), one of the most widely used ciphers today.

Data Encryption Standard

The Data Encryption Standard (DES) algorithm was

adopted by the National Bureau of Standards in 1977 and

is still widely used. It is a block cipher that uses a

56-bit key where the data is encrypted in 64-bit blocks;

each block is subjected to 16 rounds of transformation.

Triple-DES is a more secure variation of DES using three

keys; given three keys Klz K2 and K3, the cipher C of a

plaintext text P is defined by C = Ek3 (Ek2 (Eki (P))) .

IDEA

The International Data Encryption Algorithm (IDEA)

is a symmetric block cipher developed by Xuejia Lai and

James Massey from the Swiss Federal Institute of

Technology [10] . IDEA uses 128-bit keys to encrypt data

in 64-bit blocks.

Blowfish

Blowfish is a conventional bloc cipher developed by

Bruce Schneier [10]. It is known for its speed and low

22

memory use. It is simple to implement and permits

variable key lengths, which provides a tradeoff between

speed and levels of security.

Table 1 summarizes advantages and disadvantages of

the symmetric algorithms we cited.

Table 1. Comparaison of Conventional Encryption
Algorithms

Algorithm Publication
Year

Advantages Disadvantages

DES 1975 Well tested Key too
short, slow

Triple-DES N/A Very well tested Three times
slower than
DES

IDEA 1991 PGP Popularity Commercial
license
required

Blowfish 1994 Fast encryption and
decryption, popular

Slow key
setup

Public Key Encryption

Until the development of public-key cryptography,

most cryptographic systems have been based on basic

substitution and permutation. The major drawback of

conventional encryption is the problem of secret key

distribution; it becomes a challenge when dealing with

unknown parties. In 1976, Whit Diffie and Marty Heilman

from Stanford University published a paper titled "New

23

directions in cryptography" where they described the

concept of public key encryption [4] . Public key

algorithms are based on mathematical functions instead of

substitution and permutation. Public key cryptography

consists of an asymmetric process involving the use of

two keys as opposed to a single key in conventional

encryption as shown in Figure 3. The use of two keys

provides major advantages in confidentiality, key

distribution and authentication [1].

Currently, there is a single well-known

implementation of the public key encryption approach that

is used: RSA. RSA was developed in 1977 by Ron Rivest,

Adi Shamir and Len Adelman putting Diffie and Heilman's

concepts into practice [10]. RSA encrypts messages in

blocks having a binary value less than a certain

24

predefined value n. For a plaintext block M, encryption

and decryption can be expressed by [2]:

C = Me mod n and M = Cd mod n = Med mod n where e and n are

numbers known to both sender and receiver and d is known

only to the sender. In other words, (e,n) represents the

public key and (d,n) represents the private key. This is

based on the fact that it is possible to find e, d and n

such that for all M < n, Med = M mod n. Based on Euler's

theorem, given two prime numbers p and q and two integers

n and m where n = pq and 0 < m < n, we have the following

relationship for every integer k: mk*(n)+1 = m rnod n where $

is the totient function. It is the number of positive

integers less than n and relatively prime to n. If p and

q are prime then $(pq) = (p-1)(q-1). Thus, by taking

d = e-1 mod $(n) which is equivalent to ed = k$(n)+l, we

can achieve Med = M mod n. To generate a key pair, two

prime numbers p and q are chosen, n is taken as pq. Then

e is chosen such that gcd($(n),e) = 1. Finally, d is

computed as e_1 mod $(n). The strength of RSA is based on

the fact that given a value of n, it is very difficult to

find the p and q values.

25

Hash Functions

Usually, a major concern when a message is delivered

is to detect whether changes were made to the message

after it left its origin. This is done by producing a

fingerprint of the message at a time when the message is

known to be authentic. The fingerprint is referred to as

the message hash. The message hash is calculated at the

source and appended to the message. At the destination,

the message hash is re-computed; if the same value is

produced then the message is considered authentic. To be

considered reliable, a hash function H must be [4]:

1. One-way: given y, it must be hard to find x such as

H(x) = y.

2. Weakly collision-free: given xlz it must be hard to

find x2 such as H(xi) = H(x2) .

3. Strongly collision-free: it must be hard to find any

pair (xi,x2) such as H(xi) = H(x2) .

One of the most commonly used hash functions is the

MD5 algorithm developed by Ron Rivest (the "R" in RSA).

MD5 processes messages in 512-bit blocks to produce a

128-bit message digest. Based on the MD4 hash algorithm

(precursor of MD5), the National Institute of Standards

and Technology developed the Secure Hash Algorithm (SHA);

26

SHA-1 is a revised version widely used today. SHA-1 has

been well tested and validated over time; it is very

strong against brute force cryptanalysis attacks but it

performs slower than SHA and MD5.

Digital Signature

Unlike all other security tools that protect

information from intruders, digital signature protects

the two parties exchanging information from each other.

As with handwritten signature, digital signature binds a

document to its author. It also serves as a proof that

the information exchange did happen in a similar way to a

witnessed handwritten signature. Without the use of

digital signature, a receiver of a transferred fund can

increase the amount and claim that the larger amount was

authorized for transfer. Another scenario could be of an

E-mail instructing a stockbroker for a transaction; the

sender later learns that the transaction turned bad and

denies sending the E-mail. Digital signature can be

achieved using RSA by encrypting the message or a hash of

it using the sender's private key. The signature

validity depends on the authenticity of the sender's

27

private key. The sender can still claim that his or her

private key was lost or stolen.

The Digital Signature Algorithm (DSA) was introduced

by David W. Kravitz [7]. In 1994, DSA became the U.S.

Federal Information Standard FIPS186 called DSS, making

it the first digital signature algorithm adopted by any

government. DSA is based on the difficulty of

calculating discrete logarithms; the discrete logarithm y

of x to the base b modulo m is defined by: x = bY mod m.

In addition to the user's private key, DSA uses three

public parameters. First a 160-bit prime number q is

chosen. Next, a prime number q that divides p-1 is

chosen of length between 512 and 1024 bits. Finally, an

number g of order q modulo p is chosen; this can be

expressed by g = h(p_1)/q mod p. The user's private key x

is randomly generated to be any number from 1 to p-1.

The public key y is computed as y = gx mod p. Generating

the signature of a message M consists of calculating the

SHA-1 message hash H(M) and generating a one-time random

number k then computing two quantities r and s defined by

(See Figure 4):

28

p q g

Figure 4. DSA Digital Signature Process

s = fi (H (M) , k, x, r, q) = (k_1 (H (M)+xr)) mod q

r = f2(k,p,q,g) = (gk mod p) mod q.

At the destination, the signature is verified

computing a quantity v and comparing it with r; v is

defined by v = ((gul yu2) mod p) mod q where

ui = (H(M)w) mod q, u2 = rw mod q and w = s"1 mod q (See

Figure 5) .

Pretty Good Privacy

PGP is a hybrid cryptosystem that combines some of

the best features of both conventional and public key

encryption. Conventional encryption provides fast and

29

y q g

Signature verified

Figure 5. DSA Digital Signature Verification

secure encryption/decryption and public key encryption

improves the process of key distribution.

PGP enables users to securely exchange messages,

digitally signed documents or secure files in local

hard-drives. Confidentiality is the basic service

provided by PGP; it allows encrypted messages to be

transmitted to a remote recipient or stored in local

files. The encryption is performed in the following

sequence [8] :

30

1. The sender generates a random number from mouse

movements or keystrokes. This random number is used

as a one-time session key that will be used for the

current message only.

2. The plaintext is compressed using the ZIP algorithm.

The ZIP algorithm is the most commonly used

compression algorithm; it makes transferring and

copying files faster. The compression saves

transmission time and reduces patterns in the

plaintext that could be used by a cryptanalysist to

decrypt the message. Decreasing the redundancy in

the message makes cryptanalysis of it more

difficult. Most cryptanalysis attacks exploit

patterns found in the plaintext to break the

ciphertext; compression reduces these patterns and

thus increases resistance to cryptanalysis.

Messages that are too short to compress are not

compressed.

3 . The plaintext is encrypted with the session key

using a secure and fast conventional encryption

algorithm, each of the following algorithms can be

used: CAST-128, IDEA or Triple DES. At this stage,

the ciphertext is produced.

31

4. The session key is encrypted using RSA with the

recipient's public key and transmitted prepended to

the ciphertext.

5. At the destination, the receiver recovers the

session key using his or her private key.

6. The session key is used to decrypt the ciphertext.

PGP also allows users to exchange authenticated

messages; this is done using a digital signature scheme.

The following steps describe the process:

1. Using the SHA-1 algorithm, a 160-bit hash code of

the message is generated.

2. The hash is encrypted using RSA with the sender's

public key then prepended to the message.

3 . The receiver recovers the hash code using RSA and

the sender's public key.

4. The receiver generates the hash code of the message

and compares it with the decrypted hash. The

message is authentic if the two hash codes match.

Sometimes, both authentication and confidentiality

are required. In this case, a signature for the

plaintext is generated and prepended to the message. The

message and the signature are then encrypted using the

procedure described above.

32

This combination of two encryption techniques makes

PGP perform faster than public key encryption since

conventional encryption is about 1,000 times faster than

public key encryption [2] . The use of public key

encryption to transfer the session key provides a better

way of distributing keys between correspondents.

Implementation

The implementation of the security client starts by

defining the categories of functions to be provided.

Java classes are grouped by type of security function

they perform. The next step is to implement the security

functions of the security client. Finally, test classes

are written to validate the implementation. The security

client classes are grouped in the following categories:

• Message digests: this group of classes provides

methods to compute a message digest of data.

• Key Pairs: classes under this category provide

various functionalities related to key pairs used in

public key encryption. Users are provided with

methods to generate, import and export keys.

• Encryption and Decryption: this group of classes

provides methods to encrypt and decrypt data.

33

• Digital signature: this group of classes provides

methods to sign data and verify digital signatures.

• PGP: classes in this group are used to interface

with the key manager service; they are stub classes

automatically generated from the web service

interface.

34

CHAPTER FIVE

KEY MANAGER SERVICE DESIGN

AND IMPLEMENTATION

Java Cryptography Architecture

The Java language defines a security architecture

known as the Java Cryptography Architecture (JCA). The

JCA defines APIs that allow developers to incorporate

security functionality in their programs. The Java

development kit includes APIs for digital signatures and

message digests as defined by the JCA. The Java

Cryptography Extension (JCE) extends theses APIs to

include other security functions for distribution in the

United States and Canada only. JCA defines a provider

architecture that allows third party implementations to

be used. Cryptographic services such as generating

signatures or creating message digests are referred to as

engines; engines are defined to separate cryptographic

services from each other; this way, a provider can choose

to only implement a subset of engines defined by the JCA.

The engines defined are [6] :

• MessageDigest: used to compute the message digest.

35

• Signature: used to sign and verify digital

signatures.

• KeyPairGenerator: used to generate a pair of public

and private key suitable for a specific algorithm.

• KeyFactory: used to translate a key to a key

specification and vice versa.

• CertificateFactory: used to create public key

certificates.

• KeyStores: used to create and manage databases of

keys.

• AlgorithmParameters: used to manage the parameters

for a particular algorithm.

• AlgorithmParameterGenrator: used to generate a set

of parameters suitable for a specific algorithm.

• SecureRandom: used to generate random or pseudo­

random numbers.

New Providers are installed by placing the

implementation class files in the class path then adding

the reference to the new provider in the java.security

file. This is accomplished by adding a new parameter

security.provider. n set to the master class name supplied

by the provider; it is the provider's master class that

36

always extends the Provider class. The value of n is set
lto the priority given to the provider. A provider can

also be registered programmatically using methods of the

Provider class. When an algorithm is requested without

specifying the provider's name, the JVM searches the

registered providers for an implementation of the

algorithm in the same order as the preference set to the

providers. In this project, an implementation of the JCE

developed by Cryptix will be used. Cryptix is an

international organization dedicated to the development

of open-source cryptographic libraries; the products

development is currently focused on Java [17].

Public Key Management in PGP

Public key management, including the protection of

public keys from tampering is the single most difficult

problem in applications using public keys [2]. The

following scenario illustrates the problem: User A

imports a public key associated to User B that was

tampered with, and replaced by User C's public key. In

this case, User C can forge B's signature in messages

sent to A that he or she will accept, and messages

encrypted by A and sent to B can be read by C. There is

37

no specific key management scheme provided by PGP, but

many options are suggested such as physically delivering

public keys to correspondents. If one party knows the

other party's public key then he or she can use that

public key to send his or her public key encrypted to the

other party. Another suggested solution consists of

using a mutually trusted entity known as a Certificate

Authority (CA), to exchange public keys; the trusted

entity would sign the certificates containing the public

keys to be exchanged; when a certificate is received, the

public key it contains can be considered legitimate since

it is signed by the CA. To avoid the need for a CA, PGP

introduces the notion of trust. To each public key, a

trust level can be associated, this level determines the

degree to which the public key owner is trusted to

certify or introduce new public keys. Based on all the

trust levels known to the server, the legitimacy for each

public key can be determined; PGP does not specify how a

key legitimacy is computed but suggestions are provided.

In the common usage of PGP, a user has a public key ring

stored in a local computer. In this project however, all

public keys of all users are stored in the server and the

end user does not need to keep any information in his or

38

her computer; in fact, users can utilize any computer

hosting a client using this API. The key legitimacy can

be computed using all users' information stored in the

server. Hence, a new public key legitimacy computation

algorithm is introduced in this project.

Graph Theory/Dijkstra

A graph consists of a set of points or vertices

linked together by a set of edges; a simple example of a

graph would be of a computer network where the vertices

are computers connected with data transportation media.

Formally, a graph is a pair of sets (V, E) where V is the

set of vertices and E is the set of edges; a weighted

graph is a graph with a cost function C where for each

edge (a,b) in E, there is a real number c such that

C(a,b) = c. A graph is said to be connected if there

exists a path between any two vertices in V. In this

project, computing the legitimacy of a public key boils

down to solving a shortest path problem. Given a

connected and weighted graph, the problem is solved by

finding the cheapest path from a source node to a

destination node. The algorithm we use is Dijkstra's

algorithm; it is an example of a greedy algorithm, at

39

each step, it makes a choice that is best at that moment

[13]. The algorithm keeps for each node the cost of

reaching it and whether this cost is final. At first,

all nodes except to origin are associated a

best-estimated cost with the value of 0 and the origin is

associated a final cost with a value of 0. At each

iteration, the algorithm selects the cheapest node to

reach from any node with a final cost, the selected node

cost is then set to final; this is repeated until all

costs are final. As we can see, Dijkstra's algorithm

finds at the same time the shortest path to all nodes in

the graph.

Web Services

In general terms, web services are services offered

by one application to other applications via the

Internet. Web services are usually involved in business-

to-business transactions; for example, a company might

provide a web site where users can input two addresses

and get driving directions from the origin to the

destination; the request would be forwarded from the

company's server to a remote web service to be processed,

then the directions displayed to the user on that

40

company's site. A web service is located based on a URL

that is used to send requests. Requests are sent in

Extensible Markup Language (XML), XML is a standard that

defines a system independent way of representing data.

XML is an important part of web services; it makes it

possible to interconnect software components written in

different programming languages and running on different

platforms. Figure 6 describes the relationships between

web services components.

Figure 6. Web Services Components

The process starts by a service provider publishing

a service to a service registry, the service is then

found in the registry by a service consumer, and the

consumer finally binds the service to send requests. Web

services are based on the following technologies [15]:

41

• Web Services Discovery Language (WSDL): it defines a

standard way of describing a web service using XML.

It contains information about the service such as a

description of the methods provided, the abstract

description of the data types and URLs that can be

used to call the service.

• Simple Object Access Protocol (SOAP): it is a

protocol that defines the structure of the XML

documents used to send requests and receive

responses from a web service. A SOAP document

contains a top element envelope; this element

contains a header element for properties of the

message followed by a body element for the content

of the request or the response.

• Universal Description Discovery and Integration

(UDDI): it is a specification designed to allow

businesses to find each other's services. It

defines a way for a service provider to publish a

service to a service registry and for service

consumers to search a service registry to find

services.

42

E-R Model and Database Design

Based on the requirements specified for the key-

manager service, the following entities are defined:

• User: this entity defines a user having published a

key on the server. The attribute details are shown

in Table 2.

Table 2. User Entity

Attribute Definition Type
Id

Name
E-mail

Address
Phone number

Identifier assigned to the
user
Name of the user
User's E-mail address
(us er@xxx.xxx.xxx)
User's street address
User phone number

Atomic

Composite
Atomic

Composite
Atomic

• Public key: this entity defines a public key

published on the server. The attribute details are

shown in Table 3.

Table 3. Public Key Entity

Attribute Definition Type
Key The encoded string Atomic

representing the public
key

Key Id The PGP identifier for the Atomic
key

43

mailto:er%40xxx.xxx.xxx

• Private key: this entity defines a private key

published on the server. The attribute details are

shown in Table 4.

Table 4. Private Key Entity

Attribute Definition Type
Key The

the
encoded string representing
private key

Atomic

Key Id The private key identifier Atomic

The following relationships between entities are

identified:

• Trust: this relationship represents a trust from one

user to another. It relates a user entity to

another. A user may trust and may be trusted by

many users. The attribute details are shown in

Table 5.

Table 5. Trust Relationship

Attribute Definition
Truster Identifier of the trusting user
Trustee Identifier of the user given

the trust

Type
Atomic
Atomic

Level The level of
the trustee.
100

the trust given to
Number from 0 to

Atomic

44

• Public key ownership: this relationship binds a user

to a public key. It relates a user entity to a

public key entity. A user may own no more than one

public key and a public key is owned by one user.

The attribute details are shown in Table 6.

Table 6. Public Key Ownership

Attribute Definition Type
Public Key Public key Identifier Atomic
User Identifier of the key owner Atomic

• Public key signature: this relationship binds a user

entity to a public key entity. A user may sign many

public keys and a public key may be signed many

users. A user need not sign a public key and a

public key need not be signed by a user. The

attribute details are shown in Table 7.

Table 7. Public Key Signature

Attribute Definition Type
Public Key Public key Identifier Atomic
User Identifier of the key signer Atomic

• Public key publication: this relationship binds a

public key to its publisher. A user may not publish

45

any key or may publish many public keys and a public

key is published by one user. The attribute details

are shown in Table 8.

Table 8. Public Key Publication

Attribute Definition Type
Public Key Public key Identifier Atomic
User Identifier of the user that Atomic

published the public key

• Key pairs: this relationship binds a public key to a

private key. It relates a public key entity to a

private key entity. A public key may correspond to

at most one private key and a private key

corresponds to one public key. The attribute

details are shown in Table 9.

Table 9. Key Pair Relationship

Attribute Definition Type
Public Key User's public key Atomic
Private Key User's private key Atomic

Figure 7 represents the E-R diagram for the key

manager service.

46

Figure 7. E-R Diagram of the Key Manager Service

Java Database Connectivity

Java Database Connectivity (JDBC) is a programming

interface that allows interaction between a Java program

and a database. JDBC allows Java programs to connect to

relational databases, execute structured query language

(SQL) queries and retrieve query results. With JDBC, one

can write a database application completely in Java code

as opposed to using embedded SQL code that needs to be

47

precompiled before it can be converted into a host-native

language like C. JDBC also presents major advantages

over Open Database Connectivity (ODBC) developed by

Microsoft; utilizing ODBC from Java is possible using '

what is referred to as a JDBC-ODBC bridge, but this has

many drawbacks [16] :

• ODBC is not appropriate for use from Java since it

uses a C interface. Calls from Java to native C

code affect security, robustness and portability.

• ODBC is harder to learn than JDBC, complex options

are used even for simple tasks; JDBC, on the other

hand, keeps things simple while allowing complex

capabilities to be used when required.

• When using ODBC, the ODBC driver manager and drivers

must be manually installed in every machine, whereas

JDBC drivers are installed along with the clients on

all types of client machines.

Implementation

The implementation of the key manager service

includes the following steps:

1. Define the web service API.

48

2. Write and test a sample implementation of the

interface.

3. Deploy the sample service.

Define the Web Service Interface

The key manager service is developed as a web

service that fulfills client requests via SOAP. The

secure server API is defined by the following service

capabilities:

1. Managing users: a client application can create,

edit or update users' information on the server.

2 . Managing key pairs: the service provides the means

to store, update or delete key pairs from the

server.

3. Managing public keys: a client application may allow

users to store, update or delete public keys

belonging to their correspondents.

4. Setting trust levels: this method is used to set a

trust level from one user to another, the trust

levels are used to compute the level of legitimacy

of public keys.

5. Retrieving secret keys for decryption or digital

signature.

49

6. Retrieving public keys for encryption or digital

signature verification. A user can also retrieve a

public key to distribute to correspondents.

7. Getting a level of legitimacy for a public key.

Write and Test the Interface
Implementation

The service implementation of the key manager

service interface that we provide manages the users'

information and keys using a database as defined

previously in the E-R diagram. A public key legitimacy

is computed by combining all trust information available

on a key K. The first step is to build what we refer to

as a trust graph. The first nodes consist of users

having signed K; these nodes are all linked to the

destination node with a cost of 1. More nodes are added

based on trusts assigned to users included in the graph.

If the graph contains a node for a user A and B trusts A

with a level L then a new node is added for user B linked

to A with a weight of L. This process is repeated until

no more new nodes can be added. When the trust graph is

complete, Dijkstra's algorithm is used to find the

longest path to the final destination. The cost of the

50

path to reach the key K from the user's node goes through

user B, user G then user I with a cost of 0.729

(=0.9x0.9x0.9x1); in other words, from the user X's point

of view, the key K is 72.9% legitimate.

Deploy the Sample Service

In this project, we use Apache's web services

framework named AXIS. AXIS is installed first on the Sun

One application server based on AXIS' installation guide.

Then the web service is deployed. To deploy a web

service, a deployment descriptor is required. The

deployment descriptor contains instructions to AXIS on

how the service should be deployed. In our deployment

descriptor, we specify the following parameters: service

name, service class, allowed methods and the list of

complex types or classes used. The content of the

deployment descriptor is listed in Appendix E.

52

CHAPTER SIX

SAMPLE APPLICATION IMPLEMENTATION

Java Applets

Java applets are programs written in the Java

programming language that can be embedded in an HTML

page, the same way other components such as images or

tables are included. Running applets requires the use of

either a Java-enabled browser or a browser with the Java

plug-in installed. The Java plug-in enables browsers to

run applets using Sun's Java Runtime Environment (JRE)

instead of the browser's default. To view a page that

contains an applet, the applet's byte code is downloaded

from the server to the local system and executed by the

browser's JRE or the Java plug-in.

One of the benefits of using Java is the ability to

run mobile code. In Java, code is loaded either from the

disk or from a remote file system by a Class loader.

Class loaders determine how and when classes are added to

the running environment making sure of the authenticity

of byte code [3]. Every Java VM starts by loading

classes from the user's class path using the Primordial

class loader; these classes are trusted and not subjected

53

to any verification. Classes can be loaded by other

Class Loader Objects such as applet Class Loaders.

Applet Class Loaders load classes into a browser by first

attempting to load a class using the primordial class

loader, if the class is not found then its byte code is

downloaded from the remote server via HTTP and examined

to ensure that it does not break any security rule but

still runs under strict restrictions. The Class loader

used in the Java plug-in is referred to as the Plug-in

Class Loader. The Plug-in Class Loader allows browsers

to accept signed applets to be given the same privileges

as local code. When a Plug-in Class Loader detects a

signed applet, it prompts the user for permission to run

it; the user also has the ability to verify the

certificates of the signers. To each Java applet is

associated a Code source that consists of the URL from

which it was loaded and the list of certificates used to

sign it if any. Each class belongs to one and only one

protection domain based on its code source [3]; every

protection domain has a set of permissions granted to it.

An applet can be granted privileges if the user

explicitly states additional privileges in a file named

.java.policy located in the user's home directory.

54

For this project, the E-mail client application runs

as an applet that is signed to provide these otherwise

unauthorized actions (See exhaustive list in appendix A):

• Writing files to the client file system for logging

purposes.

• Creating a network connection to a key manager

service that can be in a computer other than the

host from which the applet originated.

• Using the Cryptix JCE provider instead of the JCE

package that is already a part of the client system.

In this project, we assume that the client is using the

Java plug-in version 1.4.2 or above.

Java Servlets

Servlets are programs used to build Web pages on a

Web server. They are used when the content of the pages

to be returned to clients may differ from one request to

another. They can be thought of as applets that run on

the server side. Building Web pages dynamically for

incoming requests is useful in the following cases [14]:

• The request for the Web page depends on data

submitted by the user, an example would be a request

55

to a search engine where the user supplies the

search keywords.

• The data used to generate a web page change

frequently. For example, a traffic report listing

the latest traffic incidents using data downloaded

periodically from remote sites. If the generated

pages content go out of date then new pages are

generated.

• The web page requires information from databases or

other data sources. For example, a web page that

accesses a company's stock needs to be re-generated

for each request.

Servlets run on containers also referred to as

servlet engines; servlet engines are web server

extensions that provide an environment for running

servlets [14].

Developing a servlet consists of implementing the

servlet interface or extending a class that implements

the servlet interface. The servlet interface defines a

service method that is called to handle client requests.

One such class that implements the servlet interface is

HTTPServlet. It provides support for HTTP-specific

56

functionalities such as reading HTTP headers.

HTTPServlet is commonly extended to implement servlets.

HTTPServlet is an abstract class with additional methods

called by its service method; these methods must be

implemented by classes extending HTTPServlet:

• doGet: to handle HTTP GET requests.

• doPost: to handle HTTP POST requests.

• doPut: to handle HTTP PUT requests.

• doDelete: to handle HTTP DELETE requests.

• doHead: to handle HTTP HEAD requests.

• doOptions: to handle HTTP OPTIONS requests.

• doTrace: to handle HTTP TRACE requests.

Servlets are Java's substitution for CGI

programming. They offer many advantages over traditional

CGI scripts. Java servlets are more portable since they

take advantage of Java's "Write Once, Run Anywhere"

feature. They can also run on any web server or servlet

Container thanks to a well-defined servlet API. They are

more efficient than CGI scripts. As opposed to CGI

technology where a new process is started for every

request, Java servlets fulfill each request by spawning

one lightweight Java thread per request; this eliminates

57

overhead of starting a new operating system process. All

servlet requests run under the same Java VM making it

possible to cache information in memory for future use;

CGI scripts must use a database or a file to accomplish a

stateful mode of operation. Java servlets can also

communicate with the web server, something CGI scripts

cannot do; a servlet can write to a web server log file,

share resources such as message queues and database

connection pools with other servlets.

Java Server Pages Technology

Java Server Pages (JSP) are HTML pages that contain

Java code to generate dynamic content. Before providing

a JSP page to clients, the JSP container first translates

the JSP page into a servlet class that will be used to

produce the same output. Java code within a JSP page can

be thought of as part of the implementation of the

servlet's doGet or doPost method; objects such as

requests, responses, sessions and servlet contexts are

available within the JSP page. A JSP page does not do

anything a servlet cannot do but it makes it more

convenient to write the HTML code without having to use

Java statements; HTML code is written as it would be done

58

in a usual HTML page. The major advantage of using JSP is

to separate the development and the authoring roles;

developers write the components that perform the

processing to generate the content and authors write the

HTML code for the presentation.

JavaMail API

The JavaMail API is designed to provide a protocol-

independent package for reading and sending electronic

messages [12], JavaMail does not perform the actual

transporting, delivering or forwarding of messages; it

rather relies on mail servers to perform the actual

transfer of messages. JavaMail communicates with mail

servers using providers; it comes with providers for

SMTP, POP3 (Post Office Protocol 3) and IMAP mail

protocols. Adding support for a mail protocol requires

implementing the provider interface specifically for the

protocol. In our project, we will limit access to POP3

mail servers. It is a widely used protocol for

retrieving E-mails. It defines the communication

protocol between a POP3 E-mail client and a POP3 mail

server. The POP3 client/server communication consists of

three phases [12]: authentication, transaction and

59

update. The client starts by sending the username and

password to authenticate the owner of the mailbox; if the

authentication succeeds then the user proceeds to the

transaction phase. During the transaction phase, the

user's mailbox is locked by the server; only a single

client can connect to a mailbox at a time. The user

holding the connection to a mailbox sends POP3 commands

to the server, ending with an update command that closes

the connection. After closing the connection, the server

updates the user's mailbox to reflect the changes he or

she requested during the transaction phase.

Server Implementation

The server is implemented as a servlet that

processes requests originating from either the browser or

the applet. For example, when the user logs in, the

browser sends a request to the servlet that returns the

response by forwarding to a JSP page; the applet can make

a request to the servlet to retrieve a public key needed

for encryption. When a request arrives, the servlet

starts by reading a parameter named 'cmd' which specifies

the action that needs to be taken. Each action is

implemented as a class that implements the IAction

60

interface. The servlet fulfills requests by getting an

IAction instance from the ActionFactory using the cmd

string then calling the process method on the IAction

instance (See Figure 9).

Figure 9. Structure of the E-mail Servlet

As shown in Figure 9, the following steps are taken

to fulfill incoming requests:

1- Browser or applet sends a request to the servlet.

2- The servlet sends a getlnstance request to the

ActionFactory by passing in the cmd parameter.

61

3- The ActionFactory returns an instance I of IAction

interface.

4- The servlet sends a process command to I.

5- I processes the command and returns control to the

servlet.

6- The servlet asks I for the response type.

7- 1 returns the response type to the servlet.

8- If the response type is T, the servlet forwards to

the JSP named T. If T is null, the servlet returns

the content directly to the applet.

The Action factory getlnstance method can be

visualized using a Nassi-Shneiderman [18] diagram in

Figure 10:

/ login /checkMail-
/ Box

3et command String

/ create-
/ Account / getEmail / sendEmail

Return Return Return Return Return

LoginAction Checkmail-
BoxAction

CreateAccount
- Action

GetEmail-
Action

SendEmail-
Action

Figure 10. Action Factory Getlnstance Method

62

Client Implementation

The E-mail client consists of a Java applet that

utilizes the security client. The Graphic User Interface

(GUI) is built using Java Swing components. The GUI

contains four tabs for checking a mailbox, sending E-

mails, publishing keys and managing address books.

Mailbox Tab

The mailbox-tab is used to view the content of the

user's mailbox. When the user selects this tab, the

applet sends an HTTP request to the servlet to retrieve

the content of the mailbox. The servlet replies with a

list of comma-separated encoded Strings; these strings

contain the sender, the title, date received and an ID

for each E-mail. The applet parses this response and

displays the E-mail list on the screen. When the user

clicks on the Open E-mail button, the applet checks the

user's private key. If it was not yet retrieved then a

request is sent to the key manager service for the user's

private key. The user is then prompted for the

passphrase to recover the private key, which is cached by

the applet for later use. The applet then sends an HTTP

request to the servlet containing the E-mail ID; the

servlet fetches the E-mail body from the database and

63

writes it back to the applet. The applet checks whether

the E-mail body is encrypted. If needed, the message is

decrypted and displayed to the user in a popup window.

Publish a New Key Tab

This publish-new-key-tab allows a user to publish a

new public key to the server. The user starts by pasting

the public key in the text area. The applet then

inspects the key for any certificates and displays the

issuers on the screen. The user has the option to assign

a trust level to each certificate issuer as well sign the

new key. When the user submits the key, the applet sends

requests to the security manager service to publish the

new key and save the new trust information if any.

Compose E-mail Tab

The compose-E-mail-tab allows a user to compose or

reply to an E-mail. When the user inputs the recipient's

E-mail address, the applet sends a request to the key

manager service for the recipient's key legitimacy. If

the recipient is unknown then the user is asked to submit

the key; otherwise, the recipient's key legitimacy is

displayed on the screen. When the user clicks the send

button, the applet encrypts the E-mail body using the

recipient's public key then sends an HTTP request to the

64

servlet to deliver the E-mail. The servlet opens a

session with the user's outgoing mail server to sends the

message.

Address Book Tab

This Address-book-tab provides users with an

interface to manage address books. It allows users to

add new correspondents, delete correspondents or update

information about their correspondents. These actions

are accomplished by the applet sending an HTTP request to

the servlet, which makes the necessary updates to the

database.

Creating a New Account

To create a new account, a separate applet is

loaded. The user fills in information required to create

the new account such as username and password. When the

user clicks the create new account link, the applet opens

a small window and the user is asked to keep moving the

mouse until it closes. The random movements of the mouse

are used to generate a seed for a random number

generator, which is needed to generate the key pair for

the new user. The applet then sends the information in

the form to the servlet through an HTTP request. The

servlet saves the information about the new user account

65

such as the user name, SHAl digest of the password, PGP

passphrase and incoming mail server to use. The servlet

also sends the key pair to the web service to be stored

on the server. The passphrase used to encrypt the

private key is not sent to the servlet or to the service

To each one of the tabs corresponds a separate Java

class for its implementation. The separation of

functionalities simplified implementation and debugging.

66

CHAPTER SEVEN

TESTING THE API

JUnit

JUnit is a simple framework to write unit tests for

Java programs. While testing using a debugger to

evaluate expressions or printing out debug messages

requires the programmer's analysis and interpretation,

JUnit tests are easy to run and do not require the

programmer to analyze any information. Using JUnit,

debugging can be done without stepping through the code

with a debugger in order to reach a statement or adding

statements in the code to print out debug messages. To

write a test using JUnit, the TestCase class is extended

and its runTest method is overridden. At any stage of

the test, checks can be added to verify that an

expression matches its expected value by calling the

assertTrue method. In this project, all unit tests are

performed by JUNIT.

Unit Tests

The API cannot be considered for practical use

unless it is tested and validated. The following tests

were successfully performed:

67

• Generated symmetric encryption key.

• Generated public key pair.

• Encrypted and decrypted data using public and

private keys.

• Encrypted and decrypted data using a secret key.

• Digitally signed data.

• Verified digital signature.

• Generated message digests.

Table 10 summarizes the unit test results.

Integrity Tests

During the development phase, the system is broken

down into smaller and simpler units that can be

implemented separately. Although the tests on individual

units were ran successfully, there is no guarantee that

the system will perform as desired once the components

are put together. The integrity tests verify the

functionality of the system as a whole. Our integrity

tests validate the interfacing between the security

client and the key manager service as well as integrity

with other PGP software. PGP 8.0 for Microsoft Windows

68

Table 10. Unit Test Results

Tests Performed Results
IDEA • Generate IDEA Key

• Encrypt data
• Decrypt Data

Pass

DES • Generate DES Key
• Encrypt data
• Decrypt Data

Pass

TripleDES • Generate TripleDES Key
• Encrypt data
• Decrypt Data

Pass

RSA Key Pairs • Generate Key Pair
• Encrypt data
• Decrypt Data
• Export key Pair to files
• Import key Pair from files

Pass

ElGamal Key Pairs • Generate Key Pair
• Encrypt data
• Decrypt Data
• Export key Pair to files
• Import key Pair from files

Pass

DSA Digital Signature • Digitally sign data
• Verify Digital signature

Pass

MD5WithRSA Digital
Signature

• Digitally sign data
• Verify Digital signature

Pass

SHAlwithRSA Digital
Signature

• Digitally sign String
• Verify Digital signature

Pass

SHA, SHAO and SHAl
Message Digests

• Generate Message digests
• Validate Message digests

Pass

MD2, MD4 and MD5
Message Digests

• Generate Message digests
• Validate Message digests

Pass

trial version is used for the tests. The following

integrity tests were performed:

69

• Made calls from the client to the server and verify

the results.

• Generated key pairs and imported them using PGP.

• Encrypted text using the security client and

decrypted using PGP.

• Encrypted text with PGP and decrypted it using the

security client.

• Encrypted text using a given username used to import

the public key from the server.

• Decrypted text using a given username used to import

the private key from the server.

• Signed text given a username used to import the

user's private key from the server

• Signed a public key given a username used to import

the user's private key from the server.

The Table 11 summarizes the test results.

70

Table 11. Integrity Test Results

Key Pairs

Digital
Signature

Public keys

Tests Performed
• Publish key pair on the server
• Encrypt data using the security client
then decrypt using a PGP software

• Encrypt data using a PGP software then
decrypt using the security client

• Digitally sign data using a key imported
from the server

• Digitally sign data using security client
then verify signature in PGP

• Digitally sign data using PGP and verify
signature using the security client

• Retrieve a pubic key from the server
given a user name

• Publish a new signed public key on the
server

• Assign a trust level to a public key
owner

• Retrieve a level of legitimacy of a pubic
key

Results
Pass

Pass

Pass

71

CHAPTER EIGHT

USER MANUAL

Security Client

The security client provides methods to perform the

following security functions: encryption, decryption,

digital signature and message digest generation. Classes

are grouped by functionality into different packages.

Message Digests

The message digest classes are grouped under the

scapi.md package. This package contains one class for

each message digest algorithm. The content of the

package consists of the following: MD2.java, MD4.java,

MD5.java, SHA.java, SHAO.java and SHAl.java. To compute

a message digest of string s or a byte array b using an

algorithm A, make the following call: A.digest(s) or

A.digest(b).

Key Pairs

Two types of key pairs are supported: ElGamal and

RSA. ElGamal and RSA key pairs are implemented in

scapi.kp.elgamal.ElGamalKeyPair and

scapi.kp.rsa.RSAKeyPair respectively. Both classes

implement the IkeyPair interface; therefore other

72

implementations of key pairs can be used. From the

programmer's prospective, there are only two relevant

Java classes: IKeyPair and KeyPairFactory. To keep this

level of abstraction and simplicity, specific features of

algorithms such as algorithm parameters will not be

available. To generate a key pair, an instance of

IKeyPair is created using the KeyPairFactory by passing

to its getlnstance method the algorithm name; currently,

valid names are RSA and ElGamal. On the IKeyPair

instance, the genKeys method is then called; this method

takes three parameters: a string to be used as a random

seed that can be null, a username and a passphrase. The

IKeyPair interface provides two methods: getPublicKey and

getPrivateKey that can be used to access a public or a

private from a key pair.

Encryption and Decryption

Encryption and decryption methods are implemented in

the scapi.enc package. In the case of conventional

encryption, the ConvEnc class is used, whereas the PubEnc

class is used for public key encryption. Both classes

provide an encrypt method for encryption and a decrypt

method for decryption.

73

Digital Signature

Digital signature related functions can be performed

using the scapi.signature.DigitalSignture class. To sign

data, the sign method is called. Digital signatures are

verified by invoking the verify method.

Key Manager Service

Deploying the Key Manager Service

The key manager service is deployed as a SOAP web

service. When publishing the key manager service, the

Service interface implementation class is specified in

the deployment descriptor. In this project, we use the

Apache AXIS framework for web services. The service can

be deployed by writing the deployment descriptor then

using the AdminClient program that is part of the Apache

AXIS. The deployment descriptor and a script we wrote in

this project for publishing the service can be used for

reference.

Extending the Key Manager Service

The default implementation of the key manager

service provided uses a database for persistence and the

public key management scheme that we designed. But the

key server can be extended for instance to save the

74

public keys in a remote key server. There are two

approaches that can be undertaken to extend the service:

• Extend the existing class DefaultSecurityManagerlmpl

and override only chosen methods. For example, a

new implementation can reuse the database we

designed but implement a new method to compute the

level of legitimacy of a public key; in this case,

the getKeyLegitimacy method is overridden.

• Implement a new key server by writing a class that

implements ISecurityManager. One can always extend

SecurityManagerUtil for useful and reusable methods.

Once, the new class is written and tested, it can be

plugged in as the implementation for the web service.

This is done by setting the class name parameter in the

deployment descriptor to the fully qualified name of the

new class.

E-mail Application

Deploying the E-mail Servlet

The E-mail servlet can be deployed on any Java 2

Enterprise Edition (j2ee) compliant application server.

We tested the deployment on Sun One Application Server

Version 7 and Apache Tomcat Version 4.1. The servlet is

75

packaged in the standard web application structure

defined by the servlet specification; an ANT script is

provided to re-generate the Web Archive (WAR) file in

case changes are made in the servlet code. Depending on

the application server used, different steps are followed

to deploy the web application. In general, the steps

include:

• Giving a context for the application. The

application context is the path used by clients to

remotely access the web application.

• Providing the location of the WAR file used to load

the web application on the server.

• Assigning a name for the web application.

Using the E-mail Client

Before using the E-mail client, the user starts at

the login page. If the user is new, then he or she needs

to create a new account. Once the user logs in, the E-

mail client applet is loaded. The E-mail client applet

allows a user to manage the mailbox, read and send E-

mails, publish public keys to the server and manage the

address book. The E-mail client works as described

below:

76

• Creating a new account: to create a new account, the

user clicks on the new account link in the login

page. The new account applet is then loaded; it

contains the following fields shown in Figure 11:

Figure 11. New Account Screen

o User full name: the user's first, middle and

last name as it is desired to appear while

using the application. It will also be used

along with the E-mail address to identify the

owner of a public key. The standard way of

naming a public key owner is used. If the user

77

full name is 'Tawfik Lachheb' and the E-mail

address is 'tlachheb@csci.csusb.edu' then the

owner for the public key is identified by

'Tawfik Lachheb <tlachheb@csci.csusb.edu>'.

o User Login: the login the user chooses for the

server.

o User Password: The password used for

authentication on the server. Only a message

digest of this password will be sent to the

server, the server will authenticate a user by

comparing the hash of the password submitted

from the login page with the password hash

stored in the database for the user.

o PGP passphrase: the passphrase that will be

used to encrypt the private key, this

passphrase will not be sent to the server for

security reasons.

o POP3 server: the server used to check for

incoming E-mails.

o POP3 user: the user name for the account on the

POP3 server.

o POP3 password: the password used to

authenticate on the incoming mail server, this

78

mailto:tlachheb%40csci.csusb.edu

password will be stored by the servlet in plain

text.

Once the user fills out the fields and clicks on the

submit button, a small window will appear asking the

user to keep moving the mouse (See Figure 12).

Figure 12. Random Seed Generation

This is to generate a seed for the random number

generator. Once enough random mouse locations on

the window are captured, the window will close

itself and the key pair will be generated. At this

stage, the applet sends the content of the form

along with the new key pair to the server.

• Publishing a new key: a new public key can be

published in the Submit New Key tab shown in Figure

13. Initially, it contains one large text area

79

Figure 13. Public Key Submission Screen

where the user pastes the public key received from a

correspondent. The user then can assign a level of

legitimacy to the new key and a trust level to its

owner. The user also has the option to sign the key

before submitting it. Once the key is submitted,

the user can start sending E-mails to the key owner.

• Managing address books: the content of an address

book can be viewed in the Address Book tab. The

user has the ability to delete, update or add new

entries (See Figure 14).

80

User Update

First Name

Last Name

E-mail

..Street

City

State

Zip
Phone

| Submit |

Tawfik

Lachheb

tlachheb@mailserver.com

1 23 Main st

San Bernadino

CA

92407

|(909) 123-4567

| Close I,

Figure 14. Contact Update Screen

• Composing E-mail: to compose a new E-mail, the user

switches to the Compose New E-mail tab. This tab

contains the following fields as shown in Figure 15:

o To: the recipient's E-mail Address.

o Key legitimacy: the legitimacy level of the key

if assigned by the user.

o Overall key legitimacy: the legitimacy of the

key computed by aggregating the trust

information collected on all users as described

previously in this document.

o Subject: the subject for the E-mail.

o Body: the actual content of the E-mail.

81

mailto:tlachheb%40mailserver.com

p*', £53 Go links »

z3 htip://hppav:81/EmailServletFinaljTestTab.jsp?cmd=4Qgin - Microsoft Internet Ejqrtorer.

Re Edit View Favorites Too!s He'®

©as* - O • 0 @ <S>' j

Arid-ess ji^| http://nppay:31/EmdSenfetFinal/TestTab.;5p?OTd=tegin

^Maihox—y Compose New Emai ^SufanitNew Ke^F AddressBoohl

: ’ Jo: tawfik2@mall.cula.net | What's this?

! Key legitimacy: 5 ,30%

i Overall key legititnacv: 1 '........... • 173%

. Subject: Test message
23 ■

!' ' • " T ' . i .
This message would have contained more confidential information if the

! ■. ■ . :

i , ,

'ecipient's public key were more legitimate^

j ' ' ' - ' :

i '

i ;

Send | |j Clear Text j j Clear AO |

Applet ernandent.EmeilAppfettosder started jV) Localintranet

Figure 15. Composing E-mail Screen

Once the user inputs or updates the recipient's

E-mail address, the applet retrieves the key legitimacy

and the overall key legitimacy from the server; these and

their numeric values are then displayed on the two scale

bars. If the key is not available in the server then the

submit button is disabled and the following message

appears to the user: 'There is no public key for this E-

mail address on the server, please submit it first'. The

user writes the subject and the E-mail body after

evaluating the legitimacy of the key and deciding whether

to send the E-mail or not. Also based on the legitimacy,

82

http://nppay:31/EmdSenfetFinal/TestTab.%3B5p%3FOTd%3Dtegin
mailto:tawfik2%40mall.cula.net

the user might change the content to include more or less

sensitive information.

• Checking a mailbox: the content of the mailbox can

be checked when switching to the Mailbox tab shown

in Figure 16. The applet submits an HTTP request to

the servlet containing the username of the mailbox

owner. The servlet connects to the user's incoming

mail server to check for new E-mails. New E-mails

are retrieved and stored in the database. The

servlet replies to the applet with the list

containing the E-mails addressed to the user.

Figure 16. Mailbox Screen

83

CHAPTER NINE

CONCLUSION

Summary-

Applications can be extended with security features

using the client/server API we developed in this project.

Applications can provide users with

encryption/decryption, digital signature, message digest

and key management functionalities. The client side of

the API consists of a library of security methods as well

as methods to communicate with the server side. The

server side of the API is deployed as a SOAP web service

that exposes an interface for key management. This API

was developed to be very flexible, it allows custom

implementations to be plugged-in. The default

implementation we provide uses MySQL version 4.0.15 and

was tested with PostgresSql version 7.3.4, other database

systems can be easily used by simply editing property

files. In this project we introduced a method to compute

the level of legitimacy of a public key; the process

consists of solving a longest path problem from one node

to another in a graph. We also developed a secure

Internet-based E-mail application that uses the API. It

84

allows users to exchange encrypted emails, publish keys

on the server and manager their address books. This

sample application can be considered as a reference when

using the API.

Looking Forward

The secure client/server API we developed can be

extended to secure the communication between the client

and the server. Currently, requests are being sent

between the client and the server unprotected. For

example, an intruder can send a request to the server to

update a public key replacing it with his or her key; in

this case, the intruder would be reading information

confidential to other users.

The client server communication can be secured using

the Secure Socket Layer Protocol (SSL) developed by

Netscape. SSL is a protocol commonly used by browsers to

securely communicate with web servers while transferring

sensitive information such as credit card numbers or

social security numbers. By deploying the key manager

web service with an HTTPS end point,,the communication

with the client could be secured without having to make

any changes in the implementation of the API.

85

Another approach to secure the client/server

communication consists of using the Web Services Security

(WSS) protocol. WSS is a flexible extension to the SOAP

protocol that adds security features. WSS defines a SOAP

header element called security token [18], A security

token can contain a username and password. Adding a

security token to requests from the security client is

not sufficient in our case because of the threat of

replay attacks. The replay attack problem is often

solved using what is referred to as a nonce. A nonce is

a continuously changing string that originates from the

server and is returned by the client with the request; it

is used to inject randomness in encrypted or message-

digested information. An example of a security token

that can be used for a given password P and a nonce N

consists of the username and the password containing the

encrypted NP using the user's private key.

Even though we have developed a client/server API in

this project, applications can make use of the key

manager service only. Custom applications written in

other programming languages can invoke the key manager

service using automatically generated client stubs.

86

The sample E-mail application was developed with

more emphasis on using the security client than

implemnting E-mail client functionalities. This is to

provide a good example for the use of the API; the sample

application can be extended to include more common

features in E-mail clients.

87

APPENDIX A

RESTRICTONS ON APPLETS WITHIN THE JAVA SANDBOX

88

• Read files on the client file system.
• Write files to the client file system.
• Delete files on the client file system, either by

using the File.delete method, or by calling system-
level rm or del commands.

• Rename files on the client file system, either by
using the File.renameTo method, or by calling
system-level mv or rename commands.

• Create a directory on the client file system, either
by using the File.mkdirs methods or by calling the
system-level mkdir command.

• List the contents of a directory.
• Check to see whether a file exists.
• Obtain information about a file, including size,

type, and modification timestamp.
• Create a network connection to any computer other

than the host from which it originated.
• Listen for or accept network connections on any port

on the client system.
• Create a top-level window without an untrusted

window banner.
• Obtain the user's username or home directory name

through any means, including trying to read the
system properties: user.name, user.home, user.dir,
java.home, and java.class.path.

• Define any system properties.
• Run any program on the client system using the

Runtime.exec methods.
• Make the Java interpreter exit, using either

System.exit or Runtime.exit.
• Load dynamic libraries on the client system using

the load or loadLibrary methods of the Runtime or
System classes.

• Create or manipulate any thread that is not part of
the same ThreadGroup as the applet.

• Create a ClassLoader.
• Create a SecurityManager.
• Specify any network control functions, including

ContentHandlerFactory, SocketlmplFactory, or
URLS treamHandlerFac tory.

• Define classes that are part of packages on the
client system.

89

APPENDIX B
SAMPLE CLIENT CODE

90

package scapi.enc;

import
import
import
import
import
import
import
import
import
import
import

j ava.io.ByteArrayOutputStream;
j ava.io.ByteArraylnputStream;
java.util.Collection;
cryptix.message.EncryptedMessageBuilder;
cryptix.message.LiteralMessage;
cryptix.message.LiteralMessageBuilder;
cryptix.message.Message;
cryptix.message.MessageFactory;
cryptix.openpgp.PGPArmouredMessage;
cryptix.pki.KeyBundle;
cryptix.message.EncryptedMessage ;

public class ConvEnc {
/ * *
* This mehod encrypts a message using a symeric key.
★

* @param p_msg message to be encrypted
* ©param p_publicKey key to be used for the encryption
* ©return The encrypted message.
* ©throws Exception
*/

public static String encrypt(String p_msg, KeyBundle
p_publicKey) throws Exception {

LiteralMessage litmsg = null;
LiteralMessageBuilder lmb =

LiteralMessageBuilder.getlnstance("OpenPGP");
lmb.init(p_msg);
litmsg = (LiteralMessage) Imb.buildO;

Message msg = null;
EncryptedMessageBuilder emb -

EncryptedMessageBuilder.getlnstance("OpenPGP");
emb.init(litmsg);
emb.addRecipient(p_publicKey) ;
msg = emb.build();

PGPArmouredMessage armoured;
armoured = new PGPArmouredMessage(msg);
ByteArrayOutputStream out = new ByteArrayOutputStream()
out.write(armoured.getEncoded()) ;
out.close();
return new String(out.toByteArray());

91

/ * *
* This method decrypts a message using a symeric key.
*
* ©param p_msg encrypted armoured message.
* ©param p_secretKey symetric key used for decryption.
* ©param p_passwd password to recover the key
* ©return decrypted message
* ©throws Exception
*/

public static String decrypt(String p_msg, KeyBundle
p_secretKey, String p_passwd) throws Exception {

MessageFactory mf - MessageFactory.getlnstance("OpenPGP");
ByteArraylnputStream in = new

ByteArraylnputStream(p_msg.getBytes());
Collection msgs - mf.generateMessages(in);
EncryptedMessage em = (EncryptedMessage)

msgs.iterator().next();
in.close();

Message msg - null;
try {
msg - em.decrypt(p_secretKey, p_passwd.toCharArray());

} catch (Exception p_e) {
p_e.printStackTrace() ;
throw p_e;

}
return ((LiteralMessage) msg) .getTextData ()

package scapi.enc;

import
import
import
import
import
import
import
import
import
import
import

public
/ **

java.io.ByteArrayOutputStream;
j ava. io. ByteArraylnputStream
j ava.util.Collection;
cryptix. message. EncryptedMessageBuilder
cryptix.message.LiteralMessage ;
cryptix.message.LiteralMessageBuilder;
cryptix.message.Message;
cryptix.message.MessageFactory;
cryptix.openpgp.PGPArmouredMessage;
cryptix.pki.KeyBundle;
cryptix.message.EncryptedMessage;

class PublicKeyEnc {

92

*
* ©param p_msg
* ©param p_publicKey
* ©return
* ©throws Exception
*/

public static String encrypt(String p_msg, KeyBundle
p_publicKey) throws Exception {

LiteralMessage litmsg - null;
LiteralMessageBuilder lmb =

LiteralMessageBuilder.getlnstance("OpenPGP");
lmb.init(p_msg);
litmsg = (LiteralMessage) lmb.build();

Message msg = null;
EncryptedMessageBuilder emb -

EncryptedMessageBuilder.getlnstance("OpenPGP");
emb.init(litmsg);
emb.addRecipient(p_publicKey) ;
msg - emb.buildO;

PGPArmouredMessage armoured;
armoured = new PGPArmouredMessage(msg);
ByteArrayOutputStream out = new ByteArrayOutputStream();
out.write(armoured.getEncoded());
out. close ()
return new String(out.toByteArray());

/ * *
*
* ©param p_msg
* ©param p_secretKey
* ©param p_passwd
* ©return
* ©throws Exception
*/

public static String decrypt (String p_msg., KeyBundle
p_secretKey, String p_passwd) throws Exception {

MessageFactory mf = MessageFactory.getlnstance("OpenPGP")
ByteArraylnputStream in = new

ByteArrayInputStream(p_msg.getBytes());
Collection msgs = mf .generateMessages(in);
EncryptedMessage em = (EncryptedMessage)

msgs.iterator().next();
in. close ()

93

Message msg = null;
try {
msg = em.decrypt(p_secretKey, p_passwd.toCharArray())

} catch (Exception p_e) {
p_e.printStackTrace() ;
throw p_e;

}
return ((LiteralMessage) msg).getTextData();

}
package scapi.kp.rsa;

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

cryptix.openpgp.PGPKeyBundle;
cryptix.pki.CertificateBuilder;
cryptix.pki.PrincipalBuilder;
cryptix.pki.KeyBundleFactory;
java.security.Security;
j ava.security.KeyPair;
j ava.securi ty.KeyPairGenerator,-
j ava.security.Principal;
java.security.PrivateKey;
java.security.PublicKey;
j ava.security.SecureRandom;
java.security.cert.Certificate;
cryptix.openpgp.PGPArmouredMessage;
j ava.io.ByteArrayOutputStream;
scapi.kp.IKeyPair;

public class RSAKeyPair implements IKeyPair {

static final String rsa = "OpenPGP/Encryption/RSA";
static final String elGamal = "OpenPGP/Signing/ElGamal";
static final String dsa = "OpenPGP/Signing/DSA";

protected String m_random = null;
protected String m_passphrase = null;
protected String mjisername = null;
protected PGPKeyBundle m_pgpPublicKey, m_pgpSecretKey;
protected int m_signingAlgSize - 1024;
protected int m_encryptAlgSize = 1024;

static {
Security.addProvider(new

cryptix.j ce.provider.CryptixCrypto());
Security.addProvider(new

cryptix. openpgp. provider. CryptixOpenPGP ()) ,-
}

94

! * ★
* Default consrtructor
*/

public RSAKeyPairO {
}
/ * *
* Constructor
*
* @param p_seed seed, forrandom number generation
* @param p_name user name
* @param p_passphrase user password
*/

public void genKeys(String p_seed, String p_name, String
p_passphrase) {

m_random = p_seed;
m_username - p_name;
m_passphrase = p_passphrase;
genKeys();

/ **
* Generate a key pair
*/

private void genKeys(String signingAlg) {
try {
KeyBundleFactory kbf -

KeyBundleFactory.getlnstance("OpenPGP");
m_pgpPublicKey = (PGPKeyBundle)

kbf.generateEmptyKeyBundle();
m_pgpSecretKey = (PGPKeyBundle)

kbf.generateEmptyKeyBundle();

//generate the signature key
KeyPairGenerator kpg =

KeyPairGenerator.getlnstance(signingAlg);
kpg.initialize(m_signingAlgSize, new

SecureRandom(m_random.getBytes()));
KeyPair kp = kpg.generateKeyPair();
PublicKey pubkey = kp.getPublic();
PrivateKey privkey = kp.getPrivate();

//add the certificate
PrincipalBuilder princbuilder =

PrincipalBuilder.getlnstance("OpenPGP/UserlD");
Principal userid = princbuilder.build(m_username);
CertificateBuilder certbuilder =

CertificateBuilder.getlnstance("OpenPGP/Self");

95

Certificate cert = certbuilder.build(pubkey, userid,
privkey, new SecureRandom(m_random.getBytes()));

m_pgpPublicKey.addCertificate(cert);
m_pgpSecretKey.addCertificate(cert) ;

m_PgpSecretKey.addPrivateKey(pubkey, privkey,
m_passphrase.toCharArray(), new
SecureRandom(m_random.getBytes())) ;

//now generate the RSA key pair
kpg = null;
kpg = KeyPairGenerator.getlnstance(rsaAlg);
kpg.initialize(m_encryptAlgSize, new

SecureRandom(m_random.getBytes()));
kp = kpg.generateKeyPair();
PublicKey pubsubkey - kp.getPublic();
PrivateKey privsubkey = kp.getPrivate();
PublicKey pubmainkey - (PublicKey)

m_PGPSecretKey.getPublicKeys().next();
PrivateKey privmainkey -

m_pgpSecretKey.getPrivateKey(pubmainkey,m_passphrase.toCharArra
y ()) ;

m_pgpPublicKey.addPublicSubKey(pubsubkey, privmainkey);
m_PgpSecretKey.addPublicSubKey(pubsubkey,

m_pgpPublicKey),-
m_pgpSecretKey.addPrivateSubKey(privsubkey, pubsubkey,

m_passphrase.toCharArray(), new
SecureRandom(m_random.getBytes()));

} catch (Exception p_e) {
p_e.printStackTrace() ;

}
}
/ * *
* to access the private key*
* ©return the armoured private key
* ©throws Exception
*/

public String getArmouredPrivate() throws Exception {
PGPArmouredMessage armoured = new

PGPArmouredMessage(m_pgpSecretKey) ;
ByteArrayOutputStream out = new ByteArrayOutputStream();
out. write (armoured. getEncoded ()) ;
String res = new String(out.toByteArray());
out.close();
return res;

}

96

/ * *
* to access the public key
*
* ©return the public key
* ©throws Exception
*/

public PGPKeyBundle getPublicKey() throws Exception {
return m_jpgpPublicKey;

/ * *
* to access the public key
*
* ©return the armoured public key
* ©throws Exception
*/

public String getArmouredPublicKey() throws Exception {
PGPArmouredMessage armoured = new

PGPArmouredMessage(m_pgpPublicKey);
ByteArrayOutputStream out = new ByteArrayOutputStream()
out.write(armoured.getEncoded()) ;
String res = new String (out.toByteArray());
out.close();
return res;

}
/ * *
* to access the private key
*
* ©return the private key
* ©throws Exception
*/

public PGPKeyBundle getPrivateKey() throws Exception {
return new

RSAPrivateKey(getArmpuredPrivate()).getPrivateKey();
}

}

97

APPENDIX C
SAMPLE SERVER CODE

98

package ssapi.pgp;

import java.util.Vector;

public interface ISecurityManager {

public String savePublicKey(String p_user, String
p_armouredPublic) throws Exception;

public String getPublicKey(String p_user) throws
Exception;

public void deletePublicKey(String p_user) throws
Exception;

public void updatePublicKey(String p_armouredPublic)
throws Exception;

public void saveKeyLegitimacy(String p_user, String
p_trustee, int p_value) throws Exception;

public KeyLegitimacy getKeyLegitimacy(String p_user,
String p_corr) throws Exception;

public void deleteKeyLegitimacy(String p_user, String
p_trustee) throws Exception;

public void updateKeyLegltimacy(String p_user. String
p_trustee, int p_value) throws Exception;

public String saveKeys(String p_armouredPublic, String
p_armouredSecret) throws Exception;

public void deleteKeyPair(String p_user) throws
Exception;

public void updateKeyPair(String p_armouredPublic,
String p_armouredSecret) throws Exception;

public String saveUserTrusts(Permission p_perm, Trust[]
p_trusts) throws Exception;

public String getTrust(String p_user, String p_trustee)
throws Exc ep t i on;

public void deleteTrust(String p_user, String
p_trustee) throws Exception

99

public void updateTrust(String p_user, String
p_trustee) throws Exception;

public String getSecretKey(String p_user) throws
Exception;

public String getEmailAddressByPublicKeyId(String
p_KeyId) throws Exception;

public String[] getPublicKeyOwners(String[] p_ids)
throws Exception;

public void saveNewPublicKeySignatures(String p_keyld,
StringE] p_signers) throws Exception;

public StringE] getPublicKeySignatures(String p_keyld)
throws Exception

public void saveNewPublicKeySignatures(String p_keyld, Vector
p_signatures) throws Exception;

}

package ssapi . pgp

public class KeyLegitimacy {

public int m_overAllLegitimacy;
public int m_userLegitimacy;

package ssapi.pgp;

public class Trust {

public String m_user;
public String m_trusted;
public int m_value;

public String getM_user() (
return m_user;

public String getM_trusted() {
return m_trusted;

public int getM_value() {

100

return m_value;
}

public void setM_user(String p_user) {
m_user - p_user;

}

public void setM_trusted(String p_trusted) {
m_trusted = p_trusted;

}

public void setM_value(int p_value) {
m_value = p_value;

package ssapi.pgp;

import
import
import
import
import
import
import
import
import
import
import
import

j ava.sql.DriverManager;
java.sql.Connection;
java.sql.Statement;
j ava.sql.ResultSet ;
java.util.Vector ;
java.util.LinkedList;
j ava.util.Collection;
java.security.PublicKey;
j ava.security.cert.Certificate;
cryptix. message. KeyBundleMessage
cryptix.message.MessageFactory;
cryptix.pki.KeyBundle;

public class DefaultSecurityManagerlmpl extends
SecurityManagerUtil implements ISecurityManager {

static {
try {
java.security.Security.addProvider(new

cryptix.j ce.provider.CryptixCrypto());
java.security.Security.addProvider(new

cryptix.openpgp.provider.CryptixOpenPGP());
} catch (Exception p_e) {
p_e.printStackTrace();
new SecurityManagerUtil().log(p_e);

}
}

public void updatePublicKey(String p_armouredPublic)
throws Exception {

101

Connection conn = null;
Statement st = null;
try {

String firstName = null, lastName = null,
middleName = null, emailAddress = null;

String keyOwner =
getPublicKeyOwner (p_armouredPublic) ;

if (keyOwner == null)
throw hew Exception("Unable to get public key

owner.");
StringTokenizer stt = new StringTokenizer(keyOwner,

" ") ;
if (stt.countTokens() < 2)
throw new Exception("Invalid public key owner.");

firstName = stt.nextToken();
middleName - stt.nextToken();
if (!stt.hasMoreTokens()) { //2 tokens

emailAddress = middleName;
lastName = firstName;
firstName = "";

} else {
lastName = stt.nextToken();
if (!stt.hasMoreTokens()) { //3 tokens

emailAddress - lastName;
lastName = middleName;
middleName - "";

} else { //4 tokens
emailAddress = stt.nextToken();

}
}

if (emailAddress 1= null && emailAddress.length() >
2)

emailAddress = emailAddress.substring(1,
emailAddress.length() - 1) ;

String userid - getUserldByEmail(emailAddress);

String keyld =
getPublicKeyldString(p_armouredPublic);

KeyBundle bundle =
stringToBundle(p_armouredPublic);

Vector signatures = new Vector();

st = (conn = getDbConnection()).createStatement();
Iterator itr = bundle.getCertificatesO;
while , (itr.hasNext()) {

102

cryptix.openpgp.provider.PGPCertificatelmpl cert
= (cryptix.openpgp.

provider.PGPCertificatelmpl) itr.next();
if (cert ! = null) {

String issuerKeyld = toString((
(cryptix.openpgp.PGPCertificate)
cert) .getlssuerKeylD() .getBytesO) ;

if (keyld.indexOf(issuerKeyld) < 0) {
signatures.add(cert);
String qry - "UPDATE INTO keysignatures (id,

user_id, key_id) VALUES (" +
System.currentTimeMillis() + ", '" +

getUserldByKeyld(issuerKeyld) + "', '" + keyld + "')";
int count = st.executeUpdate(qry);
if (count <= 0) {
qry - "INSERT INTO keysignatures (id,

user_id, key_id) VALUES (" +
System.currentTimeMillis() + ", '" +

getUserldByKeyld(issuerKeyld) + "', ' " + keyld + "')";
st.executeUpdate(qry);

}
}

}
}

ResultSet rs = st.executeQuery("select count(*)
from publicKeys where key_id = ' " + keyld + " ' ") ,-

if (rs.next()) {
if (rs.getlnt(1) <= 0) {

String query = "UPDATE into publicKeys (id,
key_id, user_id, armoured_public) values (";

query += getNextlndexVal("publickeys", "id") +
11 I II .

t t

query += keyld +
query += userid +
query += p_armouredPublic + "')";
st.executeUpdate(query);

}
}
//updatePublicKeySignatures(keyld, signatures);

} catch (Exception p_e) {
log(p_e);
throw p_e;

} finally {
if (st != null)
try {
st.close();

} catch (Exception p_e) {

103

p_e.printStackTrace();
}

if (conn != null)
try {
conn.close() ;

} catch (Exception p_e) {
p_e.printStackTrace();

}
}

public void deleteKeyLegitimacy(String p_user, String
p_trustee) throws Exception {

Connection conn = null;
Statement st = null;
try {

st = (conn = getDbConnection()).createStatement()
conn.setAutoCommit(false);

String userid = getUserldByEmail(p_user);
String trusteeKeyld = getKeyldByEmail(p_trustee);

String sql = "DELETE FROM keylegitimacy WHERE
user_id = " + userid + " AND key_id = " + trusteeKeyld;

System.out.println(sql);
int count = st.executeUpdate(sql);

conn.commit();
} catch (Exception p_e) {
conn.rollback();
log(p_e);
throw p_e;

} finally {
if (st != null)

try {
st.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}
if (conn != null)

try {
conn.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}
}

104

public void updateKeyLegitimacy(String p_user, String
p_trustee, int p_value) throws Exception {

Connection conn = null;
Statement st = null;
try {

st = (conn = getDbConnection()).createStatement();
conn.setAutoCommit(false);

String userid = getUserldByEmail(p_user);
String trusteeKeyld = getKeyldByEmail(p_trustee);

String sgl = "UPDATE keylegitimacy SET legitimacy =
" + p_value + " WHERE user_id - " + userid + " AND key_id ="+
trusteeKeyld;

System.out.println(sql);
int count = st.executeUpdate(sql);

conn.commit();
} catch (Exception p_e) {
conn.rollback();
log(p_e);
throw p_e;

} finally {
if (st != null)

try {
st.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}
if (conn != null)

try {
conn.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}
}

public String getTrust(String p_user, String p_trustee)
throws Exception {

Connection conn = null;
Statement st = null;
try {

st = (conn = getDbConnection()).createStatement();

String userid = getUserldByEmail(p_user);
String trusteeKeyld = getKeyldByEmail(p_trustee);

105

String sql = "SELECT legitimacy FROM keylegitimacy
WHERE userid = " + userid + " AND key_id = " + trusteeKeyld;

System.out.println(sql);
ResultSet rs = st.executeQuery(sql);
if (!rs.next())
throw new Exception("Trust not found:" + sql);

return rs.getstring(1);

} catch (Exception p_e) {
log(p_e);
throw p_e;

} finally {
if (st != null)
try {
st.close();

} catch (Exception p_e) '{
p_e.printStackTrace();

}
if (conn != null)
try {
conn.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}

public void saveKeyLegitimacy(String
p_userEmailAddress, String p_correspondent, int p_value) throws
Exception {

Connection conn = null;
Statement st = null;
try {

st = (conn = getDbConnection()).createStatement();

String sql = "SELECT id FROM users WHERE
email_address='" +

p_userEmailAddress + "'";
System.out.println(sql);
ResultSet rs = st.executeQuery(sql);
if (!rs.next())

throw new Exception("User Email address not
found.");

String userid - rs.getstring(1);

sql = "SELECT id FROM users WHERE email_address='"
+ p_correspondent +

II I II .

106

System.out.println(sql);
rs = st.executeQuery(sql);
if (!rs.next())

throw new Exception("Trustee Email address not
found.");

String trusteeld = rs.getString(1);

sql = "SELECT id FROM publicKeys WHERE user_id='" +
trusteeld + "'";

System.out.println(sql);
rs = st.executeQuery(sql);
if (!rs.next())
throw new Exception("Email address not found.");

String publicKeyld = rs .getString(1) ,-

sql =
"INSERT INTO keyLegitimacy (id, user_id,

key_id, legitimacy) VALUES (" +
System.currentTimeMillis() + + userid +

+ publicKeyld + "," +
p_value + ")";

System.out.println(sql);
st.executeUpdate(sql);

}
catch (Exception p_e) {
log(p_e);
throw p_e;

}
finally {

if (st != null)
try {
st. close () ,-

} catch (Exception p_e) {
p_e.printStackTrace();

}
if (conn ! = null)

try {
conn.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}

public String getKeyldByEmail(String p_user) throws
Exception {

Connection conn = null;
Statement st - null;

107

try {
st = (conn = getDbConnection()).createStatement();

String query = "SELECT id FROM users WHERE
email_address = '" + p_user +II I II .

z

System.out.println(query);
ResultSet rs = st.executeQuery(query)
String userid = null;
if (!rs.next())

throw new Exception("Email address not found:" +
query);

userid - rs.getString(1) ;

query = "SELECT key_id FROM publickeys WHERE
user_id=1" + userid + "'" ;

System.out.println(query);
rs = st.executeQuery(query);
if (!rs.next())
throw new Exception("User address not found:" +

query);
return rs.getString(1);

catch (Exception p_e) {
log(p_e);
throw p_e;

}
finally {

if (st != null)
try {
st.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}
if (conn != null)
try {
conn.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}

public String getEmailAddressByPublicKeyld(String
p_KeyId) throws Exception {

Connection conn = null;
Statement st = null;
try {

108

st - (conn - getDbConnection()).createStatement();

String query = "SELECT user_id FROM publicKeys
WHERE key_id like '%" +

p_KeyId +
System.out.println(query);
ResultSet rs = st.executeQuery(query);
String userid = null;
if (!rs.next())

throw new Exception("Email address not found:" +
query);

userid - rs.getString(1);

query = "SELECT email_address FROM users WHERE
id='" + userid + "'";

System.out.println(query);
rs = st.executeQuery(query);
if (!rs.next())

throw new Exception("User address not found:" +
query);

return rs.getString(1);

catch (Exception p_e) {
log(p_e);
throw p_e;

}
finally {

if (st != null)
try {
st.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}
if (conn != null)
try {
conn.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}

public String saveKeys(String p_armouredPublic, String
p_armouredSecret) throws

Exception {
Connection conn = null;
Statement st = null;

109

try {
st = (conn = getDbConnection()).createStatement();

String newUserld - "" + System.currentTimeMillis();
String firstName = null, lastName = null, middleName

= null, emailAddress = null;

System.out.println("Key owner: " +
getPublicKeyOwner(p_armouredPublic));

String keyOwner =
getPublicKeyOwner(p_armouredPublic);

if (keyOwner == null)
throw new Exception("Unable to get public key

ownoer.");
java.util.StringTokenizer stt = new

java.util.StringTokenizer(keyOwner, " ");
if (stt.countTokens() < 2)
throw new Exception("Invalid public key owner.");

firstName = stt.nextToken();
middleName = stt.nextToken();
if (!stt.hasMoreTokens()) { //2 tokens

emailAddress = middleName;
lastName = firstName;
firstName = "";

}
else {

lastName = stt.nextToken();
if (!stt.hasMoreTokens()) { //3 tokens

emailAddress = lastName;
lastName = middleName;
middleName = "" ;

}
else { //4 tokens

emailAddress = stt.nextToken();
}

}

if (emailAddress != null && emailAddress.length() >
2)

emailAddress = emailAddress.substring(1,
emailAddress.length() - 1) ;

String query = "insert into users (id, first_name,
middle_name, last_name, email_address) values ('";

query += newUserld +
query += firstName +
query += middleName +
query += lastName +
query += emailAddress + "')";

110

log("query:" + query);
st.executeUpdate(query);

query = "insert into privateKeys (user_id, key_id,
armoured_private, armoured_public) values ('";

query += newUserld +
query += getPublicKeyldString(p_armouredPublic) +

II I I II ./ /
query += p_armouredSecret +
query += p_armouredPublic + "')";
st.executeUpdate(query);

st.close();

savePublicKey(emailAddress, p_armouredPublic);
}
catch (Exception p_e) {

log(p_e);
throw p_e;

}
finally {

if (st != null)
try {
st.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}
if (conn != null)
try {
conn.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}

return "done.";

public void deleteKeyPair(String p_emailAddress) throws
Exception {

Connection conn = null;
Statement st = null;
try {

st = (conn = getDbConnection()).createStatement();

System.out.println("SELECT id FROM users WHERE
email_address='" +

p_emailAddress + "'");
ResultSet rs - st.executeQuery(

111

"SELECT id FROM users WHERE email_address='" +
p_emailAddress + "'") ;

String userid = null;
if (!rs.next())

throw new Exception("Email address not found.");
userid = rs.getstring(1);

System.out.println("DELETE FROM privateKeys WHERE
user_id = " + userid);

st.executeUpdate("DELETE FROM privateKeys WHERE
user_id = " + userid),-

System.out.println("DELETE FROM users WHERE id = "
+ userid);

st.executeUpdate("DELETE FROM users WHERE id - " +
userid);

}
catch (Exception p_e) {
log(p_e);
throw p_e;

}
finally {

if (st != null)
try {
st.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}
if (conn != null)
try {
conn.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}

public String savePublicKey(String p_user, String
p_armouredPublic) throws Exception {

Connection conn - null;
Statement st = null;
try {

String firstName = null, lastName = null,
middleName = null, emailAddress = null;

System.out.println("Key owner:" +
getPublicKeyOwner(p_armouredPublic));

String keyOwner =
getPublicKeyOwner(p_armouredPublic);

112

if (keyOwner -= null)
throw new Exception("Unable to get public key

ownoer.");
StringTokenizer stt - new StringTokenizer(keyOwner,

" ") ;
if (stt.countTokens() < 2)

throw new Exception("Invalid public key owner.");
firstName = stt.nextToken();
middleName - stt.nextToken();
if (!stt.hasMoreTokens()) { //2 tokens

emailAddress = middleName;
lastName = firstName;
firstName = "";

} else {
lastName = stt.nextToken();
if (!stt.hasMoreTokens()) { //3 tokens

emailAddress = lastName;
lastName = middleName;
middleName - "",-

} else { //4 tokens
emailAddress = stt.nextToken();

}

if (emailAddress ! = null && emailAddress.length() >
2)

emailAddress = emailAddress.substring(1,
emailAddress.length() - 1) ;

st = (conn = getDbConnection()).createStatement();
ResultSet rs = st.executeQuery(

"SELECT id FROM users WHERE email_address = 1"
+ emailAddress + " ' ") ;

String userid = null;
if (rs.next())
userid = rs.getString(1);

else {
String newUserld - userid = "" +

System.currentTimeMillis();
String query = "insert into users (id,

first_name, middle_name, last_name, email_address) values ('";
query += newUserld +
query += firstName +
query += middleName +
query += lastName +
query += emailAddress + "')";
log("query:" + query);
st.executeUpdate(query);

113

String keyld =
getPublicKeyldString(p_armouredPublic);

KeyBundle bundle =
stringToBundle(p_armouredPublic);

Vector signatures = new Vector();

Iterator itr - bundle.getCertificates();
while (itr.hasNext()) {

cryptix.openpgp.provider.PGPCertificatelmpl cert
- (cryptix.openpgp.

provider.PGPCertificatelmpl) itr.next();
if (cert != null) {

String issuerKeyld = toString((
(cryptix.openpgp.PGPCertificate)

cert).getIssuerKeyID().getBytes());
if (keyld.indexOf(issuerKeyld) < 0) {
signatures.add(cert);
String qry =

"INSERT INTO keysignatures (id, user_id,
key_id) VALUES (" +

System.currentTimeMillis() + ", '" +
getUserldByKeyld(issuerKeyld) + "', +

keyld + "')";
System.out.println(qry);
st.executeUpdate(qry);

}
}

}

rs = st.executeQuery("select count(*) from
publicKeys where key_id = '" + keyld + "'");

if (rs.next()) {
if (rs.getlnt(1) <= 0) {

String query = "insert into publicKeys (id,
key_id, user_id, armoured_public) values (";

query += getNextlndexVal("publickeys", "id") +II I II .
r t

query += keyld +
query += userid +
query += p_armouredPublic + "')";
log(query);
st.executeUpdate(query);

}
}
saveNewPublicKeySignatures(keyld, signatures);

return "Key has been saved for " + p_user;

114

} catch (Exception p_e) {
log(p_e);
throw p_e;

} finally {
if (st != null)
try {
st.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}
if (conn != null)

try {
conn.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}
}

public String getPublicKey(String p_emailAddress)
throws Exception {

if (p_emailAddress == null ||
p_emailAddress.equals(""))

throw new Exception("Invalid email address.");

Connection conn = null;
Statement st - null;
try {

st = (conn = getDbConnection()).createStatement();

String userid = getUserldByEmail(p_emailAddress);
ResultSet rs - st.executeQuery(

"select armoured_public from privateKeys where
user_id = '" + userid +

..) ;
if (rs.next())
return rs.getString(1);

rs - st.executeQuery(
"select armoured_public from publicKeys where

user_id = '" + userid +
..) ;

if (rs.next())
return rs.getString(1);

else
throw new Exception("Public key not found for " +

p_emailAddress);

}

115

catch (Exception p_e) {
p_e.printStackTrace();
throw p_e;

}
finally {

if (st != null)
try {
st.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}
if (conn != null)
try {
conn.close();

} catch (Exception p_e) {
p_e.printStackTrace()

}

public void deletePublicKey(String p_emailAddress)
throws Exception {

Connection conn = null;
Statement st = null;
try {

st = (conn = getDbConnection()).createStatement();
conn.setAutoCommit(false);

String userid = getUserldByEmail(p_emailAddress);

String sql = "DELETE FROM publicKeys WHERE user_id
- " + userid;

System.out.println(sql);
int count = st.executeUpdate(sql);
if (count < 1)
throw new Exception("Public key not found.");

sql = "DELETE FROM trust WHERE user_id - " +
userid;

System.out.println(sql);
count = st.executeUpdate(sql);

sql = "DELETE FROM keylegitimacy WHERE user_id = "
+ userid;

System.out.println(sql);
count = st.executeUpdate(sql);

conn.commit();
} catch (Exception p_e) {

116

//conn.rollback();
log(p_e);
throw p_e;

}
finally {

if (st != null)
try {
st.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}
if (conn != null)

try {
conn.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}

public String getSecretKey(String p_emailAddress)
throws Exception {

if (p_emailAddress == null ||
p_emailAddress.equals(""))

throw new Exception("Invalid email address.");

Connection conn = null;
Statement st - null;
try {

st = (conn = getDbConnection()).createStatement();

ResultSet rs = st.executeQuery(
"SELECT id FROM users WHERE email_address = '"

+ p_emailAddress + "'") ;
String userid - null;
if (rs.next())
userid = rs.getString(1);

else
throw new Exception("E-mail address not found.");

rs - st.executeQuery(
"SELECT armoured_private FROM privateKeys WHERE

user_id = '" + userid +
..) ;

if (rs.next())
return rs.getString(1);

return null;
}
catch (Exception p_e) {
log(p_e);

117

throw p_e;
}
finally {

if (st != null)
try {
st.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}
if (conn != null)

try {
conn.close();

} catch (Exception p_e) {
p_e.printStackTrace() ;

}

public String[] getPublicKeyOwners(String[] p_ids)
throws Exception {

Connection conn = null;
Statement st = null;
try {

if (p_ids == null)
return null;

if (p_ids.length <= 0)
return new String[] {};

String list = "";
for (int i = 0; i < p_ids.length; i++) {

list += "key_id like + p_ids[i] + ;
if (i < p_ids.length - 1)

list += " OR ";
}

st = (conn = getDbConnection()).createStatement();

ResultSet rs = st.executeQuery("select user_id from
publicKeys where " +

list);
LinkedList resList = new LinkedList();
while (rs.nextO)

resList.add(rs.getstring(1));

rs = st.executeQuery("select user_id from
privateKeys where " + list);

while (rs.nextO)
resList.add(rs.getstring(1));

String[] res = new String[resList.size()];

118

for (int i = 0; i < resList.size(); i++)
res[i] = (String) resList.get(i);

return res;
}
catch (Exception p_e) {
log(p_e);
throw p_e;

}
finally {

if (st != null)
try {
st.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}
if (conn != null)

try {
conn.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}

public void deleteTrust(String p_userEmailAddress,
String p_trusteeEmailAddress)

throws Exception {
Connection conn = null;
Statement st = null;
try {

st = (conn = getDbConnection()).createStatement()

ResultSet rs = st.executeQuery(
"SELECT id FROM users WHERE email_address='"

p_userEmailAddress +
..) ;

String userid = null;
if (!rs.next())
throw new Exception("Email address not found.")

userid = rs.getString(1);

rs = st.executeQuery("SELECT id FROM users WHERE
email_address='" +

p_trusteeEmailAddress + "'")
String trustee = null;
if (!rs.next())

throw new Exception("Email address not found.")
trustee = rs.getString(1);

119

rs = st.executeQuery("SELECT key_id FROM publicKeys
WHERE user_id='" +

trustee +
String trusteeKeyld = null;
if (!rs.next())
throw new Exception("Email address not found.");

trusteeKeyld = rs.getString(1);

st.executeUpdate("DELETE FROM trust WHERE user_id =
" + userid +

" AND trustee_public_key_id = '" +
trusteeKeyld + "'“);

catch (Exception p_e) {
log(p_e);
throw p_e;

}
finally {

if (st != null)
try {
st.close();

} catch (Exception p_e) {
p_e. printStackTrace ()

}
if (conn != null)

try {
conn.close();

} catch (Exception p_e) {
p_e.printStackTrace() ;

}

public void deleteUser(String p_emailAddress) throws
Exception {

Connection conn = null;
Statement st = null;
try {

st = (conn = getDbConnection()).createStatement();

st.executeUpdate("DELETE FROM users WHERE
email_address = + p_emailAddress + "'");

} catch (Exception p_e) {
log(p_e);
throw p_e;

} finally {
if (st != null)

120

try {
st.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}
if (conn != null)
try {
conn.close() ;

} catch (Exception p_e) {
p_e.printStackTrace();

}
}

}
public String saveUserTrusts(Permission p_perm, Trust[]

p_trusts) throws
Exception {

Connection conn - null;
Statement st = null;
try {

if (p_trusts == null)
return "Null Array.";

if (p_trusts.length <= 0)
return "Array empty.";

for (int i - 0; i < p_trusts.length; i++) {
String trusterld =

getUserldByEmail(p_trusts[i],m_user);
String trusteeKeyld -

getUserldByEmail(p_trusts[i].m_trusted);
st = (conn =

getDbConnection()).createStatement();
st.executeUpdate("DELETE FROM trust WHERE

user_id= '" +
p_trusts[i].m_user + AND

trustee_public_key_id=1" +
p_trusts[i],m_trusted + "'");

String query =
"INSERT INTO trust (id, user_id,

trustee_public_key_id, level) VALUES ";
query += "(" + getNextlndexVal("trust", "id") +

It I »l I
z '

trusterld + " ' , ' " + trusteeKeyld + "'," +
p_trusts[i],m_value + ")";

st = conn.createStatement();
st.executeUpdate(query);
st.close();

}
}
catch (Exception ex) {

121

log(ex);
throw ex;

}
finally {

if (st != null)
try {
st.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}
if (conn != null)
try {
conn.close();

} catch (Exception p_e) {
p_e.printStackTrace() ;

}
}
return "";

}
public String[] getPublicKeySignatures(String p_keyld)

throws Exception {
Connection conn = null;
Statement st = null;
try {

st = (conn = getDbConnection()).createStatement();
String query = "SELECT * FROM trust WHERE

trustee_public_key_id LIKE '%";
query += p_keyld + "%'" ;
ResultSet rs = st.executeQuery(query);
Vector signatures = new Vector();
while (rs.nextO)

signatures.add(rs.getString("user"));
String[] res = new String[signatures.size()];
for (int i = 0; i < signatures.size(); i++)

res[i] = (String) signatures.get(i);
return res;

}
catch (Exception p_e) {
log(p_e);
throw p_e;

}
finally {

if (st != null)
try {
st.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}

122

if (conn != null)
try {
conn.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}

public synchronized void
saveNewPublicKeySignatures(String p_keyld,

String[] p_signers) throws Exception {
Connection conn = null;
Statement st = null;
try {

st = (conn = getDbConnection()).createStatement();
String query = "";
if (p_signers.length >0) {

for (int i = 0; i < p_signers.length; i++) {
query = "insert into trust (id, user, trusts)

values ";
long nextVal = getNextlndexVal("trust", "id");
query += " (" + nextVal++ +",
query += p_signers[i] + //put the ketid

istead of the email address
query += p_keyld + "')";
st = conn.createStatement();
st.executeUpdate(query) ,-

}

catch (Exception p_e) {
log(p_e);
throw p_e;

}
finally {

if (st != null)
try {
st.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}
if (conn ! = null)
try {
conn.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}

123

public synchronized void
saveNewPublicKeySignatures(String p_keyld,

Vector p_signatures) throws Exception {
try {
String[] signatures =

getPublicKeySignatures(p_keyld);
String signaturesList = "";
for (int i = 0; i < signatures.length; i++)

signaturesList += signatures[i] +
//Remove already exiting or self signtures

for (int i = 0; i < p_signatures.size(); i++) {
Certificate cert = (Certificate)

p_signatures.get(i);
String strKeyld = getPublicKeyldString((

(cryptix.openpgp.
PGPCertificate) cert).getPublicKey());

if (signaturesList.indexOf(strKeyld) >= 0 ||
strKeyld.indexOf(p_keyld) >= 0)

p_signatures.remove(i--)

String[] signers = new String[p_signatures.size()]
if (p_signatures.size() >0) {

for (int i = 0; i < p_signatures.size(); i++) {
Certificate cert = (Certificate)

p_signatures.get(i) ;
String strKeyld - toString((

(cryptix.openpgp.PGPCertificate) cert).

getlssuerKeylD().getBytes());
signers[i] = strKeyld;

}
saveNewPublicKeySignatures(p_keyld, signers);

catch (Exception p_e) {
log(p_e);
throw p_e;

public KeyLegitimacy getKeyLegitimacy(String p_user,
String p_corr) throws

Exception {
KeyLegitimacy keyLegitimacy = new KeyLegitimacy();
keyLegitimacy.m_userLegitimacy =

keyLegitimacy.m_overAllLegitimacy = 0;

124

/*
G - arbitrary connected graph
vO - is the initial beginning node
V - is the set of all vertices in the graph G
S - set of all vertices with permanent labels
n - number of vertices in G
D - set of distances to vO
C - set of edges in G
Dijkstra (graph G, node vO) {
S={vO}
For i = 1 to n

D[i] = C[vO,i]
For i = 1 to n-1 {

Choose node w in V-S with min D[w]
Add w to S
For each node v in V-S

D[v] = min(D[v], D[w] + C[w,v])
}
}
*/

try {
//validate the user
String userid = getUserldByEmail(p_user);
String corrid = getUserldByEmail(p_corr);
Connection conn = null;
Statement st = null;
try {

st = (conn =
getDbConnection()).createStatement();

ResultSet rs = st.executeQuery(
"select id from publicKeys where user_id = '

+ corrid + "1");
if (!rs.next())
throw new Exception("Public key not found.");

String keyld = rs.getstring(1);
rs = st.executeQuery(

"SELECT legitimacy FROM keyLegitimacy WHERE
user_id = '" + userid +

"' AND key_id = ’" + keyld + "'");
if (rs.next())
keyLegitimacy.m_userLegitimacy = rs.getlnt(1);

else
keyLegitimacy.m_userLegitimacy = 0;

} catch (Exception p_e) {
log(p_e);
throw (p_e);

125

} finally {
if (st != null)
try {
st.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}
if (conn != null)

try {
conn.close();

} catch (Exception p_e) {
p_e.printStackTrace() ;

}
}

MyDijkstra di jkstra = new MyDijkstraO;
dijkstra.runDijkstra(getGraph(p_user, p_corr),

p_user);

keyLegitimacy.m_overAllLegitimacy = (int)
(Math.round(Double.parseDouble((

String) dijkstra.S.get(p_corr))));
dijkstra.S = new Hashtable();

}
catch (Exception ex) {

ex.printStackTrace ()
}

return keyLegitimacy;
}

public Hashtable getGraph(String p_source, String
p_dest) throws Exception {

Connection conn - null;
Statement st = null;
Hashtable predecessors - new Hashtable();
Vector nodes - new Vector();
nodes.add(p_dest);
try {

st = (conn = getDbConnection()).createStatement();

ResultSet rs = st.executeQuery("SELECT * FROM
keysignatures, users WHERE keysignatures,user_id=users.id AND
key_id ='"+

getKeyldByEmail(p_dest) + "'");
Vector signers = new Vector();
while (rs.nextO) {

126

signers.add(new Object[]
{rs.getString("email_address"), "100"}),-

nodes.add(rs.getString("email_address"));
}

Object[] signersArray = new Object[signers.size()]
for (int i = 0; i < signers.size(); i++)

signersArray[i] = signers.get(i);

predecessors.put(p_dest, signersArray);

TreeSet processed = new TreeSet();
processed.add(p_dest);

int counter = 0 ;
while (true)’ {

if (counter++ >= nodes.size())
break ,-

String current = (String) nodes.get(counter - 1)
if (!processed.contains(current)) {

rs = st.executeQuery("SELECT * FROM trust,
users WHERE trust.user_id=users.id AND trustee_public_key_id

getUserldByEmail(current)
+ ..) ;

signers - new Vector();
while (rs.nextO) {

signers.add(new Object[]
{rs.getString("email_address"),

rs.getString("level")});
nodes.add(rs.getString("email_address"));

}

signersArray = new Object[signers.size()];
for (int i = 0; i < signers.size(); i++)

signersArray[i] - signers.get(i);
predecessors.put(current, signersArray);

processed.add(current);

}
} catch (Exception p_e) {
log(p_e);
throw (p_e),-

} finally {
if (st != null)

127

try {
st.close();

} catch (Exception p_e) {
p_e.printStackTrace();

}
if (conn != null)

try {
conn.close() ;

} catch (Exception p_e) {
p_e.printStackTrace();

}
}

return predecessors;

protected Challenge getNonceO throws Exception {
Challenge challenge = new ChallengeO;
challenge.m_nonce - "" + Math.round(Math.random() *

10000000000L);
return challenge;

128

APPENDIX D
SAMPLE E-MAIL APPLICATION CODE

129

package emailclient;

import
import
import
import
import
import
import
import
import
import
import
import
import
import

java.io.InputStream;
j ava.util.Properties;
j ava.awt.BorderLayout;
j ava.awt.GridBagConstraints;
j ava.awt.GridBagLayout;
j ava.awt.Dimension;
j ava.awt.Color;
j ava.awt.Graphics;
j ava.awt.event.ActionEvent;
java.awt.event.ActionListener;
j ava. awt. event. MouseMotionListener
scapi.pgp.PGPServerConnector;
netscape.j avascript.JSOb j ect;
j avax.swing.*;

public class NewAccountApplet extends JApplet implements
ActionListener {

protected JTextField m_login;
protected JPasswordField m_pgpPassword;
protected JPasswordField m_accountPassword;
protected JTextField m_incomingPopServer;
protected JTextField m_popUser;
protected JTextField m_popPasswd;
protected JTextField m_fullName;
protected String m_random;
protected String m_strPublicKey;
protected JButton m_submitButton = null;

protected static String m_serverUrl;

static {
try {

InputStream is -
Class.forName("scapi.util.ServerConnector").getResourceAsStream
("SecurityManager.properties");

Properties props = new Properties();
props.load(is);
m_serverUrl - (String) props.get("SecurityManager");
is.close();

} catch (Exception p_e) {
p_e.printStackTrace() ;

}
}

public void init() {
JPanel contentPane = new JPanel();

130

GridBagLayout gridbag = new GridBagLayout(),-
GridBagConstraints c = new GridBagConstraints () ,-
contentPane.setLayout(gridbag) ;
c.fill = GridBagConstraints.HORIZONTAL;

JLabel amountLabel = new JLabel("User full Name:");
c.gridx = 0;
c.gridy - 0,-
gridbag.setConstraints(amountLabel, c);
contentPane.add(amountLabel) ;

m_fullName = new JTextField(25);
m_fullName.setText("Tawfik Lachheb"),-
c.gridx - 1;
c.gridy = 0;
gridbag.setConstraints(m_fullName, c);
contentPane.add(m_fullName);

amountLabel = new JLabel("User login:");
c.gridx - 0;
c.gridy - 1;
gridbag.setConstraints(amountLabel, c);
contentPane.add(amountLabel);

m_login = new JTextField(25);
m_login.setText("tawfik");
c.gridx = 1;
c.gridy = 1;
gridbag.setConstraints(m_login, c),-
contentPane. add (m_login) ,-

JLabel accountPasswordLabel = new JLabel("Email acount
password: ");

c.gridx - 0;
c.gridy = 2,-
gridbag.setConstraints(accountPasswordLabel, c),-
contentPane.add(accountPasswordLabel);

m_accountPassword = new JPasswordField(25);
m_accountPassword.setText("lachheb");
c.gridwidth = 2,-
c.gridx = 1;
c.gridy = 2;
gridbag.setConstraints(m_accountPassword, c);
contentPane.add(m_accountPassword);

JLabel pgpPasswordLabel = new JLabel("PGP password:");
c . gridx = 0 ,-
c. gridy = 3 ,-

131

gridbag. setConstraints (pgpPasswordLabel, c) ;
contentPane.add(pgpPasswordLabel);

m_pgpPassword = new JPasswordField(25);
m_pgpPassword.setText("lachheb");
c.gridwidth = 2;
c.gridx = 1;
c.gridy = 3;
gridbag.setConstraints(m_pgpPassword, c);
contentPane.add(m_pgpPassword);

JLabel popLabel = new JLabel("P0P3 server:");
c.gridx = 0;
c.gridy = 4;
gridbag.setConstraints(popLabel, c);
contentPane.add(popLabel);

m_incomingPopServer = new JTextField("mail.cula.net")
c. gridx = 1 ,-
c.gridy = 4,-
gridbag.setConstraints(m_incomingPopServer, c);
contentPane.add(m_incomingPopServer);

JLabel popUserLabel - new JLabel("POP3 user:");
c.gridx = 0;
c.gridy = 5;
gridbag.setConstraints(popUserLabel, c);
contentPane.add(popUserLabel);

m_popUser - new JTextField("tawfik") ,-
c . gridx = 1 ,-
c.gridy = 5,-
gridbag.setConstraints(m_popUser, c);
contentPane. add (m_popUser) ,-

JLabel popPasswdLabel = new JLabel("POP3 password:");
c. gridx = 0 ,-
c.gridy = 6;
gridbag.setConstraints(popPasswdLabel, c);
contentPane.add(popPasswdLabel);

m_popPasswd = new JTextField("lachheb");
c.gridx = 1;
c.gridy = 6;
gridbag.setConstraints(m_popPasswd, c);
contentPane.add(m_popPasswd);

m_submitButton = new JButton("Submit");
m_submitButton.addActionListener(this);

132

mail.cula.net

c.weighty - 1.0;
c.gridwidth = 1 ;
c.gridx - 1;
c.gridy = 7;
gridbag.setConstraints(m_submitButton, c);
contentPane.add(m_submitButton);

contentPane.setBackground(new Color(255,255,255));
setContentPane(contentPane);

public void actionPerformed(ActionEvent e) {
KeyGenMouseApplet keyGenMouseApplet = new

KeyGenMouseApplet(),-
keyGenMouseApplet,m_accountApplet = this;
JLabel emptyLabel - new JLabel(" Move the mouse until the

window closes.");
emptyLabel.setPreferredSize(new Dimension(300, 300));
keyGenMouseApplet.getContentPane().add(emptyLabel,

BorderLayout.CENTER);
keyGenMouseApplet.pack();
keyGenMouseApplet.setvisible(true);

public void confirmAccount() {
JPanel contentPane = new JPanel();
GridBagLayout gridbag = new GridBagLayout () ,-
GridBagConstraints c = new GridBagConstraintsO;
contentPane.setLayout(gridbag);
c.fill = GridBagConstraints.HORIZONTAL;

String msg = "Your account has been created, here is your
public key:";

JLabel amountLabel = new JLabel (msg) ,-
c.gridx = 0;
c. gridy - 0 ,-
gridbag.setConstraints(amountLabel, c);
contentPane.add(amountLabel);

JTextArea body = new JTextArea(10,12);
c.gridx = 0;
c.gridy = 1;
gridbag.setConstraints(body, c);
body.setText(m_strPublicKey);
contentPane.add(body);
javax.swing.JScrollPane sc - new

javax.swing.JScrollPane(contentPane);
setContentPane(sc);

}

133

public void genKeys() {
try {

String name = m_login.getText();
scapi.kp.IKeyPair keyPair =

scapi.kp.KeyPairFactory.getInstance("RSA");
keyPair.genKeys(m_random, m_login.getText(),

m_pgpPassword.getText());
m_str PublicKey = keyPair.getArmouredPublicKeyO;
java.util.Hashtable params = new java.util.Hashtable();
params.put("cmd", "createAccount");
params.put("user", m_login.getText());
java.security.MessageDigest md =

j ava.security.MessageDigest.getInstance("SHAl",
"CryptixCrypto");

String hashedPasswd = new
String(md.digest(m_accountPassword.getText().getBytes()));

params.put("password", new
String(toString(hashedPasswd.getBytes())));

params.put("popserver", m_incomingPopServer.getText());
params.put("popusr", m_popUser.getText());
params.put("popfullname",

java.net.URLEncoder.encode(m_fullName.getText()));
params.put("poppasswd", m_popPasswd.getText());
new

scapi.util.ServerConnector("http://"+EmailAppletUtil.getMailSer
verUrl((String) ((JSObject)
JSObject.getWindow(this).getMember("location")).getMember("host
"))).sendHTTPGetMessage("", params);

PGPServerConnector.setBaseUrl("http://"+(String) (
(JSObject)
JSObject.getWindow(this).getMember("location")).getMember("host
")) ;

System.out.println("Sending new keys.");
PGPServerConnector.sendKeyPair(keyPair,

m_fullName.getText()+"
<"+m_popUser.getText()+"©"+m_incomingPopServer.getText()+">");

m_submitButton.setVisible(false);
} catch (Exception p_e) {
p_e.printStackTrace();

}
}

class KeyGenMouseApplet extends JFrame implements
MouseMotionListener, ActionListener {

public NewAccountApplet m_accountApplet;
private long randomNumber = 0;
private int count = 0, prevX = 0, prevY - 0;

134

http://%2522%2BEmailAppletUtil.getMailSer
http://%2522%2B%28String

private String m_randomString = "";

public void init(Graphics g) {
setBackground(Color.blue)
g.setColor(Color.red);
g.setColor(Color.white);
g.drawstring(" Move the mouse on this window until it

closes.", 10, 15);
}

public KeyGenMouseApplet() {
addMouseMotionListener(this);

public void mouseMoved(java.awt.event.MouseEvent me) {
int x = me.getX();
int y - me.getY();
if (Math.abs(x - prevX) > 10 && Math.abs(y - prevY) > 10)

{
count++;
if (count % 5 == 0) {

long temp=System.currentTimeMillis()%1000000000;
temp = temp * x * y;
temp = temp % 111222333;
randomNumber += temp;
m_randomString += randomNumber;
System.out.println(randomNumber);

}
}
if ((count % 150 == 140) && (m_randomString.length() >

256)) {
try {
Class.forName("scapi.pgp.PGPServerConnector");//load

the provider
java.security.MessageDigest md =

java.security.MessageDigest.
getlnstance("SHAl", "CryptixCrypto");

m_randomString = new
String(md.digest(m_randomString.getBytes()));

} catch (Exception p_e) {
p_e.printStackTrace();

}
m_accountApplet.m_random = m_randomString;
setvisible(false);
m_accountApplet.genKeys();
m_accountApplet.confirmAccount();
dispose();

}
prevX = x;

135

prevY = y;
}

public void mouseDragged(java.awt.event.MouseEvent me) { }
public void actionPerformed(java.awt.event.ActionEvent ae)

{ }

}

static byte[] hexFromString(String hex)
{

int len = hex.length();
byte[] buf = new byte[((len +1) / 2)];

int i = 0, j = 0;
if ((len % 2) == 1)

buf[j++] = (byte) fromDigit(hex.charAt(i++));

while (i < len) {
buf[j++] - (byte) ((fromDigit(hex.charAt(i++)) « 4)

| fromDigit(hex.charAt(i++)));
}
return buf;

}

/ * *
* Returns the number from 0 to 15 corresponding to the hex

digit <i>ch</i>.
*/

static int fromDigit(char ch)

if (ch >= ’'O' && ch <=: '9-)
return ch _ 1'O' ;

if (ch >= 1'A' Sc Sc ch < =: 'F')
return ch - 1'A' + 10;

if (ch >= ''a' ScSc ch <== 'f ')
return ch _ 1'a' + 10;

throw new IllegalArgumentException("invalid hex digit '"
+ ch + " ' ") ;

}

/ * *
* Compares two byte arrays for equality.
★

* ©return true if the arrays have identical contents
*/

136

static boolean areEqual (byte[] a, byte[] b)
{

int aLength = a.length;
if (aLength != b.length)

return false;
for (int i = 0; i < aLength; i++)

if (a[i] != b[i])
return false;

return true;
}

j * *
* Returns a string of hexadecimal digits from a byte array.

Each
* byte is converted to 2 hex symbols.
*/

static String toString(byte[] ba)
{

int length = ba.length;
char[] buf = new char[length * 2];
for (int i = 0, j = 0, k;i< length;)
{

k - ba[i++];
buf[j++] = HEX_DIGITS[(k »> 4) & OxOF];
buf[j++] = HEX_DIGITS[k & OxOF];

}
return new String(buf);

}

private static final char[] HEX_DIGITS =
{

};

}

package emailserver;

public class ActionFactory {

public static IAction getlnstance(String p_cmd) {
if (p_cmd.equals("login"))
return new LoginAction();

if (p_cmd.equals("checkMailbox"))
return new GetEmailsAction();

if (p_cmd.equals("createAccount"))
return new CreateAccountAction();

137

if (p_cmd.equalsIgnoreCase("getEmailBody"))
return new GetEmailAction () ,-

if (p_cmd.equalsIgnoreCase("sendEmail"))
return new SendEmailAction () ,-

return null;

}

package emailserver;

import
import
import
import
import
import
import

j avax.servlet.http.HttpServletRequest;
j avax.servlet.http.HttpServletResponse,-
j ava.sql.DriverManager,-
java.sql.Connection;
j ava.sql.Statement,-
j ava.io.PrintWriter,-
j ava.net.URLDecoder,-

public class CreateAccountAction extends AAction {

public void process(HttpServletRequest p_req,
HttpServletResponse p_resp) throws Exception {

PrintWriter pw = p_resp.getWriter();
String query - "insert into emailusers (id, userlogin,

userpasswd, popaccount, popuser, poppasswd, username,
popserver) values ('";

query += System.currentTimeMillis() +
query += getParamQueryString(p_req, "user") +
query += URLDecoder.decode(getParamQueryString(p_req,

"password")) +
query += getParamQueryString(p_req, "popusr") +
query += getParamQueryString(p_req, "popusr") +
query += getParamQueryString(p_req, "poppasswd") +
query += URLDecoder.decode(getParamQueryString(p_req,

"popfullname")) +
query += getParamQueryString(p_req, "popserver") + "1)"

System.out.println("query: "+query),-
Connection conn =

DriverManager.getConnection(AAction.m jdbcUrl, "tawfik",
"lachheb"),-

Statement st = conn. createStatement () ,-
st.executeUpdate(query);
st.close();
conn.close();

pw. print ("Your account was created."),-

138

http://http.HttpServletRequest

pw.close() ;
}

}

139

SERVICE
APPENDIX E

DEPLOYMENT DESCRIPTOR

140

<deployment xmlns="http://xml.apache.org/axis/wsdd/"

xmlns:java="http://xml.apache.org/axis/wsdd/providers/java" >

<service name="SecurityManagerService"

provider^"java:RPC" xmlns:myNS="urn:SecurityManagerService" >

<parameter name="className"

value="ssapi.pgp.SecurityManagerService" />

<parameter name="allowedMethods" value="*" />

cbeanMapping qname="myNS:Permission"

languageSpecificType="java:ssapi.pgp.Permission" />

<beanMapping qname="myNS:Trust"

languageSpecificType="java:ssapi.pgp.Trust" />

<beanMapping qname="myNS:KeyLegitimacy"

languageSpecificType="java:ssapi.pgp.KeyLegitimacy" />

<beanMapping qname="myNS:Challenge"

languageSpecificType="java:ssapi.pgp.Challenge" />

</service>

</dep1oyment>

141

http://xml.apache.org/axis/wsdd/
http://xml.apache.org/axis/wsdd/providers/java

REFERENCES

[1] Gong, L. , Ellison, G., & Dageforde, A., Inside
Java 2 Platform Security: Architecture, API
Design, and Implementation. Addison-Wesley Pub
Co, second edition, May 2003.

[2] Stallings, W., Cryptography and Network Security.
Prentice Hall, third edition, August 2002.

[3] Oaks, S., Java Security. O'Reilly & Associates,
Inc., second edition, May 2001.

[4] Menezes, A. J., Van Oorschot, P. C., & Vanstone,
S. A., Handbook of Applied Cryptography. CRC
Press, October 1996.

[5] Sun Microsystems, Java Cryptography Architecture
API Specification & Reference,
(http://java.sun.com/j2se/l.4/docs/guide/security/
HowToImplAProvider.html). Last updated in
February 2002.

[6] Sun Microsystems, How to Implement a Provider for
the Java™ Cryptography Architecture
(http://java.sun.com/j 2se/l.4/docs/guide/security/
CryptoSpec.html). Last updated in May 2001.

[7] Knudsen, J., Java Cryptography. O'Reilly &
Associates, first edition, May 1998.

[8] Callas, J., Donnerhacke, L., Finney, H., & Thayer,
R., OpenPGP Message Format. Network Working
Group, RFC 2440, November 1998.

[9] Attkins, D., Stallings, W., & Zimmermann, P., PGP
Message Exchange Formats. Network Working Group,
RFC 1991, August 1996.

142

http://java.sun.com/j2se/l.4/docs/guide/security/
http://java.sun.com/j

[10] Zimmermann, P., An introduction to cryptography.
Network Associates Inc., PGP, version 6.5.1
documentation, June 1999.

[11] McGraw, G., & Felten, E., Securing Java: Getting
Down to Business with Mobile Code. John Wiley &
Sons, second edition, January 1999.

[12] Mani, J, Shannon B., Spivak, M., Carter, K., &
Cotton, C., JavaMail™ API Design Specification.
Sun Microsystems, Inc., Version 1.2, September
2000.

[13] Rosen, K., Discrete Mathematics and Its
Applications. McGraw Hill College Div, fifth
edition, April 2003.

[14] Hall, M., More Servlets and JavaServer Pages.
Pearson Higher Education, December 2001.

[15] Kurniawan, B., Java for the Web with Servlets,
JSP, and EJB: A Developer's Guide to J2EE
Solutions. SAMS, April 2002.

[16] Oracle Corporation, the Oracle Technology Network
web site (http://otn.oracle.com/index.html). Last
updated in October 2003.

[17] Cryptix, the Cryptix web site
(http://www.cyptix.org). Last updated in August
2001.

[18] International Business Machines Corporation,
Microsoft Corporation, & Verisign Inc., Web
Services Security (WS-Security). Version 1.0,
April 2002.

[19] Elmasri, R., Fundamentals of Database Systems.
Addison Wesley, third edition, August 1999.

143

http://otn.oracle.com/index.html
http://www.cyptix.org

	A secure client/server java application programming interface
	Recommended Citation

