
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2004

The web-based database management system for the computer The web-based database management system for the computer

science graduate program science graduate program

Dung Tien Vu

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Databases and Information Systems Commons

Recommended Citation Recommended Citation
Vu, Dung Tien, "The web-based database management system for the computer science graduate
program" (2004). Theses Digitization Project. 2557.
https://scholarworks.lib.csusb.edu/etd-project/2557

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2557&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2557&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/2557?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2557&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

THE WEB-BASED DATABASE MANAGEMENT SYSTEM

FOR THE

COMPUTER SCIENCE GRADUATE PROGRAM

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Dung Tien Vu

March 2004

THE WEB-BASED DATABASE MANAGEMENT SYSTEM

FOR THE

COMPUTER SCIENCE GRADUATE PROGRAM

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Dung Tien Vu

March 2004

Approved by:

J-
D: ephine G# Mendoza,Computer Science Date

Dr. Keith Schubert

ABSTRACT

Based on successful experience with the existing

database system using Microsoft Access at the Department of

Computer Science, California State University at San

Bernardino, we propose a web-based database management

system using Oracle 9i. This project will provide faculty

and students a secure access to graduate student resources.

The project is designed to be an integrated system serving

many aspects of a graduate program. New features can be

added without significant modification. The project covers

database design, web development, security, migration and

deployment of the new system. The project implements the

following concepts: dynamic roles and functions, dynamic

grouping, task assignment, automatic document generation,

automatic database monitoring, and dynamic privileges

verification. The Web-Based Database System for the

Computer Science Graduate Study Program implements the

vector data structure, SQL language, Java Server pages,

Java Bean, relational database model, and XML technology

for a production application.

iii

ACKNOWLEDGMENTS

First of all, I would like to express my special

thanks to Dr. Josephine G. Mendoza, who assisted me in

envisioning an integrated management system for the

graduate program at the Department of Computer Science. She

has advised me in every aspect of the project. My sincere

thanks to Dr. Keith Schubert, who I considered as my second

advisor, not only gave me valuable advice in security, but

also encouraged me to complete the project of highest

value. I also express sincere thanks to Dr. Kerstin Voigt,

who got me admitted into the MS program. Dr. Voigt has been

very enthusiastic with my project and has offered me every

support. My sincere thanks to Dr. Arturo Concepcion, Dr.

Owen Murphy, Dr. George Georgiou, Dr. Kay Zemoudeh, Dr.

Richard Botting, and Dr. Yasha Karant who have given the

knowledge and support to bring this project to fruition.

I am immensely grateful to my father, my mother for

their guidance and sacrifice. My gratitude is also bestowed

to my siblings, who give me valuable encouragement and

support to pursue my education, especially, my brother's

family: Drs. Khue Vu, Thu, Truong, and Hieu, who have

shared not only difficulties but happiness as well in this

US soil.

iv

Last but not the least, I thank my wife and my son,

who are happy with my dream to pursue higher education.

The support of the National Science Foundation under

award 9810708 is gratefully acknowledged.

v

TABLE OF CONTENTS

ABSTRACT... iii

ACKNOWLEDGMENTS .. iv

LIST OF FIGURES... viii

CHAPTER ONE: INTRODUCTION

1.1 Introduction 1

1.2 Purpose of the Project......................... 2

1.3 Limitations 2

1.4 Organization of the Project................... 3

CHAPTER TWO: SOFTWARE REQUIREMENTS SPECIFICATION

2.1 Introduction 4

2.1.1 Scope............................... 4

2.2 Overall Description 4

2.2.1 Product Perspective 5

2.2.2 Product Functions 7

2.2.3 User Characteristics 13

2.3 Specific Requirements 14

2.3.1 External Interface Requirements 14

2.3.2 Functional Requirements 15

2.3.3 Performance Requirements 15

2.3.4 Software System Attributes 15

CHAPTER THREE: DESIGN AND IMPLEMENTATION

3.1 System.. 17

3.1.1 Authentication and Authorization 17

vi

3.1.2 Updating and Retrieving Information
from the Oracle Database

3.1.3 Processing... 18

3.1.4 Messaging... 19

3.1.5 Connectivity and Transmission 19

3.2 Architecture... 20

3.2.1 Oracle Database... 2 0

3.2.2 Web Components... 20

3.2.3 Java Beans... 22

3.3 Design Details.. 24

3.3.1 Oracle Database System 24

3.3.2 Functionality Modules 38

3.3.3 Security.. 62

CHAPTER FOUR: DEPLOYMENT

4.1 System Requirements.. 66

4.2 Installation... 67

4.2.1 Installation of Servers 67

4.2.2 Installation of Web Component................. 67

4.2.3 Migration from the Existing
Database System... 67

CHAPTER FIVE: CONCLUSION AND FUTURE DIRECTIONS

5.1 Technology Highlights and Conclusion 71

5.2 Extensions.. 73

APPENDIX: LIST OF PROGRAM FILES... 75

REFERENCES... 84

17

vii

LIST OF FIGURES

Figure 1: The Use Case Diagram.......................... 9

Figure 2: Class Diagram of Public Functions and Java
Beans ... 23

Figure 3 : UML Model for Roles and Functions......... 41

Figure 4: UML Model for Grouping....................... 45

Figure 5: Pseudo_Codes of Storing SQL Logic 45

Figure 6: Pseudo-Codes of SQL Reconstruction 46

Figure 7: UML Model for Graduate Students 48

Figure 8: UML Model for Documentation................. 50

Figure 9: Pseudocodes to Generate Letter of
Classified Status 52

Figure 10: UML Model for Courses and Grading........ 54

Figure 11: UML Model for Task.......................... 57

Figure 12: Pseudocodes for GPA Monitor.............. 60

Figure 13 : Pseudocodes to Monitor Contact Update ... 60

Figure 14: Pseudocodes to Monitor Academic
Standing...................................... 61

Figure 15: Pseudocodes for Task Renewal............. 62

Figure 16: Recommended Deployment 66

Figure 17: A Migration Flowchart 68

viii

CHAPTER ONE

INTRODUCTION

1.1 Introduction

The existing database management system for the

graduate program in the Department of Computer Science at

California State University was implemented in 2001 as a

stand-alone system using Microsoft Access 2000. The system

has these features: student information search, pre

defined and "any kind" ad-hoc report generation, CSCI 698

Extended Learning list management, statistics generation,

automatic computation of GPA (quarter and/or cumulative),

graduate committee management, and weekly automatic smart

backup.

Although this existing system has efficiently assisted

in the information and processing needs of the graduate

coordinator for advising (GCA) for the Master of Science in

Computer Science (MS CSCI) degree program, it has

limitations.

The existing system, located in the department office

is only available for access by the GCA and the MS CSCI

program assistant (PA). To get reports and information on

graduate students, faculty and students need to refer these

requests to the PA. Course types (core, elective and

1

prerequisite) are fixed for specific courses. The number of

courses taken is limited (five courses, five electives and

nine prerequisite). The number of faculty in a committee is

also limited to three. Contact information of the students

(current address, email, phone) is kept up-to-date after a

student has filled out a paper personal profile sheet.

1.2 Purpose of the Project

This project, "Web-based Database Management System

for the Computer Science Graduate Program", implements an

integrated system which provides all management

functionalities of the existing database management system,

allows faculty and graduate students Internet access to

appropriate information from the database, and also acts as

a "communication hub" between faculty and graduate

students. This facilitates making and finding out about

announcements, messaging, scheduling appointment, and

assigning tasks.

The system also serves as a prototype that can be

adapted by different graduate programs without significant

modifications.

1.3 Limitations

The project designs and implements a robust, flexible

and portable system and creates a framework for many

2

desirable features to be integrated. Several important

concepts and function modules have been developed such as

dynamic roles and functions, grouping, document generation,

task assignment, and automatic monitoring. Due to the

complexity and time constraints the announcement and

schedule appointment modules will be left as future

enhancements to the system.

1.4 Organization of the Project

This document is organized in five chapters: (1)

Introduction, (2) Software Requirements Specification, (3)

Design and Implementation, (4) Deployment and (5)

Technology Highlights, Conclusion and Future Development.

The appendix provides program files used in this system.

3

CHAPTER TWO

SOFTWARE REQUIREMENTS SPECIFICATION

2.1 Introduction

The scope of the project will be described in Section

2.1.1. Section 2.2 provides an overall description of the

product while Section 2.3 details the specific

requirements.

2.1.1 Scope

The proposed web-based database system is an

improvement of the existing Master of Science in Computer

Science stand-alone database management system. The

existing database system uses Microsoft Access 2000 and is

maintained in a standalone workstation in the MS Program

Assistant's office. This project uses Oracle 9i as a

database engine and allows faculty and graduate students to

have a secure Internet access to appropriate information

stored in the database. This project will also implement

automatic features necessary to manage and monitor the

database system and generate alerts and PDF documents.

2.2 Overall Description

The existing database management system for the

graduate program in the Department of Computer Science was

designed in 2001 and developed using Microsoft Access 2000

4

by the Graduate Coordinator for Advising, Dr. Josephine G.

Mendoza and me with funding from the National Science

Foundation Minority Institution Infrastructure (NSF-MII)

Grant Program.

This new version is designed to open access to the

database information to Computer Science Department faculty

and graduate students via the web-based approach. The

system is implemented in Oracle 9i and takes advantage of

Oracle 9i features in particular, security. This version

consists of seven modules: (1) Dynamic Roles and Functions,

(2) Dynamic Grouping, (3) Search and Update Student

Information, (4) Courses and Grades, (5) Document

Generation, (6)Task Assignment, and (7) Resident and

Scheduled System Tasks.

The system will be web-based, and will be accessible

by all authorized users using any modern web browsers (e.g.

IE or Netscape). The system requires high security that

allows access by authorized users only. Communication

between users at the client side and the system at the

server side must be secured. Student information must be

protected, but must be convenient for access and update.

2.2.1 Product Perspective

The system will be implemented using JSP, Java Beans

using Java 1.3 or higher version. Oracle Application Server

5

9i Release 9.0.3 and Oracle Database 9i Release 9.0.2.0.1

are required with the latest patches.

2.2.1.1 System Interfaces. The system with the Oracle.

Application Server with HTTP and Object Container for J2EE

(OC4J) at the server side interacts with a user at the

client side in the following manner:

(1) User starts access to the database system by

entering the URL in the browser.

(2) System will authenticate and authorize the user

using a user ID and password. If a user is authenticated,

the system will identify this user's corresponding role and

direct the user to his or her customized home page. If

authentication fails, the system will issue an error

message and will require the user to login again.

(3) The authenticated and authorized user will have

privileged access to all functions defined according to the

user's role. Any attempt by the user to access an

unauthorized page will be denied.

(4) Based on the user's response, the system may

access the Oracle database, e-mail server, document

generation processor and return the result or message back

to the user through an HTML page.

(5) System automatically monitors the database system.

For example, an update of a student's grades may trigger

6

the GPA monitor module. If the computed GPA is lower than a

pre-defined threshold (i.e. 3.0), the system will send an

alert to the PA and the GCA. The system also automatically

executes processes at certain frequencies.

2.2.1.2 User Interfaces. All users may use any web

browser to interface from the client side. There is no

restriction on the operating system used on the client

side.

2.2.1.3 Software Interfaces. Software interfaces are

provided with the Oracle Application 9iAS Release 9.0.3 and

Oracle Database 9i Release 9.0.2.0.1. Oracle is a trademark

of the Oracle Corporation. Apache is a trademark of Apache

Formatting Object Processor. Qmail is a trademark of Qmail.

2.2.1.4 Communication Interfaces. Communication

interfaces between the server side and the client side is

implemented with secure Hypertext Transfer Protocol (HTTP)

and Secure Socket Layer (SSL).

2.2.1.5 Memory Constraints. Oracle Server 9i and

Application 9iAS server needs at least 512MB of internal

memory. Qmail server needs at least 256MB of internal

memory.

2.2.2 Product Functions

There would be no fixed functions and roles. In

addition to the basic functions such as login, search and

7

update student information, new functions can be added into

the system and assigned to different roles. Following is

the use case diagram showing the roles and the functions.

8

USE CASE DIAGRAM

View Personal info Update contact Info

Login
Customize home page
My tasks
Change password

Add / Update student info

Assign tasks
Follow up tasks assignesHo other
Search & View student info'
Create pre-defined tasks
View & create groups

Iocs

Generate Email Alerts

Monitor Student's Update

Figure 1. The Use Case Diagram

9

2.2.2.1 Login. Authenticate and authorize a user with

user ID and password. Depending on the user's role, he or

she is given the function privileges appropriate to the

user's role.

2.2.2.2 Assign Tasks. Assign tasks to program staff,

graduate students and department faculty. After a task is

assigned the task assignee is optionally notified by email,

and he or she can view the assigned task in detail (via My

Task function icon at login). A task can be assigned to a

group of users (see Create & View Group) in which every

member in the group will be assigned the same task

automatically.

2.2.2.3 My Tasks. View tasks that have been assigned

to the user. The user can view the task details, report

progress and result, and view the evaluation when the task

is completed. A user is not allowed to remove or deny a

task unless the task is removed by the task assigner.

2.2.2.4 Follow-up Tasks Assigned to Others. Monitor

tasks, which have been assigned to other users. Tasks are

categorized for staff, student and system agents.

The assignor can edit a task after it has been

created, and evaluate the task when it is reported as

completed. When a task is removed or evaluated, it is

removed from the task list of the assignee.

10

2.2.2.5 Change Password. Allow a user to change

password by requiring the user to resubmit the existing

user ID and password for verification before a new password

can be entered.

2.2.2.6 Create and View Group. Create a new group and

view members in the groups. A group is defined by

specifying selection criteria. The selection criteria may

consist of many fields combined with AND/OR Boolean

operators. Each group has a distinctive name and is saved

for later viewing or editing. Only the group owner/creator

can edit or remove a group. When a group is created as

private, the group cannot be viewed by other users. On the

other hand, a group created as public can be viewed by any

other users. A user can assign a task to a group by

declaring the group name in the Assign Task function

module.

2.2.2.7 Customize Home Page. Customize a home page to

appear as the first page after a user successfully logins.

2.2.2.8 Roles and Functions. Create a new role, or

change a role for any user. This can only be done by a

user (Admin User) given an 'administrator' role. Admin User

can assign or remove a function for a role. A function is

developed and registered with a JSP page. After a new

11

function is developed, the Admin User can register this new

function and assign it to a role.

2.2.2.9 View Student Info. Display student's

information. A user can select a student from a list or

enter a search word as either the student's first name or

last name. When the search word matches many students, the

system will display a list of matching records.

2.2.2.10 View Own Advisees. Display information on

advisees of the faculty advisor. The faculty advisor is

either the student's advisor or the student's graduate

committee member. The advisees to be displayed can either

be currently active graduate students or have already

graduated (i.e. alumni).

2.2.2.11 View Any Advisees. Display information on any

advisee including advisees of other faculty members. This

function can be done only by the GCA.

2.2.2.12 Update Contact Information. Allow a graduate

student to modify contact information -- mailing address,

e-mail, and telephone number. The system agent will notify

the PA which information has been updated by the student.

2.2.2.13 Update Student Information. Modify student

information -- status, personal information, course grades

(core, elective, prerequisite) and advisor and graduate

12

committee members. This function is assigned to the

authorized PA role.

2.2.2.14 Create Pre-defined Tasks. To expedite

assignment of frequently used tasks and standardize

regulations and procedures, an authorized role can register

the tasks in the pre-defined task pool, and assign to the

appropriate users.

2.2.2.15 Add New Student. Insert new student

information into the database system. This function is

assigned to the PA.

2.2.2.16 Document Generation. Automatically generates

appropriate PDF documents. A letter of probation is

generated when a student's GPA is lower than 3.0. A letter

of Classified status or Advanced to Candidacy status is

generated when a student's academic standing status is

changed to classified or advanced to candidacy.

2.2.2.17 View Personal information. Student users can

view only their own information including personal

information, academic progress, courses and grades.

2.2.3 User Characteristics

The following capabilities are assumed for the various

users defined in the system.

13

2.2.3.1 Application Users. Include graduate student,

MS program assistant, faculty member, and graduate program

coordinators who know their role's capabilities.

2.2.3.2 System Administrator. Install and administers

the Oracle 9i database system, the Oracle 9i Application

Server and the Qmail server.

2.2.3.3 Application Developer. Needs to have knowledge

and skills in web application (HTML, JSP, Java Bean, Java

Script) and database system with Oracle relational database

schema, SQL language, Oracle procedures and triggers. The

developer also needs to know how to develop queries using

Microsoft Access to migrate information from the existing

database system.

2.3 Specific Requirements

2.3.1 External Interface Requirements

After a user starts the browser with the database

management system's URL, the users sees the login page.

When a user is authenticated, he or she must have the

appropriate role and all privileges for functions defined

and authorized for the role.

14

2.3.2 Functional Requirements

All functions of the system must provide correct

results, and all data errors or inappropriate access will

not cause the functions to crash.

2.3.3 Performance Requirements

The graduate system will be able to serve multiple

users. Faculty members and graduate students in the

Department of Computer Science can simultaneously access

the Oracle Application Server and the Oracle Database

Server. The problem of memory leak should be avoided.

2.3.4 Software System Attributes

2.3.4.1 Reliability. The system should handle failure

when the Oracle database server is down. The system must

provide sufficient connection to the database system to

maintain high availability.

2.3.4.2 Security. The system must be protected from

any security risks. The Oracle database server as well as

the web server must be protected. A user will be able only

to access function pages authorized for the user.

Transmission over the Internet must be encrypted.

15

2.3.4.3 Maintainability. The database system and the

web system should be designed to cope with changes and a

variety of requirements that will not require a significant

modification.

2.3.4.4 Portability. The system should be able to

expand its service to different departments without

significant modification.

16

CHAPTER THREE

DESIGN AND IMPLEMENTATION

3.1 System

The web-based database management system for the

Computer Science graduate program consists of five main

system components: (1) Authentication and Authorization,

(2) Updating and Retrieving Information from the Oracle

Database, (3) Processing, (4) Messaging, and (5) Connection

and Transmission. These are discussed in detail in the

following sections.

3.1.1 Authentication and Authorization

This component authenticates a user with a user ID and

password at login. Based on a user's role, it will grant

the user with access privilege codes for the authorized

pages. When a user attempts to access a secure web page,

this component will verify the access privilege required

for the page. It will log the user out if the user does not

have an appropriate privilege.

3.1.2 Updating and Retrieving Information from the
Oracle Database

This component retrieves and updates information from

the Oracle database. It consists of statements in SQL

language and is called by Java methods.

17

3.1.3 Processing

Processing components is carried out at the server

side on the Oracle application server, Oracle database

server and Apache Formatting Object Processor (FOP).

3.1.3.1 Processing On the Application Server. This

component processes requests from a user browser and

generates presentation results in HTML. This component

consists of JSP pages. Depending on the processing logic,

this component may call other system components, such as

updating or retrieving information from the Oracle

database.

3.1.3.2 Processing On the Oracle Database Server. This

component processes information on the Oracle Server. There

are two categories of processing: Oracle triggers and

regular procedures in SQL language.

• Oracle Triggers. This component consists of

event-based procedures in SQL language, which automatically

execute when updates of the database satisfy certain pre

defined conditions.

• Oracle Procedures. This component consists of

regular procedures in SQL language, which is called by

other procedures or by other triggers.

3.1.3.3 Processing On the Formatting Object Processor.

This is an external executable component, which generates

18

PDF documents. The FOP will render an XML based formatting

object using XML Style Sheet Formatting Object (XSLFO)

style sheet.

3.1.4 Messaging

This component dispatches email messages using Qmail

server. Among the available mail servers, the Qmail server

is selected because of its better security features. The

Qmail has been developed from scratch with security

awareness since 1997, and no security holes have been

found.[21]

3.1.5 Connectivity and Transmission

The connectivity component generates a connect pool

between the Oracle Application Server and the Oracle

Server. After a user completes an update or retrieval of

information from the database, the connection will be

closed and returned back to the connection pool to provide

connection requested by other users.

The transmission component facilitates communication

between a user and the system over the Internet. The

transmission is secured with an encryption using Secure

Socket Layer.

19

3.2 Architecture

The system includes two important architecture

components: web application and database components. These

components are described starting in Section 3.2.1 and

ending in Section 3.2.3.

3.2.1 Oracle Database

This component includes the Oracle database engine

that manages 27 relational tables. This component is

described in detail in the Detailed Design section.

3.2.2 Web Components

This architecture component includes web pages, user-

defined public functions, and Java Beans. Web pages are the

core part in handling a user's request while Java Beans

assist in processing and maintaining user and student

information throughout a web session.

3.2.2.1. Web Pages. These pages facilitate most of the

system's features. They consist of JSP pages, HTML and

JavaScript. They receive requests either via instructions

or data from users, process and generate HTML results. To

complete the tasks, they may refer to other JSP pages,

user-defined public functions, Java Beans, and Oracle

statements or procedures. Please see the appendix for a

list of 160 file names.

20

The presentation HTML integrated in JSP page uses

Oracle Cascade Style Sheet (CSS), which provides a

consistent and standardized presentation format for all the

web pages. Some JSP pages are embedded with JavaScript

codes that provide convenient responses on client browsers.

3.2.2.2 User-Defined Public Functions. Besides Java

methods imported from Oracle and Java packages, this

component includes the most frequently used user-defined

methods.

String GetSessionQ . get a string attribute from

session object, and handle null value.

String GetRequest(). get a string parameter from

request object, and handle null value.

String GetResultQ . get a string field from a result

set.

Resultset GetResultSet(). get a result set by querying

the database.

String SubReplace(). a recursive method to replace a

string with a string.

String TextHTML(). convert special characters < > &

into HMTL presentation string.

String RandString(). generate random String with a

desired length.

21

Boolean CheckUserPrivileges(). Check user privileges

if they satisfy a privilege token.

3.2.3 Java Beans

Java Beans used in the system are categorized into

user-defined Java Beans and Oracle Utility Beans:

3.2.3.1 User-Defined Java Beans. Include UserBean bean

and studentBean bean with the following capabilites.

• UserBean. Maintains user information throughout a

web session. When a user (either a faculty member or a

student) logins, the Bean stores user's information in

session object and makes them available for any web pages.

UserBean also protects sensitive information such as user

ID and password by not exposing the information as

parameters in the URL request.

• StudentBean. Maintains student information.

StudentBean significantly assists in viewing and updating

student information across web pages.

22

userBean studentBean
PUBLIC FUNCTIONS &
JAVA BEANS

PublicFunctions

/vjgetRequestO
^getSession()
^getResultSet()
$jgetResult()

^subReplaceO
LrandString()
<>lextHTML()

jvcheckUserPrivilegeO

I
getUserName()
getUserEmail ()
getUser_ID()
getPersonalJDQ
getTitle()
getRole_ID()
getRole()
getFirstPage()
getPassword()
setUserName()
g»setUserEmail()
§gsetPassword()
B>setUser_ID()

gfos etPe rs on al_I D ()
B* *setTitle()
tfi$setRole_ID()

fe$setRole()

JgjgsetFirstQ
^setLast()

I
etMiddleQ
etGenderQ
etDOB()
etGender()
etphone()
etEthnicity()
etlntnalQ
etCa_res()
etRes_addrs()
etperm_addr()
etState()

etCountryQ
etCSUSB_BS()
etFirstQ
etLastQ

etMiddleQ
etStateQ

etCountryQ
§ggetZip()
HlgetCountryQ
S^getRes addrO
H§getPerm_addrQ
gggetCSUB_BS()
etCa_res()
etPhoneQ
HHqetEthnicityQ

Figure 2. Class Diagram of Public Functions and Java Beans

3.2.3.2 Utility Beans. Include SendMailBean and

OracleConnectionBeanlmple beans:

• Oracle SendMailBean. Implements the connection

with the Qmail Server and relays email message.

23

• OracleConnectionCachelmpl. Generates a connection

pool with the Oracle Server and distributes the connection

to a user as per request. As soon as the user completes

accessing the Oracle database that takes just a fraction of

a second, the connection is returned to the pool for other

connection requests. As a result, one connection can

"simultaneously" serve a lot of requests with the

connection pools. Connectivity is enhanced with a fixed-

Wait-Schema setup, which lets a user wait until a

connection is available from the connection pool.

Generating a connection to a database server is expensive

in terms of time and resources. Therefore, connection pool

significantly improves the performance and availability of

the Oracle Server.

3.3 Design Details

The design to the Web-based database system consists

of the design of the Oracle database system, seven web-

based functionality modules, and security.

3.3.1 Oracle Database System

The database system is designed to satisfy the

project's goal in which the system features are data-

driven, portable and cope with changes that require minimal

modification. Information requirements are analyzed, and

24

the relational database model includes 26 entities

associated to each other in binary and ternary

relationships plus five sequences, which are used to

generate index keys. All tables are normalized to meet the

3 NF.

3.3.1.1 Look-Up Tables. Following are data dictionary

of Look-Up tables. Their schema consists of an

Identification (ID) field and a value field, which defines

the value of the ID. The tables are populated with data

when the system is setup. Additional records can be added

later.

1. ACADSTANDING. Defines academic standing of students

probation, conditionally classified, classified, or

advanced to candidacy.

STANDING_ID [char(l), Primary key(PK)]

STANDING [varchar2(30)]

2. ADMITSTATUS. Defines admission status of students --

classified, conditionally classified, probation

classified, or probation conditionally classified.

ADMIT_ID [char(l), PK]

ADMIT_STATUS [varchar2(30)]

3. COUNTRIES. Defines countries where international

students come from.

COUNTRY_ID [char(3) PK]

25

COUNTRY [varchar2(15)]

4.COURSES. Defines courses taught in the graduate

COURSE_NAME

UNITS

program including prerequisite, elective and core courses

COURSE_ ID [varchar2(15) PK]

[varchar2(50)]

[char(1)]

5. COURSETYPES. Defines course types - core, elective

and prerequisite core course.

COURSETYPE_ID [char(l) PK]

COURSETYPE [varchar2(15)]

6. CURRENTSTATUS. Defines current status of students

Active, Incoming, Graduated, Inactive Attended, On Leave,

Dismissed, Never Attended, Academic Probation, Withdraw.

CUR_STATUS_ID [char(1) PK]

CUR—STATUS [varchar2(30)]: Current status.

7. ETHNICSORGN. Defines ethnic origin of student.

ETHNICITY_ID [char(l) PK}

ETHNICITY [varchar2(60)]

8. GRADES. Defines grades and corresponding scores .

GRADE [char(l) PK]

SCORES [number(2.3)]

9. TASKSCHEDULE. Defines frequencies for repeated

tasks. The frequencies cover the periods: Daily, Every 2

days, Every 3 days, Every 4 days, Every 6 days, Every 10

26

days, Weekly, Every 2 weeks, Every 3 weeks, Quarterly,

Yearly.

SCHEDULE_ID [char(l) PK]

SCHEDULE [varchar2(30)]: Schedule name

SCHEDULE_DAYS [number(3.0)]: Schedule's duration

10.QUARTER. Defines quarters (fall, winter, spring,

summer) when courses are taken. In semester system there

are only fall and spring values.

QUARTER_ID [char(l) PK]

QUARTER [varchar2(10)]: Fall, Winter , Spring,

Summer.

11.ROLES. Defines roles of users. Currently the system

has five roles: Student, Faculty, Coordinator, MS Program

Assistant, Administrator and System.

ROLE_ID [char(l) PK]

ROLE [varchar(30)]

12.FUNCTIONS. Defines all registered functions to

assign to roles and to users.

FUNCTION_ID [number(3) PK]

FUNCTION [charchar2(40)]: Function name

FUNCTIONPAGE [charchar2(30)]: Function's JSP page

PRIVILEGE_CODE [charchar2(10)]: Function's execution

privilege token

27

13.XMLDOCS■ Defines all pre-defined document templates

in XML type to generate PDF documents.

DOC_CODE [char(3) PK]

DOC_DESC [varchar2(50)]: Document descriptions --

Letter of Probation, Letter of Classified Status, Letter of

Advanced to Candidacy Status

DOC_XML [xmltype]: XML based document template

14. JOBINTERVALS. Defines frequencies when the system

will automatically execute the scheduled system tasks.

INTERVAL_ID [number(2)] PK] Interval ID

DESCRIPTION [varchar2(50)] interval description -Run

once, Every day, Every 2 days, Every 3 days, Every 4 days,

Every 6 days, Every 10 days, Every Week, Every 2 weeks,

Every 3 weeks, every Monday, every' Tuesday, every

Wednesday...

INTERVAL [varchar2(50)] interval formula in SQL

language to compute the date of the next execution of the

corresponding interval based on SYSDATE (today's date),

for example, every 10 days - SYSDATE + 10, every Monday -

NEXT_DATE(SYSDATE,'MONDAY').

15. TASKSTATUS. Defines status of a task - denied,

complete, failed, not yet evaluated, and incomplete.

STATUS_ID [char(l)] Status ID

STATUS: [varchar2(30)] Status description

28

3.3.1.2 Data Tables. These tables are empty when the

system is setup and grows when the system is in used

(adding, editing or removing data).

16.GRADSTUDENTS. This is a main table to store student

information. Using the relational model most fields are

foreign keys with referential integrity constraint with

lookup tables. This dramatically reduces the record size

and input errors when foreign key fields must satisfy

referential integrity constraints.

STD_ID [char(9)]: Student Identification Number

SSN [char(9)]: Social Security Number

LAST [varchar2(20)]: Last name

FIRST [varchar2(20)]: First name

MIDDLE [varchar2(15)]: Middle name

DOB [date]: Date of birth

GENDER [char(l)]: Gender - F / M for female / male

ETHNICITY [char(l), Foreign key]: Ethnicity code with

referential integrity constraint with ETHNICSORGN table

EMAIL [varchar2(30)]: E-mail address

PHONE [varchar2(13)]: Phone number

INTNAL [varchar2(30)]: Y if the student is an

international 'Student

CA_RES [char(l)]: Y if the student is a California

resident

29

CSUSB_BS [char(l)]: Y if the student obtained a BS

degree from CSUSB

RES_ADDRS [varchar2(100)]: Street address where the

student is residing

CITY [varchar2(20)] City

STATE [char(2)]: State

ZIP [varchar2(9)]: Zip code

PERM_ADDRS [varchar2(100)]: Home address

COUNTRY[char(3)]: Home country address

QTR_ADMIT [char(l)]: Quarter of admission, has

referential integrity constraint with QUARTER table

YR_ADMIT [char(4)]: Year of admission

QTR_CLASSIFIED [char(l)]: Quarter of classification,

has referential integrity constraint with QUARTER table

YR_CLASSIFIED [char(l)]: Year the student is

classified

ACAD_STAND [char(l)]: Academic standing status, has

referential integrity constraint with ACADSTANDING table

CUR_STATUS [char(l)] Current Status, has referential

integrity constraint with CURRENTSTATUS table

CUR_QTR_START [char(l)]: Quarter the current status

started

30

CUR_YR_START [char(l)]: Year the current status

started, has referential integrity constraint with QUARTER

table.

CUR_YR_END [char(4)]: Year when current status will

end

QTR_LASTATD [char(l)]: Quarter the student was

admitted to the program, has referential integrity

constraint with QUARTER table

YR_LASTATD [char(4)]: Last quarter attended, has

referential integrity constraint with QUARTER table

TOEFL_WAIVED [char(l)] Y if the TOEFL test requirement

has been waived

TOEFL-SCORES [number(5)]: TOEFL score

TOEFL_DATE [date]: date TOEFL was taken

GRE_VERB [number(5,2)]: GRE verbal score

GRE_QUANT [number(5,2)]: GRE quantitative score

GRE_ANAL [number(5,2)]: GRE analytical score

GRE_DATE [date]: Date GRE was taken

GRE_SUBJ [number(5,2)]: GRE Computer Science subject's

scores

GRESUBJ_DATE [date]: Date GRE Subject test was taken

QTR_CANDIDACY : Quarter the student is advanced to

candidacy, has referential integrity constraint with

QUARTER table

31

YR_CANDIDACY [char(4)]: Year the student is advanced

to candidacy

PRO_THESIS [char(l)]: Type of graduation work - P / T

for project or thesis

TITLE [varchar2(100)]: Title of project / thesis

0RAL_EXAM [varchar2(5)]: Oral exam score

PASS [char(l)]: Y if pass; N if fails

PRESENTAION [date]: date of presentation of project

/thesis

NOTES [varchar2(300)]: Notes I comments

17.STAFF. Stores staff information including faculty,

staff or other employees, who are involved in the graduate

program.

STAFF_ID [char(9) PK]: Staff identification (ID)

number

TITLE [varchar2(20)]: title - Professor, Associate

Professor, Chair, President

LAST [varchar2(20)]: Last name

FIRST [varchar2(20)]: First name

MIDDLE [varchar2(15)]: Middle name

ISFACULTY [char(l)]: Y if the staff member is faculty

EMAIL [varchar2(40)]: E-mail address

PHONE [varchar2(20)]: Telephone number including area

code

32

POSITION [varchar2(40)]: MS program Assistant or

Graduate Coordinator

18.COMMITTEE. Stores advisor or graduate committee

members of a student who has been advanced to candidacy.

Each record represents a faculty member for a student.

Thus, if a student has one advisor and two committee

members, he or she will have a total of three records.

STD_ID [char(l) PK]: Student identification number

STAFF_ID [char(9) FK] Staff-ID of the student's

faculty, has referential integrity constraint with STAFF

table

ISADVISOR [char(l)]: Y if the faculty is the advisor,

blank if the faculty is a committee member.

19.STUDENTCOURSES. Stores courses taken by a student.

Each student has as many records as courses he or she has

taken.

STD_ID [char(9) PK] Student identification number, has

referential integrity constraint with GRADSTUDENTS table

COURSE_ID [varchar2(7), FK]: Course identification

number, has referential integrity constraint with COURSES

table

QUARTER_ID [char(l), FK]: Quarter the course was

taken, has referential integrity constraint with QUARTER

table

33

(STD_ID, COURSE_ID, QUARTER_ID) constitutes the

primary key of the table

COURSETYPE [char(l), FK]: Course type code (for

core, elective, prerequisite course), has referential

integrity constraint with COURSETYPES table

YEAR [char(2)]: Year the course was taken

GRADE_ID [char(2)]: Grade for the course taken, has

referential integrity constraint with GRADES table

20. ROLEFUNCTIONS. Stores functions assigned to each

user role. Each record represents a function assigned to a

role. Therefore, a role will have as many records as

functions assigned to the roles.

ROLE_ID [char(l) FK]: Role identification number, has

referential integrity constraint with ROLES table

FUNCTION_ID [number(3) FK]: Function assigned to a

role, has referential integrity constraint with ROLES table

(ROLE_ID, FUNCTION_ID) constitutes the primary key for

the table

21. TASKMANUAL. Defines all pre-defined tasks.

TASK_CODE [char(3) PK] Task identification number

TASK_ACTION [varchar2(20)]: brief description of the

task

GUIDE [varchar2(100)]: Guide to complete the task

34

22. JOBS. Defines pre-defined job for pre-defined

tasks. Each task may include one or more jobs.

JOB_ID: [char(5),PK]: Job ID number

JOB:[varchar2(20)]: Job name.

JOB_SCRIPT [varchar2(150)]: Description of the job

23. TASKBOOK. Stores jobs of each pre-defined task.

Each record represents a pre-defined job in a pre-defined

task. Each pre-defined task has as many records as number
<!

of jobs assigned to the task.

TASK_C0DE [char(l), FK] Task identification number,

has referential integrity constraint with TASKMANUAL table.

JOB_ID [char(5), FK] pre-defined job ID, has

referential integrity constraint with JOBS table.

JOB_ORDER [number(2)]: an step-by-step order the job

need to be done to complete the task.

24. TASKREGSTR. Store tasks assigned to each student,

faculty or staff member. Each record represents a task.

TASK_ID [char(6), PK] Task identification number

TASK_CODE [char(3), FK]: pre-defined task code, has

referential integrity constraint with TASKMANUAL table

TASK_OWNER [varchar2(9), FK]: ID of the staff who

assigns the task, has referential integrity constraint with

STAFF table

35

TASK_ASSIGNEE [varchar2(9), FK]: ID of the staff or

student who needs to complete the task.

DATE_ASSIGNED [date]: Date the task was assigned

DATE_DUE [date] : Date the task is expected to be

completed by the assignee

SCHEDULEID [char(l)]: How often the task repeats, has

referential integrity constraint with TASKSCHEDULE table.

DATE_COMPLETE [date]: Date the task is actually

completed by the assignee

DATE_EXPIRED [date]: Date the task is no longer valid.

A task with frequency of weekly, will no longer need to be

done after the expiration date.

NOTES [varchar2(100)]: Brief note about the task

STATUS [char(l)]: Status of the task whether --

complete, fails, denied, incomplete, not evaluated -- has

referential integrity constraint with TASKSTATUS table.

REPORT [varchar2(100)]: Report of the assignee about

the task given

COMMENTS [varchar2(100)]: Task assignor's comments

DOCUMENT [varchar2(100)] Any viewable document

related to the task

25.USERS. Stores user account information for faculty,

staff, student accounts.

USER_ID [varchar2(10)]: User identification number

36

PWORD [varchar2(10)]: Password for authentication

ROLE_ID [char(l)]: User's role, has referential

integrity constraint with ROLES table.

STAFF_STD_ID [char(9)]: Staff identification number of

staff / Student identification number of Student

ISSTAFF [char(l)]: Y if the user is a staff member

FIRSTPAGE [number(3)]: User's customized home page

2 6.XMLGROUPS. Stores all student groups

GROUP_ID [number(4)]: group identification number

GROUP_OWNER [char(9)]: Staff identification number of

the group's owner

GROUP_DESC [varchar2(100)]: Group name

GROUP_CRITERIA [xmltype]: XML document that stores the

selection criteria.

GROUP_CAT [char(l)]: Group category - A / P for

private or public group

27.DOCUMENTS. Stores electronic documents. Each

record represents a document of a student.

STD_ID [char(9) PK] student identification number, has

referential integrity constraint with GRADSTUDENTS table

DOC_CODE [char(3) FK] Document template

identification number, has referential integrity constraint

with XMLDOCS table

DATE_ISSUE [date]: Date the document is created

37

DOC_XML [XMLTYPE]: Document content in XML format

DOC_TYPE [char(l)]: Document type - P / W / T for PDF,

Word, Text document.

DOC_FILE [varchar2(50)] Document 's file name

3.3.2 Functionality Modules

The system features are categorized into eight

essential modules. Each module consists of a series of

related functions and includes features, module functions

and the design of the modules. Each module may also include

a UML data model and pseudo-codes. Please refer to the data

dictionary for the definition of the tables, which are used

in the implementation of the modules.

3.3.2.1 Dynamic User Roles and Functions. Dynamic User

Roles and Functions provides a robust mechanism in adding

and modifying roles and functions. New roles and functions

will be added to the system as needed.

The system administrator and system agent are setup as

initial roles. System Administrator will create other roles

-- Coordinator, MS Program Assistant, Faculty, Staff, and

Student. Coordinator and System Administrator can assign

and change roles of any user. When a user is assigned to a

role, he or she will be authorized to execute all functions

defined for that role.

38

A function is implemented as one or many linked JSP

pages. The developers can'develop any new function page and

load it into the FUNCTION table. System Administrator can

then assign the new function to any role.

These features make the system completely robust and

portable. System administrator and developer can

design/edit any role and any function to suit many

requirements without modifying the application codes.

Due to the dynamic role and function feature, a

function can be optionally assigned and removed from any

role. The execution privilege, therefore, of a function is

no longer fixed to any role but needs a privilege granting

mechanism. This mechanism is described in the Security

Section.

Functions. The Dynamic Roles and Functions consists

of the following functions:

1. Add new Roles. Register new roles into the system.

2. Assign Roles to Users. When a new role is registered

with the system, it can be assigned to any staff user.

3. Add/Edit Functions. Register a new function into

the system, edit the function's description and the

function's JSP pages.

4. Assign / Reassign Functions to User Roles. When a

function is assigned to a role, all users with that role

39

will automatically have execution privilege for the

function.

Design. USERS, ROLES, FUNCTIONS, ROLEFUNCTIONS tables

are designed with the following relationships: ROLES has M

- N relationship with FUNCTIONS. ROLEFUNCTIONS table

implements this relationship. USERS table has a 1 - M

relationship with ROLES table. (See Figure 3: UML Model for

Roles & Functions.)

UML Model of "Rational Rose" software is used to

design and illustrate database schema with primary keys and

foreign keys. "Strong entity" tables (USERS, GRADSTUDENTS)

with primary key have "non-identifying" relationships with

other strong entities using primary key - foreign key link.

In UML model this relationship is represented as a straight

line with cardinality at each end. "Weak entity" tables

(ROLEFUNCTIONS), on the other hand, have "identifying'

relationships with their parent tables. Their primary keys

are composed from primary keys of their parent tables. In

UML model this relationship is represented as a straight

line with diamond symbol at parent side.

40

Figure 3. UML Model for Roles And Functions

3.3.2.2 Dynamic Grouping. Dynamic grouping produces a

named subset of users that satisfies selection criteria.

The subset is not fixed but reflects the database status at

run time. The Program Assistant, faculty and program

coordinator can create a group by naming the group and

defining the selection criteria.

Each group is given a distinctive name and saved for

later viewing or editing. When a group is created as

private, other users cannot view the group. On the other

hand, any other users can view a group created as public.

Grouping has many uses:

• Assist in searching for student(s) who satisfy

specific selection criteria.

41

• Assist in assigning a task to a group of students

by assigning a task to the group. The task will be

automatically assigned to each group member.

• Assist in producing reports by specifying a

student group that meets defined selection criteria. For

example, to produce a list of students who have been

advanced to candidacy in a specified quarter, we just

create a group with the selection criteria and produce a

report for this group. The report may be in different

formats about desired columns, page layout

(landscape/portrait), document type (PDF, Word, text).

• Assist in communicating with a group of students

of the same category or with the same interest. When a

message / announcement is sent to a group, all its members

will receive the message.

Functions. The dynamic grouping has the following

functions:'

1. Add/ Modify/ Remove Group, a staff user can create a

new student group using a selection criteria. The group is

saved for later viewing, and can be modified by changing

the selection criteria.

2. View Group / Criteria-Based Search, a user can

select a group and view its members. A user can also narrow

42

his or her search for a student(s) by defining selection

criteria, which the student(s) will satisfy.

3.Assign Task to Group, a staff member can assign a

task to multiple students by assigning task to its group

name. The task will be automatically distributed to all

students in the group.

Design. STAFF and XMLGROUP tables have the following

relationships: STAFF has 1-M relationship with XMLGROUP.

(See Figure 4: UML model for grouping.)

The XML data type is used to save selection criteria

and restore the SQL logic to produce the query results. How

the SQL logic is stored and reconstructed is described in

the next section.

• Storing SQL logic. Tags are used to describe a

SQL query logic. Each tag is named after a field name, and

its attribute represents a relational operator such as =,

<, >, <-, >=. To represent a more complicated logic each

field can have a maximum number of tags. For example, the

query logic for admission status of a student,

... (ADMIT_STATUS = "Classified") AND ...

is interpreted as the following tags and attributes:

<ADMIT_STATUS_PAB ADMIT_STATUS_PAB = "(" />

43

<ADMIT_STATUS ADMIT_STATUS_BOOL = " . EQ."

ADMIT_STATUS = "C" />

<ADMIT_STATUS_PAE ADMIT_STATUS_PAE = ")" />

<ADMIT_STATUS_REL ADMIT_STATUS_REL = "AND" />

If Admission Status is not a selection criterion then

these tags are not required. Therefore only tags needed are

generated. Combined with other fields these tags are stored

in a single XML document as follows:

<?xml version=\"1.0\" encoding=\"ISO-8859X"?>

<CRITERIA>

Tags

</CRITERIA>

This document is stored in a single GROUP_CRITERIA

field of XMLTYPE data type of XMLGROUPS table. Each row of

the table represents complete selection criteria.

44

GROUPING

STAFF
____________(from QUARTER)________

jgSTAFFJD.: CHAR(9)
Blast: varchar(20)
jjjFIRST:VARCHAR(20)

r<S«PK» PK_STAFF16()
Lg«Unique»TC_STAFF75()

____________ XMLGROUPS_________
gGROUPJD : SMALLINT
ggsTAFFJD: CHAR(9)
■GROUP_DESC: VARCHAR(50)
■gROUP_CRITERIA: VARCHAR(50)
|]GROUP CAT: CHAR(1)

B«PK» PK_XMLGROUPS17()
«FK» FK_XMLGROUPS83()

Figure 4. UML Model for Grouping

Get parameters for selection criteria from request object
Construct SQL query statement
If execution of the SQL statement fails then

send a alert and return
else then

start XML document tag XMLTEXT="<?xml
vers ion A" 1.0" encoding=\" iSO-8859\" ?><CRITH RIA>";

For each parameter if its value is not blank then
Append its tag and attribute value to XMLTEXT

Endif
Add </CRITERIA> closing tag to XMLTEXT
Insert a new record to XMLGROUPS table where GROUP_CRITERIA field

is populated with XMLTEXT content

Figure 5. Pseudo_Codes of Storing SQL Logic

45

• Reconstruction of SQL logic. SQL logic is

extracted using EXTRACT function of the Oracle utility-

package, and SQL query is constructed to produce query

results. Following are the pseudo-codes of the SQL

reconstruction

Get GROUP JD parameter from request object
Retrieve a record from XMLGROUPS table matching GROUPJD parameter
Extract values of GROUP_CRITERIAXML datatype field
Construct SQL statement
Execute SQL statement to get result of the reconstructed selection criteria

Figure 6. Pseudo-Codes of SQL Reconstruction

3.3.2.3 Search and Update Student Information.

Searching assists a staff user in looking for a specific

student or group of students who satisfy a condition. A

user can look for a student from (1) a popup name list, (2)

a list of students having the same name (first or last name

or both of them), or (3) list of students matching a search

criteria.

Update student information assists a user in adding

new student or updating a student's personal and academic

information.

Students can participate in keeping their contact

information up-to-date such as current address, phone and

e-mail.

46

Functions. Search and Update Student Information

includes:

1. Name List-based Search. Search for student from a

popup student list.

2. Name Keyword-based Search. Search for student by

either last name or first name key word or both.

3. Criteria-based Search. Search for student by

selection criteria. This function is implemented as a

grouping.

4. Update student contact. Students update their

contact information.

5. Update student information. Information to be

updated include academic summary, personal information,

core, elective and prerequisite courses, and graduate

committee composition.

6. Add new student. Insert a new student into the

database.

47

Figure 7. UML Model for Graduate Students

Design. GRADSTUDENTS table uses STD_ID field as a

primary key, which is generated from STD_INDEX sequence.

Instead of storing the whole value such as advisor's name,

course names, quarter, country, ethnic origin and status,

the table only stores the foreign keys, which refers to

other lookup tables. As a result, the size of the system

tables and processing cost are dramatically reduced.

Using foreign keys also enforces referential integrity

between two tables that are in 1-M, or M-N, or M-N-P

relationships. Values entered, as codes into the foreign

key fields must maintain referential integrity with their

lookup tables. As a result, data entry is faster and less

prone to typing errors.

48

A generated STD_ID field used as an index key instead

of Social Security Number will comply with the requirement

of security and privacy protection.

3.3.2.4 Document Generation. PDF Documents are

manually or automatically generated when a student update

satisfies a pre-defined condition. Currently, the system

will generate a letter of probation when a student's GPA

drops below than 3.0, a letter of classified status and

letter of advanced to candidacy status when a student's

status is changed to classified and candidacy accordingly.

Related users such as PA, GCA will be notified by e-mail /

task to get the print out of the documents.

Functions. Document generation produces the following

letters:

1. Letter of Probation

2. Letter Advanced to Candidacy

3. Letter of Classified Status

49

STAFF
HSTAFFJD : CHAR(9)

|g«PK» PK_STAFF()

GRADSTUDENTS
gSTDJD : CHAR(9)
ggCOUNIHYJD: CHAR(1)
gjETTINICJD : CHAR(1)
10CURR_STATUS_ID: CHAR(1)
gjQUARTERJD : CHAR(O)
gSTANDINGJD : CHAR(1)

«PK» PK_GRADSTUDENTS1()
c<FK» FK_GRADSTUDENTS2()
«FK» FK_GRADSTUDENTS3()
«FK» FK_GRADSTUDENTS4()
«FK» FK_GRADSTUDENTS5()
c<FK» FK_GRADSTUDENTS6()

DOCUMENTS
|STD_ID : CHAR(9)

ggXMLDOCJD: SMALLINT
gSTAFFJD : CHAR(9)

g|«PK» PK_DOCUMENTS1()
ig«FK» FK_DOCUMENTS2()
7g«FK» FK_DOCUMENTS3()
^«FK» FK_DOCUMENTS4()

-Or*-

S0XM
HDD
Hdo

L.
XMLDOCS

LDOCJD: SMALLINT
!DOC_DESC : CHAR(1)
DOC XML: XMLDATA7YPE

jg|«PK» PK_XMLDOCS1()

Figure 8. UML Model for Documentation

Design. PDF documents are generated by Apache

Formatting Object Processor (FOP). This processor is

automatically activated by Oracle triggers (See Resident

System Tasks), which monitor activity of the database

system.

Executing as an external command, FOP transforms

document templates from XML format into PDF documents using

Formatting Object (XSLFO) style sheet. The style sheet

defines a standard format for generated PDF documents.

50

Some template XML documents such as "Letter of

Classification", "Advanced to Candidacy Letter" have been

pre-designed. These template documents include parameters

to hold student's information such as name, address, etc.

that will be filled when the documents are generated. These

template documents are stored in the Oracle XMLDOCS table.

When a student update matches a pre-defined condition,

Oracle will trigger a procedure that generates a

corresponding XML document. This XML document is

transformed into a PDF document using XSLFO style sheet.

For example, when a student status is changed to

classified, Oracle will trigger a procedure to generate in

PDF format the letter informing the student that status has

been changed from conditionally classified to classified

status. The Oracle trigger also notifies the MS Program

Assistant by e-mail and task to print out the PDF document

and the Graduate Coordinator to sign the letter. More

complicated triggers and procedures are presented in the

Trigger Section. Following is the pseudo-code to generate

the letter of classified status.

51

Procedure Letter_Classified_Gen {
Begin

Assign the document code for letter of classification
if DOCUMENTS table already has the letter for the student then

return
endif
Retrieve the letter template from XMLDOCS table
Insert the template letter into DOCUMENTS table
Fill the template with student information: name, address,..
Call EXECFOP java function that executes an external

FOP command line to generate PDF document.
Store the PDF file in DOCUMENTS Folder.
Alert MS Program assistant about the student's status change

and printout the letter
End
}

Figure 9. Pseudo_Codes to Generate Letter of Classified
Status

3.3.2.5 Courses and Grades. Courses and grades provide

a flexible way to record a student's academic progress.

Courses taken are not limited to a fixed number. Course

types (core, elective, prerequisite) are not restricted to

any course or any year. A course may be taken as an

elective by a student while it could be taken as a

prerequisite or a core course by another student.

Furthermore, the system also can handle the same course is

retaken in different quarters. Handling course grade and

course type at student level helps solve a limitation of

the existing database system, in which course type for a

course is fixed. Number and which courses required for

52

core, elective and prerequisite may change throughout

academic years. As a result, It will cause an inflexibility

in recording courses and course types.

This advantage will make the system portable for

different graduate programs, where required core, elective

and prerequisite courses are totally different.

Entering and updating courses and grades are also

efficient and able to avoid data entry mistakes. When a new

student is admitted, in addition to the student personal

information, the PA will enter all pre-requisite courses

that the student needs to fulfill. When a pre-requisite is

completed, information is updated by entering the specific

grade received and quarter/year that the pre-requisite was

taken. At any time, GCA can know which pre-requisite a

student has fulfilled along with the cumulative GPA.

Functions. Courses and Grades function has the

following capabilities:

1. View and update a student's personal and progress

information. authorized users can view a student's personal

and academic information. This allows the PA to add a new

student and update an existing student record.

2. View and update Core/Elective/Prerequisite courses.

user can view all courses and when (quarter, year) the

courses were taken.

53

3. GPA computing. Cumulative GPA is computed at run

time to reflect the latest value.

Figure 10. UML Model for Courses and Grading

Design. GRADSTUDENTS, STUDENTCOURSES, COURSES,

COURSETYPES and GRADES QUARTER tables are used for

implementation.

GRADSTUDNETS table has a L-M-N relationship with

COURSES table and QUARTER table. This relationship is

implemented by STUDENTCOURSES table, in which each record

represents one course taken by a student in a quarter. Each

Student has as many records as the courses he or she takes,

54

and a student can take the same course in different

quarters.

STUDENTCOURSES table has M - 1 relationship with

COURSE table via a foreign key. One course of COURSE table

can be in many student-courses of STUDENTCOURSES table.

STUDENTCOURSES table has M - 1 relationship with

COURSETYPES table via a foreign key. One course type of

COURSETYPES table can be in many student-courses of

STUDENTCOURSES table.

3.3.2.6 Task Assignment. Task Assignment assists

faculty and staff in managing tasks assigned to other

users. Task assigners and task assignees can interactively

communicate about a task's status via report / comments /

evaluation. When a task is assigned to a group (See

grouping module.), task assignment module will assign tasks

to all group members. Admin users can add frequently

assigned and complicated tasks, which may consist of

ordered jobs, to a task book for later assignment. Task

Assignment is also assisted by e-mail service in notifying

task assignees of their tasks.

Functions. Assign/Remove/Edit tasks to Staff/Students:

Staff users can assign task to student and other staff.

They also can edit and remove the tasks, which already have

been assigned.

55

1. Create/edit pre-defined tasks. Faculty and GCA can

standardize regulations, frequently used and complicated

tasks by registering pre-defined tasks with the system. A

pre-defined task may be a single or multiple requirement

tasks, which consists of many jobs that must be completed

in order. Users just select the pre-defined task to assign,

and the assignees will received all the task details.

2. Create/Edit pre-defined jobs. As mentioned in

multiple requirement pre-defined tasks, staff users can

define jobs to constitute pre-defined tasks.

3. Follow-up tasks Assigned to others. Staff users can

follow up and monitor the progress of tasks assigned to

others. Staff users can send additional advice and view a

feedback or comments from an assignee.

4. Users view / report result & progress of tasks

assign to themselves. Task assignees can view details of

the tasks assigned to them, send feed back and report

progress and result to task assignor.

56

T4SK

Ft
TASKRBSTK

Ff
"ffSKSCH BHJ LE

PCSWFJD:CHAR3)

*«PF>» PK.ST/VPO

pktaekjd :ckmcq
FKSIAHJO :CHtf£0

- PH STD_ID : CHAAJ3)
; fH ECHEDULEJD : CHAR3
Lpk Ty©CCODE:CHAft;i)

GfWDBTUDEinB

fTT
n SCHHI ULE*JD : CHAR0

' tcePK^PtCftSkSCHBULElO

"ffl
MBTDJD :CHftflQ
FVCDUKTRY_D :CHW(I)
FV ETHNIC JD : CHAIM)
FjCUWLSTATUSJD :CHAHtl)
3 QUARTEFLD :C HAR<?
FI STAND 1MBJD :CHAIM)

*8««PW-5. PK.GMD5niD0fTB1O
*«FK» FKpRADSniDBfraO
*>c-=FK=o FK_pRADSTTIDBfTS30
^««FK» FKPRADSTTIDBrTStO
*^«FK» FK_0RADSTUDBfra(l
*fc-=-=FK=-& FK_QRADBJUDBfra)

❖«fk» PK.iABHHH3ernD
F tt=- F KLIXEKHEOSmiQ

4* F »=■ F KJTX8HRBOSTK3
I -fys«FI*& FKJKSMUsUSi K?

O« F F K-TASMIEGSTKC

rtt*-

'S' 15

Figure 11. UML Model

Fff
TO&MAHUAL

n TASK.CO D E :C HARM
1ASK>CTTO N: WRCHAROT
OUIDElVAflCHAHXItm

«e«P F» p K_T?©WWAN[IAL1Q

for Task

fTT
k*mSK.CODE:CHMtt
*JOHJD:CHARC9

&«<P W-9- p K.T*ekBOO K1Q
Ky=-=FK» FK_T>Q<B00k23
5>=<=F K» FK_TAEKBDOK3Q

JOBS

n :CkA(ia—

^s«p ^sPKJQBSIQ

Fff

Design. GRADSTUDENTS, TASKREGSTR, STAFF, TASKBOOK,

TASKMNUAL Apache Software Foundation and JOBS tables are

described in detail below.

GRADSTUDNETS table has M - N relationship with STAFF,

and STAFF table has M - N relationship with itself. This

relationship is implemented by TASKREGSTR table, in which

each record represents a task assigned by a staff member

to a student or to another staff member. One staff member

can assign tasks to many students of GRADSTUDENTS table or

many staff members of STAFF table, and one student or many

staff members can assign one staff member task.

57

TASKMANUAL table has M -N relationship with JOBS

table. This relationship is implemented by TASKBOOK table.

One task in TASKMANUAL table can consist of many jobs, and

one pre-defined job in JOBS table can be used by many tasks

of TASKMANUAL table.

3.3.2.7 Resident System Tasks and Scheduled System

Tasks. Resident System Tasks automatically execute when

changes in the database satisfy pre-defined conditions.

These tasks are important tools to monitor database

activities, e.g., monitor GPA of students.

Scheduled System Tasks, on the other hand, execute at

scheduled frequencies. These tasks will automate pre

defined tasks at desired periods.

Two kinds of system tasks will facilitate system

automation. Furthermore, an authorized Admin User can have

the options to load and enable/disable the tasks at any

time.

Functions. Resident System Tasks and Scheduled System

Tasks have the following capabilities:

1. GPA Monitor

2. Contact Update Monitor

3. Academic Standing Monitoring

4. Load / Unload / Rescheduling scheduled system tasks

58

Design. System tasks design including design of

resident System Tasks, which stay resident in memory, and

scheduled system tasks which run at scheduled times.

1. Resident System Tasks. This task is implemented as

Oracle triggers. These triggers will automatically execute

when an update of certain fields of the database tables

meet pre-defined conditions.

• GPA monitor. This trigger will automatically

compute total GPA when there is an update in a student's

grades. If the computed GPA falls below a threshold (3.0),

this trigger will automatically generate a task alert for

the MS Program Assistant and Graduate Coordinator that the

student should be put under probation status. A letter of

probation is also generated. This trigger is implemented in

two steps to avoid mutation conflict that puts the Oracle

database in a deadlock. The mutation conflict happens when

Oracle attempts to update many student courses and at the

same time compute the GPA. Two processes compete with each

other causing a deadlock.

59

Trigger GPA_Alert_Step1 {
If Studentcourses table has update then
copy student ID to a update_temp table
End if
}
Trigger GPA_Alert_Step2 {
If update_temp table has an update then
Compute GPA
If GPA < 3 then
Generate letter of probation
Endif
Remove the update from update_temp table
}

Figure 12. Pseudocodes for GPA Monitor

• Contact Update Monitor. When a student updates

his or her own contact information (current address, phone,

email) via the web-based interface, this trigger will

notify the PA via a task assignment and by an e-mail about

the update.

Trigger Contact_Update_Monitor {
If update email, phone, local_address,home_ address then

Add "update" email, phone, local_address, home_ address to alert_message
Alert Program assistant by a task

Endif
}

Figure 13. Pseudocodes to Monitor Contact Update

60

• Academic Standing Monitor. When a student's

academic standing is changed to classified status or

advanced to candidacy, this trigger will generate the

letter of classified status or advanced to candidacy

status, save the letter into DOCUMENTS table, DOCUMENTS

folder, and at the same time- notify the MS Program

Assistant and the GCA.

Trigger Academic_Standing_Monitor {
If Academic status changes from Conditional to classified then

Generate letter of classification
Put the letter into DOCUMENTS table

Alert Program assistant by a task to view and print out the letter
Else if Academic status changes from Conditional to advanced to candidacy then

Generate letter of classification
Generate letter of being advanced to candidacy
Put the letter into DOCUMENTS table
Alert Program assistant by a task to view and print out 2 letters

Else if Academic status changes from classified to advanced to candidacy then
Generate letter of being advanced to candidacy
Put the letter into DOCUMENTS table
Alert Program assistant by a task to view and print out the letter

Endif
}

Figure 14. Pseudocodes to Monitor Academic Standing

2. Scheduled System Tasks. These tasks are implemented

as an Oracle scheduled procedure. The task is developed as

an Oracle procedure and submitted to the Oracle scheduler

to execute at a pre-defined time and frequency. Following

61

is the automatic task renewal scheduled to execute once a

day.

• Automatic Task Renewal. When a task is assigned

with a frequency i.e. a weekly report and after the task is

completed, it needs a mechanism that automatically renews

the task for the next period. With the Oracle Scheduler, an

authorized user can schedule any procedure that is

designated for scheduling.

Procedure Task Renewal: {
Begin

Make a collection of tasks that satisfy conditions: Have frequency and alreadydue
or due todayplus frequency period not later than expired dates when the tasks
do not need repetition.

For each task of the collection {
Generate a new task with a new due date = due date + frequency
Notify the task assignee about new due date of the task

}
End

Figure 15. Pseudo_Codes for Task Renewal

3.3.3 Security

Many security concerns are addressed in the project

including encryption of transmission over the Internet,

protection of application server, Oracle server and student

sensitive information.

3.3.3.1 Encryption of Internet Transmission with SSL.

All JSP web pages are processed by the Oracle Application

Server, which is powered by the Apache Server and Open SSL.

62

Communication between server and client sides are forced to

transmit under SSL transmission protocol. Any attempts to

access unsecured pages are redirected to secure pages. An

Oracle temporary security certificate is used for a trial

period.

3.3.3.2 User/Role and Password Enforced

Authentication. User authentication and authorization is

implemented by user ID / password. When a user logs in, the

system will verify the user's user ID and password against

USER table. After a user is authenticated, the system will

authorize the appropriate role for the user. The user then

have access to all functions authorized for his or her

role.

Due to the dynamic roles and functions feature, a

function can be optionally assigned and removed from any

role. The execution privilege of the function for a certain

role, therefore, cannot be hard-coded but dynamically

handled by a new mechanism at the function level. In the

new mechanism, each function has a unique privilege token

stored in PRIVILEGE_CODE field of FUNCTION table. When

successfully logged in, the user will load (into PRIVILEGE

container) all the privilege tokens of the functions, which

are assigned to the user's role. The PRIVILEGE container of

63

vector data structure is maintained in a session object for

speed and is available throughout the user's session.

When a user attempts to execute a page, a verifying

component of the page will check if the user's PRIVILEGE

container has the privilege token required for the page. If

the user does not have a proper privilege token, the

verifying logic will deny access and redirect the request

to a login page.

Social Security Number is no longer used as an index

and identification key, and its content is only accessed by

Admin roles.

3.3.3.3 Controlled Input Information. All input

information from a student user is restricted by fixed-

length format and screened for possible malicious codes.

All special characters that can lead to attack, are either

prohibited or converted to presentation characters,i.e.

is converted to 'Scamp', ' < ' to ' >' ; ... This will reduce

the risk of cross-site scripting attacks, and overflow

buffer-based attacks where hackers seed their malicious

codes with the above special characters in input fields, or

cause an overflow buffer input with malicious codes.

3.3.3.4 Hackcheck Before Execution Of External

Commands. Each external command is subject to verification

before execution to avoid malicious codes that may cause an

64

attack. An EXECFOP Java function calls FOP external command

to generate PDF documents by passing a full command line

string. "C:/FOP/FOP <argument>". Before the external

command string executes, it is verified that the command

string must not have unexpected ' | 'or ';' characters,

which can lead to an attack.

3.3.3.5 Encrypted SQL Procedures. All SQL procedures

are encrypted with "wrap" Oracle command. When an

unauthorized user gets access to the Oracle database he or

she cannot view the procedures' contents.

3.3.3.6 Restricted Access to Oracle Database. The

Oracle database is located in a private network (See Figure

16: A Recommended Deployment.), which is isolated from

Internet accessible network. There are only two ways to

access the Oracle server: (1) using Secure Shell(SSH) at

port 22 and (2) TCP/IP protocol on port 1521 from the

application server only. It means that to access the Oracle

server, a user must gain access to the Application server

first, and only the web component on the Application server

is allowed to fetch data from Oracle server.

65

CHAPTER FOUR

DEPLOYMENT

4.1 System Requirements

The Oracle database server is located in a private

network. The Oracle Application server is located after a

firewall. Window Advanced Server 2000 or Linux Advanced

Server 2.1 can be used. However, Linux 2.1 is recommended

for its secure and performance features. Following is a

recommendation for system deployment:

1. Firewall

2. Oracle Application server 9i AS 9.0.3 / Qmail server,

minimum 256MB

3. Oracle database 9i - 9.0.2.0.1, minimum 512MB

DEPLOYMENT DIAGRAM Oracle database^
9i servsr

Oracle 9iAS: OHS &l\
0C4J
Qmail server

Firewall

Private Network

Figure 16. Recommended Deployment

66

4.2 Installation

4.2.1 Installation of Servers

For security reason, Oracle Corporation recommends

Application server 9iAS, Oracle server 9i are installed

with normal user account. Oracle server is configured to

have an automatic startup when the server boots up, and

shutdown properly before the server is powered off to avoid

lost data. Detailed configuration for security is discussed

in the Security Section.

Apache Formatting Object processor (FOP) is downloaded

from Apache Software Foundation [1], and installed in the

same machine with the Oracle Application server.

4.2.2 Installation of Web Component

The web component is packaged in grad. zip. Unzip the

file in the D:\9iasgrad\j2ee\home\default-web-app folder.

D:\9iasgrad is a folder in the Oracle Application server.

4.2.3 Migration from the Existing Database System

Migration from the existing database system, which

runs Microsoft Access includes the creation of a new

database schema, population of look-up tables and a

migration of student data. Following is a flow chart

showing the migration steps.

67

Migrate existing lookup tables from Access

do/ Export existing lookup tables from Access database
do/ Import the lookup tables to Oracle database

V
load data for new lookup tables

do/ execute sqlldr eommand to load new data

Figure 17. A Migration Flowchart

68

4.2.3.1 Migration of Look-Up tables. The database

schema of look-up tables in the existing Access database is

equivalent to that in the Oracle database, therefore the

tables are migrated using Oracle SQLLoad utility. Data for

additional lookup tables are created by a text editor.

4.2.3.2 Migration of the Student Table. In the

existing Access database, student information is stored in

a single master student table while in the new Oracle

database schema design, student information is stored in

several relational tables: GRADSTUDENTS, STUDENTCOURSES,

COMMITTEE. (See Figure 7: UML Data Mode for Graduate

Students.) The migration of the student table is

implemented as follows:

1. Export data to text file with an Access query. Each

record presents a course, which was taken by a student.

Each student will have as many records as number of courses

the student has taken.

2. Load the text file into STUDENTCOURSES table.

3. Export data to text file with an Access query. Each

record presents a faculty member, who resides in a

student's committee. Each advanced-to-candidacy student

will have as many records as number of faculty, who reside

in the student's committee.

4. Load the text file into COMMITTEE table.

69

5. Export the existing student table into a text file,

and load it into Oracle GRADSTUDENTS table.

6. Run SQL script to convert quarter fields from text

to number (FA to 1, WI to 2, SP 3, SU to 4).

70

CHAPTER FIVE

CONCLUSION AND FUTURE DIRECTIONS

5.1 Technology Highlights and Conclusion

The Web-Based Database System for the Computer Science

Graduate Study Program implements advantages of data

structure (such as vector), SQL language, Java Sever pages,

Java Bean, relational database model, and XML technology

for a production application. Furthermore, several measures

are implemented to secure access to the database system.

Using the relational database model with Oracle

software, the graduate information is modeled and

constructed from basic and simple tables using binary and

ternary relationships. As a result, the database system can

flexibly cope with new requirements without changes and

workaround in programming. The system functionality is

designed with framework architecture, in which new

functions can be added by just registering the new

functions into the system and assigning them to appropriate

roles.

Authentication and authorization is handled in a more

robust and dynamic way with the assistance of the database.

Execution privilege of a function is no longer restricted

to any fixed roles, and no longer hard-coded, but loaded at

71

run time into a vector data structure and submitted to

authorization verification..

Using SQL trigger and scheduled procedures of Oracle

9i software, the database system can monitor update, and

automatically handles some designated events, such as GPA

monitoring and status update monitoring. The efficiency of

the database system is significantly enhanced by automated

processing.

The application of XML technology in storing and

reconstructing SQL query logic helps facilitate the

grouping concept which is used in many other functions such

as searching, task assignment, and other future functions

such as reporting and announcement. XML technology also

assists in automatically generating PDF documents when

Oracle triggers are activated by appropriate events.

Several security measures have been implemented such

as protection of social security number, transmission

encryption with SSL, password-enforced authentication and

authorization, encryption of SQL procedures, security

verification of external command. When the Oracle database

is located in a private network and behind a firewall, any

attempts to breach the security is not impossible but

really very hard.

72

The Web-Based Database System for the Computer Science

Graduate Study Program has been designed and developed from

experiences with the existing database system and with the

goal to use the new system in the department and suggest it

be used or adopted by other graduate programs in the

University.

5.2 Extensions

Due to the scope of my master project, the following

feasible features are not yet implemented but are

worthwhile to be added into the database system. To

implement these features, some additional table might need

to be added into the database schema.

Appointment Scheduler. System will schedule

appointments for students to see faculty and program

coordinator for advising.

Announcement. System will assist faculty and GCA and

PA in posting their announcements to faculty, students and

other special interest groups.

Reporting. System will report students with any

selection criteria using grouping concept. With pre-defined

XML style sheet transformation (XSLT) and query result in

XML, user can produce a list in formats of choice when

73

plugging into the report with a designated XSLT style

sheet.

Centralized management of documents. Beside managing

system-generated documents, system will upload all other

documents of graduate students into a centralized database

and made them accessible online for faculty, PA and GCA.

Beside a convenient access for the admin users, the

centralized document management system also becomes an

electronic secondary archive of student documents.

Extended Learning management. This is an efficient

feature of the existing management system that manages

registration in CSCI698 of graduate students who have

already registered for a project or a thesis course but

have not completed the project or thesis. It keeps track

and grant students permission to register for this special

course.

74

APPENDIX

LIST OF PROGRAM FILES

75

Following is list of over 160 JSP, HTML, Java Script

and Cascade style sheet (CSS) files developed for the

Database Management System. Naming convention is based on

their functionality. They are arranged within their

functions and in alphabetic order.

1. Authentication & Authorization.

bye.j sp

checkSecurePage.j sp

checkUserPrivileges.j sp

getUserPrivileges.j sp

gradLogin.j sp

NoCache.j sp

Top.htm

2. Assign Tasks.

taskManagement.j sp

taskManagementBot.j sp

taskManagementGuide.htm

taskManagementHeader.htm

taskManagementSendMail.j sp

taskManagementStaff.j sp

taskManagementStaffBot.j sp

taskManagementStaffDone.j sp

taskManagementStaffDoneBot.j sp

taskManagementStaffTop.htm

76

taskManagementStudent.j sp

taskManagementStudentDone.j sp

taskManagementStudentDoneBot.j sp .

taskManagementStudentGroups.j sp

taskManagementSystem,jsp

taskManagementTop.j sp

taskMangementStaffBot.j sp

taskMangementStaffTop.htm

taskStaff.j sp

taskStudent.j sp

taskSystem.j sp

3. My Tasks.

myTask.j sp

myTaskDetail.j sp

myTaskStaff.j sp

myTaskStaffDetail.j sp

myTaskStudent.j sp

myTaskStudentDetail.j sp

4. Follow-up Task Assigned to Others.

taskFollowup.j sp

taskFollowupBody.j sp

taskFollowupBot.j sp

taskFollowupDetailBody.j sp

taskFollowupStaff.j sp

77

TaskFollowupStaffDetail.j sp

taskfollowupStaffDone.j sp

taskFollowupStaffDoneTop.j sp

taskFollowupStaffSystemTop.j sp

taskFollowupStudent.j sp

TaskFollowupStudentDetail.jsp

taskfollowupStudentDone.j sp

taskFollowupStudentDoneTop.j sp

taskFollowupSystem.j sp

taskFollowupSystemDone.j sp

taskFollowupSysteinDoneTop. j sp

TaskFollowUpSystemScheduledTask.j sp

taskFollowupTop.j sp

5. Change password.

changelDPassword.j sp

changelDPasswordCancel.htm

changelDPasswordDone.htm

changelDPasswordError.htm

changelDPasswordVerify.j sp

createlnitialUserPassword.j sp

initializeUserPassword.j sp

6. View and Create Group.

groupDefinition.j sp

grouping.j sp

78

groupingBot.j sp

groupingModifyBot.j sp

groupingNewBot.j sp

groupingNewBotDone.htm

groupingSelectBot.j sp

groupingSelectTop.j sp

groupingTop.j sp

groupingViewBot.j sp

groupingViewBotAppend.j sp

groupingViewBotNew.j sp

groupVeri fy.j sp

. Customize home page.

custFirstPage.j sp

custFirstPageAbort.htm

custFirstPageDone.htm

. Roles and Functions.

roleManagement.j sp

roleManagementChangeRole.j sp

roleManagementFunction.j sp

roleManagementFunctionEdit.j sp

roleManagementNewRole.j sp

roleManagementRole.j sp

changeStaffRole.j sp

desighNewFunctions.j sp

79

designNewRoles.j sp

9. View Student information.

viewbot.htm

viewdetail.j sp

viewDetailAdmission.jsp

viewDetailCandidacy.j sp

viewDetailCourses.j sp

viewDetailGRE.j sp

viewDetailNotes.j sp

viewdetailPersonal.j sp

viewDetailPrereguisite.j sp

viewGradCommitteeAdvisees.j sp

viewGraduatedAdvisees.j sp

viewPersonallnfo.j sp

viewStudentlnfo.j sp

viewStudentList.j sp

viewTaskDetail.j sp

viewtop.htm

10. View own advisees.

viewAdvisees.j sp

viewAdviseesBody.jsp

viewAdviseesBot.j sp

viewAdviseesCommitteeBody.jsp

viewAdviseesCommitteeGraduated.j sp

80

viewAdviseesCurrentBody.j sp

viewAdviseesGraduated.jsp

viewAdviseesGraduatedBody.j sp

viewAdviseesTop.j sp

11. View Any advisees.

viewAnyAdvisees.j sp

viewAnyAdviseesBot.j sp

viewAnyAdviseesCurrentBody.j sp

viewAnyAdviseesGraduatedBody.j sp

viewAnyAdviseesTop.j sp

12. View Personal Information.

ViewPersonalAdmission.j sp

ViewPersonalCourses.j sp

ViewPersonalDetail.j sp

ViewPersonalGRE.j sp

ViewPersonallnfo.j sp

ViewPersonalMenu.htm

ViewPersonalPrerequisite.j sp

13. Update Contact Information.

updateContactlnfo.j sp

updateContactlnfoAbort.htm

14. Update Student Information.

updateAllCourses.j sp

updateCommittee.j sp

81

updateCommitteeProcess.j sp

updateCoresProcess.j sp

updateElectives.j sp

updateElectivesProcess.j sp

updatePersonallnfo.j sp

updatePersonallnfoForm.j sp

updatePersonallnfoProcess.j sp

updatePrerequisiteProcess.j sp

updatePrerequisites.j sp

updateStudentAddProcess.j sp

updateStudentlnfo.j sp

updateStudentlnfoList.j sp

updateStudentlnfoProcess.j sp

updateSummary.j sp

updateSummaryProcess.j sp

seachStudent.j sp

15. Create Predefined Tasks.

createPredefinedTasks.j sp

preDefinedTask.j sp

preDefinedTaskJob.j sp

preDefinedTaskJobEdit.j sp

preDefinedTaskNewTask.j sp

16. Add new Student.

updateStudentAdd.j sp

82

17. Document Generation.

viewStudentDocProcess.j sp

ViewStudentDocs.j sp

18. Connectivity.

gradConnectBean.j sp

ConnectionError.j sp

19. Shared pages.

index.html

main.j sp

mainLeft.j sp

mainRight.j sp

publicFunction.j sp

returnFirstPage.j sp

sendOracleError.j sp

calendar.j s

portals.css

83

REFERENCES

[1] Apache Software Foundation Apache XML project,
http://xml.apache.org/fop/

[2] Benoit Marchai: XML by Example. QUE Indianapolis,
Indiana, 2000 (ISBN 0-7879-2242-9)

[3] CERT /CC Vulnerability Notes Database - CERT
Coordination Center- CarnegieMello Software
Engineering Institute http://www.kb.cert.org/vuls

[4] David M. Geary. Advanced Java Server Pages. Prentice
Hall - Sun Microsystem Press 2001 (ISBN 0-13-030704-
1) •

[5] Duan K. Fields & Mark A. Kolb. Web Development with
Java Server Pages. Manning Publication Co., Greenwich,
CT 06830, 2000

[6] Elliontte Rusty Harold. XML Bible - Gold Edition.
Hungry Minds. New York, NY. 2001 (I SBN 0-7645-4819-0)

[7] Elmasri & Navathe. Fundamental of Database System -
Third Edition. Addison Wesley 2000, (ISBN 0-8053-1755-
4)

[8] HTML 4.01 Specification. http://www.w3.org/TR/REC-
html40/

[9] Martin Fowler, UML Distilled Second Edition - Brief
Guide to the Standard Object Modeling Language. The
Addision-Wesley, Massachusetts, 1999 (ISBN 0-2016-
5783-sX).

[10] Marty Hall. More Servlets and Java server Pages.
Prentice Hall - Sun Microsystem Press 2002. (ISBN 0-
13-067614-4).

[11] Oracle - Oracle 9i Database Utilities Release 2 (9.2)
http://download-
west .oracle.com/docs/cd/Bl0501_01/server.920/a96652/to
c. htm

84

http://xml.apache.org/fop/
http://www.kb.cert.org/vuls
http://www.w3.org/TR/REC-html40/
http://www.w3.org/TR/REC-html40/
http://download-

[12] Oracle - Oracle 9i XML Database Developer's Guide -
Oracle XML DB. Release 2 (9.2) http://download-
west .oracle.com/docs/cd/B10501_01/appdev.920/a96620/to
c. htm

[13] Oracle - PL/SQL User's guide and Reference Release 2
(9.2). http://download-
west .oracle.com/docs/cd/Bl0501_01/java.920/a96655/toc.
htm

[14] Oracle - Oracle 9i Application Server Release 2
(9.0.3) Release notes - Aug 12, 2003

[15] Oracle - Oracle 9i Application Server. Best Practice -
An Oracle White Paper - June 2002

[16] Oracle Metalink http://metalink.oracle.com/

[17] Scripts in HTML documents - W3C Recommendation
http://www. w3.org/TR/REC-html40/interact/scripts.html

[18] Security Focus http://www.securityfocus.com/

[19] David Litchfield. Hack proofing Oracle Application
Server. NDSSoftware Insight Security Research - 2002.
www.ngssoftware.com

[20] Brett McLaughlin. Java and XML. O'Reilly. 2000.

[21] D. J. Berstein. Qmail: Qmail security guarantee.
http://cr.yp.to/qmail.html

[22] Dave Sill. Life with qmail.
http://www.lifewithqmail.org/lwq.html

85

http://download-
http://download-
http://metalink.oracle.com/
http://www.securityfocus.com/
http://www.ngssoftware.com
http://cr.yp.to/qmail.html
http://www.lifewithqmail.org/lwq.html

	The web-based database management system for the computer science graduate program
	Recommended Citation

	by

	COUNTRY

	Figure 17. A Migration Flowchart

