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Abstract

We live in an age where we willingly provide our social security number, credit

card information, home address and countless other sensitive information over the In-

ternet. Whether you are buying a phone case from Amazon, sending in an on-line job

application, or logging into your on-line bank account, you trust that the sensitive data

you enter is secure. As our technology and computing power become more sophisticated,

so do the tools used by potential hackers to our information. In this paper, the underly-

ing mathematics within ciphers will be looked at to understand the security of modern

ciphers.

An extremely important algorithm in today’s practice is the Advanced Encryp-

tion Standard (AES), which is used by our very own National Security Agency (NSA)

for data up to TOP SECRET. Another frequently used cipher is the RSA cryptosystem.

Its security is based on the concept of prime factorization, and the fact that it is a hard

problem to prime factorize huge numbers, numbers on the scale of 22048 or larger. Crypt-

analysis, the study of breaking ciphers, will also be studied in this paper. Understanding

effective attacks leads to understanding the construction of these very secure ciphers.
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Chapter 1

Introduction

Many of us realize that mathematics has more applications than we know; grow-

ing up we were constantly reminded that math can apply to almost everything. One of

those things is keeping our sensitive data secure. One of the earliest uses of cryptography

dates back two-thousand years, developed when Julius Caesar realized the need to encode

military messages to and from his commanders. It was a simple substitution cipher where

every letter would be replaced by a different letter. For Caesar’s Cipher the shift was 3

letters; so every “A” in your original message would be replaced by a “D”, every “B” by

a “E,” and so on. To decrypt the message simply shift 3 letters in the opposite direction.

Frequency analysis provides a method to easily break substitution ciphers like Ceaser’s

Cipher, especially with the aid of technology, so cryptographers had to invent new ways

to encode information. Symmetric ciphers like the Data Encryption Standard (DES) and

the Advanced Encryption Standard (AES) encode blocks of information at a time using

a private key that all parties trying to communicate must know. Asymmetric ciphers like

RSA and Diffie-Helman key exchange use computationally hard mathematical problems

to allow one key to be public, so anyone can send an encrypted message, but also incor-

porate a private key that only selected individuals know. The private key allows one to

decrypt the message.

Sometimes we are required to have sensitive data stored on a database, like a

password or a pin number to a debit card. These are not messages that you want someone

to decode using a key, you just want the data stored to verify it is you every time you log

into a website or make a withdrawal from an ATM. For this, hash functions have proven
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useful. Recent applications of hash functions have exposed the world of cryptography to

a much larger audience. For example, the invention of Blockchain technology, and as a

consequence Bitcoin, is shaping the future: from being able to securely send or receive

money from someone you may not trust, to establishing a smart contract between two

parties that everyone in the network can bear witness to. As we will see, cryptography

is a revolutionary application of mathematics.
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Chapter 2

Data Encryption Standard

2.1 Motivation

In 1977, the National Security Agency (NSA) announced that there was a need

for a secure standardized cipher for commercial use. IBM created the Data Encryption

Standard (DES), a block cipher that encodes blocks of bits at a time, as opposed to

a stream cipher, which encodes only one bit at a time. Although stream ciphers are

impossible to break using a cryptographic secure random number generator, they are too

impractical for general applications since keys can not be reused. Block ciphers are more

practical because keys are of reasonable length, at most 256 bits, and can be used securely

for a whole session of communication.

2.2 Security

In the 1970’s, block ciphers were in high demand because of how efficient they

are in encoding information. For example, the DES can encrypt 64 bits at a time. The

challenge was creating a block cipher both secure from attacks that plagued the block

ciphers of the past and, as later discovered, differential cryptanalysis attacks. The inven-

tor of information theory, Claude Shannon, stated that a secure block cipher must have

two main attributes: confusion, which is a basic substitution table, and diffusion, which

means a single bit should affect the entire message. Although differential cryptanalysis

was not public knowledge until 18 years after the publication of DES, the NSA and IBM

research teams knew of the attack and created their substitution tables to be resilient to
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this attack. Today, DES is no longer secure after being under the microscope of so many

cryptographers for over 20 years. But 3DES, which encrypts using DES three times in a

row, is still a commonly used block cipher.

2.3 Understanding the Data Encryption Standard

DES is not too complex from an abstract perspective; encryption relies on con-

fusion and diffusion functions. First, DES takes 64 bits of data at a time. The 64 bits

will go through 16 rounds that all have the same functionality. First, the 64 bits are split

into two groups, each consisting of 32 bits. Let us denote the first set of 32 bits L0, the

last 32 bits by R0. In any one round of DES, only the first 32 bits are encrypted. For

example, round 1 would encrypt L0 and set the encrypted 32 bits to be R1. The set R0

is kept the same and set to L1. For round 2 of encryption, L1 is encrypted and set to be

R2, while R1 is unchanged and set to L2. This process continues for 16 rounds.

2.4 Encryption Method

Now, with a general understanding of how DES encrypts, we can look at the

inner workings of each round and how the encryption actually works. As stated before,

64 bits are encrypted over 16 rounds. All rounds have the same operations, so we need

only understand one round. For simplicity, let us look at the first round of DES for 64

bits of data. The 64 bits of data are divided in half, giving us L0 and R0 as described

above. The block of 32 bits, R0, has two roles in the first round: R0 is set to be L1 ready

to be encrypted in the next round, and R0 along with the round key K0, are input into

a particular function f , which we describe below. We set R1 = L0 ⊕ f(R0,K0), where ⊕
denotes the XOR operation.

“Exclusive or” (XOR) is a logical operation that outputs true only when inputs

differ. For example,

100011102

⊕ 100110002

= 000101102.

The function f is where the confusion and diffusion take place in the form of
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Table 2.1: Expansion Function bit Mapping

input 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

output 31 0 1 2 3 4 3 4 5 6 7 8 7 8 9 10

11 12 11 12 13 14 15 16 15 16 17 18 19 20 19 20

21 22 23 24 23 24 25 26 27 28 27 28 29 30 31 0

Table 2.2: S1 Table With Decimal Numbers

S1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

four operations. First, the 32 bits pass through an expansion function E, making the 32

bits into 48 bits. Second, the 48 bits are XOR’d with the 48-bit round sub-key. Third, the

48 bits are separated into eight groups of 6 bits each and are changed via corresponding

substitution table S: S1 for the first group, S2 for the second group, and so on. Each

substitution table inputs 6 bits and outputs 4 bits, leaving us with 32 bits after the

substitution. Finally the 32 bits are permuted.

The expansion function E applies diffusion, something essential for block ciphers;

E takes 32 bits and outputs 48 bits. This is done by sending half of the 32 bits to two

locations. The other half of the 32 bits are mapped to just one bit in the output of E.

See Table 2.1 for a complete mapping of bits performed by E.

After the expansion function, the 48 bits are then XOR’d with the 48 bit round

key. We then still have 48 bits.

The 48 bits, in order from left to right, are separated into 8 groups, each con-

taining 6 bits of data. Each group of 6 bits have a particular address in a substitution

box. There are 8 different substitution boxes, one for each group. Intuitively, the first

group would use box S1, the second group box S2, and so on. We will illustrate this

process with an example. For simplicity we will look at only the first 6 bits of data and

calculate the output using S1.
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Reading the S1 table may seem somewhat counterintuitive at first, but the

process is fairly straightforward after seeing it done. For example, if the first 6 bits

of data are 0110012, we would convert the middle four bits 11002 to decimal numbers

giving us 12. This directs us to look at column 12. We then take the outside two bits

012 and convert it to the corresponding decimal number 1. This tells us to look at row

1. Finally, we take the entry in column 12, row 1, and convert back to base 2. Thus,

S1(0110012) = 9 = 10012. Another computation, S1(1101012) = 3 = 00112. So, 6 bits

in gives us 4 bits out. After all 8 groups have passed through their corresponding S-Box,

we are left with 32 bits. This S-box is the element of confusion that DES uses.

Finally, the bits go through a permutation which are then output to encrypt Li

via Ri+1 = Li ⊕ f(Ri,Ki).

2.5 Key Generation

DES is a block cipher that encrypts data over 16 rounds. For each of those

rounds an encryption key is used. DES starts with a 64-bit key that undergoes multiple

permutations to generate a unique key for each round. The key generation starts by

permutation choice 1 (PC1), Table 2.3. The number in Table 2.3 represents the new

location for each bit. For example, the fifty-seventh bit in the original 64-bit key would

be the first bit after the permutation, the forty-ninth bit would become the second bit,

and so on. Permutation choice 1 is only performed once, on the original 64-bit key. We

also note that only 56 bits of the original 64 bits remain after PC1. For this reason DES

has a cryptographic strength of a 56-bit cipher, not the strength of a 64-bit cipher. Next,

the 56 bits are split into two groups, each group being 28 bits long. The next permutation

is a left shift of bits in the two groups. For rounds 1, 2, 9, and 16, the shift is one spot

to the left. For all the remaining rounds, the shift is two spots to the left. We observe

that the left shift is one spot to the left for four rounds and two spots for the remaining

twelve rounds; thus the total number of left shifts is 28 spots. This coincides with the fact

that the two groups are each 28 bits long. The final permutation is called permutation

choice 2 (PC2) and works in the same way as PC1. See Table 2.4 for the permutation

that PC2 performs. The 48 bits that remain after PC2 are used as the encryption key. In

general, key generation would go as follows. The original 64-bit key undergoes the first

permutation PC1, leaving 56 bits. The 56 bits would be split into two groups each 28
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Table 2.3: Permutation Choice 1

57 49 41 33 25 17 9 1 58 50 42 34 26 18

10 2 59 51 43 35 27 19 11 3 60 52 44 36

63 55 47 39 31 23 15 7 62 54 46 38 30 22

14 6 61 53 45 37 29 21 13 5 28 20 12 4

Table 2.4: Permutation Choice 2

14 17 11 24 1 5 3 28 15 6 21 10

23 19 12 4 26 8 16 7 27 20 13 2

41 52 31 37 47 55 30 40 51 45 33 48

44 49 39 56 34 53 46 42 50 36 29 32

bits long. Let us denote the first 28 bits c0 and the second 28 bits d0. Both c0 and d0

are permuted via a left shift of one spot. We will call the first group c1 and the second

group d1 after the left shift. Next, the 56 bits that make up c1 and d1 undergo the second

permutation choice PC2. The 48 bits that remain are used as the first key for encryption.

For the second round of key generation, c1 and d1 undergo a left shift of one spot; after

the left shift c2 and d2 are permuted via PC2 where the resulting 48 bits are used for the

second round of encryption. For the third round of encryption c2 and d2 are shifted two

spots to the left. The resulting groups c3 and d3 are permuted via PC2 where the third

key for encryption is made. This process continues until 16 keys are generated for each

round of encryption.

2.6 Decryption

After all 16 rounds of encryption, the sender sends the final results L16 and

R16 to the intended receiver. Thus, the receiver will have L16 and R16 directly from the

sender. For symmetric ciphers, it is necessary for all parties to have the encryption key, so

it is assumed that the receiver has access to the key and the ability to compute all round

sub-keys. Once the receiver has all round keys, they need only do the steps in reverse

order. Starting from the last round, L16 = R15, so the first round of decryption needs
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only the calculation of L15. We know from encryption that R16 = L15⊕f(R15,K15), thus

R16 ⊕ f(R15,K15) = L15. This process continues until L1 and R1, the original message,

are retrieved.
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Chapter 3

Advanced Encryption Standard

3.1 Motivation

After attacks on DES became too efficient, there was a call by the NSA for a

new encryption standard. Unlike DES, which was developed in secret and then eventually

published a few years later, the need for a new encryption standard was announced as

a kind of competition. Many prominent cryptographers of the time formed teams and

created ciphers. In addition to the requirement to be very secure, there were other criteria

for submissions. Submissions must be 128-bit block ciphers, supporting 128-bit, 196-bit,

and 256-bit key lengths. Submissions must also be computationally efficient, enough so

for the commercial use the cipher was intended for. After a long evaluation process,

Rijndael, the submission by Vincent Rijmen and Joan Daemen, was chosen and became

the Advanced Encryption Standard (AES).

3.2 Security

Like DES, the security of AES comes from confusion and diffusion. The major

improvements to security in AES were the increased block length to 128 bits and the key

length. AES supports three different key lengths, 128, 198, and 256 bits. The different key

lengths require a different number of rounds to be considered secure. A 128-bit key needs

10 rounds, a 196-bit key requires 12 rounds, and a 256-bit key calls for 14 rounds. The

number of rounds for the various key lengths was determined by the team that developed

the cipher.
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Table 3.1: S-box for AES in Hexadecimal

S-Box 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

10 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 A0

20 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

30 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

40 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84

50 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

60 D0 EF AA FB 43 4D 33 52 45 F9 02 7F 50 3C 9F A8

70 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

80 CD 0C 13 EF 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

90 60 B1 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB

A0 E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79

B0 E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08

C0 BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A

D0 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E

E0 E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

F0 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

Understanding Cryptography a Textbook for Students and Practitioners

3.3 Understanding the Advanced Encryption Standard

The AES is a byte cipher in the sense that the operations that apply confusion

and diffusion work with bytes; bytes are simply larger bits, 8 bits make a single byte.

The AES is also a round cipher, confusion and diffusion take place in multiple rounds.

Before the first round, the original key K0 is XOR’d byte by byte to the original 16 bytes

of data. In all the rounds except the last, there are four operations. The first operation

is the use of a substitution box. As we know from DES, this is an element of confusion.

Unlike DES, there is only one substitution box in AES. After substitution, there is a shift

row operation followed by a mix column operation, together applying diffusion among

the bytes. Finally, there is a key, which is XOR’d byte for byte. The last round skips

the mix column operation. The generation of the S-box for AES requires some general

understanding of Galois fields, in particular GF(28). This is significant because the S-box

has a mathematical generation that can be understood, as opposed to the S-boxes of DES

that were made in secret and seemingly random.
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3.4 Encryption Method

The key length does not actually change what operations take place in the

encryption, although longer keys have more rounds. For simplicity we will look at en-

cryption using a 128-bit key length which calls for 10 rounds. AES will encrypt 128 bits

at a time, regardless of key length. AES works with bytes, so the 128 bits are broken

up into bytes producing 128
8 = 16 bytes. In this paper, the 16 bytes will be converted

to hexadecimal. The 16 bytes are XOR’d with the original key. Then the 16 bytes pass

through the substitution box AES employs. The S-box for AES is more intuitive than

the S-box of DES. For example, if the byte in question was “C3”, we would use “C”

to determine which row to use, and “3” to determine which column. Referring to Ta-

ble 3.1, we see “C3” would have an output of “2E”. A byte of “F1” would use row F

and column 1, giving output “A1”. This is the confusion element of AES. The remain-

ing operations for the round are easier to understand via a matrix. We name the 16

bytes of data after the original key: A0, A1, A2, ..., A15. Suppose after the S-box we have

S(A0) = B0, S(A1) = B1, ..., S(A15) = B15, still leaving us with 16 bytes. Entering the

bytes column-wise into a 4× 4 matrix produces,

M0 =


B0 B4 B8 B12

B1 B5 B9 B13

B2 B6 B10 B14

B3 B7 B11 B15

 .

A shift row operation will shift the first row zero spots to the left, the second row one

spot to the left, the third row two spots to the left, and the fourth row three spots to the

left. Hence, M0 is mapped to,

M1 =


B0 B4 B8 B12

B5 B9 B13 B1

B10 B14 B2 B6

B15 B3 B7 B11

 .
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A mix column operation is the next step and it involves multiplying M1 by the constant

matrix

C =


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

 ,

where the matrix multiplication done over GF (28). The resulting matrix would then be

XOR’d entry-wise with K1, thus completing round 1.

3.5 Key Expansion

It would be unwise to use the same key for each round of AES encryption. So,

an algorithm was developed to take a 128-bit key, and using the original 128 bits, generate

unique keys for each of the 10 rounds. This process is called key expansion and goes as

follows.

Given an original 128 bit key, 16 bytes, we enter the bytes column-wise into a

4× 4 matrix. Let the first byte of the key be k0, the second byte be k1, and so on. Then

we have the key matrix

K0 =


k0 k4 k8 k12

k1 k5 k9 k13

k2 k6 k10 k14

k3 k7 k11 k15

 .
The columns are then stored in what are called words, w0 = {k0, k1, k2, k3},
w1 = {k4, k5, k6, k7}, w2 = {k8, k9, k10, k11}, and w3 = {k12, k13, k14, k15}. We need a

total of forty-four words for a 128-bit key; four words, the original four, are used before

the plain-text enters the first round. The remaining forty words are used four at a time,

for each of the ten rounds of encryption. To compute the next four words we would first

compute g(w3) and set w4 = w0⊕g(w3), w5 = w4⊕w1, w6 = w5⊕w2, and w7 = w6⊕w3.

In general, to calculate wi, wi+1, wi+2, and wi+3, where i is divisible by 4, we would

first compute wi = wi−4 ⊕ g(wi−1). We then use wi to calculate wi+1 = wi ⊕ wi−3,

wi+2 = wi+1 ⊕ wi−2, and wi+3 = wi+2 ⊕ wi−1.

Now, the function g operates in three steps. First it will shift the bytes to the left.

So, for example, w3 would be {k13, k14, k15, k12}. The bytes would then be substituted
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via the S-box as described in the encryption section. Finally, a round constant, ci, is

to be XOR’d. The round constant is generated recursively. To start, c1 = 012. Then,

the remaining round constants may by calculated by ci = 02 × ci−1. It is important

to note that × is polynomial multiplication over GF (28) reduced by the AES modulo

x8 +x4 +x3 +x+1. We note that 02 over GF (28) is multiplication with the corresponding

polynomial ci−1 by x.

3.6 Example of Encrypting a 128-bit Message

Alice would like to send the message “THE BOSS IS HERE” to Bob. Alice and

Bob have already agreed to use the key “APPLE SAUCE OLI!” in case of an emergency.

Throughout the paper all text to hex conversion is done via the American Standard Code

for Information Interchange (ASCII). Now, “THE BOSS IS HERE” in hexadecimal is

54484520424F53532049532048455245

and “APPLE SAUCE OLI!” is

4150504C45205341554345204F4C4921.

This is the key used before the first round of encryption. Let us compute the key expansion

with the given 128-bit starting key:

K0 =


41 45 55 4F

50 20 43 4C

50 53 45 49

4C 41 20 21

 .

We have w0 = {41, 50, 50, 4C}, w1 = {45, 20, 53, 41}, w2 = {55, 43, 45, 20}, and

w3 = {4F, 4C, 49, 21}. We must now compute g(w3), obtaining {4C, 49, 21, 4F} after the

left shift of the bytes. Next, using the S-box, Table 3.1, we get {29, 3B,FD, 84}. Last,

we XOR the word with the first round constant, {01, 00, 00, 00}. Consequently we have,

29 = 001010012,

2916 ⊕ 012 = 001010012 ⊕ 012

= 001010002

= 2816.
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The remaining entries of w3 are unchanged. This yields g(w3) = {28, 3B,FD, 84}. We

compute w4 as described above:

w4 = w0 ⊕ g(w3)

= {41⊕ 28, 50⊕ 3B, 50⊕ FD, 4C ⊕ 84}

= {D9, 6B,AD,C8}.

Performing the remaining XOR operations in the same way gives w5 = {9C, 4B,FE, 89},
w6 = {C9, 08, BB,A9}, and w7 = {86, 44, F2, 88}, giving us our first round key,

K1 = {D9, 6B,AD,C8, 9C, 4B,FE, 89, C9, 08, BB,A9, 86, 44, F2, 88}.

Now, as before, to compute the next four words we start by computing g(w7):

{86, 44, F2, 88} → {44, F2, 88, 86}

→ {1B, 89, C4, 44}

→ {19, 89, C4, 44}.

Multiplication by 2 in binary shifts the number in question to the left one place value

and inserts a zero into the one’s place, in much the same way as multiplying by 10 with

decimal numbers. Thus, computing the round constant is trivial until the 9th round,

where the previous round constant was 100000002 and multiplication by 02 would push

the ‘1’ out of the 8 bits that make the byte. To fix this, the polynomial representation

of 10000000 × 02 = x7 · x = x8, must be reduced back into the field GF (28) via the

polynomial x8 + x4 + x3 + x + 1. So, the polynomial representation of our 9th round

constant will be

x8 mod (x8 + x4 + x3 + x+ 1) ≡ x4 + x3 + x+ 1 mod (x8 + x4 + x3 + x+ 1),

which translates to our 9th round constant c9 = {00011011, 00, 00, 00}. We compute

the 10th round constant by multiplying the 9th round constant by 02, which yields

c10 = {00110110, 00, 00, 00}. Following the key expansion scheme as described, we obtain

all 10 round keys:

K0 = {41, 50, 50, 4C, 45, 20, 53, 41, 55, 43, 45, 20, 4F, 4C, 49, 21}
K1 = {D9, 6B,AD,C8, 9C, 4B,FE, 89, C9, 08, BB,A9, 86, 44, F2, 88}
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K2 = {C0, E2, 69, 8C, 5C,A9, 97, 05, 95, A1, 2C,AD, 13, E5, DE, 24}
K3 = {1D,FF, 5F, F1, 41, 56, C8, F4, D4, F7, E4, 59, C7, 12, 3A, 7D}
K4 = {DC, 7F,CD, 37, 9D, 29, 05, C3, 49, DE,E1, 9A, 8E,CC,DB,E7}
K5 = {87, C5, 59, 2E, 1A,EC, 5C,ED, 53, 32, BD, 77, DD,FE, 66, 90}
K6 = {1C,F6, 39, EF, 06, 1A, 65, 02, 55, 28, D8, 75, 88, D6, BE,E5}
K7 = {AA, 58, E0, 2B,AC, 42, 85, 29, F9, 6A, 5D, 5C, 91, BC,E3, B9}
K8 = {4F, 59, 39, EF,E3, 0B,BC,C6, 1A, 61, E1, 9A, 8B,DD, 02, 23}
K9 = {95, 2E, 1F,D2, 76, 25, A3, 14, 6C, 44, 42, 8E,E7, 99, 40, AD}
K10 = {4D, 27, 8A, 46, 3B, 02, 29, 52, 57, 46, 6B,DC,B0, DF, 2B, 71}

Now, we can start the encryption process. Entering our plain-text message into

a matrix as described in Section 3.4 we have

M0 =


54 42 20 48

48 4F 49 45

45 53 53 52

20 53 20 45

 .

We then XOR M0 entry-wise with the original key K0, obtaining
54 42 20 48

48 4F 49 45

45 53 53 52

20 53 20 45

⊕


41 45 55 4F

50 20 43 4C

50 53 45 49

4C 41 20 21

 =


15 07 75 07

18 6F 0A 09

15 00 16 1B

6C 12 00 64

 .

Next, we substitute each entry of our current matrix via the S-box from Table 3.1, which

gives us 
59 C5 9D C5

AD A8 67 01

59 63 47 AF

50 C9 63 43

 .
We then apply the shift row operation to get

59 C5 9D C5

A8 67 01 AD

47 AF 59 63

43 50 C9 63

 .
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The next step in Round 1 involves multiplying by the constant matrix

C =


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02


to obtain the matrix 

55 C7 B2 7D

98 B1 BD 42

BA 17 6E 0B

82 3C 6D 5C

 .
Finally, the above matrix is XOR’d entry-wise with K1, producing

M1 =


8C 5B 7B FB

F3 FA B5 06

17 E9 D5 F9

4A B5 C4 D4

 .

Round 1 is complete. This process repeats for 9 more rounds. The only exception is

Round 10 omits the shift column operation. Even after one round of AES, the 16 bytes

8CF3174A5BFAE9B57BB5D5C4FB06F9D4

have few recognizable characters, none of which were in the original plain-text message.

Continuing after Round 2 we have

M2 =


34 05 43 18

91 47 80 CE

FE 33 E3 C4

9E B5 E0 1E

 .

After Round 3 the matrix is

M3 =


60 CC 08 3C

92 93 E3 19

E9 4B 7C B3

36 8E F6 OA

 .
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Let us look at a new example. We will encrypt “THE BOSS iS HERE” and see how the

change of a single character, a capital I to lowercase i, affects the matrix after a single

round of AES. The key will be the same, so the key expansion is the same. We start as

before, with an XOR operation. Our initial matrix this time is

M∗
0 =


54 42 20 48

48 4F 69 45

45 53 53 52

20 53 20 45

 .

We compute
54 42 20 48

48 4F 69 45

45 53 53 52

20 53 20 45

⊕


41 45 55 4F

50 20 43 4C

50 53 45 49

4C 41 20 21

 =


15 07 75 07

18 6F 2A 09

15 00 16 1B

6C 12 00 64

 .

Again, we substitute via the S-box from Table 3.1 to get,
59 C5 9D C5

AD A8 E5 01

59 63 47 AF

50 C9 63 43

 .

Applying the shift row operation yields the matrix
59 C5 9D C5

A8 E5 01 AD

47 AF 59 63

43 50 C9 63

 .

So, unsurprisingly our matrix still has only one byte different from the original exam-

ple; we have only applied confusion. The next step, mix column, applies the necessary

diffusion.
02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

⊗


59 C5 9D C5

A8 E5 01 AD

47 AF 59 63

43 50 C9 63

 =


55 5A B2 7D

98 AE BD 42

BA 95 6E 0B

82 BE 6D 5C

 .
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Finally, our current matrix is XOR’d with K1, which yields

M∗
1 =


8C C6 7B FB

F3 E5 B5 06

17 6B D5 F9

4A 37 C4 D4

 .
Thus, after one round of AES with a single character changed, we have M1 differing from

M∗
1 by an entire column. Moreover, in the second round, the shift row step will shift one

of these four differing elements into each column. After the mix column operation, the

one differing element in each column will affect the entire matrix. Hence, a single byte

change has diffused into the entire message after the second round. The matrix after

Round 2 becomes

M∗
2 =


33 04 0C 0A

62 CA CF 6D

0A BE 2C 06

6A 39 7E 7F

 ,
which is a completely different matrix than our original example. This helps illustrate

how effectively AES diffuses a single bit flip throughout the entire message.

3.7 Decryption

Decryption is required to retrieve the original message. The steps must be re-

versed and operations inverted. The XOR operation is its own inverse, X ⊕ X = 0 for

all X ∈ R, so the first operation for decryption would be to XOR the last round key.

The first round of decryption would skip inverting the mix column operation as it was

not performed in the last round of encryption. For all other rounds, we multiply by the

inverse of the constant matrix

C−1 =


0E 0B 0D 09

09 0E 0B 0D

0D 09 0E 0B

0B 0D 09 0E

 .
To invert the shift row operation, one must keep the first row the same, shift the second

row one spot to the right, the third row to the right twice, and the fourth row three times
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to the right. Finally, to undo the S-box, one could find their entry inside the table and

use the corresponding row and column to find the entry’s pre-image. For example, if we

wished to know what “6D” was before the S-box, we would locate “6D” in Table 3.1 and

notice that it is in row “B0” and column “03”. Hence, S−1(6D) = B3.
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Chapter 4

RSA

4.1 Motivation

The advanced encryption standard is a secure and efficient symmetric cipher.

The main disadvantage to AES is the need to establish a key that all parties wishing to

communicate must know. If the parties cannot physically meet, they must send the key

over a channel, which runs the risk of their key being intercepted and, in turn, all their

encrypted messages may be easily broken. A solution to this problem is to have one key

that encrypts a message, a public key, and one key that decrypts the message, a private

key.

4.2 Security

The simplicity of the RSA cryptosystem’s security adds to its beauty. It places

its bet on the simple fact that it is considered a hard problem to factor numbers. More

specifically, numbers composed of two primes. Factoring numbers will always involve

some trial and error. A problem like prime factoring 91 can easily be done by hand.

Factoring 4168723211, which is the product of two 5-digit primes, is much more difficult

to do without the assistance of a computer, even knowing the length of the two primes.

However, when the prime factors multiplied together are larger than 22048, even modern

day super computers take countless years of computing time to factor the composite

number. On the other hand, multiplication is considered an easy problem because there

is a direct way to compute products. It is not too difficult to compute the product
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59359×70229 without the help of a computer. This is the core principal of an asymmetric

cipher. It is easy to compute one way, multiplication, but very difficult to take the inverse,

factoring.

4.3 Method

To set up an RSA system, there are six variables that a user, Alice, would first

have to determine. Since RSA is an asymmetric algorithm, a sender, Bob, does not

have to compute a key; most of the work is done by Alice. First, Alice would select

two primes, normally denoted as p and q. Then, Alice computes n = p ∗ q. Next, Alice

computes Φ(n), which normally would not be easy. However, since Euler’s Phi Function

Φ is multiplicative, along with the fact that Φ(u) = u− 1 if u is prime we have,

Φ(n) = Φ(p ∗ q)

= Φ(p) ∗ Φ(q)

= (p− 1) ∗ (q − 1).

So, Φ(n) = (p − 1) ∗ (q − 1), easy enough for Alice to compute. Alice would then select

a value e that is relatively prime to both p − 1 and q − 1, making it relatively prime to

Φ(n). Finally, Alice calculates d such that e ∗ d ≡ 1 mod Φ(n). Proof of d’s existence is

a consequence of Bezout’s Identity.

Theorem 1 (Bezout’s Identity). Let a and b be integers with greatest common divisor d.

Then, there exist integers x and y such that ax+ by = d. More generally, the integers of

the form ax + by are exactly the multiples of d.

For our application, take a = e, b = Φ(n), and d = GCD(e,Φ(n)) = 1. Note

that the d from the theorem is not the same d that we are trying to show exists. Now,

from the theorem we have

de+ kΦ(n) = 1.

Thus

de+ kΦ(n) mod Φ(n) = 1 mod Φ(n),
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from which it follows that

de mod Φ(n) = 1 mod Φ(n).

In practice, Alice would calculate d via the Extended Euclidean Algorithm. Alice

publishes (e, n) for anyone to encrypt with and keeps (d, n) as a personal decryption key.

The method, in general, works as follows. Bob. who wants to send plain-text message

m, would first compute c ≡ me mod n. Bob sends c to Alice. Alice computes m ≡ cd

mod n, thus getting the plain text back. An eavesdropper, Eve, knows e and n, as they

are publicly known, as well as c, which is the message Bob sent. Eve is missing the

decryption key d, as it is known only by Alice. Why does this work? After all, e and d

were inverses with respect to ZΦ(n) and the actual cipher text is computed in Zn. The

answer is a consequence of Euler’s Theorem.

Theorem 2 (Euler’s Theorem). Let a and n be two coprime positive integers, then

aΦ(n) ≡ 1 mod n.

Manipulation of Euler’s Theorem gives us the following result:

aΦ(n) ≡ 1 mod n

⇒ ak∗Φ(n) ≡ 1 mod n

⇒ a ∗ ak∗Φ(n) ≡ a ∗ 1 mod n

⇒ ak∗Φ(n)+1 ≡ a mod n.

Now, since ed ≡ 1 mod Φ(n), there is some k ∈ Z such that ed = k ∗Φ(n) + 1. So Alice’s

decryption is computed as follows:

cd mod n ≡ (me)d mod n

≡ med mod n

≡ mkΦ(n)+1 mod n

≡ m mod n.

Ergo, the plain text message is retrieved.

4.4 A Worked Example

Let Alice be the user, Bob the sender, and Eve an eavesdropper that intercepts

everything sent between Alice and Bob. Alice randomly selects p = 5 and q = 11 and
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Table 4.1: A brute-force attack

m m3−2
55

1 − 1
55

2 6
55

3 7
55

...
...

18 5830
55 = 106

...
...

73 7073
...

...

128 38130
...

...

computes n = 55. Alice also computes Φ(55) = 4 ∗ 10 = 40. She has free choice for e

and selects 3 since it is relatively prime to both 4 and 10. Using the Extended Euclidean

Algorithm, Alice computes d = 27. Alice then publishes (3, 55) for anyone to use. Bob

wants to send Alice the secret message m = 18. Bob computes

183 mod 55 ≡ 5832 mod 55

≡ 2 mod 55,

and sends Alice c = 2. Now Alice, having the private key d = 27, computes

227 mod 55 ≡ 134217728 mod 55

≡ 18 mod 55,

retrieving the plain-text message that Bob sent. Eve has ciphertext 2, public modulus

55, and public key 3. Eve knows Bob’s encryption scheme: m3 mod 55 ≡ 2. Therefore,

m3 = 55k + 2 for some k ∈ N. Thus, m3−2
55 = k ∈ N. In this case the code may be

somewhat easily broken via trial and error and using technology. Since 183−2
55 = 106 ∈ N,

we see that m = 18 is a possible message. However, there are more possible messages

as shown in Table 4.1, so Eve would need to see if any make sense. For the purposes of

illustration we had Alice choose very low primes for p and q and a very simple public
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key. In practice, the primes would be much larger and the private key less trivial, thereby

rendering an encryption that would, with todays technology, be nearly impossible to crack

via brute force.

One may immediately think, Φ(n) is very close to n since n = p ∗ q and

Φ(n) = (p − 1)(q − 1), and that a descending approach from n to find Φ(n) could be a

possible attack. Of course, if Φ(n) was discovered by an attacker they need not worry

about factoring n, as they can just compute d via the Extended Euclidean Algorithm.

The problem with this strategy is that in practice, p > 21024 and q > 21024, making

n > 22048, and Φ(n) > 22048 which, unfortunately for any attacker, yields 22047 integers

with bit length 2048. Let us put this in perspective by converting 22047 bits to something

more tangible, decimal digits:

22047 = 10u

⇒ log 22047 = log 10u

⇒ 616 ≈ u.

Thus, 2047 bits is approximately 616 decimal digits. The most powerful super computers

in the world (as of this writing) can compute 20 decimal digits per second. Thus, we

find it would take approximately 10596 seconds or greater than 3 × 10589 years to find

Φ(n) with a backward approach starting at n. Needless to say, users following the RSA

protocol are safe from the näıve attacker.

4.5 Application

In practice, RSA encryption involves extremely large numbers and it is not

always practical to encrypt a whole message using a RSA protocol. A potential application

of RSA would be the establishment of a session key, a key used for a particular session

of sending encrypted information. This is called a key exchange protocol. It could

work many ways, one way would be to encrypt a message using AES. We know AES is

an extremely efficient encryption algorithm; the main downside is that the two parties

communicating need to know the key. One could encrypt the AES key with RSA and

send the encrypted key and the encrypted message over an insecure network. The receiver

would be able to calculate the AES key using their RSA private key. Then using the

decrypted AES key, decrypt the message.
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Chapter 5

Discrete Logarithm Problem

5.1 Motivation

The demand for an asymmetric cipher was still high even after RSA. There were

already very secure and computationally efficient symmetric algorithms in DES and later

AES. Their main weakness was that the establishment of keys could be difficult if the

two parties could not physically meet before communication began. The Diffie-Hellman

key exchange was invented to satisfy the demand.

5.2 Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange uses cyclic groups, a class of groups with gen-

erators. Let us say that G is a cyclic group and that a ∈ G is a generator of G. So,

for all b ∈ G there exists some α ∈ N such that aα = b mod G. Now, say Alice and

Bob would like to exchange a key but do not have a secure chain of communication.

They could publicly select a cyclic group, G, and generator, a. They then each select

a group element and keep that element secret. Suppose Alice picks r and Bob selects

s. Alice would compute A = ar mod G and send the result to Bob. Bob computes As

mod G. Bob now has the private key he and Alice will use for encryption. The process

is repeated for Alice to have the private key: Bob computes B = as mod G and sends

the result to Alice. Alice then computes Br mod G and they now have the same key.

An eavesdropper, Eve, knows the group G, the generator a, and the public messages

between Alice and Bob, A and B. Eve can formulate the equation ar = A mod G. The
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only missing variable for Eve is r. If Eve could solve for r, then the system has been

broken as Br mod G is easy to compute. The way to solve for an exponent is by using

logarithms; unfortunately for Eve, the typical logarithm approach learned in algebra class

is useless here. The approach to solve for the missing exponential in the Diffie-Hellman

key exchange leads to the discrete logarithm problem; the security of this key exchange

relies on the difficulty of the problem.

5.3 Discrete Logarithm Problem

The discrete logarithm problem is formulated as follows: Given prime number

p, an element β ∈ Z∗
p, and primitive element α, find x such that αx ≡ β mod p. If a

group has integer elements, as does Z∗
p, there are powerful algorithms that can solve this

problem if p is not too large. To have the same security as AES with a 128-bit key, p must

be 3072 bits long. Furthermore, to have the same level of security as AES with a 256-bit

key, p must be 15360 bits long. With numbers this large, trivial operations run slow.

What we will see is a cyclic group whose elements are points on an elliptic curve. Using

this type of group, a level of security comparative to AES with a 256-bit key requires p to

be 512 bits. This gives a huge boost in efficiency when compared to the former discrete

logarithm problem.

5.4 Small-Step Giant-Step Algorithm

A very powerful algorithm to solve the discrete logarithm problem, and in turn

a powerful attack against the Diffie-Hellman key exchange, is the small-step giant-step

algorithm. Consider the discrete logarithm problem. The small step is to select some

integer k, compute a1, a2, a3, ..., ak−1, and also compute ba−k, ba−2k, ba−3k, ..., ba−rk where

rk > N ; all computations are done in Z∗
p. Now, if we have a collision, i.e., if an ≡ ba−mk

mod Z∗
p for any n and m, we have essentially solved the problem. All that is required is

to multiply both sides of the congruence by amk and we will have an+mk ≡ b mod Z∗
p.

The solution to the discrete logarithm problem is n+mk.
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5.5 Elliptic Curves

The elliptic curve E over Zp is defined as follows.

Definition. Suppose p > 3 and a,b ∈ Zp. Further, suppose 4a3 + 27b2 6= 0 mod p. Then

the elliptic curve E over Zp is defined to be the set of all pairs (x, y) ∈ Zp such that

y2 ≡ x3 + ax+ b mod p, together with an imaginary point at infinity O.

For example, consider the elliptic curve y2 = x3 − 4x + 10. There is a very

nice geometric approach to point addition and point doubling inside of the elliptic curve.

To add two points P and Q where P 6= Q in the elliptic curve, we construct the line

connecting the two points, which leads to a third point of intersection. That point is

reflected across the x-axis. The resulting point is defined to be P + Q. If P = Q, we

construct the tangent to the curve at P which leads to a second point of intersection with

the elliptic curve. That point is reflected across the x-axis, and the resultant point is

defined to be 2P .

There is, of course, an analytic method for determining the points of intersection.

There are two cases. The first case is when P 6= Q, so there is a unique line connecting

the two points. To find P + Q, one solves the system of equations defined by the linear

equation and the elliptic curve equation to find the third solution. If P = Q then one

must find the equation of the line tangent to the elliptic curve at point P , then solve the

corresponding system of equations. We demonstrate the general solution.

Given P (x1, y1) and Q(x2, y2) we calculate [P +Q](x3, y3) by

x3 = s2 − x1 − x2 mod p,

y3 = s(x1 − x3)− y1 mod p,

where

s =


y2 − y1

x2 − x1
mod p if P 6= Q,

3x2
1 + a

2y1
mod p if P = Q.

Using these equations it can be shown that some elliptic curves contain cyclic subgroups.

In practice, standardized elliptic curve equations with calculated group orders readily

available. The identity element of the group is the point at infinity, O.
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We will illustrate how the points of an elliptic curve form a cyclic subgroup using

the elliptic curve

y2 ≡ x3 + 2x+ 2 mod 17.

Using the point P = (3, 1) we generate the elements of the subgroup:

P = (3, 1)

2P = (13, 7)

3P = (0, 11)

4P = (10, 11)

5P = (5, 1)

6P = (9, 16)

7P = (7, 6)

8P = (16, 4)

9P = (6, 14)

10P = (6, 3)

11P = (16, 13)

12P = (7, 11)

13P = (9, 1)

14P = (5, 16)

15P = (10, 6)

16P = (0, 6)

17P = (13, 10)

18P = (3, 16)

19P = O

Since 19P = O, we know 20P = (3, 1) because O is the identity of the group.

This also implies that 21P = (13, 7), and so on. Thus the point P generates a cyclic

subgroup of the elliptic curve.

Now that we have a cyclic group, we can create a discrete log problem as follows.

Say Alice and Bob want to set up a key for AES and all of their messages are intercepted

by Eve. Let the elliptic curve equation be E : y2 ≡ x3 + 2x + 2 mod 17. The equation

E is publicly known. Next, select a generator of a cyclic subgroup of E, in this case we

will use the point (3, 1). The generator is also publicly known. Now, Alice and Bob each

privately select an integer modulo 17. Say Alice selects 11 and Bob selects 15. Alice

would then calculate 11P and send the resulting point (16, 13) to Bob. Likewise Bob

would calculate 15P and send the resulting point (10, 6) to Alice. Alice would take 15P ,

which she received from Bob, and use her private key 11 to calculate 11∗15P . Bob would

take 11P , which he received from Alice, and use his private key 15 to calculate 15 ∗ 11P .

They now have the same point and can use either the x or y value of the generated

point as a key for AES. Eve knows only the point (16, 13), which was Alice’s message to

Bob, and the point (10, 6), which was Bob’s message to Alice. Assuming Alice and Bob

each selected their private integer randomly, the quickest way of solving for their private

integers will take at least
√
p steps. The lower bound

√
p is computed in [1].
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Figure 5.1: The elliptic curve defined by y2 = x3 − 4x+ 10.

Figure 5.2: Geometric derivation of P +Q.
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Figure 5.3: Geometric derivation of 2P .
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Chapter 6

Hash Functions

6.1 Motivation

Hash functions are a different type of cryptographic tool. The purpose of a hash

function is not to encode information, rather it serves as a one-way function to verify the

integrity of a message. An example is Alice and Bob playing a game of rock-paper-scissors

over the Internet. How might we prevent one person from changing their answer in order

to win? This is where a hash function comes in. Like any function, the same input yields

the same output. For example, suppose Alice selects scissors and Bob selects rock. They

each will hash their choice and send the result to one another. Bob reveals to Alice that

he selected rock, if Alice were to respond with a lie and claim she selected paper, Bob

can hash “paper” and compare the result with the hash originally sent by Alice. Bob will

realize that the hash does not match and know Alice was lying. Another typical use of a

hash function is storing pin numbers in a database. When you first create a pin number

it is hashed and the result is stored in a database. The purpose of this is to ensure that

even if an attacker were to access the database, all they would be able to retrieve are

the hash results, not the actual pin. When you use your debit card and enter your pin,

the pin is hashed and compared to the hash recorded on the database; if the two hashes

match, it is assumed that the entered pin was correct and the ATM will give you the

requested money.

A hash function h is considered secure if it has the following attributes. First,

a hash function must be able to take an arbitrary number of characters and output a
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fixed number of characters. If “Hello” is hashed through Sha-256, a very popular hashing

algorithm, the result is the 64 character output

66a045b452102c59d840ec097d59d9467e13a3f34f6494e539ffd32c1bb35f18.

If “Hello my name is Samuel, I am a math major at California State University San

Bernardino” is hashed through Sha-256, the result is

b813f6fe19598833d21e21b14ff4eda378f90ace49dfe84da3301a9b7ea7e073

which has 64 characters, the same number of characters as the previous hash.

The second property of a secure hash function is that it must be second pre-image

resistant. A collision occurs when two different messages have the same hash. Collision is

unavoidable as a consequence of the first property since there are fewer possible outputs

than inputs. Second pre-image resistance is described as follows. Given a message x1

and hash y1 = h(x1), it should be infeasible to come up with an input x2 6= x1 such that

y1 = h(x2).

A third property is collision resistance. It should be infeasible to find two distinct

messages x1 and x2 such that h(x1) = h(x2).

A fourth property ties in with the idea of collision resistance. Given a hash y1,

it should be impossible to create a plain-text message x1 where h(x1) = y1.

A fifth property is similar to what we have seen in previous chapters, diffusion.

A small change in plain-text results in a completely different hash. Compare the hash of

“Hello” given earlier as

66a045b452102c59d840ec097d59d9467e13a3f34f6494e539ffd32c1bb35f18.

to the hash of “hello” which is

5891b5b522d5df086d0ff0b110fbd9d21bb4fc7163af34d08286a2e846f6be03.

Notice the apparent complete lack of similarity between the two hashes.

The final property is that hash functions should be one-way functions. Given a

hash, there should not be a way to invert the hash to retrieve the plain text. A hash is

secure only if it has all the attributes described above.
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6.2 Understanding Properties of Secure Hash Functions

We will now look at the purpose of the various properties for secure hash algo-

rithms by considering potential attacks. The first property is primarily for efficiency. In

practice it would be extremely inefficient to manually hash blocks of a message and then

for the receiver to again hash blocks of the message and check every single block to verify

that the message was not changed. By allowing any length messages, a hash must only

be computed and checked once.

The rest of the properties are for security purposes. Second pre-image resistance

aims to thwart the following attack. Imagine Alice sending $10 to Eve, an active attacker

who wants to change the dollar amount Alice is sending. If Eve were to change the $10 to

$20, the hash would not match and the bank would not release the funds. It is extremely

unlikely that the hashes would match for any random amount that Eve might choose. Eve

must find a dollar amount x1 such that h(x1) = h(10). If the hash function is not secure,

Eve will be able to calculate such a value for x1 and replace $10 with the new amount.

Since the hash results would match, the bank would release the funds to Eve. This attack

becomes easier to defend against by having a sufficiently large pool of hash results. For

example, SHA-256 has a 256-bit hash output resulting in 2256 possible results. Along

with the other properties, the only way to find a particular hash is by brute force. Every

dollar amount hashed has a probability of 1
2256

to have the same hash as $10.

Collision attacks are statistically harder to defend against. Imagine Eve finds

two dollar amounts that have the same hash, h(x1) = h(x2). Eve could list an item

for sale at dollar amount x1, then when someone is buying the item, switch x1 with x2,

which would execute because the hashes match. This attack is very powerful because of

the cascading effect that occurs while checking hash results. It goes as follows. Assume

Eve is trying to find a collision in SHA-256 and can choose any dollar amount x1 to start

with. Then Eve can choose any x2 6= x1 and check if h(x2) = h(x1). The probability

of a match is 1
2256

, which implies the probability of the results not colliding is 1 − 1
2256

.

If x1 and x2 do not collide, Eve chooses x3 and computes h(x3). The major danger is

that now Eve can check to see if h(x3) = h(x1) or h(x3) = h(x2). The probability of a

collision is 2
2256

which implies the probability of not having a collision is 1 − 2
2256

. The

probability of there not being a collision after 3 dollar amounts are hashed and checked is

(1− 1
2256

)(1− 2
2256

). If a collision still has not occurred, Eve can then select x4 and compute
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h(x4) to check if h(x4) = h(x1) or h(x4) = h(x2) or h(x4) = h(x3). The probability of a

collision on this step is 3
2256

, thus the probability of no collisions after four dollar amounts

are hashed and checked is (1 − 1
2256

)(1 − 2
2256

)(1 − 3
2256

). The probability that at least t

checks are required before achieving a collision is Πt−1
i=1(1 − i

2256
). The formula may be

used to estimate t, hence t ≈ 2
n+1
2

√
ln 1

1−λ where n is the number of bits and λ is the

probability for at least one collision. As mentioned before SHA-256 has 2256 different

possible hash results or 256 bits. How many checks would be required to provide a 50%

chance of collision? Substituting n = 256 and λ = .5 into the formula we would have

t ≈ 2
256+1

2

√
ln

(
1

1− .5

)
=
√

2257 · ln(2)

<
√

2257 · 2

= 2128

We can see that the number of steps required for achieving a collision attack with 50%

probability is about the square root of n. This indicates that SHA-256 is still secure from

this type of attack because of its colossal pool of possible hash results. It is still infeasible

to execute 2128 steps with today’s technology, which is why SHA-256 is still used.

The remaining properties for hash functions are to ensure that the only viable

attacks are brute force attacks.
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Chapter 7

Blockchain Technology

7.1 “Satoshi Nakamoto’s” White Paper

In 2008, a new type of cryptosystem protocol was published in the form of a

white paper under the pseudonym “Satoshi Nakamoto.” It is unknown who “Satoshi”

is, but since the publication of his white paper, thousands of crypto assets have been

developed. The technology went unseen by the majority of the population for many years.

More recently, the boom in value towards various crypto assets caught the attention of

mainstream media and investors hoping to ride Bitcoin or other altcoins to a Lamborghini.

The term altcoin is used to refer to all crypto assets that are not Bitcoin.

7.2 Security of Blockchain

The core cryptographic property used by blockchains are hash functions; the

Bitcoin blockchain uses SHA-256. The white paper starts by claiming there is a problem

with double spending money. The current way to avoid the double-spending problem

is by including a mutually trusted third party, the bank for example. Satoshi proposed

an alternate solution:“We propose a solution to the double-spending problem using a

peer-to-peer network. The network timestamps transactions by hashing them into an

ongoing chain of hash-based proof-of-work, forming a record that cannot be changed

without redoing the proof-of-work” (Nakamoto 1). There are two main principles being

introduced here. The first is that all transactions to be timestamped enter a block.

That block is hashed along with the hash of the previous block. By chaining the blocks,
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using the hash of the previous block in the hash of the current block, an ongoing chain

of timestamps is created in which each validates the timestamps of the previous block.

Proof-of-work is the key security feature that makes the blockchain secure. The “work”

for Bitcoin is to find a solution to a computationally hard mathematical problem. The

problem is to find a value x1 such that h(x1) starts with a given number of zero bits. As

we know from hash functions, the best way to find a particular hash is by brute force.

The idea is that all transactions and items enter a block; if there is no current block then

a block is created. For the block to be completed a solution to the problem described

above must be found. All CPUs on the network work together to find a solution for the

block. Once the solution is found, it is published for other CPUs to verify. It is much

easier to verify a solution than to find a solution as verification requires only hashing the

proposed solution and checking to see if it is indeed a true solution. If the solution is

correct, the block is verified and the CPUs work on creating a the next block. The hash

of the previous block is included in the current block, forming a chain of blocks. Visit [4]

to see the Bitcoin blockchain in action.

The second principle introduced in the quote is that the record of transactions

cannot be changed without redoing the proof-of-work. A major part of the security is

that for a typical attacker, the amount of CPU power and money required to attack the

network is not profitable. If someone wants to attack the network, for example reverse a

previous transaction, the attacker must resolve the proof-of-work problem for the block

where the transaction is stored, as well as all blocks that were chained after. In order for

the attack to be successful, the attacker must force the network to accept the chain that

contains the attacked block. The network accepts the longest chain as the true chain, so

the attacker must chain more blocks on the attacked block than the original chain has.

This type of attack is called the 51% attack because if an attacker possessed at least 51%

of all computing power on the network, they can solve blocks faster than all of the rest of

the network combined. Thus, if the attackers change a transaction they can chain blocks

faster than the rest of the network and force the whole network to accept the chain with

manipulated blocks.
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7.3 Bitcoin

The first recorded use of Bitcoin as a currency was its use in an order of two

pizzas from Papa John’s. Reportedly the two parties agreed to trade 10,000 Bitcoin for

the pizzas. On January 9, 2018, the value of a single Bitcoin was listed at $14,770. This

puts the price of the two pizzas at $147,700,00 USD.



38

Chapter 8

Conclusion

Mathematics has played a crucial role in cryptography throughout the centuries,

particularly in the last century. As computers continue to get faster and, perhaps more

troublesome, as algorithms become more efficient, encryption based on computationally

hard mathematical problems may become less useful. Problems like factoring and the

discrete logarithm problem, where security relies in having a pool too large for comput-

ers to attack encryption via brute force, will be easily broken with quantum computers

and quantum computing algorithms. When quantum computing becomes a reality, the

cryptography world will have to move to post quantum cryptography. But for now, com-

putationally hard mathematical problems are the key to effective encryption methods.
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