
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2004

Web Texturizer: Exploring intra web document dependencies Web Texturizer: Exploring intra web document dependencies

Seema Amit Tandon

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Tandon, Seema Amit, "Web Texturizer: Exploring intra web document dependencies" (2004). Theses
Digitization Project. 2539.
https://scholarworks.lib.csusb.edu/etd-project/2539

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2539&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2539&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/2539?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2539&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

WEB .TEXTURIZER: •

EXPLORING INTRA WEB DOCUMENT DEPENDENCIES

A Project
Presented to the

Faculty of

California State University,
San Bernardino

In Partial Fulfillment

of the Requirements for the Degree
Master of Science

in
Computer Science

by
Seema Amit Tandon

March 2004

WEB TEXTURIZER:

EXPLORING INTRA WEB DOCUMENT DEPENDENCIES

A Project

Presented to the

Faculty of

California State University,

San Bernardino

by
Seema Amit Tandon

March 2004

Approved by:

Kerstin Voigt,
Department Of Computer Science

02/0 JOV
Date

George.Georgiou, Computer Science

Richard Botting,Computer Science

ABSTRACT

The purpose of this Master's Project was to develop a

customized browser to facilitate document skimming. Web

Texturizer facilitates document skimming by visually

emphasizing important text segments for the user through

the user-friendly GUI and an Internet browser (Internet

Explorer).

The Web Texturizer developed is interactive: as the

user requests the web document, enters additional keywords

and the keyword count, and hits enter, a CGI-generated

analyzed web page will be returned. The user will be able

to skim through the entire document by visually emphasized

paragraphs and a tool to navigate through most related

paragraphs. The algorithm uses a "soft" logic that

incorporates a notion of textual similarity developed in

the information retrieval community. Here, we explore a

general-purpose method to automatically recognizing

structure in HTML documents. Knowledge of both text

structure and the informational needs and preferences of

the user are employed to offset the viewed document to the

most relevant sections of the text.

iii

ACKNOWLEDGMENTS

The National Science Foundation Research Career

Integration Program (MI-I) Stipend provided a grant that I

used for this project. The grant money was also used to

purchase O'Rielly Perl Cookbook, JavaScript Cookbook and

host the site with a web-site hosting company and print

other research papers that are required for this project.

Thanks need to be given to the professors, who helped

with this project. Dr. Kerstin Voigt, developed SKIPPER

project which was the genesis of this project. Dr.

Richard Botting's help with the vast research papers for

analysis and suggestions. Dr. George Georgiou and Dr.

Richard Botting were two more instructors, who acted as

advisors and helped a lot during the whole master's

process.

Of course, without the help and support of my family,

I would have never completed this project. To my husband,

Amit, my cute daughter Deepika and my brother and sister-

in-law, Vinod and Jyoti, I love you.

iv

TABLE OF CONTENTS

ABSTRACT.. iii

ACKNOWLEDGMENTS iv

LIST OF TABLES vii

LIST OF FIGURES.................................... viii

CHAPTER ONE: SOFTWARE REQUIREMENTS SPECIFICATION

1.1 Introduction 1

1.2 Overall Description 8

1.3 Specific Requirements 17

CHAPTER TWO: NUMERICAL ANALYSIS OF WEB TEXTURIZER
EQUATIONS

2.1 Web Texturizer Equations................ 25

CHAPTER THREE: DESIGN

3.1 Architecture (Component Diagram) 30

3.2 Detailed Design (Pseudo-Code) 34

CHAPTER FOUR: OPERATING INSTRUCTIONS

4.1 Operating Instructions 38

4.2 Hints for the Users.................... 40

4.3 Testing................................ 42

4.4 How to Install Web Texturizer.......... 42

CHAPTER FIVE: MAINTENANCE

5.1 Files . 45

5.2 Directories............................ 46

v

CHAPTER SIX: WEB TEXTURIZER ANALYSIS

6.1 Web Texturizer Versus Subjective
Opinion.................................. 48

CHAPTER SEVEN: FUTURE DEVELOPMENTS AND CONCLUSIONS

7.1 Ideas for Future Developments 56

7.2 Conclusions 57

APPENDIX A: WEB TEXTURIZER CODE.................... 59

REFERENCES.. 89

vi

LIST OF TABLES

Table 1. Minimum System Requirements 10

Table 2. UrlText.cgi Class Diagram 31

Table 3. PageParser.pm Class Diagram.......... .. . 32

Table 4. Vector.pm Class Diagram 33

Table 5. Menu Class Diagram.......................... 33

Table 6. UrlText.cgi Pseudo-Code 35

Table 7. PageParser.pm Pseudo-Code 35

Table 8. Vector.pm Pseudo-Code 36

Table 9. Menu Pseudo-Code 37

Table 10. Perl Modules that Need to be Installed ... 45

Table 11. HTML Files.................................. 46

vii

LIST OF FIGURES

Figure 1. Diagram of CGI using Perl.................. 7

Figure 2. Deployment Diagram 12

Figure 3. Use Case Diagram............................ 14

Figure 4. Web Texturizer's Home Page.................. 17

Figure 5. Web Texturizer Analysis Page 18

Figure 6. URL Analyzer Page.......................... 18

Figure 7. Web Text Similarity Analyzer...............2 0

Figure 8. Web Text Analyzer.......................... 21

Figure 9. Component Diagram Overview 30

Figure 10. Table Containing Text 41

Figure 11. Web Texturizer Versus Subjective
Opinion................................... 48

viii

CHAPTER ONE

SOFTWARE REQUIREMENTS SPECIFICATION

1.1 Introduction
1.1.1 Purpose

The goal of this Master's Project is to create a

customized web-browser to facilitate the skimming of

documents by offsetting the document with relevant

information. This project is built on the SKIPPER project

and promotes active learning by providing users with a tool

to navigate through the entire document based on

automatically generated keywords. Using the WHIRL and

Porter's Stemming algorithm generates these keywords (2).

The objective was to develop a web-based application, which

is easily distributed, flexible, intuitive and easy to use.

Moreover, the application was to adapt to users with

varying degrees of familiarity or expertise in the subject

area of the document being viewed. At the extreme ends of

the spectrum, we distinguish novices and experts.

Traditional modes of viewing a document (scanning and

scrolling) are supported for novices who need to see the

information in its intended context. Experts, with prior

knowledge of the document or document subject will be able

to skim and skip the entire document using the relevance

1

measures that are provided to determine frequencies of

keywords among various paragraphs.

1.1.2 Scope

The Web Texturizer project is focused on developing a

web based tool that uses Perl and Java-Script technologies

to facilitate document skimming by visually emphasizing

important text segments for the user through an user-

friendly GUI and an Internet browser. The Web Texturizer

project is focused on developing an intelligent agent

analysis tool that helps guide in the presentation of

information in ways that make personally relevant

information more easily accessible to the user in the area

of expertise of a particular document (9). The idea for

the creation of this project came from Dr. Kerstin Voigt,

Professor of Computer Science and her paper (9). The

materials analyzed can range from research papers,

tutorials, to literature of investment documents in order

to skim through the web page. The materials developed are

designed to skillfully guide the user through the site of

personal interest based on their background and expertise.

The Internet address or URL for the current version of

the Web Texturizer Project is:

http://textseem.ehost4u.com/webtext-dev/index.html. The

2

http://textseem.ehost4u.com/webtext-dev/index.html._The

Web Texturizer, has an interactive navigational tool.

Users can personalize a browser of large informational web

page by (1) automatically analyzing and detecting keywords

of apparent personal interest to the current user, and (2)

by highlighting and presenting relevant information to the

user in a structured textual fashion. Thereby the document

is organized according to the relevance ranking of the

keywords in the respective web page. The tool is designed

such that the users can modify the keywords or the count

based on their expertise. With the help of Dr. Kerstin

Voigt, a Professor of Computer Science at CSUSB, this

Master's Project added techniques of learning information

retrieval to automate the web browsing experience to the

Web Texturizer.

CGI generated Perl based programs can provide

tremendous text processing capabilities and allow users

with different interest to traverse through these

information nets more frequently than others. The Web

Texturizer is written in Perl, it has been written in an

object-oriented manner, perl functions are modular and

readily adapted to new uses. As a navigating tool, a well-

written application will allow the users to focus attention

on the material while minimizing the need to know the Perl

3

programming language. The objective was to produce an

application, by developing general purpose methods for

automatically recognizing structure in HTML document. The

goal is to extract structures of information from web pages

without any page-specific program training. In the Web

Texturizer tool, WHIRL is used to semi-automatically

generate keywords from structured documents. WHIRL stands

for a Word-based Information Representation Language. This

tool is implemented using WHIRL, a method that demonstrates

a notion of textual similarity developed in the information

retrieval community (3).

The main benefit is that customized browsing can

provide speedier access of information based on user's

expertise in the browsed subject matter. In a raw web

page, it is likely that the user will have to spend more

time in reading and determining if the web-page is relevant

to the user's needs. Web Texturizer facilitates document

skimming and aims to provide a one-stop source of document

browsing instead of traversing through its myriad of text

and hyperlinks. A major advantage of Web Texturizer is to

skillfully highlight keywords and automatically and

autonomously personalize one's interaction with the web

page.

4

Also, another advantage is "individualization", that

is, to help users cope with the high-volume of data made

available by large informational web pages. The Web

Texturizer is intended for users who repeatedly, regularly,

and for an extended period of time, revisit and navigate

the same information subspace. Finally, Web Texturizer

assists the user in searching and navigating textual

information. Hence, the ability to analyze text is the

center of this project. Word frequencies and co­

occurrences between text segments are mined. Text-

formatting cues are used to identify distinct paths of the

text and establish relationships between text segments.

1.1.3 Definitions, Acronyms, And Abbreviations

1.1.3.1 HTML. HTML is a document - layout and

hyperlink -specification language. HTML stands for

HyperText Markup Language. The language also tells how to

make a document interactive through special hyperlink,

which connect user document with other documents or other

Internet resources. Perl and CGI are used in the Web

Texturizer to generate dynamic HTML documents. HTML

provides structured meaning to the content of web pages.

For example, a piece of text can be made into a paragraph

by the tags (<P>...</P>) , or it may be tagged as bold

5

(...) to signal its significance. The scripts are

written in Perl 5.6 are loaded on a server on the World

Wide Web via a web browser and run inside an HTML web page.

A web browser such as Microsoft's Internet Explorer can be

used to run these scripts.

1.1.3.2 Common Gateway Interface using Perl V 5.6.

CGI is an acronym for Common Gateway Interface, which

defines the standard in which external programs should

communicate with a web server. A majority of the CGI

programs are written in PERL (Practical Extraction and

Report Language) and the end result is an executable file

that can read and write information in a format defined by

the CGI protocol. Figure 1, describes the Perl CGI

interface.

[1] With CGI, a HTTP request is sent via a web

browser.

[2] The Web server can call up a program written in

Perl, while passing user-specific data to the program

(such as what host the user is connecting from, or the

input the user has supplied using HTML for syntax).

[3] The program then processes the data and the server

passes the program's response back to the web browser.

In this project, CGI scripts use Perl's extensive

6

regular expression matching facilities through perl

modules to provide fast key-phrase searches within the

HTML document. The implementation of Web Texturizer

benefits from extensive library of Perl Modules

available at http://www.perl.com.

HTTP request

Server Application
(on server)

CGI
jPrognm^^
response

HTTP
response

Web Browser
(on client)

Figure 1. Diagram of CGI using Perl

There are several reasons for using Perl for

processing text in the Web Texturizer tool. First, perl

has a regular expression engine. This is a pattern

matching language that is based on sed and awk, two text

processing tools that are part of UNIX. Perl regular

expressions are very efficient and very powerful. The

second text processing mechanism in perl is the text

processing functions that are built into Perl. Many of

these functions are unique and do not exist in other

popular languages. Some of these functions include

7

http://www.perl.com

split (), shift (), pop(), chomp (), join() and slice ().

These functions along with Perl's use of dynamic strings,

hashes (denoted as %), and arrays are extremely useful for

text processing. The last text processing mechanism in

Perl is external modules that can be loaded dynamically.

Many of these modules themselves are built using regular

expressions and Perl functions. Examples include

HTML::Parser and Lingua::Stem. Modules are usually easier

to use than regular expressions and are typically built to

solve a particular text processing problem, such as parsing

HTML files.

1.1.3.3 JAVASCRIPT. JavaScript is used for the

implementation of components of the Web Texturizer. These

scripts are used to automate certain HTML tasks. These can

be coded within the HTML document and can be run on any

JavaScript enabled web-browser.

1.2 Overall Description
1.2.1 Project Perspective

1.2.1.1 System Interfaces. Web Texturizer is

installed on a server computer at

http://textseem.ehost4u.com/webtext-dev/index.html. Users

8

http://textseem.ehost4u.com/webtext-dev/index.html._Users

are able to access the Web pages and run the CGI

application with Internet Explorer.

1.2.1.2 User Interfaces. The Web Texturizer scripts

can be run by entering the URL to analyze in the top frame.

The analysis of the web page occurs in the bottom frame

that displays the content generated by the URL entered on

the top frame. The left frame consists of JavaScript code

that enables the user to skip and scan the web page based

on the paragraphs that have high similarities. The User

Interface of this program consists of one web page that the

user enters the URL to analyze. The execution of the

program is completely keyboard and mouse pointing devise

based. All clicks and selections from the left frame and

the content of the anchored links are accomplished with the

click of the mouse button.

1.2.1.3 Hardware Interfaces. This project was written

and tested on a SGI Computer, which supports a Unix

operating system. This program may run on any Unix machine

that has Perl 5.0 installed. The system specifications

are:

9

Table 1. Minimum System Requirements
Processor Type Intel MMX, Pentium II
Processor Speed 450 MHz
System memory 64 MB
External Cache Memory 256 KB
Modem LT Win Modem

1.2.1.4 Software Interface. This project was designed

to run over the Internet. By writing it in Perl,, the code

will run on any computer independent of the operating

system. As long as the user's computer has an Internet

connection, and appropriate browser, there will be no other

limits on the users system.

Perl is one of the best programming languages for text

processing using perl regular expressions (5). Perl allows

you to rapidly design, program, debug, and deploy

applications. Through the module importation mechanism,

you can use these external definitions as if they were

built-in features of Perl. Object-oriented libraries

maintain their object-oriented structure in Perl. The

Internet is growing exponentially and unfortunately has

become one of the major battlefields in the computer world.

Over the Internet, there are various systems providing

services. Each platform has its own system development

environment. Even in the Unix environment, different

10

vendors have their specially designed Unix systems. They

are not compatible with each other. A common language was

not a major issue in the past because the operating

environment was not complex. However, with the growth of

the Internet, a common CGI becomes more important. For

this reason, Perl was developed.

1.2.1.5 Communications Interfaces. Figure 2., the

Deployment Diagram, shows the relationship between the Web

Texturizer, the network server and the Internet user. To

access this site, the user needs an Internet connection to

the Web Texturizer server. The web address is:

http://textseem.ehost4u.com/webtext-dev/index.html.

The user will also need a web browser, such as, Internet

Explorer versions 5.5 or higher.

11

http://textseem.ehost4u.com/webtext-dev/index.html

Figure 2. Deployment Diagram

1.2.1.6 Memory Constraints. The minimum RAM, Random

Access Memory, tested, for this program, was 64 Megabytes.

However, any computer with enough memory to effectively use

the Internet should be able to use this program.

1.2.1.7 Operations. The Web Texturizer will be

accessed on a server on the World Wide Web. It will remain

active as long as the browser containing the URL is running

12

and the user has an internet connection. The program is

interactive and needs the user to interface with it.

Nothing happens unless the user enters a URL to analyze.

Currently, the program does not use a database. Therefore,

there are no backup or recovery operations required. Once

running, the page should be re-created with keywords and

users can skip and scan through paragraphs. If the page

takes a long time to load it may be due to firewalls set up

on the local server where the data is being accessed from

or that it is not an HTML page but rather a PDF or post­

script file. However, if a problem should occur, simply

using the browser refresh button will reset the web page.

1.2.1.8 Site Adaptation Requirements. This project is

being written and tested with an SGI machine with UNIX

Operating System and Internet Explorer 5.5. Earlier

versions of Internet Explorer have not been tested.

1.2.2 Project Functions

The Web Texturizer has one main function. It is used

to analyze the URL entered, record and guide the individual

browsing activities of the user. Hence, this tool will

adapt to users varying degrees of familiarity of a document

while browsing across different subject areas. The tool

allows a user who browses subject areas in which they have

13

little expertise, may need information presented as

coherently as possible based on the keywords automatically

generated by the tool. On the other hand, a user who

considers himself an expert is quite capable of

comprehending the presented information and relies on the

percentage of occurrences of keywords among paragraphs.

Figure 3, Use Case Diagram, shows the relationship of the

user to the Web Texturizer.

Figure 3. Use Case Diagram

14

This model displays how the components of Web

Texturizer are organized. Hence, the user maybe an expert

in the subject area browsed, and enjoys accelerated access

of relevant information provided by a modified customized

document. Also, the user can skip through paragraphs that

are closely related. Alternatively, for a novice the

browser may provide information comprehended best within

the context of the original web document. Users can enter

their own keywords along with the count of the keywords

they want the tool to automatically analyze. They can use

the Next and Previous buttons to navigate through various

paragraphs that are closely related.

1.2.3 User Characteristics

The audience for this project is experts such as

professors, and novices such as students. The students

that use this site may be able to benefit from the fast

access to the best paragraphs that they need to review.

The professors may access this site because they want to

review the most closely related paragraphs. As well as,

review the percentages of paragraphs that are highly

related. Any science or business majors can access this

site and benefit from its document scanning capabilities.

15

The instructors who will use this project will fall

into two camps: Computer Science and artificial

intelligence agents literate and professors that want to

read research papers in order to quickly scan the document.

The tool is written in such a manner that no knowledge of

Perl is required. If the user can open and run basic

Internet browsers, they will be able to run the tool. The

instructors and users literate in Perl will be able to

modify and extend the tool to meet their own needs and

build on them to write and create a database driven tool.

1.2.4 Constraints

The Web Texturizer tools was developed and tested on

Internet Explorer. A perl programmer can update the script

to be user with other web browsers. Anybody, who would

like to modify or create new Web Texturizer applications,

will need to know how to program in Perl.

1.2.5 Assumptions and Dependencies

The web server should not have restrictions on

accessing other web pages. The web server should not have

firewalls or password protection set on accessing other web

pages. Firewalls and password authentication are

frequently used to prevent unauthorized users from

accessing private networks.

16

1.2.6 Apportioning of Requirements

In the context of this project, there are no elements

that are being delayed until future versions are developed.

The program code has been finalized at this time. However,

there are several items that could be improved by another

computer science student in the future.

1.3 Specific Requirements

1.3.1 External Interfaces

The tool can be found by going to the Web Texturizer

server and loading Web Texturizer home page. The web page

will provide instruction on how to use the tool. The text

contents of the web pages are included in the appendix.

H WEB. TEXTURIZE! lid 1i jII hl hi II

bile Edit/ V(EW' Favorites.^ Tools 'Hefe

h«j=»gack -y jSI | ffiMedia tf
Address }®http i/yfynw .texteeern.ehostau.com/webtext-dev/ 73

Tesxtu r izer"

W* I) I'p.'lll!W Voigt * * -x \ y K n '*'> f ? * vTn xz £ t

\The','goal of the project is fco develop theYrarhewdrknecessaryzto develop artificial a v
jnte^igent£ooi$ fo^a customized browserifo facilitate th,e A * !A •

ifsingihis framework:, usersdviU be able to quickly navigate through the doCumehtby *.
.benefiting^ docwientscar/ning capabilities v , \ :

Figure 4. Web Texturizer's Home Page

The Web Texturizer Analysis page is displayed in Figure 5,

17

texteeern.ehostau.com/webtext-dev/

fjifiirr.irnBiRn7iHii;miaaaaE«e £d1‘*yiew Fpwtes loo!, Reip >
- . * J 2 £ J *j 3 ^ .. . _ . _ EB

A^e« el http:/7«ww.W$esm ehost4i2.com/weblext dev/framel4}Mil;;:;.£J-L ' t 4]li - 4ir. ‘r ' J., . 1 . £j> J t g] >" n. £ Jt II I I " .-" J|c-. 'r 1 |

•• ■..; • ■ :^r ■■■I
Paragraph Similarity- •
pleasure: Paragraph?-

Paragraph we we di

mMeasure

Enter ‘URL.attovJeto: iriewweb p^ebrokerildb^bycpar'a^aphs;-

’To.change.the’paragraph
nieasured against, click"
onthe-paragraphnumber
on the^display to-lhe.right(SsM1);

_

■ >”-" fet, ‘

BJSwZ r*2EZ!ffifS^2Z

Figure 5. Web Texturizer Analysis Page

On the Web Texturizer page, the user enters the website

that they want to analyze.

Figure 6. URL Analyzer Page

This application will use a frame, Figure 5, and is

divided into URL bar and two panels. The main part of the

18

ehost4i2.com/weblext

frame is divided into two unequal panels, split vertically.

The URL Analyzer bar contains 3 text boxes:

Enter URL: User inputs the URL that needs to be analyzed.

Keywords: 3 keywords separated by commas that user expects

to be contained in the main contain.

Count: The number of keywords that user wants the Web

Texturizer to count.

The left panel is the "Web Text Similarity Analyzer"

(Figure 7), consists of three text boxes: the first box

displays the current paragraph, the second box displays the

next most similar paragraph that is related to the first

one, and the third text box displays the similarity measure

with respect to the similar paragraph. This panel also

includes a set of buttons, which enable the user to skip to

'Next' or 'Previous' paragraphs. The right panel is the

"Web Text Analyzer" panel (Figure 8). It displays the

analyzed text document along with the highlighted keywords

and links to other related paragraphs.

19

Paragraph Similarity
Measure Paragraph:-l^~T ' "

Paragraphs wed
|pT9
Measure!
0:127394

To change the, paragraph
measured against, click

on the paragraph number
on the display to'the right
fc.g. ’P3.1).

Figure 7. Web Text Similarity Analyzer

The first step is for the user to enter the URL in the

URL Analyzer Panel. Once the user enters the URL, the user

can enter the 3 keywords and count of the automated

keywords. After all the data is entered the user can

either click the mouse button or use the enter key to view

the results. Once the user enters the URL, complete text

document along with the highlighted keywords is displayed

in the right panel. The user can navigate through the

different paragraphs using the next and previous buttons on

the left panel. The user can also view the similarity

20

measures of the different paragraphs.

Contribute as mucn =s /ou con to ch p'cyci-cponsoiec retirement p 3,-s I*-1; easy and convenient /Cu
[typically get a tax break.op.co'rf'tnbutionssolputting a',dollar toward rtetirement means'giving.Li^perhaps only.60
pr 7,0 cants in [spending pbwer now. If your, employer offers-to match contributions,-put <in at least-enough .to,,
get tne pntue match If you nont, >oure pacing up a fr»e pay ais=

.'Everyone'iseligihleto contribute to an IRA. The only, question is which; type you,should phoosea traditionol IRA
or a Roth: IRA. The answerdepends on your.financial situation. A traditional IRA may on may. not/pffer. an up-
front tux.deduction, on your contributions,., depending on your income;but .it. always, offers tax-deferred'
investment growth. A-.Roth. IRA "is..never deductible, but it offers tax-free withdrawals during your retirement.

Figure 8. Web Text Analyzer

The Web Text Ananlyzer (Figure 8) displays the web

page and highlighted keywords. If there is a hyperlink

within the web page that is clicked by the user, the

functionalities of the Web Texturizer tool are propagated

and applied to the linked document as well.

1.3.2 Functions

One of the functions that needed to be defined is how

the program accepts and processes its inputs and outputs.

The only input, once the website is running on the user's

browser, is the mouse and the keyboard. Therefore, there is

no requirement to check the validity of the inputs.

Abnormal situations like data overflows, communication

failures, error handling, and recovery are not encountered.

Unlike some programs, the exact sequence of operations is

not important. The output generated is the customized

21

webpage.

1.3.3 Performance Requirements

This script is designed to run on one computer at a

time. The number of simultaneous users supported is

limited by the bandwidth of the Web Texturizer server and

is beyond the scope of this project.

1.3.4 Logical Database Requirements

The Web Texturizer scripts have no database

requirement.

1.3.5 Design Constraints

In the design phase, two standards were used. The

first is the Unified Modeling Language (UML). This

modeling language is the graphical notation used to express

designs. It was used to develop the Deployment Diagram, the

Use Case Diagram, and the Class Diagrams.

The second is object-oriented software engineering

methods. It uses five main methods: establish core

requirements, develop a model of behavior, create the

architecture, evolve the implementation, and maintenance.

It also has four micro processes: identify the classes and

objects needed, identify the semantics of these classes,

identify the relationships among these classes, and specify

the interfaces required.

22

1.3.6 Software System Attributes

1.3.6.1 Reliability. The reliability of this script

was verified through extensive testing of all features.

The script performed consistently throughout the testing

phase.

In Phase one, the results from the equations used to

calculate the vector and matrix calculations were compared.

The conclusion was that the percentages should be on a 100%

scale.

In Phase two, all the menus and buttons, the Graphic

User Interface (GUI) ,. were tested. Each selection from the

menus performed its function as designed.

In the final phase of testing, the calculation of

vector and matrix was. added to the GUI to complete the

application. Again, all functions and calculations

performed without any failures.

1.3-6.2 Availability. This script is available

anytime the Web Texturizer server is running. Presently,

the server runs 24 hours a day and seven days a week.

1.3.6.3 Security. There is no security, such as

passwords, required by this software. The idea is for open

access to the Web Texturizer tool. It is the server's

responsibility to provide the security needed by the Web

23

Texturizer programs. The script does not have access to

the files on the server other than the ones needed for the

application to run. No personal data is stored about the

user, hence privacy is not a concern.

1.3.6.4 Maintainability. The script runs in the Perl

5.0 environment. If the version of Perl or its modules is

updated, then the web-server that the Perl code resides on

for this project will need to be restarted. There are no

other maintenance requirements for this script.

1.3.6.5 Portability. Perl as a programming language

was designed to run on most platform types. For the

Internet user, the code will port to any computer with the

proper web enabled browser. For the user, who downloads

the code, they will need a copy of Perl version 5.0.

24

CHAPTER TWO

NUMERICAL ANALYSIS OF WEB TEXTURIZER EQUATIONS

2.1 Web Texturizer Equations

The underlying representation of for text is based on

the data model used by WHIRL: A Word-based Heterogeneous

Information Representation Language (3). In this model

WHIRL adopts a key tool of modern text-based information

systems: the term-weight representation for text in which a

document is represented as a set of terms, each associated

with a numeric weight indicating its relative importance.

Term-based representations can be easily created and

stored, and with suitable indices many operations can be

carried out. Hence, the term-weight representation creates

a good weighing scheme (2). In WHIRL, the TF-IDF weighing

scheme is used to analyze a document v from some collection

of documents C. In Web Texturizer this theory is applied

to analyze a paragraph v from a collection of paragraphs in

a document C. It is an effective model for paragraphs with

intuitively similar semantic content often have similar

representations.

! In the WHIRL data model, the items that are
'i

manipulated by the logic are not constant values, but

25

I

entities that correspond to fragments of text. We call
f!these simple texts—"simple" emphasizing the text to have no
l
additional structure. For example, in representing the

information, simple text entities can be used to representI
£ext fragments "Theater", "Space", "Harry", "Porter", etc.

i
Hence, "simple texts" are a collection on keywords in a

i
paragraph. Each simple text is represented internally as a

i
paragraph vector. The paragraph vector consists of the

terms that are components of the paragraph vector equal to
i
the paragraph's characteristic stemmed keywords. We assume

i
a vocabulary T of terms, that are word stems produced by

i
Porter Stemming algorithm (6). The concept behind the

I
vector representation is the magnitude of the component vc

i;s related to the importance of term t in the paragraph
I
represented by v . The TF-IDF weighing scheme is used. The

i
tierm TF stands for Term Frequency. IDF stands for Inverse

I
Document Frequency. Conceptually IDF is a weight for term

t
frequency. Therefore, a term is weighted higher if fewerii
paragraphs in the entire document contain the term, making

t
the terms more characteristic of the paragraph it appears

i
in. Let v represent a paragraph from a collection of

paragraphs C. Hence, vfc is zero if the term t does not

occur in the text represented by v, else the equation is:II!
! 26

i

i vc = log(TFv,t + 1) - log(IDFt) (Equation 1)
I
In this formula, TFu t is the number of times the term t
I
occurs in the paragraph represented by v , and
i
I IDFt = ||C||/nt (Equation 2)

where nt is the total number of paragraphs in C that

contain the term t. In Web Texturizer, C is the collection
i
of paragraphs in a web page.I

| The advantage of this "vector space" representation
I[is that the similarity of two paragraphs can be easily
i
computed. The similarity of two paragraph vectors v and wj
is represented by the formula:
i
i
1 SIM(v,w) =
! teT

This is interpreted
1
v , w . Notice that SIM(v,w) is always between zero and one,i
and will be larger if two vectors share many "important"

iterms. This is referred as Cauchy-Swartz inequality [3].
iI In the tool we can judge the similarity of two
!
paragraphs Pl and P2 in the collection of paragraphs C as

follows:

v -w (Equation 3)w

as the cosine of the angle between

I
: 27

! [1] Remove stbp words (such as prepositions, and, or,
iI the, a, etc) and stem words (such as gone, going, goes
i| stemmed to go) in the entire collection of paragraphs.
!
! [2] A "term vector" is a vector where each term from [1]I
i
[indexes one vector field. There is one term vector for
!
1 each paragraph in the collection (e.g.,vl, v2 for each
tI| Pl, P2). The vector field is 0 or 1 depending on whether
iiI the indexing term is present in the paragraph.
III [3] From the 0, 1 vector representation in [2] compute
i
I vectors with TD-IDF values for each paragraph. As a
I
' result, Os in the term vector from [2] remain 0, and IsI
! in the term vectors from [2] turn into a computed sum
i
I represented by the TF-IDF formula. Let vl be the TF-IDF
I
i vector for Pl and v2 be the TD-IDF vector for P2. Hence,
! _ _
i in vectors vl , v2, different terms are associated with
J different TF-IDF values. 0 implies that the term does

i not play a key role in the corresponding paragraphs. The
tt
! larger the non-zero value is, the more important the term

' is to the underlying paragraph. In each vector, there is
i

I a characteristic set of relatively high-valued terms for
it the underlying paragraph.
i
ii
j
i
i

28

j [4] compute the similarity between Pl and P2 with the

j SIM(v ,w) formula provided in Equation 3.
f
I Role of Keywords:
I

I A user can enter keywords of personal interest, and a
i

] certain "keyword count". The document that is being
I
| viewed contains as many as these keywords as possible.
I
i And the tool displays the document with these highlighted
I

j keywords. Therefore, the words that are highlighted in
iI the paragraphs are the keywords entered by the user (if
1
(entered by the user), along with the high TF-IDF valued
I

!, terms within the paragraph. The tool displays up to

I "keyword count" many of these high-valued terms in each

j paragraph. Then each paragraph is likely to have a
i

i different set of such highlighted terms with more similar

1 paragraphs sharing more of these terms. When the user
i
I
i presses the skip next button, the paragraphs most similar
I

! determined by [1] - [4] are brought into focus in

j descending order i.e. from high percentage to low
[percentage.

!
j

I
’[
i
i
I
(I
Ii

29

CHAPTER THREE

DESIGN

3.1 Architecture (Component Diagram)

Figure 9. Component Diagram Overview

30

(
Ij

I In Figure 9, the component diagram, an overview of the
I

^classes can be seen. In order to view the details of each

lof the component please see the class diagram of each of

the components. Therefore, each class will be listed
I
^separately. In Table 2, UrlText class diagram is shown.
i
I
Table 2. UrlText.cgi Class Diagram
| --i UrlText.cgi____________________
I url : string
! content : string_____________________________________
[Init(cgi)

getUrl () : String
' PageParser (content : String, url : String,
I stopwords : String, VFDISPLAY : Boolean, MXDISPLAY :
i Boolean)________________________________ _____________
i
iI’ Once the user enters the URL for the website to

analyze, the UrlText.cgi script is started. It has the
IInit() function, which takes the place of the main()
I
function and is executed first. This class has

!

associations with the major classes of this project:
I
pjageParser.pm (Table 3) , and Vector.pm (Table 4) .

i • •

31

I

Table 3. PageParser.pm Class Diagram
I __
I PageParser__
! HTML
1 KEYWORDS
[URL__

i Init (HTML : String, TEXT : String, VECTOR : String)
j dumpText2(URL)
| references(html : String, href : String)
I hideLinks(par : String, htmlreferences : String,
I references : String)
J restoreLinks(par : String, htmlreferences : String,
!■ references : String)
' textAnalyze(text : String, stopwords : String,
j REDUCEDTEXT : Hash, STEMS : Hash, FATHOM : Hash,
j STEMCOUNT : Hash).
I dumpParseText(KEYWORDS : Hash, VECTOR : Hash, TEXT:
J Hash)
| fathomAnalyze(txt : String, FATHOM : Hash)
I dumpTopKeywords (nutn : String)
, dumpKeywords(uniq_words : Hash)
i getStemKeywords(list : Array, klist : Array)
i getStemParagraphs(plist : Array, klist : Array)
I getKeywords(list : Array)
j getParagraphs(list : Array)

The UrlText.cgi class creates a LWP connection to the

website that is requested and gets the entire document.
Iflight Weight Protocol (LWP) is a collection of modules inI
Perl. LWP creates network connections and manages the

communication and transactions between client and server.IfThe PageParser calls the Lingua module to stem the keywords
i
biased on Porter's Stemming algorithm [6]. It associates

with Vector (Table 4), and Menu (Table 5).
I
i

32

Table 4. Vector.pm Class Diagram

Vector__
VECTOR__
Init (self : String, par : String, kys : String, Par :
Hash, vectorKeys : Hash, V : Array, F : Array)
Map(f : Array)
Map(v : Array)
matrix (I : String, String : j, MATRIX : String)
mx(I : String, j : String)
mxscript(ret : String) //returns par and vector
SIM(VECTOR : String): string
mxdisplay(I : String, j : String) //returns HTML
matrix
vfdisplay(MATRIX : Array, VECTOR : Array) //returns
Sim and log calculations

The Vector is the class that maps the key and value

pairs of keywords associated with paragraphs. It uses the

similarity measures that are derived from William Cohen's

paper called WHIRL: A word-based information representation

language (2). It associates with Menu and the results are

displayed on the content frame.

Table 5. Menu Class Diagram

Menu__
Next : int
Previous : int____________________________________
nextpar(frm : String, dir : String)
next1ink(frm : String, dir : String)
setParNo(n : int)
setParLink(n : int, m : int) //called when someone
clicks on the parah on content frame
setParValue(v : int, Ink : int)

33

The Menu class is JavaScript code that is used to set

the default values that are calculated from the Vector

class used in the Web Texturizer code. This class is

designed to be used as user clicks through the next and

previous buttons and scans through paragraphs with highest

similarity measures. It has been added as a JavaScript

engine to the Web Texturizer system.

3.2 Detailed Design (Pseudo-Code)

This section deals with the pseudo-code of the Web

Texturizer. The tables are divided into two parts. The

first part shows the overall scope of the class: class

name, where used, purpose and note. The second part shows

the pseudo-code.

For this project to run the CGI generated Perl script

over the Internet, the browser firsts loads a HTML file

from the Web Texturizer web site. The file, Urlform.html

calls UrlText.cgi(Table 6).

34

Table 6. UrlText.cgi Pseudo-Code

Class Name UrlText
Where Used UrlForm.html
Purpose Starts the Web Texturizer
Note Web Texturizer Web Site, Main Page
Begin

Declare and Create Global Classes
Get the URL using LWP

Call PageParser.pm
End'

This calls and creates the classes used by the Web

Texturizer perl script that runs on the web browser.

The module PageParser.pm (Table 7) is called by

UrlText.cgi.

Table 7. PageParser.pm Pseudo-Code

Class Name PageParser
Where Used UrlText.cgi
Purpose Stores the data for the 3 variables i.e.

URL, keywords, and count
Note Main frame of the program
Begin

Initialize the 3 variables
Convert the HTML to ASCII
Create dumpText2(URL) to convert HTML to ASCII
Call as Text() to convert HTML to ASCII text

Create a list of keywords on a total basis
Take the top N of these words as Keywords
for each paragraph that contains 1 or more

keywords, print list of keyword frequencies, and skip
anchor which sends from 1 paragraph to next. And
highlights keyword as link to the previous keyword

Display the results
End

35

PageParser calls Vector as a hash. Vector.pm described in

Table 8 does the calculations based on the WHIRL system.

Table 8. Vector.pm Pseudo-Code

Class Name Vector
Where Used PageParser
Purpose Calculates the similarity measure
Note Calculates similarity measure between

paragraphs
Begin

Get the required parameters
Calculate Vector keys Array
Calculate the similarity measure vector
Using the Array, find and display the matrix

based on the calculations
Using the Array, find and display the vector

based on the calculations

End

Once the vector calculations are complete the results

are returned to PageParser.pm. The results are displayed

in content.html and the left frame gets an array of the

matrix calculations. These are the key and value pair of

the paragraph and its similarity measure. The results are

also stored in an Array, which is used to navigate to

'next' and 'previous' paragraphs displayed by the next and

previous buttons in Menu (Table 9).

36

Table 9. Menu Pseudo-Code

Class Name Menu
Where Used PageParser.pm
Purpose Sets up the array of paragraphs and

similarity measure for the Content
Display area

Note Left frame of the program
Begin

Displays the array of the current paragraph
Displays the array of the next similar paragraph
Displays the similarity measure
Results skip and scan on the content/display area.

End

37

CHAPTER FOUR

OPERATING INSTRUCTIONS

4.1 Operating Instructions

The Web Texturizer has been designed for 2 groups of

users- the novices and the experts. The main objective for

both users is to reduce the "browsing effort". This

objective is achieved by measuring keywords in text

document as a vector.

The concept behind vector representation is the

magnitude of a vector of keywords is related to the

'importance' of the keywords in the various paragraphs.

Generally useful heuristics are firstly, to assign higher

weights to terms that are 'frequent' in the document and

secondly, to terms that are 'infrequent' in the collection

as a whole.

In order to analyze the relevance between various

paragraphs, three different websites were used. A research

paper on computer games for children

(http://www.tere.edu/mathequity/gw/html/MITpaper.html), a

news story from an investment company website (

http://flagship2.vanguard.com/web/planret/AdvicePTFinS

tartSetYourlnvestmentPriorities.html) and one concerning

38

http://www.tere.edu/mathequity/gw/html/MITpaper.html_%29%2C_anews_story_from_an_investment_company_website_%28
http://www.tere.edu/mathequity/gw/html/MITpaper.html_%29%2C_anews_story_from_an_investment_company_website_%28
http://flagship2.vanguard.com/web/planret/AdvicePTFinS

Java programming language

(http://java.sun.com/docs/white/langenv/Intro.doc2.html) .

In the first research paper on "What Kinds of

Educational Computer Games Would Girls Like?", the simple

keywords that are of interest to a user are "games",

"girls", and "computer". Using the Web Texturizer to

browse through this document the paragraphs that are most

related to one another are the ones that describe the

reasons for these games, such as enhances "mathematical

learning", a game called "Zoombinis" and "puzzle". A user

can get the overview of the document by skimming the

document and reach a conclusion that the games like

Zoombinis help enhance the logical reasoning and

mathematical skills.

The individualized browsing tool has two primary

functions. First, the novice user that browses the

document may have low expertise to the subject matter

presented in the web page. Hence, the relevant information

is presented coherently to the user by reducing the

"browsing effort" (9). Second, an expert will have high

expertise in the browsed subject matter. This tool will

provide rapid access of personally relevant keywords to the

expert user. (8)

39

http://java.sun.com/docs/white/langenv/Intro.doc2.html_%29_

The main function of the intelligent agent tool is the

demonstrate methods for recognizing structure in HTML

documents. Automating the process of finding keywords

provides aids users to cope with the wealth of information

available on the world wide web. Hence, the browser can

highlight to the user potentially interesting but

previously overlooked sources of information (10).

4.2 Hints for the Users

This tool has -been designed to allow the demonstration

of notion on extracting structured information in web pages

without any page-specific program training.

The main goal was to allow you, the user, to retrieve

highly relevant information quickly and preserve coherence

of information (11). The structure recognition methods

were based on natural heuristics, such as detection of

sequences of markup commands, and repeated patterns of

"familiar-looking" strings. For example, C is a collection

of simple text paragraphs that occur in Figure 10. The

paragraph vector for text "Men in Black" in collection will

be highly similar to vector v: as these simple paragraphs

differ only on term "2002", which has high document

frequency and hence low weight. The simple text paragraphs

40

for "Men In Black", "Stuart Little" and "Spiderman" will

have low but non-zero similarity as they share "super" and

"earth".

Movie Review
Men In Black II, 2002 highly funded yet unofficial

government agency that regulates
all things alien on earth

Stuart Little II, 2002 the super intelligent mouse, and
his adoptive human family

Spider Man, 2002 Battle with the super hero and
villains of the Marvel earth

Figure 10. Table Containing Text

The selection of the Demo option displays the matrix

and the vector calculation results. This way a user can

visually review the results of the analyzed web document.

One of the limitations of this program is the

inability to show the images i.e. the jpegs that maybe used

in the document. The code is implemented to parse textual

data. In addition, the web page may timeout due to

restrictions set on the browser's domain. This prevents

the document or a script loaded from one origin from

41

getting or setting properties of a document from another

origin.

An advantage of the perl script is that it is a server

side script. The server side scripts are friendlier on the

visitor. The server is doing all the work and hence it

does not matter what browser the visitor is using. This

allows for transparent browser sniffing and customization.

4.3 Testing

The majority of the testing of this script was

performed at http://www.textseem.ehost4u.com/webtext-dev/.

There are no cases of a user being able to crash the

script. The only input from the user is the mouse and a

keyboard. This makes it almost impossible for the user to

do anything that will crash the script. The script may

timeout if there are restrictions on the documents domain.

4.4 How to Install Web Texturizer

For the users with some Unix and perl experience, it

is possible to install and extend the perl modules.

However, this will require all the files to be downloaded

to the user's site and run there.

Step 1. From the Web Texturizer web site, download

the file:

42

http://www.textseem.ehost4u.com/webtext-dev/

WebTexturizer.zip to the location on the user's host

computer.

Step 2. Unzip the file in a folder this command.

Type:

gunzip WebTexturizer.zip

Step 3. Create a new folder in the location where

all the htmls are located ex. public_html.

Type:

mkdir webtext-dev

Step 4. Copy all the html files to this directory

public_html/webtext-dev. The files in this directory

should be as follows-

index.html, menu.html, urlform.html, frame.html,

content.html

Step 5. Copy all the images to a

public_html/webtext/images

Step 6. Using a text editor, such as vi or emacs

open the urlform.html file. Using the search function,

locate the three places where the word url_text.pl is.

At this location, insure that the line segment reads:

"/cgi-bin/webtext-dev/url_text.pi"

Of course if you put the files in another location, it will

be your responsibility to change the location of these

43

url_text.pl

three values to the proper path so the script can find the

required files. Once the proper paths have been changed,

save the file.

Step 7. Copy all the perl files to

cgi-bin/webtext. The files in this folder are as follows:

url_text.pl, PageParser.pm, Vector.pm and stop_words.txt

Step 8. Create a directory in cgi-bin/webtext-dev

called "tmp". This is where all parsed keys and paragraphs

are stored. The file names are keys999.txt and par999.txt

are stored, where numbers '999' are random numbers that are

generated by perl code.

Type:

mkdir tmp

Step 9. Test the results with IE browser by typing

the URL where the site is hosted.

Type:

http://www.textseem.ehost4u.com/webtext-dev

Once in the IE browser, enter any website that you

like to review and navigate through the site. Have fun!

44

url_text.pl
http://www.textseem.ehost4u.com/webtext-dev

CHAPTER FIVE

MAINTENANCE

5.1 Files

The files for Web Texturizer are stored in the Web

Texturizer Server Computer. In addition, all the files are

copied on a CD ROM disk. A copy of this disk is stored in

the back of the hardbound copy of this project stored in

the Computer Science Office.

There are four main types of files used by this

script: Perl source code (*.pm), the images (*.jpg), zip

compressed files (*.zip), and HTML web pages (*.html).

Inside the HTML files, several graphic styles are used, for

example, jpeg, and gif.

The source files are displayed in Table 10. These

source files created for this project are stored in ASCII

format and can be viewed and modified by a text editor type

program such as vi, emacs or notepad.

Table 10. Perl Modules that Need to be Installed

UrlText.pi LWP- make html
connection

PageParser.pm Lingua - stem keywords
Vector.pm

45

Table 11, shows the HTML files. These are the files used

by the browser and are stored in ASCII format.

They can be viewed and modified by a text editor.

Table 11. HTML Files

index.html
Frame.html
Urlform.html
Menu.html
Content.html

5.2 Directories

In the Web Texturizer Server Computer, there are

several directories or folders used by the Web Texturizer

project. The folder to find the main Web Texturizer

directory is 'textseem'. Upon opening the 'webtext-dev'

directory, several folders are displayed: 'cgi-bin' for the

perl scripts, 'webtext-dev' for the html files, images to

store the gifs. Opening these folders will display the

files in which all the script files are stored. Therefore,

the total path to this script files is:

/usr/local/apache/public_html or /usr/local/apache/cgi-bin.

As Perl skilled users can download and modify this script,

it was felt that all files would need to be in one

location. This way a user would not have to download the

46

entire Web Texturizer system to be able to use the Web

Texturizer demo at home.

47

CHAPTER SIX

WEB TEXTURIZER ANALYSIS

6.1 Web Texturizer Versus Subjective Opinion

From probability and statistics, we know that the Web

Texturizer could make two kinds of mistakes as described in

Figure 11:

Web Texturizer Results
Subjective Opinion Accepts paragraphs

as related
Rejects paragraphs
as unrelated

Paragraphs are
related

Correct decision Type I error

Paragraphs are
unrelated

Type II error Correct decision

Figure 11. Web Texturizer Versus Subjective Opinion

Correct Decision - Paragraphs are related in subjective

opinion and Web Texturizer accepts paragraphs as related

In subjective opinion two paragraphs are related

because they are talking about the same issues. Web

Texturizer is a percentage based system. On seeing the

same keywords being used to discuss the same issues it

presents the correct result. It accepts the two paragraphs

as related.

48

For example, review the following two paragraphs.

Paragraph 1: "Contribute as much as you can to employer-

sponsored retirement plans. It's easy and convenient. You

typically get a tax break on contributions—so putting a

dollar toward retirement means giving up perhaps only 60 or

70 cents in spending power now. If your employer offers to

match contributions, put in at least enough to get the

entire match. If you don't, you're passing up a free pay

raise."

Paragraph 2: "Everyone is eligible to contribute to an IRA.

The only question is which type you should choose—a

traditional IRA or a Roth IRA. The answer depends on your

financial situation. A traditional IRA may or may not offer

an up-front tax deduction on your contributions, depending

on your income, but it always offers tax-deferred

investment growth. A Roth IRA is never deductible, but it

offers tax-free withdrawals during your retirement."

Result: On analysis with the Web Texturizer a 31%

relationship was found based on the keywords shared between

the paragraphs. This is a true result.

Correct Decision - Paragraphs are unrelated in subjective

opinion and Web Texturizer rejects paragraphs as unrelated

49

In subjective opinion two paragraphs are unrelated

because they are talking about the different issues. On

seeing completely different keywords being used, the Web

Texturizer rejects the two paragraphs as unrelated.

For example, review the following two paragraphs.

Paragraph 1: "Contribute as much as you can to employer-

sponsored retirement plans. It's easy and convenient. You

typically get a tax break on contributions—so putting a

dollar•toward retirement means giving up perhaps only 60 or

70 cents in spending power now. If your employer offers to

match contributions, put in at least enough to get the

entire match. If you don't, you're passing up a free pay

raise."

Paragraph 2: "To address these issues, we are currently

working on a project called Through the Glass Wall:

Computer Games for Mathematical Empowerment. Our research

focus is on computer games that (potentially) teach

mathematics; we are investigating the following questions:

How do children learn significant mathematics from computer

games? What are the characteristics of games, and of game­

playing contexts that interact with learning? What patterns

50

are there in girls' and boys' approaches to games -- and in

their learning from these games? "

Result: On analysis with the Web Texturizer 0%

relationship was found based on the keywords shared between

the paragraphs. This is a true result.

Type I error - Rejecting the two paragraphs as unrelated,

when they are related

Users have more knowledge about the subject being

talked about, which is inherent in their mind due to the

experiences or the. understanding of the subject from the

previously read material. Also, users have a large

vocabulary.to choose from and when they are writing they

may use few different ways to talk about the same subject

and may assume that the reader would understand what they

are saying from the context of the subject. Hence, this is

an advantage over an algorithm that is purely keyword based

to find key relationships between two paragraphs.

For example, if there were two paragraphs to be

analyzed talking about the exact same subject and in

paragraph 2 the synonyms of all the keywords from paragraph

1 are used. This keyword based algorithm would not be very

successful in ascertaining the degree of relationship.

51

Following are the two paragraphs that were used to

detect a correct relationship by the Web Texturizer in case

1 above (=31%). The keywords were replaced in Paragraph 2

with their synonyms (retirement, offer, contribute, tax).

The two paragraphs were again analyzed with the Web

Texturizer.

Paragraph 1: "Contribute as much as you can to employer-

sponsored retirement plans. It's easy and convenient. You

typically get a tax break on contributions—so putting a

dollar toward retirement means giving up perhaps only 60 or

70 cents in spending power now. If your employer offers to

match contributions, put in at least enough to get the

entire match. If you don't, you're passing up a free pay

raise."

Paragraph 2: "Everyone is eligible to add to an IRA. The

only question is which type you should choose—a traditional

IRA or a Roth IRA. The answer depends on your financial

situation. A traditional IRA may or may not present an up­

front deduction on your donations, depending on your

income, but it always presents tax-deferred investment

growth. A Roth IRA is never deductible, but it presents

tax-free withdrawals when you are over 65."

52

Result: On analysis with the Web Texturizer only a 2%

relationship was found based on the keywords shared between

the paragraphs. This is a false result.

Type II error - Accepting two paragraphs as related, when

they are unrelated. Let's take the opposite of Type I

error case. The same exact words may be used to describe

two different unrelated subject matters. The keyword

algorithm based system would make a mistake in identifying

those two paragraphs as related.

Following are the two paragraphs that were used to

detect an incorrect relationship by the Web Texturizer.

The keywords are the same in the two paragraphs (software,

teens, and girls). The two paragraphs talk about unrelated

subjects. The first paragraph talks about marketing goods

to female teens online. The second paragraph relates to

gaming software for girls and boys.

Paragraph 1: "While the online teen population is expected

to continue to increase, female teens will still spend a

limited amount of time online. Businesses that target the

teen girls market must evaluate their content and offer

elements that these teens want in order to capture any part

of that limited time," said Anya Sacharow, Jupiter's

analyst for teen girls markets. "Girls follow offline

53

brands online, but boys just want what they are looking for

and don't seem to care where it comes from. Strong brand

building and alliances with online networks sway teen

girls; teen boys are software experts largely."

Paragraph 2: "One backdrop to our research is the current

condition of commercial game software. Girls have only

recently been identified by the computer industry as a

potentially profitable market. The last few years have seen

the emergence of a new set of software targeted

particularly at girls. Much of this software appeals to

stereotypically "female" interests: shopping, make-up,

fashion, dating. Some have even called this category of

software "pink." Our initial survey of the games market

revealed (perhaps not surprisingly) that there were no

games aimed specifically at girls that required significant

mathematical thinking."

Result: On analysis with the Web Texturizer a 29%

relationship was found based on the keywords shared between

paragraphs. This is a false result.

Recommendations:

1) The keyword based Web Texturizer should be able to

decipher synonyms and hence use them to compute the

measure for relationships between paragraphs.

54

2) Qualitative or subjective analysis needs to be

imparted to the software by use of more sophisticated

algorithms.

55

CHAPTER SEVEN

FUTURE DEVELOPMENTS AND CONCLUSIONS

7.1 Ideas for Future Developments

There are a few limitations to the program as written.

The first is there is no way to update the contents of

browser options as personal relevance profiles changes over

time. At present, the user has to enter the web page every

time it needs to be analyzed. This is a partial fix for

this problem. If a Perl skilled user downloads the files,

they would be able to change the code to build and maintain

for each browser user a profile that records those

documents and keywords that are deemed relevant to the user

at the time of the next browser session.

A more advanced version of the Web Texturizer will

attempt to infer relevance of unviewed keywords from

various form of relatedness to relevant previously viewed

keywords in a document as the users expertise changes in

the browsed subject.

The computing world is always changing. Web Texturizer

can be updated and re-written in Python. Perl acquired a

strong ecological niche in the early 1990s as a CGI

programming language, it's familiar to people who have a

56

strong Unix background, and its convenience for text

processing is one of Perl's strongest points. But the

computing world is always changing: many people who write

scripts may now have a background in Windows development,

or in Java, or no programming experience at all. In the

years to come, increasing numbers of people will be

attracted to Python's conceptually simpler organization and

its shallower learning curve. Python is an excellent tool

for scanning and manipulating textual data. Python is a

freely available, very high-level, interpreted language

developed by Guido van Rossum. It combines a clear syntax

with powerful (but optional) object-oriented semantics.

Python is widely available and highly portable.

7.2 Conclusions

All the design features proposed for this project have

been implemented using consistent naming conventions to

name the parameters, variables, and perl modules. The

script runs on the Web Texturizer web site; it accurately

demonstrates WHIRL system; and it allows users to quickly

navigate through the web page. The program does all that

was hoped for in the initial design phase.

57

The benefits of this script are easily demonstrated.

For novices, it allows them speedier access to relevant

information instead of reading the entire document. For

experts, it has speedier retrieval of relevant information.

58

APPENDIX A
WEB TEXTURIZER CODE

59

PAGEPARSER PERL CODE

PageParser.pm

package PageParser;
use strict;
use FindBin qw($Bin);

Simple extension of Treebuilder to parse through a file,
and add
in the capability to skip through the text

use Lingua::EN::Fathom;
use HTML::TreeBuilder;
use HTML::Element;
use HTML::FormatText;
use URI::URL;

use Vector;
use Lingua::Stem;
use Lingua::Ispell qw(spellcheck);

my %defaults = (

HTML => undef, # The HTML as a text string
KEYWORDS => undef, # Keywords as a hash, count of

keys in analyze
URL => undef, # The path to wherever

) ;
sub new {

my $class = shift;

my %extra;
my $self = {} ;
bless($self, $class);
@$self{keys %defaults} = values %defaults ;
if(@_) {

my %stuff = @_;
@$self{keys %stuff} = values %stuff;

}
$self->init();
return $self;

}
sub init {

60

my $self = shift;

if($self->{HTML}) {
$self->{TEXT} = $self->as_Text();
$self->txtAnalyze();
$self->{VECTOR} = Vector->new($self-

>getStemParagraphs());
}

sub as_Text {
my $self = shift;
return($self->dumpText2());

}

Use lynx to get it into a more reasonable ascii format
sub dumpText2() {

my $self = shift;
my $ret = "";
my $url = $self->{URL};
my @text = split /\r?\n/, ""lynx -dump -width=4000

$url";
Pass 1 -- clear out blank lines, [image] lines, and
meaningless junk
my @textl = map {

my $line = $_;
remove long meaningless -- and ___ strings
$line =~ s/[!@#$%A&*()\-_+=] [! @#$%A&* () \-_+=]+//;
if($line =~ m/A\s*\[.*\]\s*$/) {

$line = undef;
}
$line

} @text;
Pass 2 -- Look for short lines that are probably

header lines to
paragraphs. Combine those into the next paragraph.

Look for
long lines that may have been broken up. Should

have a 7 space
indent on them. Join those lines together,
my $line;
while (@textl) {

$line = shift(@textl);
if($line =~ m/A\s*$/) {next; }
if($line =~ m/A\s*References\s*$/) {

61

$self->references(\@textl);
last ;

}
Arbitarily assume that a header line is less

than 50 chars
$words_num = $#line;
if(length($line) < 50) {

$line = "<h>$line</h>\n";
my $line2 = shift(@textl);
if($line2) {

if (length($line2) > 50) {
$line .= "\n$line2";

}
else {

unshift @textl, $line2;
}

}
else {

unshift @textl, $line2;
}

}
while(length($line) > 60) {

my $line2 = shift(@textl);
if(!$line2) {

last;
}
if($line2 =- m/A \w+/) {

$line .= $line2;
}
else {

unshift @textl, $line2;
last ;

}
}
trim off useless space
$line =~ s/A\s*(.*)\s*$/$l/;
$ret .= "<P>\n$line\n</P>\n";

}
return $ret;

}
This get the lynx reference set
found at the end of the lynx output
sub references {

my $self = shift;
my $text = shift;

62

my %ref = () ;

for(@$text) {
if (m@(\d+) ,\s*([A\s#]+)\s*@) {

my $num = $1;
my $rf = $2;
$rf =~ s@/$@@;
if($rf !~ m/mailto/i) {

$ref{$num} = $rf;
}

}
}
$self->(REFERENCES} = \%ref;

Now go and get the interesting references from the html
my $html = $self->{HTML};
my @str = () ;
my %hstr = () ;
$html =~ s { <A\s .*?HREF= "?([^\s ">]*) [^>]*?>(.*?)} { push

@str, ($1, $2); "$&" }iges;
while(scalar(@str)) {

my $href = shift @str;
my $val = shift @str;
$href = url($href, url($self->{URL}))->abs-

>as_string;
$href =~ s@/$@@;
$val =~ s/< [*>]*>//gs;
$val =~ s/A\s*(.*)\s*$/$l/;
$hstr{$href} = $val if $val ;

}
$self->{HTMLREFERENCES} = \%hstr;

}
Pass through the paragraph, reconstructing links that
were in the original

HTML except now they go through the Javascript stuff.

sub hideLinks {
my $self = shift;
my $par = shift;
my $str = $self->{HTMLREFERENCES};
my $rf = $self->{REFERENCES};

return $par unless $rf;
return $par unless $str;
my @num = ($par =~ m/\[(\d+)\]/gs);

63

for (@num) {
if($rf->{$_}) {

my $re = "\\[$_\\]\\s*".$str->{$rf-
>{$_}}.'\s*';

unless ($par =~ s{$re}{\[$_\]}) {
$par =~ s/\ [$_\]//;

}
}

}
return $par;

}
Recover the links that lynx inconveniently put at the end
of the file
and put them in their rightful place in the document,
sub restoreLinks {

my $self = shift;
my $par = shift;
my $str = $self->{HTMLREFERENCES};
my $rf = $self->{REFERENCES};

return $par unless $rf;
return $par unless $str;

my @num = ($par =~ m/\[(\d+)\]/gs);

for (@num) {
if($rf->{$_}) {

my $re = "\\[$_\\]\\s*";
$par =~ s{$re}["{$_}." 1) \">".$str->{$rf-
>{$_}}-""]gei;

}
}
return $par;

}

###
The following methods are adaptation from url_fathom
or my interpretation of what should happen
txt_analyze --
1. create a text version of the html
2. strip it of "stop words", and send to fathomAnalyze
3. create a list of the words on a total basis
4. take the top N of these words as Keywords
5. create a html document which analyzes each paragraph

64

highlights each keyword as a link to previous keyword
for each paragraph that contains 1 or more keywords,
print a list of the keyword frequencies, and a skip
anchor which sends it from one paragraph to the next.
Strip "stop_words" Are these common prepositions, etc

sub txtAnalyze {
my $self = shift;
my $text = $self->{TEXT};
my $keyl_splited = $self->{EXTRAKEY};
my @keyl_splited;
my $tmp;
my $var = ref($keyl_splited);
my $size = scalar(@{$keyl_splited});
my $stopwords = $self->{STOPWORDS};
unless($stopwords){

$stopwords = $self->stop_words();
$self->{STOPWORDS} = $stopwords;

}
remove all the stopwords
my $re = "(\\b" . join ("\\b|\\b", @$stopwords) .

"\\b)";
my $txt = $text;
$txt =~ s/$re//gis;
$self->{REDUCEDTEXT} = $txt;
Fathom analyze to get keywords
my $keywords = $self->fathomAnalyze($txt);
nip the rest down to their stems ...
my $stemmer = Lingua::Stem->new(-locale => 'EN');
$stemmer->stem_caching({-level => l});
my $stems = $stemmer->stem(@$keywords);
my %stemhash = ();
for (0..$#$keywords) {

my $tmpstem = $stems->[$_];
print "TMP Stems is : $tmpstem
 ";

$stemhash{$keywords->[$_]} = $stems->[$_];
}
$self->{STEMS} = \%stemhash;

Now, do a re-count based on stemmed words
my $fathom = $self->{FATHOM};
my %uniq_words = $fathom->unique_words;
my %keycount;

65

for (keys %uniq_words) {
my $tmpl = $uniq_words{$_};
my $tmp2 = $stemhash{$_};

$keycount{$stemhash{$_}} += $uniq_words{$_} ;
}

$self->{STEMCOUNT} = \%keycount;
Now, get the top 10 keywords
($self->{STEMKEYWORDS}, $self->{KEYWORDS}) = $self-

>getStemKeywords(10);
dump out the parsed text, putting in some html tags to
make the
display more useful.
sub dumpParseText {

my $self = shift;
my $keywords = $self->{KEYWORDS};
my $ret = "";
my $vector = $self->{VECTOR};
Create the HTML document
my $re = "(\\b" . join("\\b|\\b", @$keywords) .

"\\b)";
my %kws = () ;
map { $kws{$_} =0; } @$keywords;
$ret = $self->dumpTopKeywords();
my $txt = $self->{TEXT};
my $parno = 0; # paragraph number
my $lastparno = 0;
my $curpar =1; # was 0
my @klist = () ;
Scan by paragraph to set the links
$ret .= "cTABLE cellpadding=0 cellspacing=O>\n";
while($txt =~ m@<P>\n(.*?)\n</P>@gis) {

my $par = $self->hideLinks($1);
my %kw = ();

if ($par =~ s{$re}[$kw{lc($&)} = 1; "<A HREF=#"
. lc($&) $kws{ic ($&) }++ " NAME=" . lc($&) . $kws{lc ($&) } .
" >$&"]gei) {

$ret .= "<TR class=BglxTDxA NAME=p$curpar
HREF=\"javascript:pswitch($curpar)\">$curpar. ";

if ($par =.~ s{$re} [$kw{lc ($&) } = 1;
"$&"]gei) {

Wow, there are keywords in this paragraph!
push @klist, ("\"par$curpar\"");

$parno += 1;

insert header check here

66

if ($par =- m/A<h>.*<\/h>/)
{
$ret .= "KEYWORDS-DEV:

. join(" ", keys %kw) . "";
}

$ret .= "</TDx/TR>\n" ;
$par = $self->restoreLinks($par);
$par =~ s/\n/
\n/gis;

$ret .= "<TR class=Bg2><TD>" . $par . "</TDx/TR>\n"
$curpar += 1;

}
$ret .= "</TABLE>\n";
if($self->{MXDISPLAY}) {

$ret .= "<P>" . $vector->mxdisplay();
}
if($self->{VFDISPLAY}) {

$ret .= "<P>" . $vector->vfdisplay();
}

my $js = <<"EOT";
<STYLE>
BODY
{

BACKGROUND-COLOR: white;
FONT-FAMILY: Verdana, Arial, Helvetica;
FONT-SIZE: 8pt;
MARGIN: 4px

}
TD
{

FONT-FAMILY: Verdana, Arial, Helvetica;
FONT-SIZE: 8pt

}
• Bgl
{

BACKGROUND-COLOR: #dddddd
}
.Bg2
{

BACKGROUND-COLOR: #eeeecc;
FONT-SIZE: lOpt;
BACKGROUND-COLOR: #dddddd;
FONT-SIZE: 8pt;

}
■ Bg3
{

67

BACKGROUND-COLOR: #dddddd;
FONT-SIZE: 8pt;

}
</STYLE>
<script language=javascript>
EOT
$js .= "var klist = new Array(" . join((@klist)) .
");\n";
$js .= <<"EOT";
parent.menu.setParNo(klist.length);
function kvalue(n) {

return klist[n];
}
EOT
$js .= $vector->mxscript();
$js .= <<"EOT";
function pswitch(par) {

// alert("pswitch -- "+par);
parent.menu.setParLink(par, plist[par].length);

}
function setLocation(par, n) {

// alert("setLocation -- "+par+" "+n);
// alert ("Hash set " + plist [par] [n]) ;
parent.menu.setParValue(vlist[par][n], plist[par][n])
// document.hash.location = + plist[par] [n] ;
// alert("Hash Location -- "+document.hash.location);

}
function linkto(url) {

parent.nav.newurl(url) ;
}
</script>
EOT
return ($js , $ret);
}
Read in the stopwords.
sub stop_words {

my $self = shift;
open KW, 'stop_words.txt' or die $!;
my @kw = map {chop;$_} <KW>;
close KW;

return \@kw;
}
CREATE A BEST WORDS LIST

sub fathomAnalyze {

68

my $self = shift;
my $txt = shift;
my $fathom = $self->{FATHOM};
if(!$fathom) {

$fathom = new Lingua::EN::Fathom;
$self->{FATHOM} = $fathom;
$txt =~ s@</?P>@@gis;
$fathom->analyse_block($txt);

}
my %uniq_words = $fathom->unique_words();

my @kws = keys %uniq_words;
##print "KWS new : @kws
";

return \@kws;
}
dump the top 10 keywords
sub dumpTopKeywords {

my $self = shift;
my $count = $self->{COUNT}; ## Count of the number

of keywords to analyze
return $self->dumpKeywords('num1, $count);

}
sub dumpKeywords {

my $self = shift;
my $dir = shift; # sort by either alpha, or num
$dir = "alpha" unless $dir;
my $len = shift;
$len = 0 unless $len;
my %uniq words = %{$self->{STEMCOUNT}};
my $word;
my $ret;
my @list = sort keys %uniq_words;

@list = sort keys %uniq_words;
if($dir eq 'num') {

@list = sort { $uniq_words{$b} <=>
$uniq_words{$a} } keys %uniq_words;

}
if($len) {
splice @list, $len;

}
$ret = "<TABLE>\n";
foreach $word (@list)
{

69

$ret .= "<TRxTD ALIGN=right>" .
$uniq_words{$word}. "</TDxTD>$word</TDx/TR>\n"; # outputs
the word and frequency.

}
$ret .= "</TABLE>\n";
return $ret;

Get the top n Stem Keywords. Also generate the
equivalent array
of real keywords (which will have more than n keys, and
display unstemmed)
sub getStemKeywords {

my $self = shift;
my $len = shift;
my $stems = $self->{STEMS};
my $stemcount = $self->{STEMCOUNT};
my $keyl_splited = $self->{EXTRAKEY};
my $ tmp;
my $textk = $self->{TEXT}; ## Text that contains the

keywords
my @list = sort { $stemcount->{$b} <=> $stemcount-

>{$a} } keys %$stemcount;
splice @list, $len;
my @keyl_splited;

now find all the words in the other list
my @klist = () ;

foreach $tmp (@{$keyl_splited}){
push (@klist, $tmp);

}
print "Extra keywords:
";
foreach $tmp (@{$keyl_splited}){
my $count = () = $textk =~ /\b\Q$tmp\E\b/gi;
print "$count $tmp
";

}
for (keys %$stems) {

my $w = $_;
for (@list) {

if($stems->{$w} eq $_) {
push @klist, $w;

last ;
}

}
}
return(\@list, \@klist);

}

70

replace words with stemmed words in the paragraphs.
sub getStemParagraphs {

my $self = shift;
my $text = $self->{REDUCEDTEXT};
Get list of multi-word stems
my $stems = $self->{STEMS};
my %seen = () ;
map { $seen{$_} ++ } values %$stems;
my @list = grep { $seen{$stems->{$__}} > 1} keys

%$stems;
replace those words in the text
my $re = "(\\b" . join("\\b|\\b", (@list)) . "\\b)"
$text =~ s{$re}[$stems->{lc($&)}]gise;
break into paragraphs
my @plist = ($text =~ m@<P>\n(.*?)\n</P>\n@gis);
create a key list
my %kseen = () ;
my @klist = grep { ! $kseen{$_} ++ } map {

$seen{$stems->{$_}} > 1 ? $stems->{$_} : $_ } keys
%$stems;

return (\@plist, \@klist);
}
sub getKeywords {

my $self = shift;
my $fathom = $self->{FATHOM};
my %uniq_words = $fathom->unique_words;
my @list = grep { $uniq_words{$_} > 1 } keys

%uniq_words;
my @list = keys %uniq_words;
return \@list;

}
sub getParagraphs {

my $self = shift;
my $text = $self->{TEXT};
my @list = ($text =~ m@<P>\n(.*?)\n</P>\n@gis);
return \@list;

}

71

VECTOR PERL CODE

Vector.pm

package Vector;
use strict;
Make the vector.pl into a package
Input arguments to Vector are
1. a reference to an array of paragraphs
2. a reference to an array of keywords
sub new {

my $class = shift;
my $self = {};
my @args = @_;

bless($self, $class);

$self->init(@_);
return $self;

}
sub init {

my
my
my
my
my

unshift

$self = shift;
$par = shift;
$kys = shift;
@P = @$par;
@vector = @$kys;
@P,j oin"\n",@P;
map {my @f =

my $P =

my %f;
@f{@vector} = map{ 0+@{[$p=~/\b$_/gi]} } ©vector;
\%f} @P;
my @v = map{

my $f =
my %v ;
@v{@vector} = map{

##log(l + $f->{$_})*log(3/$f[0] {$_})
$f[0]{$_} && log(l+$f->{$_})*log($#P/$f[0]{$_})

} ©vector;
\%v;

}@f;
$self->{VECTOR} = \@vector;
$self->{v} = \@V;
$self->{F} = \@f;
Create the matrix

72

vector.pl

my %matrix = () ;
my ($i,$j) ;
for $i (l..$#v){ for $j (1..$#v){

if($i == $j) {
$matrix{"$i,$j"} = 1;

} else {
$matrix{"$i,$j"}=sqrt($self->SIM($v[$i],$v [$j]));

}
} }
$self->{MATRIX} = \%matrix;
}
sub mx {

my $self = shift;
my $i = shift;
my $j = shift;
my $matrix = $self->{MATRIX};

return $matrix->{"$i,$j"} ;
}
Create a piece of javascript to recreate this matrix on
the browser
sub mxscript {

my $self = shift;
my ($i, $j) = (0,0);
my $matrix = $self->{MATRIX};
my $v = $self->{v};
my @vw = @$v;
my $ret = "" ;

$ret = "var plist = new Array();\n";
$ret .= "var vlist = new Array();\n";
for $i (l..$#vw) {
my $ii = $i-l;

my $ii = $i;
my $PP = "plist[$ii] = new Array(";
my $w = "vlist [$ii] = new Array (" ;
my %r = () ;
for $j (1. . $#vw) {

my $jj = $j-l;
my $jj = $j;
if($matrix->{"$i,$j"}) {

$r{$jj} = sprintf("%0.6f", $matrix-
>{"$i,$j"});

}
}

73

sort this stuff numerically
my @app = () ;
my @aw = () ;
map {

push @app, "\"p$_\"";
push @aw, $r{$_};

} sort { $r{$b} <=> $r{$a} } keys %r;
$pp .= join (@app);
$w .= join (@aw) ;
$ret .= $pp . ");\n";
$ret .= $w . ");\n";

}
return $ret;

}
Note: This routine is only used internally

sub SIM{
my $self = shift;
my $vector = $self->{VECTOR};
my($vl,$v2) = @_;
my ($s0,$sl,$s2) = (0,0,0) ;
for(@$vector){

$sl += $vl->{$_}**2;
$s2 += $v2->{$_}**2;
$s0 += $vl->{$_}*$v2->{$_};

}
if($sl == 0 || $s2 == 0) {
return (0) ;

}
return $s0*$s0/ ($sl*$s2);

}
Make a table display
sub mxdisplay {

my $self = shift;
my ($i, $j) = (0,0);
my $matrix = $self->{MATRIX};
my $vw = $self->{v};
my @v = @$vw;
my $ret = "" ;

$ret = "<table cellpadding=l cellspacing=l
border=0>\n";
for $i (1..$#v){
my $ii = $i -1;
my $ii = $i; # start at pi

74

$ret .= "<tr class=bg3 xtdxa
href=\ "#p$ii \ " >p$ii</ax/td> " ;

for $j (1..$#v){
$ret .= sprintf("<td>%5.2f</td>",$matrix-

my $m = $matrix->{"$i,$j"};
my $c = qw("red" "orange"

"brown")[($m>0.3)+($m>0.6)+($m>0.8)];
$ret .= sprintf ("ctdxfont

color=$c>%5.2f </ fontx/td>", $matrix-> { "$i, $ j " })
}

}
$ret .= "</tr>\n";
$ret .= "</table>\n";
return $ret;

}
sub vfdisplay {

my $self = shift;
my ($i, $j) = (0,0);
my $matrix = $self->{MATRIX};
my $vw = $self->{v};
my @v = @$vw;
my $fff = $self->{F};
my @f = @$fff;
my @vector = @{$self->{VECTOR}};
my $ret = "";
$" = "<td>";
$ret = "<table cellpadding=l cellspacing=l

border=0>\n";
$ret .= "<tr

class=bg3xtdx/tdxtd>@vector</tdx/tr>\n" ;
for(1..$#v) {

$ret .= "<tr
class=bg3xtd>p$_</tdxtd>@{$f [$_] } {@vector}</tdx/tr>\n"

}
$ret .= "</table>\n";
$11 _ If II .“ / z
$ret .= "<P>\n";
for(1..$#v){

$ret .= "v$_=(@{$v[$_]}{@vector})
\n";
}

return $ret;
}
l;

75

__END__
$" = " ,\t" ;
print "\t@vector\n";
for(1..$#P){

print "p$_:\t@{$f[$_]}{@vector}\n";
}£; II _ „ ii .
for(1..$#v){

print "v$_=(@{$v[$_]}{@vector}) \n";
}
for $i (l..$#v){ for $j (l..$#v){
print "SIM(vi,vj)=",sqrt(SIM($v[$i],$v[$j])),"\n";

}
#########MATIX FORMAT
for $i (1..$#v){

for $j (1) {
if($i==$j){

$s[$i] = -1;
}else{

$s [$i] = SIM($v[$i] , $v[$j]) ;
}

}
}
for $i (sort{$s[$b]<=>$s[$a]}1..$#v){
print "P$i";
for $j (1..$#v){

if($i==$j){
print " x "

}else{
printf("%5.2f",sqrt(SIM($v[$ i] ,$v[$j])))

}
}
print "\n";

}

76

URL_TEXT CODE

url_text.pi

#!/usr/bin/perl -w
##-l/web/public/grad/sdesar
###
#####################################
#This script does the following
#1. file.txt- converts html to ascii
#2. file.html- fetch the html file.
#3. fileParse.txt - Parse the articles, prepositions, etc.
to create the keywords to be analyzed.
#4. fileHeader.html- gets the headers from file.html and
creates anchors.
#5. stop_words- List of words which are to be parsed....
a, the, and, etc.,
I got this from http://www.nzdl.org
#This file contains the following Routines
#1. convert to plain_text
#2. copy HTML file
#3. parse data
#4. get all the headers and place it after the <BODY> tag
and make them anchors
####################################
use FindBin qw($Bin);
use LWP::Simple;
use HTML::Parser;
use CGI;
use PageParser;
my $cgi = new CGI;
my $url = $cgi->param('url');
my $keyl = $cgi->param('keywords');
my $count = $cgi->param('count1);
my $type = $cgi->param('type 1);
$type = 'text' unless $type;
use CGI qw(:standard);
print $cgi->header(); # ** leave this to display keywords
my @keyl_splited=split(",",$keyl);#split to array of 3words
my $BASE = "$Bin/tmp";
my $body = "NOTHING";
my $js = # Javascript to insert into the header;
my $STOPWORDS := ["the" II -3 IIz a. , "it" , "and",

"some", "my", "your", "an", "did",
"his", "hers", "he", "him", "her",

77

http://www.nzdl.org

"she", "that", "those", "then", "was",
"is", "would", "for", "with", "there",
"of", "such", "they", "by", "you",
"to", "on" , "are", "do" , "will",
"in" , "be", "how", "can", "our",
"or" , "this", "what", "who", "when",
"we"] ;

if($url) {
my $content = get($url);
if($content) {

my $pp = PageParser->new(
HTML => $content,
URL => $url,
STOPWORDS => undef,
EXTRAKEY => \@keyl_splited,
COUNT => $count,
VFDISPLAY => # Set to true if you want
MXDISPLAY => "", # Set to true if you want)

Statsh away some text files for testing purposes
open OUT, ">$Bin/tmp/par$$.txt";
print OUT join("\n\n", @{$pp->getParagraphs()})
close OUT;
open OUT, ">$Bin/tmp/keys$$.txt";
print OUT join("\n", @{$pp->getKeywords()});
close(OUT);
$pp->analyze();
if($type eq 'text') {

my $text = "";
($js, $text) = $pp->dumpParseText () ;
$body = <<"EOT";

< BODY > $ t ext </BODY>
EOT }

elsif($type eq 'html') {
$body = $pp->dumpHTML();

} } else {$body = <<"EOT";
<BODYxCENTER>
Content not found at $url.
</CENTER> </BODY>
EOT }
}else { $body = <<"EOT";
<BODYxCENTER>Please enter a URL.</CENTER></BODY>EOT}
print $cgi->header(-type => 'text/html');
print <<"EOT";
<HTMLxHEAD>$js</HEAD>$body</HTML>EOT
1;

78

FRAME CODE

frame.html

<head>
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
<title>Web Texturizer</title>
</head>

<frameset rows="70,*" cols="*">
<! --

<frame name="nav" scrolling="no" noresize
target="contents" src="test.cgi">

- - >
<frame name="nav" scrolling="no" target="contents"

src="urlform.html">
<frameset cols="190,*">

<frame name="menu" target="main" src="menu.html">
<frame name="content" src="content.html">

</frameset>
<noframes>
<body>
<p>This page uses frames, but your browser doesn't

support them.</p>
</body>
</noframes> </frameset>

</html>

79

URLFORM CODE

urlform.html

<html>
<head>
cmeta http-equiv="Content-Language" content="en-us">
<meta http-equiv="Content-Type" content="text/html;
charset=windows-1252">
<title>Web Texturizer</title>
<script language="JavaScript">
function switchurl(frm, type) {

parent.content.location = "/cgi-bin/webtext-
dev/url_text.pi?url="+frm.T1.value+"&type="+type+"&keywords
="+frm.T2.valued' &type="+type+"&count="+frm.C2.value;}
function newurl(url) {

document.frml.T1.value = url;
parent.content.location = "/cgi-bin/webtext-

dev/url_text.pl?url="+url+"&type=text";
}</script></head>
cbody bgcolor="#86A2FC" TEXT="WHITE">
<form name=frml ACTION="/cgi-bin/webtext-dev/url_text.pi"
METHOD="GET">

ctable width="100%" border="0" bgcolor="86A2FC"
height="34">

ctrxtd width="26%" height = "29" xbxfont face= "Verdana,
Arial, Helvetica, sans-serif">Web

<font face="Verdana, Arial, Helvetica, sans-
serif'ximg src="images/logo.jpg" width="43" height="33">

Texturizer</f ontx/bx/td>
<td width="19%" height="29"> <p align="right">Enter

URL: </td>
<td width="16%" height="29"xinput type="text"
value="http://" name="Tl" width=30 size="30"x/td>
<td width="8%" height="29"> <p align="right">Keywords:</td>
<td width="ll%" height="29"xinput type="text" name="T2"
width=20 size="20"x/td>
<td width = "5%" height="29"xp align ="right">Count: <td>
<td width="4%" height="29"xinput type="text" value="10"
name="C2" width=10 size="5"> </td>
<td width="ll%" height="29"> cinput type="button"
value="Display Text" name="B2"
onclick="switchurl(this.form, 'text'); return false">
</td> </tr> </tablex/form>
<SCRIPT LANGUAGE="JavaScript">

80

document.frml.T1.focus();
function keydownText() {

if (event.keyCode == 13) {
switchurl(document.frml,'text');
return false;

}return true;}
document.frml.T1.onkeydown = keydownText;
document.frml.T2.onkeydown = keydownText;
</SCRIPT>
</bodyx/html>

81

// alert("setParNo("+n+")");
parmax = n;
parcurrent = 0;
document.inp.parcurrent.value =

parent.content.kvalue(parcurrent);
}
// This is called when someone clicks on the paragraph on
the frame
function setParLink(n,m) {

// alert("setParLink("+n+"," +m+")");
parmaxlinks - m;
linkcurrent = n;
pariink = 0;

document.inp.pariink.value = ""+n;
// Calling this function will cause the value and

paragraph to be set
parent.content.setLocation(linkcurrent, pariink);}

function setParValue(v, Ink) {
// alert("setParValue("+v+")");
document.inp.parvalue.value= v;
document.inp.1inkcurrent.value = Ink;
parent.content.location.hash = Ink;

}
</scriptx/head>
cbody bgcolor=#ffffff>
<div align="left">
ctable border="0" cellpadding="0" cellspacing="0"
width="100%">

<form name=inp>
cinput type=hidden size=l name=parcurrentxbr>

<p>Paragraph Similarity Measure:
Paragraph: <input type=text size=6 name=parlinkxbr>
Paragraph viewed: cinput type=text size=6
name=l inkcurrent xbr>
Measure: cinput type=text size=14 width=14
name=parvaluexbr> cbr>
ctable width="160"> ctr> ctdxa href="#"
onclick="nextlink(document.formname, -1);return false"ximg
src="images/14 .gif" name="B6"x/ax/tdxtdxa href="#"
onClick="nextlink(document.formname, l);return false"ximg
src="images/18 .gif" name="B5"x/ax/td> c/tr> c/table>
cbr> To change the paragraph measured against,
click on the paragraph number on the display to the right
(e.g. 'P3').
c/form> cp> c/tdx/tr> c/tablex/divx/bodyx/html>

83

CONTENT CODE

content.html

#Sample code of the content page when the user enters a url
#examp1e: http://www.textseem.ehost4u.com/webtext-
dev/docs/related.html
Content-Type: text/html; charset=ISO-8859-l
<HTMLxHEADx STYLE >
BODY
{

BACKGROUND-COLOR: white;
FONT-FAMILY: Verdana, Arial, Helvetica;
FONT-SIZE: 8pt;
MARGIN: 4px
VLINK: Blue;
ALINK: Blue;
LINK: grey;

}
TD
{ FONT-FAMILY: Verdana, Arial, Helvetica;

FONT-SIZE: 8pt
}
.Bgl
{
BACKGROUND-COLOR: #ffffff;

}
•Bg2{

BACKGROUND-COLOR: tfeeeecc;
FONT-SIZE: lOpt;
BACKGROUND-COLOR: #dddddd;
FONT-SIZE: 8pt;

}
• Bg3
{

BACKGROUND-COLOR: #ffffff;
FONT-SIZE: 8pt;

}
• Bg4
{

BACKGROUND-COLOR: #CCCCCC;
FONT-SIZE: 8pt;

}
■ Bg5
{

84

http://www.textseem.ehost4u.com/webtext-dev/docs/related.html
http://www.textseem.ehost4u.com/webtext-dev/docs/related.html

BACKGROUND-COLOR: #ffffff;
FONT-SIZE: 8pt;

}
■ Bg6
{

BACKGROUND-COLOR: black;
FONT-SIZE: 8pt;

}
a.thelink:link {

color : #dddddd;
text-decoration : none;
font-size : lOpx;
font-family : verdana;
}
a.thelink:active {
color : #dddddd;
font-size : lOpx;
text-decoration : none;
font-family : verdana;
}
a.thelink:visited {
color : #dddddd;
font-size : lOpx;
text-decoration : none;
font-weight : bold;
font-family : verdana;

}
a.thelink:hover {
color : Blue;
font-size : lOpx;
text-decoration : none;
font-family : verdana;

}
</STYLE>
<script language=javascript>
var klist = new Array("pari","par2");
parent.menu.setParNo(klist.length);
function kvalue(n) {

return klist[n];
}
var plist = new Array();
var vlist = new Array();
plist [1] = new Array("pi","p2") ;
vlist [1] = new Array(1.000000,0.312349)
plist [2] = new Array("p2","pi");

85

vlist[2] = new Array(1.000000,0.312349);
function pswitch(par) {
// alert("pswitch -- "+par);

parent.menu.setParLink(par, plist[par].length);
}
I/var current Paragraph=nul1;
function setLocation(par, n) {
// alert("setLocation -- "+par+" "+n);
// alert("Hash set " + plist[par][n]) ;

paranum= plist [par] [n] ;
parent .menu. setParValue (vlist [par] [n] , plist [par] [n]) ;

// ADDED BELOW
// var p=document.getElementsByName(plist[par][n]) ;
//alert(p);
// alert (p. innerHTML) ,-// tell me what this says and if the
paragraph you want is in there
//p.style.color="red";

// if (currentParagraph) {
// currentParagraph.style.color="black";

// }
I/currentParagraph=p;

// alert("testing"+paranum)
document.getElementByld("tr"+paranum).setAttribute("cl

assNarae","Bg5")
document.getElementByld("trtwo"+paranum).setAttribute(

"className","Bg4")
}

function linkto(url) {
parent.nav.newurl(url);

}

</script>

</HEAD>

<BODY alink="#ffffff" link="#ffffff" vlink="#ffffff">

<TABLE>
</TABLE>
<TABLE cellpadding=0 cellspacing=0>
<TR ID=trpl class=Bgl><TD><A NAME=pl class=thelink
HREF="javascript:pswitch(1)" >. </TDx/TR>

86

<TR ID=trtwopl class=BglxTDxB>Contribute as much as
you can to employer-sponsored retirement plans. It's
easy and convenient. You typically get a tax break
on contributions so putting a dollar toward
retirement means giving up perhaps only 60 or 70
cents in spending power now. If your employer offers
to match contributions, put in at least
enough to get the entire match. If you don't, you're
passing up a free pay raise. </Ax/TDx/TR>
<TR ID=trp2 class=BglxTDxA NAME=p2 class=thelink
HREF="javascript:pswitch(2)" >. </TDx/TR>
<TR ID=trtwop2 class=BglxTD>Everyone is eligible to
contribute to an IRA. The only question is
which type you should choosea traditional IRA
or a Roth IRA. The answer depends on
your financial situation. A traditional IRA
may or may not offer an up-front tax
deduction on your contributions,
depending on your income, but it always
offers tax-deferred investment growth. A
Roth IRA is never deductible, but it
offers tax-free withdrawals during your
retirement. </Ax/TDx/TR>
</TABLE>
<Pxtable cellpadding=l cellspacing=l border=0>
<tr class=bg3 xtdxa href="#pl">pl</ax/tdxtdxfont
color=> 1.00</fontx/tdxtdxfont color="blue" >
0.31</fontx/tdxtr class=bg3 xtdxa
href ="#p2 " >p2</ax/tdxtdxfont color="blue" >
0.31</fontx/tdxtdxfont color=> 1.00</fontx/tdx/tr>
</table>
<Pxtable cellpadding=l cellspacing=l border=0>
<tr
class=bg3xtdx/ tdxtd>tax<td>plans<td>deduct<td>choosea<td
>employer-
sponsored<td>question<td>free<td>offer<td>answer<td>roth<td
>raise<td>spending<td>eligible<td>convenient<td>means<td>de
pend<td>power<td>break<td>dollar<td>match<td>giving<td>easy
<td>contribut<td>withdrawals<td>income<td>typically<td>grow
th<td>ira<td>don't<td>entire<td>tax-free<td>type<td>tax-
deferredctd>pay<td>traditional<td>investment<td>passing<td>
situation<td>cents<td>putting<td>retirement<td>employer<td>
f inane ial</tdx/ tr>
<tr
class=bg3 xtd>pl</tdxtd>l<td>l<td>O<td>O<td>l<td>O<td>l<td

87

>l<td>O<td>O<td>l<td>l<td>O<td>l<td>l<td>O<td>l<td>l<td>l<t
d>2<td>l<td>l<td>3<td>0<td>0<td>l<td>0<td>0<td>l<td>l<td>0<
td>0<td>0<td>l<td>0<td>0<td>l<td>0<td>l<td>l<td>2<td>2<td>0
</tdx/tr>
<tr
class=bg3xtd>p2</tdxtd>3<td>0<td>2<td>l<td>0<td>l<td>l<td
>3<td>l<td>2<td>0<td>0<td>l<td>0<td>0<td>2<td>0<td>0<td>0<t
d>0<td>0<td>0<td>2<td>l<td>l<td>0<td>l<td>5<td>0<td>0<td>l<
td>l<td>l<td>0<td>2<td>l<td>0<td>l<td>0<td>0<td>l<td>0<td>l
</tdx/tr>
</table>
<P>
vl= (-
0.480453013918201,0.480453013918201,0,0,0.480453013918201,0
,0,-
0.480453013918201,0,0,0.480453013918201,0.480453013918201,0
,0.480453013918201,0.480453013918201,0,0.480453013918201,0.
480453013918201,0.480453013918201,0,0.480453013918201,0.480
453013918201,-1.27024867474356,0,0,0.480453013918201,0,-
0,0.480453013918201,0.480453013918201,0,0,0,0.4804530139182
01,0,0,0.480453013918201,0,0.480453013918201,0.480453013918
201,-0.445448950393773,0,0)

v2= (-
0.960906027836403,0,0,0.480453013918201,0,0.480453013918201
,0,-
0.960906027836403,0.480453013918201,0,0,0,0.480453013918201
,0,0,0,0,0,0,0,0,0,-
1.00664825802964,0.480453013918201,0.480453013918201,0,0.48
0453013918201,-
1.64177259540142,0,0,0.480453013918201,0.480453013918201,0.
480453013918201,0,0,0.480453013918201,0,0.480453013918201,0
,0,-0.281046996500608,0,0.480453013918201)

</BODY>

</HTML>

88

REFERENCES

1. Tom Christiansen & Nathan Torkington, Peri Cookbook:,
0' Reilly & Associates, Inc., 1998.

2. William W. Cohen, Recognizing Structure in Web Pages
using Similarity Queries, American Association for
Artificial Intelligence, 1999; pp 60-66.

3. William W. Cohen, WHIRL: A word-based information
representation language, American Association for
Artificial Intelligence, Vol. 118, 2000; pp 163-196.

4. David Flanagan, JavaScript: The Definitive Guide, O'
Reilly & Associates, Inc., 1998.

5. Jeffery Friedl, Mastering Regular Expressions, 0'
Reilly & Associates, Inc., 1998.

6. M. F. Porter, An algorithm for suffix stripping,
Program, Vol.14 No. 3, July 1980; pp 130-137.

7. Randal L. Schwartz and Tom Christiansen, Learning Perl
Second Edition, 0' Reilly & Associates, Inc., 1997.

8. Kerstin Voigt, A Tool for Individualized Information
Navigation That Adapts to User Domain Expertise,
American Association for Artificial Intelligence,
1997; pp 1-18.

9. Kerstin Voigt, SKIPPER: A Tool that Lets Browsers
Adapt to Changes in Document Relevance to Its User,
American Association for Artificial Intelligence,
1996; pp 1-17.

10. Kerstin Voigt, Reasoning about Changes and Uncertainty
in Browser Customization, American Association for
Artificial Intelligence, 1996 pp 1-6.

11. Kerstin Voigt, Sacrificing vs. Salvaging Coherence:
An Issue for Adaptive Agents in Information
Navigation, American Association for Artificial
Intelligence, 1995; pp 1-12.

89 J

12. Clinton Wong, Web Client Programming with Perl, O'
Reilly & Associates, Inc.', 1998.

90

	Web Texturizer: Exploring intra web document dependencies
	Recommended Citation

	I

	I

	i

	I

	I

	[

	i

	j

	i

	i

	i

	i

	i

	!

