
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2004

JAVA synchronized collaborative multimedia toolkit: A JAVA synchronized collaborative multimedia toolkit: A

collaborative communication tool collaborative communication tool

Rohit Chavan

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Databases and Information Systems Commons

Recommended Citation Recommended Citation
Chavan, Rohit, "JAVA synchronized collaborative multimedia toolkit: A collaborative communication tool"
(2004). Theses Digitization Project. 2549.
https://scholarworks.lib.csusb.edu/etd-project/2549

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2549&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2549&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/2549?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2549&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

JAVA SYNCHRONIZED COLLABORATIVE MULTIMEDIA TOOLKIT, A

COLLABORATIVE COMMUNICATION TOOL

A Project

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Rohit Chavan

March 2004

JAVA SYNCHRONIZED COLLABORATIVE MULTIMEDIA TOOLKIT, A

COLLABORATIVE COMMUNICATION TOOL'

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by

Rohit Chavan

March2004

Approved by:

Associate Professor, Computer Science

Dr. Richard Botting
Professor, Computer Science

Professor, Science

ABSTRACT

Since the advent of the Internet, the Computing and

Communication industry has progressed very rapidly. It

seems certain that in the near future every person no

matter where located geographically, will be equipped with

some sort of network computing capability, either by means

of conventional desktop computing or through information

appliances.

Collaborative computing and real-time conferencing is

a great way to make developers more effective, increase

productivity and teamwork, improve decision making,

enabling technical and creative professionals to

collaborate.

In this project a collaboration multimedia toolkit,

JSCMT (Java Synchronized Collaborative Multimedia Toolkit)

was developed which is intended to connect a group of

people located in different geographical locations. JSCMT

integrates different communication tools like, text based

chat, real-time audio-video conferencing and audio chat

into one collaborative application. JSCMT is designed as an

Java Application and uses JMF API (Java Media Framework API)

and JSDT (Java Shared Data Toolkit).

iii

TABLE OF CONTENTS

ABSTRACT iii

CHAPTER ONE: SOFTWARE REQUIREMENT SPECIFICATIONS

CHAPTER TWO: ARCHITECTURE

LIST OF FIGURES ix

Introduction 1

Purpose of the Project 2

Scope of the Project 3

Limitations of the Project 6

Definitions, Acronyms, and Abbreviations 6

Summary 11

Overview 12

Architecture 12

JSCMT Packages 14

Package Client 20

JscmtLogin 20

ClientApplication 21

JscmtClient 24

JscmtDebugFlags 24

JscmtMessageConsumer 25

JscmtSessionListener 26

JscmtChannelListener 27

PrivateMessageHandler 28

iv

29 PrivateMessageConsumer

ReceiverClosedEvent 30

JscmtReceiverListener 31

ReceiverClosedListener 31

JscmtReceiverMessenger 32

Package Server 33

ServerClient 33

JscmtServer 33

JscmtSessionManager 34

JscmtChannelManager 35

Package Constants 36

JscmtConstants 36

Package User . 37

UserTree 38

UserNode 39

Userinfo 40

Package Audiovideo 41

AudioReceiver 41

AudioTransmitter 42

PrivateAudioProcessor 43

AVReceiver 44

AVTransmitter 45

PrivateAVProcessor 47

V

48 WebcamRequestHandler

Detailed Design

JSCMT Client Construction 50

Add New User

Remove User

Text Message Broadcast 53

49

52

52

Sending AV Broadcast 54

Process Response to Private

Inviting User for Private

Process Response to Private

Process Response to View

Inviting User for Private

Process Private Text

vi

Receiving AV Broadcast 56

Sending Audio Broadcast 58

Receiving Audio Broadcast 59

Inviting User for Private AV Conference 60

AV Invitation . 62

Audio Conference 64

Audio Invitation . 66

Sending View Web Cam Request 67

Viewing User's Web Cam 69

Inviting User to View Web Cam 70

Web Cam Invitation 71

Text Messaging . 73

Messaging Invitation 74

76 Summary

CHAPTER THREE: USER MANUAL

Overview 77

Inviting User for Private

CHAPTER FOUR: CONCLUSIONS AND FUTURE DIRECTIONS

Logging In 78

Broadcast Text Message 80

Broadcast Audio-Video 82

Stop Audio-Video Broadcast 83

Broadcast Audio 84

Stop Audio Broadcast 86

Audio-Video Conference 86

Close Audio-Video Session 90

Inviting User for Private Audio Conference 91

Close Audio Session 95

Viewing Client's Web Cam 96

Inviting Client to View One's Web Cam 98

Private Text Messaging 100

Summary 102

Conclusions 103

Future Directions 104

Refining Authentication Process 104

Support for Multiple Sessions 104

vii

105 Support for File Transfer

Support for Multiple
Audio-Video Sessions

Summary

REFERENCES

105

105

106

viii

LIST OF FIGURES

Figure 1.1 JSCMT Use Case Diagram .

Figure 2.1 JSCMT State Diagram

Figure 2.2 JSCMT Component Diagram ...

Figure 2 . .3 JSCMT Packages

Figure 2.4 Package Client Class Diagram

Figure 2.5 Package Server Class Diagram

Figure 2.6 Package User Class Diagram

Figure 2.7 Package Constants Class Diagram

Figure 2.8 Package audiovideo Class Diagram

Figure 2. 9 JscmtLogin ·.

Figure 2.10 ClientApplication

Figure 2.11 JscmtClient

Figure 2.12 JscmtDebugFlags

Figure 2.13 JscmtMessageConsumer

Figure 2.14 JscmtSessionListener

Figure 2.15 JscmtChannelListener

Figure 2.16 PrivateMessageHandler

Figure 2.17 PrivateMessageConsumer

Figure 2.18 ReceiverClosedEvent

Figure 2.19 JscmtReceiverListener

Figure 2.20 ReceiverClosedListener

Figure 2.21 JscmtReceiverMessenger

. . . . 5

... 13

. . . . 14

... 16

17

18

18

19

19

. 21

23

24

25

26

27

28

29

30

31

31

32

32

ix

33 Figure 2.22 ServerClient

Figure 2.23 JscmtServer 34

Figure 2.24 JscmtSessionManager 35

Figure 2.25 JscmtChannelManager 36

Figure 2.26 JscmtConstants 37

Figure 2.27 UserTree 39

Figure 2.28 UserNode 40

Figure 2.29 Userinfo 40

Figure 2.30 AudioReceiver 42

Figure 2.31 AudioTransmitter 43

Figure 2.32 PrivateAudioProcessor 44

Figure 2.33 AVReceiver 45

Figure 2.34 AVTransmitter 47

Figure 2.35 PrivateAVProcessor 48

Figure 2.36 WebcamRequestHandler 49

Figure 2.37 JSCMT Client Construction 51

Figure 2.38 Add New User 52

Figure 2.39 Remove User 53

Figure 2.40 Text Message Broadcast 54

Figure 2.41 Sending AV Broadcast 56

Figure 2.42 Receiving AV Broadcast 57

Figure 2.43 Sending Audio Broadcast 59

Figure 2.44 Receiving Audio Broadcast 60

X

Figure 2.45 Private AV Invitation 62

Figure 2.46 Process Private AV Invitation 64

Figure 2.47 Private Audio Invitation 65

Figure 2.48 Process Private Audio Invitation 67

Figure 2.49 Sending Request to View Web Cam 68

Figure 2.50 Viewing User's Web Cam 70

Figure 2.51 Inviting User to View Web Cam 71

Figure 2.52 Process View Web Cam Invitation 73

Figure 2.59 Inviting for Private Text Messaging 74

Figure 2.54 Process Private Text Messaging 76

Figure 3.1 JSCMT Login Window 79

Figure 3.2 JSCMT Client Graphical User Interface 80

Figure 3.3 Broadcast Text Message 81

Figure 3.4 Broadcast Audio-Video 83

Figure 3.5 Stop Audio-Video Broadcast 84

Figure 3.6 Broadcast Audio 85

Figure 3.7 Stop Audio Broadcast 86

Figure 3.8 Invite for Private AV Conference 88

Figure 3.9 Receive Private AV
Conference Invitation 89

Figure 3.10 Participating in Private
AV Conference . 90

Figure 3.11 Close Audio Video Session 91

Figure 3.12 Invite for Private Audio Conference 93

xi

Figure 3.13 Receive Private Audio
Conference Invitation 94

Figure 3.14 Participating in Private
Audio Conference . 95

Figure 3.15 Close Audio Session 96

Figure 3.16 Request to View Client's Web Cam 97

Figure 3.17 Receiver View Web Cam Request 98

Figure 3.18 Invite to View One's Web Cam 99

Figure 3.19 View Inviting Client's Web Cam 100

Figure 3.20 Invite for Private Text Messaging 101

Figure 3.21 Participate In Private Text Messaging 102

xii

CHAPTER ONE

SOFTWARE REQUIREMENT SPECIFICATIONS

Introduction

As networks become ubiquitous and more users have a

permanent connection, there is an increasing demand for

other network services, such as real-time data feeds, group

communication, and teleconferencing. Since the advent of

the Internet, the Computing and Communication industry has

progressed very rapidly. It seems certain that in the near

future every person; no matter where located geographically,

will be equipped with some sort of network computing

capability, either by means of conventional desktop

computing or through information appliances. This not only

means that geographically distributed people will be able

to easily communicate but also collaborate. Collaborative

computing and real-time conferencing is a great way to make

developers more effective, increase productivity and

teamwork, improve decision making, enabling technical and

creative professionals to collaborate.

Collaborative application provides platform to widely

distributed users to work concurrently on a one big project.

1

Purpose of the Project

Multimedia applications are beginning to play an

important role in various aspects of ~ur lives, including

education, business, healthcare, publishing and

entertainment. The recent advance in computing and

networking technologies has fueled the emergence of these

applications requiring real-time processing and high

bandwidth. In order for these applications to be truly

useful and effective, they must be able to operate in a

distributed fashion, covering users possibly located in

geographically distant locations. Availability of framework

like Java Media Framework (JMF) API has made it easier to

achieve streaming of audio and video over the network in

the real-time.

Java Synchronized Collaborative Multimedia Toolkit

(JSCMT) is a Java Application, intended to collaborate a

group of people not located in the same geographical

location but working on the same project. JSCMT allows

users to collaborate by using communications tools like,

text based chat, real-time audio-video conferencing and

audio chat. JSCMT is developed using a platform independent

programming language, Java (SDK 1.4), Java Media Framework

(JMF) API and Java Shared Data Toolkit (JSDT). Java was

2

chosen as programming language to implement this project

with the assumption that users might be using different

operating systems on their computers.

Scope of the Project

JSCMT will aid group or team members from different

geographical locations to interact and collaborate using

the tools like, Text Chat, Live Voice Chat and Audio-Video

Conferencing.

The intended audiences are:

• Software Developers: A typical software company

is involved in several different types of

projects at the same time. Any software

development project is executed in a group of

people. Team members who prefer to work from home,

which is in fact encouraged these days will use

JSCMT to interact with team members.

• Research groups: Usually more than one person

collaborates on a research project. Team members

of these research groups from distantly located

universities will use JSCMT as a virtual meeting

place for their peers in other universities.

3

• Other groups of people from different

geographical locations but working on anything of

common interest will find JSCMT very useful.

JSCMT has the following functionality for its users:

• Text Based Chat: The following operations related

to text based chat are supported

o Broadcast text messages to all the users

o Send private text messages

• Audio Chat: The following operations related to

audio chat are supported

o Start audio broadcast to all the users

o Stop audio broadcast

o Start private audio session with a user

o Stop private audio session

• Audio-Video: The following operations related to

audio-video are supported

o Start audio-video broadcast to all the users

o Stop audio-video broadcast

o Start private audio-video session with a

user

o Stop private audio-video session

o View other user's web cam

4

o Invite user to view your web cam

Supporting the above functionality, the Use Case

Diagram is shown in Figure 1

_,O
Start l'l.Jdio Broacast

Start Private Audio Session

Start l'l.Jdio-Video Broadcast(_ \ Stop ·a-Video Broadcast

View Other User's Web Cam

0
~

0Invite User to View One's Webcam

Start Private Audio-Video Session

C.~
Stop Private Audio-Video Session

Figure 1.1 JSCMT Use Case Diagram

5

Limitations of the Project

JSCMT has following limitations:

• User can participate in only one audio-video

session at any given time. If the user is

broadcasting audio-video to all the users, he/she

can start private audio-video session only after

audio-video broadcast is stopped.

• User can participate in only one audio session at

any given time.

• JSCMT does not provide any support for

transferring files between group members.

Definitions, Acronyms, and Abbreviations

The definitions, acronyms, and abbreviations used in

the document are described in this section.

• API: A set of routine that an application uses

to request and carry out lower-level services

performed by a computer's operating system. Also

a set of calling conventions in programming that

define how a service is invoked through the

application.

• Channel: A Channel is specific instance of a

potentially multi-party communications path

6

between two or more Clients within a given

Session. All Client objects which register an

interest in receiving from a given Channel will

be given Data sent on that Channel.

• Client: A Client is an object which is part of a

JSDT application or applet and is a participant

in an instance of multiparty communication.

• Data: Data is a discrete unit of data(array of

bytes) that is sent by a Client over a Channel to

all of the Clients which have currently

registered an interest in receiving data on the

given Channel.

• GUI: Graphical User Interface, the graphical

representation of physical or pseudo physical

objects (such as buttons, labels, textfields)

that allow the user to direct the flow of the

program through the use of mouse or other

pointing device.

• Internet: Internet is a computer network

consisting of a worldwide network of computers

that use the TCP/IP network protocol to

facilitate data transition and exchange.

7

• Java: Java is object-oriented, cross-platform

programming language from Sun Microsystems.

• JMF: Java Media Framework, high level Java API

to extend Java support for multimedia development.

JMF enables audio, video and other time-based

media to be added to application and applets

built on Java technology. This optional package,

which can capture, playback, stream, and

transcode multiple media formats, extends Java 2

Platform, Standard Edition (J2SE) for multimedia

developers by providing a powerful toolkit to

develop scalable, cross-platform technology

• JSDT: Java Shared Data Toolkit is a toolkit

defined to support highly interactive,

collaborative applications written in the Java

programming language. It provides the basic

abstraction of a session (i.e., a group of

objects associated with some common

communications pattern), and supports full-duplex

multipoint communication among an arbitrary

number of connected applications entities all

over a variety of different types of networks.

8

• JVM: Java Virtual Machine, it provides run time

environment for Java programs.

• Mbone: Internet Multicast Backbone. With Mbone a

single packet is sent to an arbitrary number of

receivers by replicating the packet within the

network at fan-out points along a distribution

tree rooted at the packet's source.

• Registry: The information for each Session needs

to be kept somewhere that is easily accessable to

application. This is where Registry fits in. The

Registry can be started either in its own Java

runtime environment, or as a thread within the

server, on the host that is the server for each

JSDT Session or Client.

• RTP: Real-Time Transport Protocol provides end

to-end network delivery services for the

transmission of real-time data. RTP is network

and transport-protocol independent, though it is

often used over UDP. RTP can be used over both

unicast and multicast network services.

• Session: A Session is a collection of related

Clients which can exchange data via defined

9

communications paths. The Session maintains the

state associated with the collection of clients

and their associated communications paths, and

may interact with an object which encapsulates a

defined session management policy.

• Socket: Socket is an end-point for communication

between two machines.

• Swing: Swing is the part of Java Foundation

Classes (JFC) that implements a set of GUI

components with a pluggable look and feel. The

pluggable look and feel lets us design a single

set of GUI component that can automatically have

the look and feel of any Operating System

Platform.

• TCP/IP: Transmission Control Protocol on top of

the Internet Protocol provides a reliable, point

to-point communication channel that client-server

applications on the internet use to communicate

with each other. To communicate over TCP, a

client program and a server program establish a

connection to one another. Each program binds a

socket to its end of the connection. To

10

communicate, the client and the server each reads

from and writes to socket bound to the connection.

• UML: The Unified Modeling Language is the

industry-standard language for specifying,

visualizing, constructing, and documenting the

artifacts of software systems. It simplifies the

complex process of software design, making a

"blueprint" for construction.

Summary

This Chapter describes the software requirements for

the JSCMT. It covered the purpose of JSCMT, scope and

limitation of JSCMT, various technical terms and other

basic requirement for the project.

In the next chapter JSCMT architecture is explained in

detail and the implementation details are discussed.

11

CHAPTER .TWO

ARCHITECTURE

Overview

This chapter explains JSCMT architecture, JSCMT

package structure, and use case realization with the help

of sequence diagrams.

Architecture

JSCMT is implemented as a 2-tier server/client

application that does not require extra server resources

for running the client. JSCMT is a framework for shared

interactive multimedia applications developed using the

support of JSDT API and various services that promote

interactivity among online users. JSCMT design is based on

the replicated architecture in which an instance of each

application runs locally at each participant's site and the

activity of each user is distributed to all the

participants in a conference. The State diagram explaining

the complete cycle of request and response processing is

shown in Figure 2.1. Component diagram in Figure 2.2 give a

brief idea about the JSCMT architecture.

12

JscmtMessageConsumer

Message Received

Synchronize1__..,.___ Data Received

[Message Type Response][Message Type Request] Process
Message

. I [Message ype Broadcast]
\V IProcess

Process ProcessRequest
Broadcast Response

\! <:~:) If Aud;o-\Adeo] I
Construct AV 0~ Display Text

[i Audio] Receiver
[if Private Mes~~ Message \V1 :.J

Construct Audio
Receiver [If Private · sag in Ok]r PM Processor

PM Processor\1·

[If Au~-Video]

AV Processor) ~ , [if Audio"°Vdeo OK]

~i<E<=---------~(AV Processor)

V ~\ . .
Send Ok \ j
Response)~----_J

Figure 2.1 JSCMT State Diagram

13

ClientApplication ,------.------------'-~
I
I
I

~
i--------

1

I
I
I
I

-----7
I
I
I

~Li
--------7

I
I
I
I

\I

Private Message
Handler

Private Audio
Processor

Private Audio
Video Processor

Figure 2.2 JSCMT Component Diagram

JSCMT Packages

All the classes developed for JSCMT are properly

organized in the packages. This helps the maintenance and

future development of the project. Different packages used

are shown in Figure 2.3. Various classes used in the

project are packaged as follows:

• client: This package contains classes used by

JSCMT client, which includes classes that are

used to handle and process most of the client

request and the classes that form the backbone of

this collaborative application. These classes are

shown in Figure 2.4.

14

• server: This package contains classes used by

JSCMT server which includes classes that are

responsible for creating Sessions and Channels

which are then joined by the distributed clients.

These classes are shown in Figure 2.5.

• user: This package contains classes, which are

responsible for storing important information of

all the clients and are very useful for most of

collaborative activities between clients. These

classes are shown in Figure 2.6.

• constants: This package contains the class which

caters to all the constants used by other classes

of the application. This class is shown in Figure

2.7.

• audiovideo: This package contains classes used

by JSCMT clients to handle and process audio

video requests. These classes are shown in Figure

2.8.

15

JscmtReceiverMessenger

/ ReceiverCI sed Listener
/

Jscmtl�gin Js cmtC lient

JscmtReceiverListener

J s cmt Se ssian Li st ene r JscmtChannellistener ReceiverClosedEvent

/
/

Private MessageC�nsumer PrivateMessageHandler

Figure 2.4 Package Client Class Diagram

17

JscmtChanneIManager ~-------·-+-Js_c_mt_,_s_·e_rv_er.....· i----4 Se~rCliOftt I
'•l.,
•l
l

V:f.
JscmtSessionManage·r •·

Figure 2.5 Package Server Class Diagram

I...._us_e_!N_od_e_-i--,---,..--9 UserTree io>----.....,..,.--i,!-u_·s_e_rl_n_fo--11

Figure 2.6 Package User Class Diagram

18

·Jscmtdonstant·

Figure 2.7 Package Constants Class Diagram

~-
·'~

' , .
.,
' ,;

.A,.u~ioTranstoitter'

PrivateAudroP.roce~sor

'

;,,..
; '· ,.,

·AVfransmitter

,. .·< <·/
',;' ' ' ' "' ,, ' '

'

'... ...
, , '

· We.bcamReq_uestHam:Jler ·.

Figure 2.8 Package audiovideo Class Diagram

19

Package Client

This package contains classes used by JSCMT client.

Classes of this package form the backbone of the

collaborative application by supporting various

functionalities of the project like, text message broadcast,

private text messaging. Classes from this package are

responsible for directing client request to it's

appropriate request processor.

JscmtLogin

To use the services provided by any collaborative

application all the users must be identified by unique

username. JscmtLogin clais lets JSCMT client to log into

the system by accepting the information that is further

used to authentic the user. JscmtLogin class takes IP

address of the machine where JSCMT server is running and

connects the JSCMT client to the server by creating the

instance of ClientApplication. JscmtLogin also lets the

users to check which collaboration tools they will be using

like, web cam, and microphone. JscmtLogin class is shown in

Figure 2.9.

20

client. JscmtLogin

~panel : JPanel
~lb1 : Jlabel
~lb2 : Jlabel
~lb3 : Jlabel
~lb4 : Jlabel
~lb5 : Jlabel
~lb6 : Jlabel
~ckbox1 : JCheckBox
~ckbox2 : JCheckBox
~loginBtn : JButton
~cancelBtn : JButton
~txt1 : JTextField
~txt2 : JTextField
~IP_Address : String
~hasWe beam : boolean
~has Microphone: boolean
~clientApp : ClientApplication

~semtl::oginC+-------------1
~login_actionPerformed(e : Action Event)
~cancel_actionPerformed()
~clearAII()
~main(args : Stringsr])

Figure 2.9 JscmtLogin

ClientApplication

ClientApplication is the most important class of the

JSCMT application. ClientApplicatioµ class can be

considered as a GUI interface to all the services provided

by JSCMT application. It creates the instance of

JscmtClient which then joins the Session and Channel

created by JSCMT server to collaborate with other users. It

is responsible for delegating all the user requests like,

inviting user for private text messaging, private audio

21

video conferencing, and viewing web cam. ClientApplication

also maintains the list of AVTransmitter, AudioTransmitter,

and private Channels in the form of Vector. It creates the

instance of UserTree which manages the user information.

ClientApplication implements JscmtDebugFlags which is

useful in debugging. ClientApplication class is shown in

Figure 2.10.

22

client.ClientApplication

~messageField : JTextField
~buttons: JButton

¢session : Session
¢client : JscmtClient

channel : Channel
messageConsumer JscmtMessageConsumer
data: Data
serverAddress : String

(?connected : boolean
<,?hasWebcam : boolean
<J>v ideoBroadcast : boolean

' <?audioBroadcast : boolean
(>mylocalAVreceiver: boolean
q>mY LocalAVtransmitter : boolean
<)>my LocalAudioReceiver: boolean
<>messageArea: JTextArea
<,?s_pane : J Scroll Pane
q>ChannelsJoined : Vector
<)>avtransmitters : Vector

auditransmitter: Vector
userName : String
userl P : String
usersOnline : UserTree
hostname : String
hostport : String

' session Type : String i
~ClientApplication(uName: String, serverAdd: String, hasWcam: boolean, hasMphone: boolean)

~nnBl,_*..,A-,----------------------------------1
~isconnect() : void
~riteline(message : String, messageCategory : char, message Type : char)
~writeline(message: String, messageCategory : char, messageType: char, receivingClient: String)
~end_actionPerformed(e: ActionEvent)
~hat_actionPerformed(e : ActionEvent)
~videoChat_actionPerformed(e: ActionEvent)
~audioChat_actionPerformed(e: ActionEvent)
._,exit_actionPerformed(e : ActionEvent)
..stopAV_actionPerformed(e: ActionEvent)
~topAudio_actionPerformed(e: ActionEvent)
~loseAudio_actionPerformed(e: ActionEvent)
~rivateAVConf(receiverName: String, receiverlP: String)
~privateAudio(receiverName: String, receiverlP : String)
• viewWebcam(receiverName: String, receiverlP: String)
~privateMessenger(sendToClient: String)
($,privateMessageHandler(receiver: String, chName: String, if Requester: boolean)
~etMylp(): String

Figure 2.10 ClientApplication

23

JscmtClient

JscmtClient class is an implementation of Client

interface of JSDT. It is instantiated by ClientApplication

and joins Channel and Session created by the JSCMT server.

Authentication action is performed when JscmtClient joins a

Channel or Session and when it creates or destroys Channel

for private text messaging therefore, JscmtClient

implements authenticate method of the Client interface.

Unique username that client uses when logging into the

system is used by JscmtClient in initializing client name.

JscmtClient class is shown in Figure 2.11.

client. JscmtClient

(;>UrlString : URLString
~name : String

~JscmtClient(name : String)
q,.authenticate(info : Authentication Info) : Object
~getName0: String

Figure 2.11 JscmtClient

JscmtDebugFlags

JscmtDebugFlags can be considered as a utility class

that is used in debugging JSCMT application. It is a

collection of Boolean variables. JscmtDebugFlags class is

shown in Figure 2.12.

24

client. JscmtDebugFlags

~scmtlogin_Debug : boolean
(>ClientApplication_Debug : boolean
¢JscmtMessageConsumer_Debug: boolean
~scmtClient_Debug : boolean
~scmtSessionlistener_Debug : boolean
~scmtChannellistener_Debug : boolean
~scmtReceiverlistner_Debug : boolean
~scmtReceiverMessenger_Debug : boolean
¢PrivateMessageConsumer: boolean
<:>PrivateMessageHandler: boolean
4>ReceiverClosedEvent: boolean
<;>ReceiverClosedlistener: boolean

Figure 2.12 JscmtDebugFlags

JscmtMessageConsumer

JscmtMessageConsumer class is the backbone of JSCMT

application. Only one instance of this class is created per

JSCMT application. JscmtMessageConsumer implements

ChannelConsumer interface of JSDT API. This class consumes

messages from the channel that client has joined, processes

the message and directs it to the appropriate message

handler. JSCMT messages are classified into three different

categories i.e. broadcast, request, and response. When a

request is received from another client,

25

JscmtMessageConsumer checks if the request can be processed

or not and sends appropriate response to the client.

JscmtMessageConsumer class is shown in Figure 2.13.

client.JscmtMessageConsumer
<;>name : String
(?USerApplication : ClientApplication
<;>receiverlistener: JscmtReceiwrlistener
<>receiverMessenger: JscmtReceiverMessenger

~JscmtMessageConsumer(userApp: ClientApplication)
~dataReceived(data : Data) '
~processBroadcast(data: Data)
~processRequest(data: Data) \
~processResponse(data: Data)
~displayTextMessage(senderName: String, message: String)
~processAVBroadcast(senderName: String, message: String)
~processAudioBroadcast(senderName : String, message : String)
~processPrivateAudio(senderName: String, message: String)
~processPrivateAV(senderName: String, message: String)
~process\/iewWebcam(senderName: String, message : String)
~processWcamlnviteRequest(senderName: String, message: String)
-t.>processCloseAVfransmitter(receiver: String)
~processCloseMyTransmitterO
~receiverClosed(re : ReceiverClosedEvent)

Figure 2.13 JscmtMessageConsumer

JscmtSessionListener

JscmtSessionListener class takes care· of various

events taking place in the Session that \JSCMT client has

joined. It implements SessionListener interface of JSDT API.

When private channel is created to handle private text

messaging between two clients SessionEvent is fired which

26

is processed by JscmtSessionListener. JscmtSessionListener

class is shown in Figure 2.14.

client.JscmtSessionlistener

~JscmtSessionUstenerO
-t>byteArrayCreated(event: SessionEvent)
~byteArrayDestroyed(event: SessionEvent)
~channelreated(event: SessionEvent)
~channelDestroyed{event: SessionE\.ent)
~sessionDestroyed(event: SessionEvent)
"'sessionJoined(event: SessionEvent)
~sessionleft(ewnt: SessionEvent) ..
<>sessionlnvited(event: SessionEvent)
~SessionExpelled (Session Event event)
<>iokenCreated(event: SessionEvent)
<>iokenDestroyed(event: SessionEvent) ·

Figure 2.14 JscmtSessionListener

JscmtChannelListener

JscmtChannelListener class handles Channel events by

implementing ChannelListener interface of JSDT API.

JscmtChannelListener plays important role when JSCMT client

joins a Channel and leaves a Channel. When a new client

joins or leaves the Channel created by the JSCMT server,

ChannelEvent is fired which is processed by all the clients

that are registered to receive the event. This assures that

every client has an updated list of online users.

JscmtChannelListener class is shown in Figure 2.15.

27

client.JscmtChannellistener

~clientNm : String
~mylp : lnetAddress
~mylpAddress : String
~usersOnline : UserTree

'
~JscmtChannellistener(uApp: ClientApplication)
~getMylp() : String
~channelConsumerAdded(ewnt: ChannelEvent)
~channelConsumerRemoved(event: ChannelEwnt)
~channelExpelled(ewnt: Channel Event)
~channellnvited(event: ChannelEvent)
~channelJoined(event: ChannelEwnt)
~channelleft(event: Channel Event)

Figure 2.15 JscmtChannelListener

PrivateMessageHandler

PrivateMessageHandler class handles private text

messaging between two JSCMT clients. ClientApplication

instantiates PrivateMessageHandler object when user selects

the option of private messaging. It creates a private

Channel and sends request to other client to join the

Channel. To consume private messages sent on the private

Channel PrivateMessageHandler creates the instance of

PrivateMessageConsumer. When the private message window is

closed PrivateMessageHandler makes JSCMT client to leave

the private channel. PrivateMessageHandler class is shown

in Figure 2.16.

28

client. PrivateMessageHandler

~pm_consumer: Privatel\/essageConsumer
~data :Data
~privateChannel : Channel
~enderClient: JscmtClient
~clientChannels : Vector
~channelName: String
~panel1 : JPanel
~panel2 : JPanel
~pm_field : JTextField

<;>Pm_area : JTextArea
~pm_spane : JScrollPane
¢Pm_sendButton: JButton

nva e ssage an er pm_c anne : anne , s
~send_actionPerformed(event: ActionEl.ent)
~nalise()
~channelLeft(event: ChannelEvent)
~channellm.ited(event: ChannelEvent)
• channelE><pelled(event: Channel Event)
~channelConsumerMded(event: Channel Event)
~channelConsumerRemoved(event: Channel Event)

Figure 2. 16 Pr.ivateMessageHandler

PrivateMessageConsumer

PrivateMessageConsumer class consumes messages sent

over private Channel created by PrivateMessageHandler

between two JSCMT clients. It implements ChannelConsumer

interface by defining dataReceived method. The life cycle

of PrivateMessageConsumer is defined by

PrivateMessageHandler, i.e., when private message window is

closed, PrivateMessageConsumer associated with the Client

object is removed. PrivateMessageConsumer class is shown in

Figure 2.17.

29

client.PrivateMes sageCons um er
~messageArea : JTextArea
~senderName : String

~PrivateMessageConsumer(sName: String, mArea: JTextArea)
~ataReceived(data : Data)

Figure 2.17 PrivateMessageConsumer

ReceiverClosedEvent

When a JSCMT client who is transmitting audio-video to

one or more clients chooses to close the audio-video

transmitter, all the receiving clients needs to be notified

about it so that they can close the receiver for the

transmitting client. The job of notifying all the receiving

clients about this event is done by ReceiverClosedEvent

class. This class extends the functionality of EventObject

by defining methods that will be useful to process the

event by the JSCMT clients. ReceiverClosedEvent class is

shown in Figure 2.18.

30

client.ReceiverClosedEvent
~obj: Object
~userName: String

4fReceiverClosedEvent(source : Object)
~setUserName(uName: String)
•getUserName()
~etSource() : Object

Figure 2.18 ReceiverClosedEvent

JscmtReceiverListener

JscmtReceiverListener class implements

ReceiverClosedListener interface of JSCMT. It handles

ReceiverClosed event which is fired when any of audio-video

or audio receiver is closed. JscmtReceiverListener class is

shown in Figure 2.19.

client. JscmtReceiverlistener
~userApplication : ClientApplication

~JscmtReceiverlistener(userApp : ClientApplication)
~receiverClosed(re: ReceiverClosedEvent)

Figure 2.19 JscmtReceiverListener

ReceiverClosedListener

ReceiverClosedListener is a interface with only one

method that is to be defined by the class implementing it.

ReceiverClosedListener interface is shown in Figure 2.20.

31

0
client. Recei verCI os:fed Listener

~ReceiverClosed(re: ReceiverClosedEvent)

Figure 2.20 ReceiverClosedListener

JscmtReceiverMessenger

JscmtReceiverMessenger class maintains the list of

objects that have registered to be notified about the

ReceiverClosedEvent. This list is maintained by

EventListnerList object which is static transient type so

that all the JscmtReceiverMessenger have the some copy.

When the ReceiverClosedEvent occurs all the

ReceiverClosedListener classes in EventListnerList are

notified about the event. JscmtReceiverMessenger class is

shown in Figure 2.21.

client.JscmtReceiverMessenger

~Even!List : EventListenerList

~JscmtReceiverMessengerO
,._addReceiverClosedListener(listener: ReceiverClosedListener)
~removeReceiverClosedListener(listener: ReceiverClosedListener)
~notifyall(name: String)
~fireReceiverClosedEvent(uName : String)

Figure 2.21 JscmtReceiverMessenger

32

Package Server

This package contains classes used by JSCMT server

which includes classes that are responsible for creating

Sessions and Channels which are then joined by the

distributed clients. Session and Channel manager classes

are responsible for authenticating JSCMT clients when they

join the Session and Channel respectively.

ServerClient

ServerClient class is an implementation of Client

interface of JSDT. It is instantiated by JscmtServer.

ServerClient is not required to join the Session and

Channel created by JscmtServer which excludes it from

explicitly defining authenticate method of the Client

interface. ServerClient class is shown in Figure 2.22.

server.ServerClient

~name : String

4$,ServerClient0
~authenticate(info : Authentication Info): Object
~etName0: String

Figure 2.22 ServerClient

JscmtServer

JscmtServer class creates all the basic collaborative

components of the JSCMT application. JscmtServer creates

33

socket based Registry in which the Session is then created

at the port which is passed as a command line parameter.

Channel is then created in the specified Bess.ion.

JscmtServer associates Session and Channel managers at the

time of Session and Channel creation respectively. These

managers play important role in monitoring JSCMT client

activities. Since ServerClient does not participate in the

collaboration, it does not join any Session and Channel

created. JscmtServer class is shown in Figure 2.23.

server. JscmtServer

~client: ServerClient
~chatSession: Session
~url : URLString
~sessionType : String
~hostname : String
~hostport: int
~sessionManager: JscmtSessionManager
~channelManager: JscmtChannelManager

.,.JscmtServerO
~getHost(args : Strig["]) : String
~getPort(args : String["]) : int
~getType(args : String["]) : String
~main(args : String["])

Figure 2.23 JscmtServer

JscmtSessionManager

JscmtSessionManager class is associated with the

Session at the time Session creation. It is responsible for

34

authenticating JSCMT client when the client tries to create

or destroy a Channel. Whenever JSCMT client is trying to

create a new Channel JscmtSessionManager sends a challenge

to the client and waits for the response. Client is allowed

to create a new Channel only if the authentication of the

response is successful. JscmtSessionManager class is shown

in Figure 2.24.

server. JscmtSessionManager

~sessionRequest(session: Session, info: Authenticationlnfo, client: Client): boolean

Figure 2.24 JscmtSessionManager

JscmtChannelManager

JscmtChannelManager class is associated with the

Channel at the time Channel creation. It is responsible for

authenticating JSCMT client when the client tries to join

or leave a Channel. Whenever JSCMT client is trying to join

a Channel JscmtChannelManager sends a challenge to the

client and waits for the response. Client is allowed to

join a Channel only if the authentication of the response

is successful. JscmtChannelManager class is shown in Figure

2.25.

35

server.JscmtChannelManager

~channelRequest(channel : Channel, info: Authentication Info, client: Client): boolean

Figure 2.25 JscmtChannelManager

Package Constants

This package contains the class which caters to all

the constants used by other classes of the JSCMT

application.

JscmtConstants

JscmtConstants class stores all the constants used by

various classes of JSCMT application. JscmtConstants class

is shown in Figure 2.26.

36

constants. JscmtConstants

¢BROADCAST : char
Ql'REQUEST: char
¢RESPONSE : char
<,TEXT_BROADCAST: char
<$'NEWUSER_BROADCAST: char
(?-USER_REMOVED_BROADCAST: char
¢AUDIO_BROADCAST: char
<i>AV_BROADCAST: char
,$>REQUEST_PRIVATE_TEXT: char
<YREQUEST_PRIVATE_AUDIO: char
¢REQUEST_PRIVATE_AV: char
<$'REQUEST_VIEW_WEBCAM: char
<$'REQUEST_INVITE_WEBCAM: char
<YREQUEST_CLOSE_AVfRANSMITTER: char
¢REQUEST_CLOSE_AUDIOTRANSMITTER: char
<$'RESPONSE_PRIVATE_TEXT_OK: char
¢RESPONSE_PRIVATE_AUDIO_OK: char
¢RESPONSE_PRIVATE_AV_OK: char
<;>RESPONSE_PRIVATE_AUDIO_NO: char
¢RESPONSE_PRIVATE_AV_NO : char
<;>RESPONSE_PRIVATE_VIEW_WEBCAM_OK : char
<;>RESPONSE_PRIVATE_INVITE_WEBCAM_OK : char
<)-RESPONSE_PRIVATE_VIEW_WEBCAM_NO : char
v-RESPONSE_INVITE_WEBCAM_NO: char
~DEFAUL T_AV_PORT: String
<;>DEFAULT_AUDIO_PORT: String

Figure 2.26 JscmtConstants

Package User

This package contains classes, which are responsible

for storing important information of all the clients and

are very useful for most of collaborative activities

between clients.

37

UserTree

JSCMT client has to maintain a current list of all the

users logged into the system. UserTree class is used to

maintain updated list of JSCMT clients that is done by

storing client particular information in the form of a data

structure. Taking into consideration graphical display of

all the users logged into the system, JTree is used as data

structure to store client information. UserTree organizes

this information using UserNode and Userinfo objects. As

JTree supports pop up menus most of the client requests are

primarily handled by UserTree which are then directed to

ClientApplication. UserTree class is shown in the Figure

2.27.

38

user. UserTree
~userApplication : ClientApplication
~m_tree : JTree
~m_inodel: DefaultTreel\Jbdel

<PICON_USERS_ONLINE: lmagelcon
<PICON_USER : lmagelcon
<PnoOflJser: int

~m_popup : JPopupMenu
~m_action : Action
~m_clickedPath : TreePath

~UserTree(userApp : ClientApplication)
~getTreeNode(path : Treepath) : DefaultMutableTreeNode
~addUser(userName: String, userlp: String)
~removeUser(userName : String)
~getUserNode(uName : String) : DefaultMutableTreeNode
~getUserlPsO: Stringr]
~otherUserlPs(userName : String) : String[*]
~getUserlnfo(uNode : DefaultMutableTreeNode) : Userlnfo
~pm_actionPerformed(e: ActionEvent)
~privateAVconf_actionPerform ed(e : ActionEvent)
<&privateAudio_actionPerformed(e: Action Event)
~viewWebcam_actionPerformed(e: ActionEvent)
•inviteWebcam_actionPerformed(e: Action Event)

Figure 2.27 UserTree

UserNode

UserNode class is the sub component of the data

structure that forms a UserTree. When a new client logs

into the system a new instance of UserNode is created and

added to the UserTree. UserNode class is shown in the

Figure 2. 28.

39

user. UserNode

<:l)m_icon : Icon
4>m_expandedlcon : Icon
4>m_data: Object

~UserNode(icon : Icon, data Object)
~UserNode(icon: Icon, expandedIcon: Icon, data: Object)
~getlcon() : Icon
~getExpandedlcon() : Icon
~getObject() : Object
~oString() : String

Figure 2.28 UserNode

Userinfo

Userinfo class encapsulates JSCMT client information

and forms data component of UserNode. Userinfo stores

client's username and IP address. Userinfo class is shown

in the Figure 2.29.

user.Userlnfo
name : String
QipAddress: String

~Userlnfo(userName: String, lpAddress: String)
~etNameQ: String
~etlpAddressQ: String
~toStringQ: String

Figure 2.29 Userinfo

40

Package Audiovideo

This package contains classes used by JSCMT clients to

handle and process audio-video requests.

AudioReceiver

AudioReceiver class processes all the incoming audio

streams from different JSCMT clients. At any given time

only one instance of AudioReceiver class exists for a JSCMT

application. AudioReceiver runs as a Thread. It opens RTP

session at the specified port and listens to the audio

streams transmitted at the port. When a new audio stream is

received it is checked for the right supported audio format,

processed and then finally rendered using Player. When the

client transmitting audio stream stops the transmission,

ByeEvent is fired and AudiReceiver listening to the event

closes the Player that is rendering the received audio

stream. AudioReceiver class is shown in Figure 2.30.

41

audiovideo.AudioRecei\er

¢Sessions� : String
v-mgrs�:RTPManager
¢players : Vector
¢dataReceived : boolean
<S>dataSync : Object
¢Sessionlabel : Sessionlabel
¢PlayerWindow : PlayerWindow

~AudioReceiver(sessions : String[*])
~run()
~initialize0
~close0
~nd(Player p): PlayerWindow
"'update(evt: SessioinEvent)
~nd(strm : ReceiveStream) : PlayerWindow
~update(evt: ReceiveStreamEvent)
~controllerUpdate(ce : ControllerEvent)

Figure 2.30 AudioReceiver

AudioTransmitter

AUdioTransmitter class transmits audio to one or more

JSCMT clients. AudioTransmitter runs as a Thread. At any

given time only one instance of AudioTransmitter can be

created. Instance of AudioTransmitter is created when user

chooses to broadcast audio to all the users online or

participate in private audio session. It creates RTP

session at the specified port. AudioTransmitter initializes

the microphone to capture the audio and creates DataSource,

which is then used to create Processor. It sets GSM audio

format for the audio track to be transmitted.

AudioTransmitter is provided with the array of destination

42

IPs, interested in receiving audio stream, at the time of

its creation. AudioTransmitter class is shown in Figure

2. 31.

audiovideo.AudioTransmitter

~audiolocator : Medialocator
~videolocator : Medialocator
~ipAddress : String
~destlPs : String
~portBase: int
~statelock: Integer
~failed : boolean
~senderName : String
~receiverName: String
~audioProcessor: Processor
~rtpMgrs : RTPManager
~audioDataOutput : DataSource
~GSM: AudioFormat
~audioStream : SendStream

--~AudioTransmitter(ipAddress-es--:-StrinQL];i>tr-:-Slring;-s-emter:-String-;--receiver:-String),---1
~initMicrophone()
• run()
~stopTransm itter()
"'createAudio Process or()
~createAudioManager()
~create Transmitter()
~getStatelock() : Integer
~aitForState(p : Processor, state : int)

Figure 2.31 AudioTransmitter

PrivateAudioProcessor

When JSCMT client invites another client for private

audio session, the request is processed by

PrivateAudioProcessor class. PrivateAudioProcessor

instantiates AudioTransmitter that transmits Real-time

43

audio captured by client's microphone. It also instantiates

AVReceiver if it does not exists to receive Real-time audio

transmitted by another client. PrivateAudioProcessor class

is shown in Figure 2.32.

audiovideo. PrivateAudioProcessor
~enderlP : String
~receiverlP : String
~enderName : String
~userApplication : ClientApplication
~receiverName: String

~PrivateAudioProcessor(userApp: ClientApplication, rName: String, slP: String, rlP: String)
~constructTransm itter()
~constructReceiver()

Figure 2.32 PrivateAudioProcessor

AVReceiver

AVReceiver class processes all the incoming audio and

video streams from different JSCMT clients. At any given

time only one instance of AVReceiver class exists for a

JSCMT application. AVReceiver runs as a Thread. It opens

RTP sessions for audio and video at the specified ports and

listens to the audio and video streams transmitted at those

ports. When a new audio or video stream is received it is

checked for the right supported formats, processed and then

finally rendered using Player. When the client transmitting

audio and video streams stops the transmission ByeEvent is

44

fired and AVReceiver listening to the event closes the

Player that is rendering the received audio and video

streams. AVReceiver class is shown in Figure 2.33.

audiovideo.AVReceiver

~sessions�:String
@t,mgrs0: String
@t,players : Vector
~dataReceived : boolean
@t,sessionlabel: Sessionlabel
~playerWindow : PlayerWindow
~dataSync: Object

~AVReceiwr(sessionsr]: String)
~run()
~initialize()
• close()
~nd(p : Player) : PlayerWindow
~nd(rStream : ReceiwStream) : PlayerWindow
~update(evt: SessionEvent)
~update(evt : ReceiveStream Ewnt)
~controllerUpdate(ce: ControllerEvent)

Figure 2.33 AVReceiver

AVTransmitter

AVTransmitter class transmits audio and video to one

or more JSCMT clients. AVTransmitter runs as a Thread. At

any given time only one instance of AVTransmitter can be

created. Instance of AVTransmitter is created when user

chooses to broadcast audio-video to all the users online or

participate in private audio-video session. It creates RTP

session at the specified port. AudioTransmitter initializes

45

microphone to capture audio and web cam to capture video,

to create audio and video data sources respectively. These

data sources are used to create audio and video Processor.

It sets GSM audio format for audio track and H263 RTP video

format for video track. AVTransmitter is provided with the

array of destination IPs, interested in receiving audio and

video streams, at the time of its creation. AVTransmitter

class is shown in Figure 2.34.

46

audiovideo.AVTransmitter
~audioLocator: Medialocator
~videolocator : Medialocator
~ipAddress : String
~senderName : String
~receiverName: String
@t,destlPs : String�
~portBase : int
~statelock: Integer
~failed : boolean
~audioProcessor: Processor
~vidoeProcessor: Processor
~rtpMgrs�:RTPManager
@t,audioDataOutput: DataSource
~videoDataOutput : DataSource
~GSM: AudioFormat
@t,H263_VIDEO : VideoFormat
@t,userdesclist�:SourceDescription
~audioStream : SendStream
~videoStream : SendStream

&./\\rr"-"'"ma+er(ipAddre~r]. pb · St~•;n::: .,.,,,,.,,.,_. · c-..'-:'
~initMicrophone()
~init\/ideo()
~run()
~stopTransm itter()
._,createAudioProcessor()
~createVideoProcessor()
~createAudioManager0
~createVideoManager()
~createTrans mitte r()
~checkForVideoSizes() : Format
~getStatelock() : Integer
~getTransmitter(): String
'twaitForState(p : Processor, state : int)

Figure 2.34 AVTransmitter

PrivateAVProcessor

When JSCMT client invites another client for private

audio-video session the request is processed by

PrivateAVProcessor class. PrivateAVProcessor instantiates

47

AVTransmitter that transmits Real-time audio and video. It

also instantiates AVReceiver if it does not exists to

receive Real-time audio and video transmitted by another

client. PrivateAVProcessor class is shown in Figure 2.35.

audiovideo. PrivateAVP rocessor

~senderlP : String
~receiverlP : String
~senderName : String
~receiverName: String
~userApplication : ClientApplication

"-PrivateAVProcessor(userApp: ClientApplication, rName: String, slP: String, rlP: String)
._,constructTrans mitter()
~constructReceiver()

Figure 2.35 PrivateAVProcessor

WebcamRequestHandler

When JSCMT client invites another client to its web

cam the request is handled by WebcamRequestHandler class.

WebcamRequestHandler class is shown in Figure 2.36.

48

audimAdeo.Webcam Request Handler

~senderlP: String
~receiverlP: String
~enderName : String
~receiverName: String
~estlPs � : String
~userApplication : ClientApplication

•webcamRequestHandler(userApp: ClientApplication, rName: String, slP: String, rlP: String)
• constructTransm itter()
~constructReceiver()

Figure 2.36 WebcamRequestHandler

Detailed Design

Detailed design describes various functionalities of

the application by defining interaction between different

smaller components of the application. Detail design

discusses application design by describing the structure to

be used via narrative, tables, flow charts, etc. Sequence

diagram is one of the most widely used software design

tools in the process of detailed design.

Functionality of JSCMT application can be explained by

applying a scenario and narrating the interaction between

various components of JSCMT application. Different

scenarios were developed to cover various collaborative

functionalities and sequence diagrams were used to describe

the data transferred between different JSCMT units.

49

JSCMT Client Construction

JSCMT client construction is most important process of

the JSCMT system. Several components are constructed during

client's initialization. When JscmtLogin's "Login" button

is clicked instance of ClientApplication is created. It

uses server IP address and port number to connect to server.

ClientApplication creates instance of JscmtClient that is

authenticated by SessionManager and ChannelManager on the

server side, when it joins the Session and Channel

respectively. JscmtMessageConsumer is created as the part

of client construction process which is responsible for

handling and processing most of the client requests.

Sequence diagram explaining JSCMT client construction is

shown in Figure 2.37.

50

--

C

hj
1--'·

lQ
:Jscmtloqin 11 :ClientApplication :JscmtClient :SessionManager :ChannelManager i ! :JscmtSession :JscmtChannel :JscmtMessage

r;
(D

N

w
-.J

L.j
(/)

0
3:
1--:1

0
f--'
1--'·
(D

:::::J
rt

0
0

(Jl :::::J
f--1 Ul

rt
r;
C
0
rt
1--'·
0
:::::J

~ ~ Consumer

Login clicked I I
!~ 7

creates I I
1------.! creates I I

I! create Sessiony
I

<Join ~ession _ I I I I I I _,.
request penmis~iqn I I I I

_,. 1 authenticates
I I I I

~rant persmissio r= I I I I
create Channel I I I I

; <fioin channel _ I I I Irequest permiss - - authenticates I I IT - !~- grant permission I I I- I I
I
I creates , I Iadd Sessionliste1 ier

I II.~
I _,

Icreates! I

II add Channelliste~er I I I -u I
!~ IcreateJ

~

Add New User

When a new user joins the JSCMT application it

broadcasts "New User" message to all the other users online.

JscmtMessageConsumer receives this message and sends new

user information to its instance of UserTree which creates

a new UserNode. UserNode stores new user information in

Userlnfo object and is added to the UserTree. Updated

UserTree is displayed in the online user display area.

Sequence diagram that explains add new

shown in Figure 2.38.

user scenario is

:JscmtMessageConsumer :UserTree

repeives New User broadcast

:UserNode

I

:Userlnfo

I
<E:

sends User Info
creates

add UserNode

I
I
I

LJ
creates

I
I
I
I

y
I
I
I
I
I
I
I

Figure 2.38 Add New User

Remove User

When JSCMT client leaves the application all the

clients logged into the system receive

52

ChannelConsumerRemoved event. Client's UserTree locates the

UserNode for the user to be removed and is deleted. Updated

UserTree is displayed in the online users display area.

Removing user is shown in Figure 2.39.

~:C_l_ie-ntAp_p_li-ca-ti_o_n~L--:J---=s~=is=~=~e=hi=;=-rn_e_l__J ~-:u_s_e_rT-re_e~II~_:u_s_e_rN_o_d_e~I ~I_:u_s_e_ri_ni_o~

receive ChannelCohsumerRemoved event I
I I I I I

remow user ~ I I I«E
I I I

username ofuser1 o be removed -I I I - get UserNode I I
1 - I- get user name
I --
I !J!turn user name

I ---
I locate UserNode

return UserNode - I
I ---
I

«E
I

I I
I ~UserNode 1 I
I I I
I I I
I 1 I I
I I I I

Figure 2.39 Remove User

Text Message Broadcast

When JSCMT client clicks ClientApplication's "Send"

button, txtFiled.getText() method grabs the message typed

in the message text field and broadcasts it to all the

other clients online. This broadcast message is received by

53

JscmtMessageConsumers of all the receiving clients.

Received message is then displayed by ClientApplication in

its display area. Sequence diagram explaining text

broadcast scenario is shown in Figure 2.40.

:ClientApplication :JscmtMessageConsumer

send button clicked

<E

broadcast message to all clients

<E I
Irecevie Text Broadcast

I
I
I
I display message

o<E

I
I
I
I
I

Figure 2.40 Text Message Broadcast

Sending AV Broadcast

Upon clicking ClientApplication's "Video" button check

is performed.if the client is already broadcasting audio-

video. If the client is not broadcasting audio-video and

has web cam and microphone dialogue box pops up on the

screen to confirm the audio-video broadcast action. Upon

54

http:performed.if

action confirmation ClientApplication requests list of IP

addresses of online users from UserTree. UserTree processes

the request and sends array of IPs to ClientApplication.

This array of IPs is send to AVTransmitter at it's time of

creation which is used to form list of targets to receive

audio and video streams transmitted by the client. Sending

video broadcast is explained using sequence diagram shown

in Figure 2.41.

55

:ClientApplication I : UserTree 11 : UserNode 11 :Userlnfo :AVTransmitter

~.----~ ~----~

video broa.flcast button clicked!
<E~~· I

get user IPs I
navigate to Us rNode

iterates through get user IP

all the nodes
-:4etum user IP

return array of

serNode data

I

creates new VTransmitter(Strirlg[] userlPs)

Figure 2.41 Sending AV Broadcast

Receiving AV Broadcast

JscmtMessageConsumer receives AV broadcast message. It

checks with Client if AVReceiver exists. This is done to

56

assure that at any given time only one instance for

AVReceiver exists. If AVReceiver does not exist,

JscmtMessageConsumer creates an instance of AVReceiver.

AVReceiver creates RTP sessions for audio and video at

different ports and listens to new incoming audio and video

streams at these ports. When a new audio or video stream is

received, AVReceiver creates a player to render the stream.

Sequence diagram for receiving AV broadcast is shown in

Figure 2.42.

:JscmtMessage :ClientApplication :AVReceiver : JscmtReceiver
Consumer Closedlistener

receives video broadcast message
I

check if local eceiver exists

snot exist

I creates I creates •

I
I add R c iverClosedlistl
I <E I I
I I
I I
I I

ceived audio and Jdeo streams
I

I

c~nstruct players for

<E I
I I
I I
I I
I I
I I

Figure 2.42 Receiving AV Broadcast

57

Sending Audio Broadcast

Upon clicking ClientApplication's "Audio" button check

is performed if the client is already broadcasting audio.

If the client is not broadcasting audio microphone dialogue

box pops up on the screen to confirm the audio broadcast

action. Upon action confirmation ClientApplication requests

list of IP addresses of online users from UserTree.

UserTree processes the request and sends array of IPs to

ClientApplication. This array of IPs is send to

AudioTransmitter at it's time of creation which is used to

form list of targets to receive audio streams transmitted

by the client. Sending audio broadcast is explained using

sequence diagram shown in Figure 2.43.

58

Transmitter()

<

~:C-lie_n_t,¾>_p_lic_a_tio_n~ ~-:u_s_e_rli-re_e~I I :UserNode I ~I_:u_s_e_r,_n~-o~ ~--·Au_d_io_T_ra_n_s_m_itt_e~r

audio broa'dcast button clicked
<E I

get user IPs I
navigate to s

iterates through
all the nodes

rNode

get user IP

.Jetum user IP

return array of I
<E-----

creates new Al'ldioTransmitter(Strlng[] userlPs)

runo
<E

Figure 2.43 Sending Audio Broadcast

Receiving Audio Broadcast

JscmtMessageConsumer receives audio broadcast message.

It checks with Client if AudioReceiver exists. This is done

to assure that at any given time one instance for

AudioReceiver exists. If AudioReceiver does not exist,

JscmtMessageConsumer creates an instance of AudioReceiver.

59

AudioReceiver creates RTP sessions for audio at specified

port and listens to new incoming audio streams at this port.

When a new audio stream is received, AudioReceiver creates

a player to render the stream. Sequence diagram for

receiving audio broadcast is shown in Figure 2.44.

:JscmtMessage :ClientApplication :AudioReceiver : JscmtReceiver
Consumer Closedlistener

receives audio broadcast message I
I< . I
Icheck if local ud~Receiver exists
I

-< returns AudioR cbiver status I
I
I I

es not exists I
creates I creates I

add Rec iverClosedlislr

-< I
I
I
I

construct playe or recei-..ed audio ktreams
-< f1

I
I
I
I
I
I

Figure 2.44 Receiving Audio Broadcast

Inviting User for Private AV Conference

When JSCMT client right clicks on any of the users

displayed in online users display area, a pop up menu

60

appears showing all the available options to communicate

with the other client. On selecting "Invite for Audio-Video

Session" action is processed by UserTree. UserTree locates

the UserNode for the user selected and gets the required

information from the Userinfo data object of UserNode.

ClientApplication uses this user information to invite the

selected JSCMT client for private audio-video conference.

The sequence diagram to explain this scenario is shown in

Figure 2.45.

61

~-:u_s_e_r_Tr_e_e~I I :UserNode II~_:_u_se_r_ln-fo-~ '--:C-lie_n_tA_p_p_l_ic_a_tio_n___.,

I,
select Iser and right click J I

~ I I I
"private ilidio-video session'! selected I!---

!~ I I I
locate JerNode for selecte~ user I

I~ I
Irequest Userln I

get User IP I
I
I
Ireturn User IP

~--------,return Userlnfo I~------<
I
I

I
~end private audio-\/ido conferencing invi ,tion to JSCMT client
I I
I I
I I
I I
I I
I I

Figure 2.45 Private AV Invitation

Process Response to Private AV Invitation

On accepting the invitation for private audio-video

conference JSCMT client sends "OK" response to the inviting

client. Response is received by the JsmctConsumer of the

inviting client. If the response is "OK" instance of

PrivateAVProcessor is created. PrivateAVProcessor creates

AVTransmitter that configures the web cam and microphone

and transmits audio and video streams to the other client.

62

PrivateAVProcessor checks with ClientApplication if

AVReceiver exists and creates one in case it does not.

AVReceiver constructs player to render every new incoming

media stream. The scenario of processing the response to

private audio-video conference invitation is explained

using sequence diagram shown in figure 2.46.

63

:JscmtMessage : PrivateA VProcessor :ClientApplication :AVTransmitter I :AVReceiwr :JscmtReceiwr
Consumer ,._____________,,_______,

private audio-video invitation laccpeted res pose

~ I I
creates - I

~ creates new AVTra~smitter(StringD 1.!_S1
I -
I
I
I
I
I
I
I
I
I

check if local local.[>.VRecei-.er exists

'I
~nds AVRecei-.er sf us

ifAVRJc ~i-.er does not ex si ' create
--J

I I add Re
I I
I I
I I
Construct players ton recei-.ed audio

I I
I I
I I

I I I

Closedlistener

I
I I

I rIPs)
I

initMicrophone() I
~
initvideoQ
!

1

1~
createAudioProcllssor()
<E 7 I
createAudioMan~ger()

I
9_i:~at~r0Procjissor()

I~~oMan,ger()

createTransm ittdro
~-
_!!:l!!{L
~

I
I
I

n

creates

verClosedListe:ti~ ,nef
initialize() I
~ I

video streams I
~ I

I
I
I
I
I
I

Figure 2.46 Process Private AV Invitation

Inviting User for Private Audio Conference

When JSCMT client right clicks on any of the users

displayed in online users display area, a pop up menu

appears showing all the available options to communicate

with the other client. On selecting "Invite for Audio

64

http:ecei-.ed
http:AVRecei-.er
http:Recei-.er

Session" action is processed by UserTree. UserTree locates

the UserNode for the user selected and gets the required

information from the Userinfo data object of UserNode.

ClientApplication uses this user information to invite the

selected JSCMT client for private audio conference. The

sequence diagram to explain this scenario is shown in

Figure 2.47.

~-:u_s_e_rT_r_e_e~I I : UserNode I ~I_:_u_s_er-ln-fo-~ ~-:c_lie_n_tA-pp-1-ic_a_ti-on~

select Iser and right click :

<E I
audio session" s~lected "pri t

<E I I
erNode for selecte~ user
<E I
request Userln 1

get User IP

return User IP
return Userlnfo <E--------,

<E--------,

priva ,Audio(usernarne, serlP)
I

I <E
send private audil) conferencing invita ion to JSCMT client

I
I
I
I
I

Figure 2.47 Private Audio Invitation

65

Process Response to Private Audio Invitation

On accepting the invitation for private audio

conference JSCMT client sends "OK" response to the inviting

client. Response is received by the JsmctConsumer of the

inviting client. If the response is "OK" instance of

PrivateAudioProcessor is created. PrivateAudioProcessor

creates AudioTransmitter that configures microphone and

transmits audio streams to the other client.

PrivateAudioProcessor checks with ClientApplication if

AudioReceiver exists and creates one in case it does not.

AudioReceiver constructs player to renqer every new

incoming media stream. The scenario of processing the

response to private audio conference invitation is

explained using sequence diagram shown in figure 2.48.

66

:JscmtMessage
Consumer

:PrivateAudio
Processor

:ClientApplication :AudioTransm
illfil

:Audi0Recei1.er :JscmtReceiwr
Closedlistener

prikte audio imiitation acbpeted respose
~~ __J I

creates I I
creates new AudioTr)msmitter(Strinq[lu~erlPs) .,,..

initMicrophone() I
~ I
createAudioProce~sor()

~ I
createAudiol\fan~ger()

~
createTransmitterfl

~ I
<E --1 I

~heck if local local J\!!dloReceiver exists I
I I

~nds AudioReceive tatus I I

if AudioF .E ceiwr does not e~ist, create ~ ! createsI _,,..

I 7J
add Rec:e verClosedlistenetjI
~ II

I initialize() I<
construct pla~ers for received at rcio streams I

I I1~
I

I T I
I I I
I I I

I
I
I

Figure 2.48 Process Private Audio Invitation

Sending View Web Cam Request

When JSCMT client right clicks on any of the users

displayed in online users display area, a pop up menu

appears showing all the available options to communicate

with the other client. On selecting'nview Web Cam", action

67

is processed by UserTree. UserTree locates the UserNode for

the user selected and gets the required information from

the Userinfo data object of UserNode. ClientApplication

uses this user information to request to view other

client's web cam. The sequence diagram to explain this

scenario is shown in Figure 2.49.

~-:u_s_e_rr_r_ee_~I I :UserNode 11~_:_u_s_er-ln-fo-~ ..__:C-1-ie_n_tA_p_p_li-ca_t_io_n__,

select Iser and right click /

i <E I
"' 1 w Webcam" selected

<E I
locate erNode for selecte~ user

I
request Userln I

return Userlnfo
<E-----<

view

get User IP ·

return User IP
~---------!

Figure 2.49 Sending Request to View Web Cam

68

Viewing User's Web Cam

On accepting JSCMT client's request to view web cam

client sends "OK" response to the client requesting the

permission. JscmtMessageConsumer of the requesting client

receives the "OK" response. JscmtMessageConsumer checks

with ClientApplication if AVReceiver has been created. If

AVReceiver does not exist JscmtMessageConsumer creates

AVReceiver to receive the media streams from the requested

client. The sequence diagram that explains the scenario of

viewing user's web cam is shown in the Figure 2.50.

69

:JscmtMessage i :ClientApplication :AVRecei\.er I : JscmtReceiver
Consumer Closedlistener i

I
request to View we beam accepted I

I
I
I
I
I
I I

if A VRecei\.er , es not exist I
creates Icreates .

. <E I

initializeO i
I <E I

cdnstruct players for ceiwd audio and ~deo streams
I <E 1 1

I I
I I
I I
I I
I I
I I

Figure 2.50 Viewing User's Web Cam

Inviting User to View Web Cam

When JSCMT client right clicks on any of the users

displayed in online users display area, a pop up menu

appears showing all the available options to communicate

with the other clients. On selecting "Invite to View My Web

Cam", action is processed by UserTree. UserTree locates the

UserNode for the user selected and gets the required

information from the Userinfo data object of UserNode.

ClientApplication uses this user information to invite

70

http:VRecei\.er
http:AVRecei\.er

other client to view one's web cam. The sequence diagram to

explain this scenario is shown in Figure 2.51.

:UserTree
11 : UserNode 11

:Userlnfo : ClientApplication

~----~ '-------' ~-----~

select Iser and right click

<E: I

I
I
I

I
'I
I

"lm,He o 1ew MyWebcam" ~elected I
I I

locate erNode for selectJd user I
I

request Userln I

return Userlnfo
<a;;:-------<

inviteToV

I
I

get User IP I
I
I

return User IP I-<E---------< I
I

Webcam(usern e, userlP) I

I
invite JSqMT client to view on ' webcam

I
I
I
I
I
I

Figure 2.51 Inviting User to View Web Cam

Process Response to View Web Cam Invitation

On accepting the invitation to view inviting client's

web cam JSCMT client sends "OK" response to the inviting

client. Response is received by the JsmctConsumer of the

inviting client. If the response is "OK" instance of

WebcamRequestHandler is created. WebcamRequestHandler

71

creates AVTransmitter that configures the web cam and

microphone and transmits audio and video streams to the

other client. WebcamRequestHandler checks with

ClientApplication, if AVReceiver exists and creates one in

case it does not. AVReceiver constructs player to render

every new incoming media stream. The scenario of processing

the response to view web cam invitation is explained using

sequence diagram shown in figure 2.52.

72

:JscmtMessage :WebcamReguest :Clien!Application j :AVTransmitter I :AVReceil.er :JscmtReceil.er
Consumer !::!fillljjfil Closedlistener

invitation ~o view one's webcaml accepted I
~ I I I I

creates -... I
creates new AVTra~smitter(StringD 1.!_s~rlPs)

I-
I - I
I initMicrophone() I
I ~

initVideo() :
I ~-_J

I createAudioProc1ssor()

I - I I
---I createAudioManbger()

I - I I---I 'createVideoPro~ssor()

I ~ I
I

createVideoMan,ger()

check if local local_e.VReceil,er exists ~ - createTransm ittcir()

~Jlnds AVReceiver st a1,us ~--=7 I
--- run() I- I

Iif AVRe c~i1.er does not ex s' ,create - creates-'r

I I
add Rec e verClosedlistI I

I I
I I
tonstruct players fori received audio ,

I I
I I
I I

T I I

~
initialize()

~
nr:l video stream

~

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1J
enir

I
I

s I
I
I
I
I
I
I
I

Figure 2.52 Process View Web Cam Invitation

Inviting User for Private Text Messaging

On selecting "Send Private Message" option from the

available communication options, action is processed by

UserTree. UserTree locates the UserNode for the user

selected and gets the required information from the

73

http:JscmtReceil.er
http:AVReceil.er

Userinfo data object of UserNode. ClientApplication uses

this user information to invite other client for private

text messaging. The sequence diagram to explain this

scenario is shown in Figure 2.53.

: ClientApplication
~-:u_s_e_rT_r_ee_~I I :UserNode I L...l_:_u_s_er-ln-fo_ __,

select ~ser and right click i
I

"Sen rivate Message" s~lected
I

locate erNode for selecte1d user
~ I
request Userln 1

return User nam
~------.

get User name

return Userlnfo
~---------<

pri

I
Invite JSCM!f Client for private text essaging

I
I
I
I
I

Figure 2.53 Inviting for Private Text Messaging

Process Private Text Messaging Invitation

On accepting JSCMT client's invitation for private

text messaging client sends "OK" response to the inviting

client. If the response is "OK" it is directed to

74

ClientApplication. It creates private Channel if it does

not exists, which is used to exchange private messages

between two clients. To manage private text messaging

PrivateMessageHandler is created. PrivateMessageHandler

associates the private Channel with PrivateMessageConsumer.

Private message window is then displayed which acts as an

interface for private text messaging. The scenario to

process private text messaging invitation is explained by

the sequence diagram shown in Figure 2.54.

75

:JscmtMessage :ClientApplication : PrivateMesssage :PrivateMessage
Consumer Handler Consumer

invitatioh for private mes sag~ accpeted I I
I I I

<E I I I
privateMessageH~ndlerO I I

I I
check if Channel exis~s I
<E I I

Icreate private Chan~el I
<E I I

creates I I
creates I

add PrivateMessa]Consumer to prlva4hannel
-cE I I

construct p i te message windov;,
<E. I I

I
I
I
I
I
I
I
I

Figure 2.54 Process Private Text Messaging

Summary

~In this chapter JSCMT architecture, JSCMT package

structure, JSCMT components were explained. Data flow

between various components to accomplish the functionality

defined by the application was explained using sequence

diagrams.

76

CHAPTER THREE

USER MANUAL

Overview

Java Synchronized Collaborative Multimedia Toolkit

(JSCMT) is a Java application that brings together users

from different geographical location. Users collaborate

through various communication tools integrated by the JSCMT

application.

Using JSCMT users can communicate by exchanging text

messages with each other. JSCMT clients can collaborate by

exchanging real-time voice messages with each other.

JSCMT's audio-video support enables client to broadcast

audio-video or participate in private audio-video

conferencing. JSCMT uses microphone to capture real-time

audio and web cam to capture real-time video. JSCMT also

supports private text messaging between two clients. At any

given time JSCMT client can participate in only one audio

video or audio session because at present creation of only

one audio-video or audio transmitter is supported by JSCMT.

The user manual guides the user in using different

functionalities of JSCMT. It elaborates on available

77

features of the application and explains step by step

procedures for using them.

Logging In

Upon starting the application, you will be prompted

with a log in screen which is shown in Figure 3.1. Steps

involved in logging in are:

• Type username in the username text field.

• Type password in the password text field.

• Type IP address of the server in the server text

field.

• Check microphone check box if microphone is

available.

• Check web cam check box if web cam is available.

• Click on the uconnect" button.

Once you have successfully logged in, a graphical user

interface to all the services provided by JSCMT is created

and is shown in Figure 3.2.

78

Figur~ 3.1 JSCMT Login Window

79

Figure 3.2 JSCMT Client Graphical User Interface

Broadcast Text Message

To broadcast text message to all the other clients

logged into the system the steps involved are:

Click on the button with label "Chat" which is. , I•
the part of the user options button,group of

client application window.

80

• Type message to be broadcasted in the message

field.

• Click on the "Send" button.

JSCMT client broadcasting text message is shown in

Figure 3.3.

Figure 3.3 Broadcast Text Message

81

Broadcast Audio-Video

JSCMT client needs to have web cam and mtcrophone to

broadcast audio-video to all the users. The steps involved

in broadcasting audio-video are:

• Click on the button with label "Video" and camera

icon, which is the part of the user options

button group of client application window.

• You are prompted to confirm the audio-video

broadcast action.

• Upon confirming the action, audio-video is

broadcasted to all the users

JSCMT client broadcasting audio-video is shown in

Figure 3.4.

82

Figure 3.4 Broadcast Audio-Video

Stop Audio-Video Broadcast

Audio-Video Broadcast can be stopped by clicking nstop

AV Broadcast" button. This is shown in Figure 3.5.

83

'.,i,essage Ar~ai
,, H~ll/J e\lel~Ody
>I am Sft:ipino myAudio Video Btofieasl
Ok

Figure 3.5 Stop Audio-Video Broadcast

Broadcast Audio

JSCMT client needs to have microphone to broadcast

audio to all the users. The Steps involved in broadcasting

audio are:

• Click on the button with label "Audio" and phone

icon, which is the part of the user options

button group of client application window.

84

• You are prompted to confirm the audio broadcast

action by a dialogue box.

• Upon confirming the action, audio is broadcasted

to all the users.

JSCMT client broadcasting audio is shown in Figure 3.6.

>Hollo i:¥8:t'fi)(Hl'y
>1.ir() Stc,p1r1g nwAui:lio Vidto aroae'f!st
Qk

hlt:> I vmu!d llke to ll.roactca$t avtfio

Figure 3.6 Broadcast Audio

85

Stop Audio Broadcast

Audio Broadcast can be stopped by clicking "Stop Audio

Broadcast" button. This is shown in Figure 3.7.

hitl> Iwould like to !::m:iadiast audio
11lt:. Now Stopping Audio Broadcast

Figure 3.7 Stop Audio Broadcast

Inviting User for Private Audio-Video Conference

The steps involved in inviting JSCMT client for

private audio-video conference are:

86

• Select the user from the list of online users

displayed in the users online display area.

• Right click to pop up the context menu.

• Select "Invite for Audio-Video Session" option.

• You are prompted to confirm the action.

• Upon confirming the action, invitation is sent to

the selected client.

JSCMT client inviting another client for private

audio-video conferencing is shown in Figure 3.8 and Figure

3.9 shows the client receiving this invitation. Both the

clients participating in a private audio-video conferencing

can be seen in Figure 3.10.

87

Figure 3.8 Invite for Private AV Conference

88

Figure 3.9 Receive Private AV Conference Invitation

89

Figure 3.10 Participating in Private AV Conference

Close Audio-Video Session

JSCMT client participating in private audio-video

session can close audio-video session by clicking "Close AV

Sessions" button. This is shown in Figure 3.11.

90

1 ~ ''

.usarOptfons.--------------------

Figure 3.11 Close Audio Video Session

Inviting User for Private Audio Conference

The steps involved in inviting JSCMT client for

private audio conference are:

• Select the user from the list of online users

displayed in the users online display area.

• Right click to pop up the context menu.

• Select "Invite for Audio Session" option.

91

• You are prompted to confirm the action.

• Upon confirming the action, invitation is sent to

the selected client.

JSCMT client inviting another client for private audio

conferencing is shown in Figure 3.12 and Figure 3.13 shows

the client receiving this invitation. Both the clients

participating in a private audio conferencing can be seen

in Figure 3.14.

92

Figure 3.12 Invite for Private Audio Conference

93

Figure 3.13 Receive Private Audio Conference Invitation

94

___,.,.._ __,,.,,,.,

,iweYour1ijiisaue tie.ti
' "'.~ . 't' .fu,_·:,~-.,_·"""""""'.,__"""""""' _

Figure 3.14 Participating in Private Audio Conference

Close Audio Session

JSCMT client participating in private audio session

can close audio session by clicking "Close Audio Sessions"

button. This is shown in Figure 3.15.

95

Figure 3.15 Close Audio Session

Viewing Client's Web Cam

The steps involved in requesting to view another

client's wep cam are:

• Select the user from the list of online users

displayed in the users online display area.

• Right click to pop up the context menu.

• Select "View Web cam" option.

96

Client requesting to view another client's web cam is

shown in Figure 3.16 and Figure 3.17 shows client receiving

this request.

on1111e users

l.~Ohif
.

.

Figure 3.16 Request to View Client's Web Cam

97

Figure 3.17 Receiver View Web Cam Request

Inviting Client to View One's Web Cam

The steps involved in inviting client to view one's

web cam are:

• Select the user from the list of online users

displayed in the users online display area.

• Right click to pop up the context menu.

• Select "Invite to View My Web cam" option.

98

Client inviting another client to view one's web cam

is shown in Figure 3.18 and Figure 3.19 shows invited

client viewing inviting client's web cam.

Figure 3.18 Invite to View One's Web Cam

99

Figure 3.19 View Inviting Client's Web Cam

Private Text Messaging

Client can exchange private text messages with another

client by using private text messaging feature of JSCMT.

The steps involved sending private text messages to another

client are:

• Select the user from the list of online users

displayed in the users online display area.

100

• Right click to pop up the context menu

• Select "Send Private Message" option

Client inviting another client for private text

messaging is shown in Figure 3.20. Clients actively

engaging in private text messaging can be seen in Figure

3. 21.

Figure 3.20 Invite for Private Text Messaging

101

Otlit> H! Sonan, hOWU doing today?
nail:> Doilig great Rohl!

ohit,. Lookingfow,rud lo see you soon

line users
. :Rt,1111

l<irti

;~~~~Jl;

Figure 3.21 Participate In Private Text Messaging

Summary

This chapter explains step by step procedures for

using various features of JSCMT Application. It elaborates

various functions of JSCMT with the help of user interfaces.

102

CHAPTER FOUR

CONCLUSIONS AND FUTURE DIRECTIONS

Conclusions

Motivation to collaborate users with common interest

but located in different geographical locations, using

various communication tools resulted in the development of

JSCMT. Streaming of real-time audio and video over the

network for interactive communication between users has

increased widely. JSCMT incorporates streaming of real-time

audio and video into its audio-video conferencing tool.

JSCMT is developed as a Java application. JSCMT

architecture is based on conventional client/server model.

Server is only responsible for creating Session and Channel

that are eventually used by collaborating clients. This

design dictates very little processing load on the server

whereas most of the request processing is done by the

clients. JSCMT uses two types of protocols, TCP for text

messaging and RTP for media streaming over the network.

JSCMT uses JSDT API to implement communication-part of the

project and JMF API to implement streaming and receiving

real-time audio and video.

103

Future Directions

JSCMT has a good scope for future enhancements.

Functionality of JSCMT application can be extended by

providing support to allow the user to participate in more

than one audio video session. Authentication process can be

further refined. Functionality of JSCMT can be extended to

support more than one Session. Various other features that

can be added to JSCMT in future are discussed in this

chapter.

Refining Authentication Process

Authentication process implemented by JSCMT is at a

low level. JSCMT server authenticates the client by using

the information sent by the client and matching it with the

information maintained by the server in the form of text

file. This process can be further enhanced by implementing

database on the server which stores the user specific

information of all the clients.

Support for Multiple Sessions

Currently creation of only one Session is supported by

JSCMT. Support for Multiple Session will allow a new

Session to be created for every new location. JSCMT client

can participate in any of the available Sessions. This adds

a distributed feature to the application.

104

Support for File Transfer

Functionality of exchanging files between the users is

one of the important features of any collaborative

application. Currently JSCMT does not implement this

feature. File transfer support can be added as a attractive

feature to JSCMT by implementing an appropriate file

transfer utility.

Support for Multiple Audio-Video Session

Currently JSCMT allows user to participate in only one

audio-video session at any given time. This means if user

is broadcasting audio-video to all the users online and

wants to invite another user for private audio-video

session, client needs to stop the broadcast first. If the

mechanism is implemented to create instances of data

sources for audio and video upon request without requiring

initializing the capture devices, client can participate in

more than one session.

Summary

In this chapter, future recommendations were discussed

that can add new features to the application.

105

REFERENCES

[1]. "IEEE Recommended Practice for Software Requirements
Specifications (IEEE Std 830-1993)"

3rd[2]. Bruce Eckel, "Thinking in Java", Edition (2002), ·
Prentice Hall, ISBN: 0131002872

2nd[3] . Martin Fowler and Kendall Scott, "UML Distilled",
Edition, Addison-Wesley Publishing Company, ISBN: 0-201-
65783-X

[4]. Rob Gordon, Stephen Talley, Robert Gordon.,
1st"Essential JMF - Java Media Framework", Edition (1999),

Prentice Hall, ISBN: 0130801046

[5]. Rich Burridge, "Java Shared Data Toolkit User Guide",
1999, Sun Microsystems

[6]. Java 2 Platform, Standard Edition (J2SE) 1.4.1 API
Specification, Sun Microsystems,
http://java.sun.com/j2se/1.4.l/docs/api

[7]. Java Media Framework (JMF) 2.1.1 API Specification,
Sun Microsystems, http://java.sun.com/products/java
media/jmf/2.l.l/apidocs/

[8]. Java Shared Data Toolkit (JSDT) 2.0 API Specification,
Sun Microsystems, http://java.sun.com/products/java
media/jsdt/reference/api/

[9]. 0. Kim et ai., "Issues in Platform-Independent
Support for Multimedia Desktop Conferencing and Application
Sharing," Poe. Seventh IFIP Conf. on High Performance
Networking (HPN'97), Chapman & Hall London, 1997, pp. 115-
139

106

http://java.sun.com/products/java
http://java.sun.com/products/java
http://java.sun.com/j2se/1.4.l/docs/api

	JAVA synchronized collaborative multimedia toolkit: A collaborative communication tool
	Recommended Citation

