
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Electronic Theses, Projects, and Dissertations Office of Graduate Studies

6-2018

NEURAL NETWORK ON VIRTUALIZATION SYSTEM, AS A WAY TO NEURAL NETWORK ON VIRTUALIZATION SYSTEM, AS A WAY TO

MANAGE FAILURE EVENTS OCCURRENCE ON CLOUD MANAGE FAILURE EVENTS OCCURRENCE ON CLOUD

COMPUTING COMPUTING

Khoi Minh Pham
CSUSB, minhkhoi89us@gmail.com

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd

 Part of the Computer and Systems Architecture Commons

Recommended Citation Recommended Citation
Pham, Khoi Minh, "NEURAL NETWORK ON VIRTUALIZATION SYSTEM, AS A WAY TO MANAGE FAILURE
EVENTS OCCURRENCE ON CLOUD COMPUTING" (2018). Electronic Theses, Projects, and Dissertations.
670.
https://scholarworks.lib.csusb.edu/etd/670

This Thesis is brought to you for free and open access by the Office of Graduate Studies at CSUSB ScholarWorks. It
has been accepted for inclusion in Electronic Theses, Projects, and Dissertations by an authorized administrator of
CSUSB ScholarWorks. For more information, please contact scholarworks@csusb.edu.

http://www.csusb.edu/
http://www.csusb.edu/
https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd
https://scholarworks.lib.csusb.edu/grad-studies
https://scholarworks.lib.csusb.edu/etd?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F670&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F670&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd/670?utm_source=scholarworks.lib.csusb.edu%2Fetd%2F670&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

NEURAL NETWORK ON VIRTUALIZATION SYSTEM, AS A WAY TO MANAGE

FAILURE EVENTS OCCURRENCE ON CLOUD COMPUTING

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

by

Khoi Minh Pham

June 2018

NEURAL NETWORK ON VIRTUALIZATION SYSTEM, AS A WAY TO MANAGE

FAILURE EVENTS OCCURANCE ON CLOUD COMPUTING

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

by

Khoi Minh Pham

June 2018

Approved by:

Yasha Karant, Advisor, School of Computer Science and Engineering

Ernesto Gomez, Committee Member

David A. Turner, Committee Member

© 2018 Khoi Minh Pham

iii

ABSTRACT

Cloud computing is one important direction of current advanced

technology trends, which is dominating the industry in many aspects. These days

Cloud computing has become an intense battlefield of many big technology

companies, whoever can win this war can have a very high potential to rule the

next generation of technologies. From a technical point of view, Cloud computing

is classified into three different categories, each can provide different crucial

services to users: Infrastructure (Hardware) as a Service (IaaS), Software as a

Service (SaaS), and Platform as a Service (PaaS). Normally, the standard

measurements for cloud computing reliability level is based on two approaches:

Service Level Agreements (SLAs) and Quality of Service (QoS). This thesis will

focus on IaaS cloud systems’ Error Event Logs as an aspect of QoS in IaaS

cloud reliability. To have a better view, basically, IaaS is a derivation of the

traditional virtualization system where multiple virtual machines (VMs) with

different Operating System (OS) platforms, are run solely on one physical

machine (PM) that has enough computational power. The PM will play the role of

the host machine in cloud computing, and the VMs will play the role as the guest

machines in cloud computing. Due to the lack of fully access to the complete real

cloud system, this thesis will investigate the technical reliability level of IaaS

cloud through simulated virtualization system. By collecting and analyzing the

event logs generated from the virtualization system, we can have a general

overview of the system’s technical reliability level based on number of error

iv

events occur in the system. Then, these events will be used on neural network

time series model to detect the system failure events’ pattern, as well as predict

the next error event that is going to occur in the virtualization system.

v

ACKNOWLEDGEMENTS

I would like to thank the entire faculty and staff of the School of Computer

Science and Engineering at California State University of San Bernardino,

especially my former advisor Dr. Zhengping Wu and my advisor Dr. Yasha

Karant, they have contributed a lot to my recent achievements. I would like to

thank my committee member Dr. Ernesto Gomez and Dr. David Turner. I would

also like to thank my extended family for their support.

DEDICATION

To my dad who has always been giving me inspiration about scientific knowledge

and beyond, I thank you.

vii

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS ... v

LIST OF TABLES ...ix

LIST OF FIGURES ... x

1. INTRODUCTION

1.1 Cloud Computing Classification and Reliability Levels 1

1.2 Feed Forward Neural Network .. 7

1.3 Process Mining, Episode Mining in Data Science 11

 1.3.1 Frequent Episode Mining.. 12

 1.3.2 Events Log and Process Mining ... 14

1.4 Outline of Thesis ... 17

2. VIRTUALIZATION IN CLOUD ENVIRONMENT SIMULATION

2.1 Chapter Introduction ... 19

2.2 Virtualization in IaaS ... 19

2.3 Virtual Machine Monitor .. 24

 2.3.1 Xen Hypervisor ... 26

 2.3.2 Oracle VirtualBox ... 39

2.4 System Events Log ... 42

 2.4.1 Windows Events Logging ... 44

 2.4.2 Linux System Logging .. 51

2.5 Common Users’ Behavior Simulation ... 54

2.6 Data Collection Strategy ... 57

viii

2.7 Chapter Summary ... 59

3. NEURAL NETWORK TIME SERIES MODEL AND SYSTEM FAILURE
PATTERN DETECTION

3.1 Chapter Introduction ... 60

3.2 NARX Network Model ... 60

3.3 Data Preparation ... 65

3.4 Levenberg-Marquardt Backpropagation Training 69

3.5 Training Validation .. 75

3.6 Chapter Summary ... 81

4. CONCLUSION AND FUTURE DIRECTION

4.1 Conclusion .. 83

4.2 Future Direction .. 84

APPENDIX A: SETUP VIRTUALIZATION ENVIRONMENT AND DATA
COLLECTING ... 86

APPENDIX B: DATA PREPROCESSING .. 104

APPENDIX C: DESIGNING NEURAL NETWORK NON-LINEAR TIME SERIES
AND PLOT VALIDATION ... 110

REFERENCES ... 136

ix

LIST OF TABLES

Table 1.1 SLAs Evaluating Metrics ... 6

Table 1.2 A Fragment of a Simulated Cloud Computing System Event Log,
Simplified Version, each Line Represent an Activity Instance 16

Table 2.1 Virtual Machine Specifications .. 27

Table 2.2 The Sample Set of Traditional Event Log .. 43

Table 2.3 Windows Event Log’s Severity Levels [37] .. 45

Table 2.4 EventType Value Reference Table from MSDN [37] 51

Table 2.5 Severity Level in Ubuntu 14.04 LTS x64 [39]. 52

Table 3.1 NARX Net Input Data .. 62

Table 3.2 Visualization of NARX Net Taking Input Data with Input-Delay
 Equal to ‘0’ .. 64

Table 3.3 Severity Level Reference Table .. 65

Table 3.4 Program Name Reference Table .. 66

Table 3.5 Data Collection during December 2017 .. 76

Table 3.6 Training Validation with each Dataset Using MSE’ 76

x

LIST OF FIGURES

Figure 1.1 Cloud Computing Paradigm [25].. ... 2

Figure 1.2 Cloud Services Clustering [25]. ... 4

Figure 1.3 Feed Forward Neural Network Model ... 8

Figure 1.4 A Neuron in Feed Forward Neural Network.. 9

Figure 1.5 Sigmoid Transfer Function Visualization. 11

Figure 1.6 Example of an Event Sequence. ... 12

Figure 1.7 Three Types of Process Mining Techniques [19].. 17

Figure 2.1 User’s Manageable Components in IaaS 20

Figure 2.2 IaaS Simplified Architecture [26] ... 21

Figure 2.3 Generic Virtualization Architecture.. .. 22

Figure 2.4 Reliability Model of Virtualization Servers and VMs [26] 23

Figure 2.5 Type 1 and Type 2 Hypervisor [33] ... 25

Figure 2.6 Xen Project Architecture [34] .. 26

Figure 2.7 List CPU Specifications ... 29

Figure 2.8 Xen Architecture and Kernel in dmesg Log File 31

Figure 2.9 Configure Network Interface in Xen Virtualization 33

Figure 2.10 Ubuntu Virtual Machine Configuration File.. 34

Figure 2.11 Windows Virtual Machine Configuration File 35

Figure 2.12 Display VMs’ Logical Volumes in the Hosted LVM Partition 37

Figure 2.13 Create Ubuntu 14.04 LTS VM and Windows XP SP2 VM 38

Figure 2.14 Xen Hypervisor Domains List .. 38

xi

Figure 2.15 Destroy Ubuntu 14.04 LTS VM and Windows XP SP2 VM
Command in Xen Hypervisor .. 39

Figure 2.16 VirtualBox and VMware Architecture.. ... 41

Figure 2.17 The Flow-net Logs Approach [36]. .. 44

Figure 2.18 Common User’s Use Case Diagram. .. 56

Figure 2.19 Auto User Simulation Activity Diagram .. 57

Figure 3.1 NARX Net Model Deployed in this Thesis Experiments. 64

Figure 3.2 Weight Adjusting in One Epoch in NN Training Process 70

Figure 3.3 Visualize the Chain Rules in Finding Gradient between MSE and
Weight. .. 71

Figure 3.4 Plot Regression of NARX Net 1 When Training with [X2, T2] 78

Figure 3.5 Plot Regression of NARX Net 2 When Training with [X4, T4] 79

Figure 3.6 Plot Response of NARX Net 1 When Training with [X2, T2] 80

Figure 3.7 Plot Response of NARX Net 2 When Training with [X4, T4] 81

1

1. INTRODUCTION

1.1 Cloud Computing Classification and Reliability Levels

Cloud computing nowadays has become an optimized solution in IT

industry. It has many major advantages compare to traditional service model,

such as the ability to “pay as you use”, and the ability to access the

computational resources immediately without spending time building and

configuration the system. Saving not only time and money, cloud computing has

also broken the hardware limitation in IT industry, due to the flexibility and

scalability it has. One user can now use a thousand-times more powerful

computational system, without having to pay the enormous amount of money to

build that system. Moreover, by moving to cloud, users do not have to spend time

on repairing, maintaining and updating their business computational system,

which normally cost as much as 30% of the amount paying to build and configure

the system.

In general, the cloud-computing model includes the cloud providers and

the cloud users. Cloud providers are companies that provide cloud services to

users. Figure 1.1 shows a brief explanation about cloud computing, users use

their electronics devices to access their cloud storage, cloud media contents, or

their cloud virtualization machines [25]. The big advantage of this model is user’s

electronics devices specs can be as low as possible, possibly only need to have

2

good quality screens and medium-high speed network adapters, to keep user’s

experiencing cloud services fluently.

Figure 1.1: Cloud Computing Paradigm [25].

Let UserHours be the number of hours users consume on their service, revenue

be a total income the service providers can have, and cost is the expense service

3

providers have to pay to maintain their services, the pre-condition to consider

cloud computing towards traditional server models is described as below [22]:

𝑈𝑠𝑒𝑟𝐻𝑜𝑢𝑟𝑠𝑐𝑙𝑜𝑢𝑑 x (𝑟𝑒𝑣𝑒𝑛𝑢𝑒 − 𝐶𝑜𝑠𝑡𝑐𝑙𝑜𝑢𝑑)

≥ 𝑈𝑠𝑒𝑟𝐻𝑜𝑢𝑟𝑠𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟 x (𝑟𝑒𝑣𝑒𝑛𝑢𝑒 −
𝐶𝑜𝑠𝑡𝑑𝑎𝑡𝑎𝑐𝑒𝑛𝑡𝑒𝑟

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
)

Cloud computing refers to delivering application as a service through the

internet, together with hardware and software systems needed to launch that

application. According to different service patterns, cloud computing has three

different types of models: Software as a Service (SaaS), Platform as a Service

(PaaS), and Infrastructure as a Service (IaaS).

4

Figure 1.2: Cloud Services Clustering [25].

Figure 1.2 gives a brief summarization of cloud services that belong to

those three models [25]. Among those three, IaaS is the most basic layer, IaaS is

the model that cloud providers are using to provide hardware computational

power through the internet. Many advanced technology company is considering

IaaS as their crucial strategies in cloud computing such as Amazon EC2,

VMware vCloud … A virtualization environment will be simulated in chapter two

of this thesis, to experiment the IaaS virtual machines cloud’s reliability level.

To validate the reliability level of IaaS, there are two major approaches:

Service Level Agreements (SLAs) - is the contract signed between cloud service

5

provider and cloud users; and Quality of Service (QoS) - is the guarantee from

cloud service providers about providing cloud service continuously to cloud

users, with the qualities no lower than the qualities mentioned in SLAs.

Reliability level refers to the amount of continuous time the service

providers promise to provide the stable service to users, it is measured by the

number of failures occur on any users’ virtual machines [24]. Consider PR as the

probability errors may occur, nf is number of failure tasks occurred, nt is the total

number of tasks expecting to run normally at the meantime, T is the total time

cloud users running the service.

𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑃𝑅 x 𝑇 = (1 −
𝑛𝑓

𝑛𝑡
) x 𝑇

6

Table 1.1: SLAs Evaluating Metrics [23].

Table 1.1 introduces some common metrics used for cloud services SLAs

evaluation [23].

7

1.2 Feed Forward Neural Network

Artificial Intelligence (AI) has gained massive attentions from the computer

science communities these days [30]. In general, AI is a technique to design and

program the machine’s intelligence simulating some certain level of human

intelligence. Hence, AI can help the machine to think and do like us human in

some specific cases, under particular conditions.

Neural network, in some cases can be referred as machine learning, is

one direction of AI that is inspired by the human brain neuron model. In theory,

neural network resemblances biological neuron model in the way knowledge are

obtained through learning, and are stored within inter-connection neuron nodes

(technically known as weight). Accordingly, the purpose of neural network is to

train the AI system by feeding it some input dataset, after several learning

process, the AI system will have some general knowledge about the dataset, and

can show some general understanding regarding to the dataset. There are two

types of learning: supervised learning - where users feed the machine with both

input dataset and target dataset, and unsupervised (blind) learning - where users

feed the machine with only input dataset so the machine has to figure out rules or

patterns all by itself.

Neural network has huge varieties of distinct models, each model serves

different learning purposes. Feed forward neural network is one of the most

commonly use neural network model.

8

The basic concept behind neural network learning process is, let X be the

input dataset with 1000 elements, T be the target dataset with 1000 elements.

The first 500 elements in X and T will be fed to the neural network for training

purpose. When the network reaches optimized training result (training complete),

it will take the last 500 elements in X as the input and generate a set of 500

elements Y as the output prediction. This Y set will be compared with the last 500

elements in T to validate the neural network‘s accuracy (or correctness).

Figure 1.3: Feed Forward Neural Network Model.

Figure 1.3 illustrates the basic feed forward neural network model, the

network model includes three layers, one input layer, one or more hidden

layer(s), and one output layer; each layer has multiple nodes, and one node

9

connects directionally to all adjacent nodes from the previous layer and the next

layer [29]. When being used, the data are passed from nodes in one layer to

nodes in the next layer, until reaching the output layer, and no feed-back

between layers.

Figure 1.4: A Neuron in Feed Forward Neural Network.

Figure 1.4 visualizes a neuron in feed forward neural network; x1, x2… xn

are the nodes in one previous layer; w1,w2… wn are the weights of the

connections from x1… xn to a node xj in current layer, bias b is an extra node in

one hidden layer with xb + wb = 1, all the input factors are defined as

𝑎 = ∑𝑥𝑖. 𝑤𝑖

𝑛

𝑖=1

+ 𝑏𝑖 (1)

10

The output of xj to a node ak in the next layer is defined as

𝑎𝑘 = 𝑓(𝑎) =
1

1+𝑒−𝑎
 (2)

𝑓 is sigmoid transfer function, the default transfer function of neural

network.

During the training process, the dataset is separated into two smaller

dataset, the first dataset is used for learning, the second dataset is use for

validating, when the training process is done, the validating result is measured by

MSE value. Let Y = {y1, y2… yn) be the set of output results, T = {T1, T2… Tn} be

the set of original target dataset, the formula for MSE is

𝑀𝑆𝐸 =
1

𝑛
 ∑(𝑦𝑖 − 𝑇𝑖)

2

𝑛

𝑖=1

 (3)

11

Figure 1.5: Sigmoid Transfer Function Visualization.

Feed forward neural network can be used for multi purposes such as

input-output curve fitting, pattern recognition and classification, clustering (un-

supervised learning), and dynamic time series prediction. This thesis will use

neural network time-series model to predict next failure event in simulated IaaS

cloud environment.

1.3 Process Mining, Episode Mining in Data Science

As the amount of data has drastically increased in sizes and categories,

all thanks to the support of mass storage technology, the term “Data Science” is

now getting more popular in this industry. In general, Data Science is the

techniques that exploit existed data and try to give answers for the questions

grouped into these four categories [19]: what happened? (Reporting), why did it

12

happen? (Diagnosis), what will happen? (Prediction), and what is the best that

can happen? (Recommendation).

Data Science includes different fields of computer science: Data mining,

Machine learning, Process mining, Databases, Large scale distributed

computing, Visualization and visual analytics, Behavioral/social sciences, Privacy

and security… many of them are used in this thesis.

1.3.1 Frequent Episode Mining

In some particular dataset such as System event logs dataset, where

events are stored in the order of time, an episode is a set of events starting from

an initial activity event and ending at a finalizing activity event. A frequency of an

episode indicates how frequently that episode occurs in one particular sequence.

Frequent episode mining is the technique that is used to detect all episodes that

has frequency higher or equal to the user’s pre-defined boundary [21].

Figure 1.6: Example of an Event Sequence.

Let E = {e1, e2, e3… em} be the set of events, with ei = {Ei1, Ei2 …Ein’, ti}, an

event sequence 𝑆 in the order of time is denoted as 𝑆 = {(E1, t1), (E2, t2)… (En, tn)}

13

(With n ≤ m). As a result, Ei ⊆ E, ti is the time stamp of event Ei where ti < tk ⇔ 1

≤ i < k ≤ n. Figure 1.6 shows an event sequence 𝑆 = ⟨ ({D}, epoch (18:19)), ({W},

epoch (18:30)), ({I}, epoch (19:31)), ({I}, epoch (22:00)), ({I}, epoch (22:18)),

({N}, epoch (22:27)), ({I}, epoch (22:40)), ({I}, epoch (22:41)), ({C}, epoch (25:35))

, ({C}, epoch (25:39)) ⟩. Here epoch (t) is a function to convert t from mm:ss

format to epoch timestamp format.

Episode α (α ≠ ∅) is an ordered set of events e1 → e2 → …→ ei → … →

ek, where ei ∈ E and i ∈ [I, k], ei happens before ej ⇔ 1≤ i < j ≤ k. The length of an

episode is determined by the number of events in that episode. For example α = I

→ I → C → E has length of 4, and is called a 4-episode.

Given two episodes α and β, α = e1 → … → ei → … → en, β = e’1 → … →

e’j → … → e’k. β is sub-episode of α (or α is super-episode of β) denote as β ≼ α

⇔ In the order of time, ∀ e’o ∈ [1, k], ∃ ep [1, n] in the same order of time, that e’o

= ep. For example, 2-episode β = I → E, 3-episode α = I → C → E, β ≼ α, but β’ =

E → I is not sub-episode of α.

Given episode α = e1 → … → ei → … → ek, [t1 …, ti ..., tk] is an occurrence

of α if and only if (1) ∀ i ∈ [1, k], ti ⊆ ei; (2) t1 < t2 < … < tk; and (3) tk – t1 < δ (δ is a

maximum occurrence window pre-defined by users). In figure 1.6, [epoch

(18:19), epoch (18:30), epoch (19:31)] is an occurrence of episode D → W → I

Let episode α = e1 → … → ei → … → ek, α has two occurrences [t1 …, ti

..., tk] and [t’1 …, t’i ..., t’k]. These two occurrences are equivalent if t1 = t’1 and tk =

t’k, in such situation, these two occurrences are considered the same.

14

Accordingly, an occurrence of α is denoted as (α, [t1, tk]), and [t1, tk] is called an

occurrence window of α. For example, in figure 1.6, episode α = N → I → C is

denoted as (α, [epoch (22:27), epoch (25:35)], the two occurrences [epoch

(22:27), epoch (22:40), epoch (25:35)] and [epoch (22:27), epoch (22:41), epoch

(25:35)] of α are equivalent.

Given two occurrences [t1, t2] and [t’1, t’2], if t1 < t’1 and t’2 < t2, [t’1, t’2] is

subsumed by [t1, t2]. An occurrence [t1, t2] is a minimal occurrence if there is no

occurrence [t’1, t’2] that can be subsumed by [t1, t2]. We denote moSet (α) as the

set of all distinct minimal occurrences of α. The support of an episode α (Denote

as sp(α)) is the number of all elements in moSet(α). In figure 1.6, moSet (I → I) =

{[epoch (19:31), epoch (22:00)], [epoch (22:00), epoch (22:18)], [epoch (22:40),

epoch (22:41)]} when δ = 2, and sp(α) = 3.

An episode α is a frequent episode if sp(α) ≥ min_sup (min_sup is a

minimum support threshold pre-defined by user).

1.3.2 Event Logs and Process Mining

Process mining techniques use the system transactions data or business

event logs data to discover different types of models of the business process.

Sometimes, people in the industry/business do not even know about the

existence of such models until applying the process mining technique. In many

cases, process mining can also be used to monitor and improve existed business

process, by investigating the event logs.

15

Let Event Log L = (E, AN, AI, C, act, type, time, res, case, name) be a

tuple [20], E, AN, AI, C are the sets of events, activity names, activity instances,

and cases relatively, E = {e1, e2 … en}. UET = {Information, Warning, Error…} is

the list of event types, Ures = {Dhcp, IPSec, HTTP, DCOM, W32Time, Setup…} is

the list of system resources. type ∈ E → UET and res ∈ E → Ures are the

functions mapping events to event types and resources. case ∈ AI → C and .

case ∈ AI → AN are the functions mapping activity instances to cases and

activity names. In Tab 1.2, the first process has case ID = 1, starting from activity

= “WG-Warning” where res = “Dhcp”, ending at activity = “WG-Error” where res =

“Setup”. The starting point and ending point of one process is pre-defined by

user, and the rule will be applied to the whole event log dataset.

16

Table 1.2: A Fragment of a Simulated Cloud Computing System Event Log,

Simplified Version, each Line Represent an Activity Instance.

There are mainly three types of process mining: process discovery is most

useful in establishing new process model; conformance checking is used to

compare and monitor existing process model, for compliance checking and

repairing; performance analysis use the alignments between process model and

real-time system performance (created by conformance checking) to reveal the

system bottle necks.

17

Figure 1.7: Three Types of Process Mining Techniques [19].

1.4 Outline of Thesis

From the natural characteristics of system event logs in operating systems

(OS), it is obvious that a set of system event logs in a running OS can be

considered as a set of events in process mining. As, described above in Chapter

1.3, process mining itself is a type of data science that achieves knowledge from

feeding input. Therefore, we believe the right neural network model can achieve

the same goal if we feed it the same data. What we want to investigate here, is

whether this theory is still applicable on cloud-alike platform where multiple OSs

running on one physical machine. Is it is, there is a very high chance our neural

network can recognize and detect frequent events that lead to system failure, this

will be very helpful for cloud providers in many situations. Thus, the remainder of

the thesis is structured as follows: virtualization systems and cloud environment

simulation, as well as generating dataset for later training purpose will be

18

described in Chapter 2. Chapter 3 deploys neural network time-series system,

implements data training process and experimenting results. Chapter 4, the final

chapter, evaluates the experimenting results, gives conclusion, mentions about

challenges and proposes future work. The Appendix provides additional details

about development platform that we were using, and original source codes that

were created exclusively for this thesis purpose.

19

2. VIRTUALIZATION IN CLOUD ENVIRONMENT SIMULATION

2.1 Chapter Introduction

In order to serve the neural network training purpose, at the first stage, it is

necessary to have a well-prepared dataset collected from actual running cloud

system. However, due to the lack of accessibility to the cloud provider’s system

event logs, an alternative solution has been approached. Technically, cloud

server is a normal virtualization server that can be accessed by users through the

internet, regardless of physical location. Therefore, there is a possibility to

investigate the cloud system performance through the similar set-up virtualization

syste, assuming the network issue in this environment is set to 0. The difficulties

in this approach are, besides the system set up similarly, there must also have

virtual user simulator or auto macro that simulates common users activity on

cloud guest machines (or virtual machines). In fact, this is a key point to generate

random system event logs dataset for the experiments.

2.2 Virtualization in IaaS

In IaaS, users are given a guest machine which has its own storage, CPU

(possibly GPU in some cases), memory, network, and operating system. This

provide users the ability to do everything they theoretically can do on their own

PC. By using IaaS, users can save a lot of time spending to configure and set up

the machine. It is also very useful for those who only need some computational

20

power for a short time, because IaaS often allows user to scale up and scale

down their rented machines very flexibly. For example, an Amazon EC2 user

who is using two guest machines with a single core 3.4GHz CPU and 2GB of

memory on each, can extend it to 100 machines each has the same specs, if he

needs to use that much of computational power within the next 60 seconds (or

more). In addition, Amazon EC2 will only charge that user extra one minute of

using 50 times more service’s resources. Because Amazon service is pay per

minute, therefore 60 seconds is actually the minimum threshold.

Figure 2.1: User’s Manageable Components in IaaS.

21

Figure 2.2 is a simplified version of a complete IaaS architecture. In this

example, IaaS is hosted by physical servers, and it includes 3 major

components: network node, compute node, and storage node. Each guest

machine given to IaaS’s user is a various combination of these 3 nodes. This

architecture is also very similar to the architecture of virtualization system, as

shown in figure 2.3. This leads to the concept of virtualization, which is the key

technology behind IaaS. In fact, those guest machines in IaaS are the virtual

machines running on their physical servers.

Figure 2.2: IaaS Simplified Architecture [26].

22

Figure 2.3: Generic Virtualization Architecture.

Virtualization is the technique to partition one mainframe computer running

on single computer hardware into smaller logical instances. This is believed to

give better efficiency and reduce maintenance effort. In virtualization system,

every user has their own choice of OS running on their virtual machine, multiple

virtual machines (VM) can run on the same computer, each virtual machine

theoretically has full features of a real computer, the host OS is the only thing

that communicate with the physical computer hardware.

23

The two significant benefits of virtualization are sharing resources – one

physical hardware is shared between multiple VMs, this helps maximize the

efficiency of hardware usage; and isolation – all the VMs in one virtualization

system are isolated from each other, thus becomes invisible to each other, apps

running on one VM cannot see apps running on other VMs.

Figure 2.4: Reliability Model of Virtualization Servers and VMs [26]

Figure 2.4 illustrates the reliability model of a virtualization system that has

multiple physical servers and VMs. TS_fail and VM_fail represent the failure

24

events occur in servers and in VMs. These failures can interrupt the continuity of

VM usage on the user’s side, because the system will need more time to repair it

or restart completely, thus affect the reliability of the service.

In PC industry, virtualization technology integrates in AMD’s CPU is called

AMD-V, while Intel calls it VT-x. Only those CPUs that have AMD-V or VT-x can

have VMs running on them. These features can be enabled/disabled in Bios

under CPU settings tab. Besides, in order to have high performance computing

(HPC) VMs, the CPUs also need to support Input-Output Management Unit

(IOMMU). This feature can be turned on/off in the Bios settings, under

Northbridge settings tab.

2.3 Virtual Machine Monitor

In Virtualization environment, all the VMs are isolated from each other by

the virtual machine monitor (VMM). VMM provides HW interfaces to VMs, and

control how VMs use these HW. VMM manages information about VM’s states,

CPU usage, RAM, database, these are called visible resources. Some modern

CPUs also have invisible resources such as shared bus, shared memory, shared

cache… these invisible resources can affect system behavior under different

situations.

25

Figure 2.5: Type 1 and Type 2 Hypervisor [33]

 VMM, or Hypervisor, are classified in two types [33]: Hypervisor type-1,

also called bare metal hypervisor, runs directly on physical HW, and acts as a

complete equivalent OS; Hypervisor type-2, or hosted hypervisor, runs on host

OS, and is similar to any other distinct application.

 The virtualization technology using in this thesis are Xen Project

(hypervisor type-1) and VirtualBox (hypervisor type-2), because these two are

the most typical technology that are being used by leading cloud providers. Xen

Project is being used by Amazon EC2, which is the biggest cloud provider in the

industry. And VirtualBox has a very similar architecture to VMware vCloud, which

is the biggest cloud providers that is using hypervisor type-2 virtualization

technology.

26

2.3.1 Xen Hypervisor

 Xen hypervisor is an open-source type-1 hypervisor that is widely used in

high-tech industries: server/desktop virtualization, IaaS, embedded system, and

hardware appliances. The Xen Project hypervisor is the most common use

virtualization system among cloud providers these days.

 Xen supports two types of VM guest:

Para-virtualized (PV) Guest is introduced by Xen Project as a virtualization

technique that does not require virtualization extension (AMD-V or VT-x) from

physical CPU [34].

Hardware-assisted Virtual Machine (HVM) Guests: is a traditional

virtualization technique that requires virtualization extension (AMD-V or VT-x)

from physical CPU.

Figure 2.6: Xen Project Architecture [34]

27

 Figure 2.6 displays the Xen Hypervisor architecture [34]. Accordingly, Xen

Hypervisor runs directly on physical HW, and have control of CPU, memory, but

not I/O functions. The I/O functions are handled by Domain 0 (control domain,

Dom0), which is a special VM that always run on Xen host by default. Dom0 is

the most important VM in Xen hypervisor virtualization system, it is the only VM

that can access HW directly. Dom0 contains the toolstack to manage VMs

create, destroy, and configuration. Users can access those features through the

command line interface (CLI) that is included in Xen Project by default. Besides

Dom0, other VMs are called guest domains, or unprivileged domain (DomU).

 There are many benefits considering Xen hyervisor project over other

hypervisor type-1 virtualization. Xen hypervisor is designed to run with most

Linux-based OS, NetBSD, and Solaris. Xen hypervisor has device driver run

inside the VM, this ensures driver isolation, if the driver crashes, that VM can

reboot without affecting other VMs in the system. Moreover, Xen hypervisor is

the only virtualization technique that supports fully PV guest VM, this allows PV

instances to run as fast as HVM instances, in normal computational usage.

The Xen hypervisor virtualization environment in this thesis includes one

physical host machine (running Ubuntu 14.04 LTS) and two virtual machines

(running Ubuntu 14.04 LTS and Windows XP SP2)

Table 2.1: Virtual Machine Specifications

Host machine

28

RAM 16 GBytes

CPU AMD FX8350, 4.0 GHz, 8 cores

HDD 50 GB

OS Ubuntu 14.04 LTS x64

VM 1

RAM 4048 MBytes

CPU AMD FX8350, 4.0 GHz, 1 cores

HDD 12 GB

OS Ubuntu 14.04 LTS x64

VM 2

RAM 4048 MBytes

CPU AMD FX8350, 4.0 GHz, 1 cores

HDD 9 GB

OS Windows XP SP2 x64

Implementation of virtualization environment follows these sequential

steps:

Step 1: Install Ubuntu 14.04 LTS x64 on the physical machine, using

logical volume manager (LVM) configuration.

Step 2: Install Xen Project 4.4 on Ubuntu 14.04 LTS x64 with this

command

$ sudo apt-get install xen-hypervisor-amd64

Step 3: Check if Xen hypervisor was installed successfully

29

Figure 2.7: List CPU Specifications.

Figure 2.7 shows Hypervisor vendor as Xen, this means Dom0 has been

running in this system. Technically, Xen hypervisor will try to hide virtualization

flag, to make all VMs think they are physical machine. Therefore, in the figure,

virtualization type is none.

Step 4: Confirm if the physical HW supports virtualization technology:

xl command is used to interact with Xen hypervisor toolstack, thus xl

command will only work with Xen hypervisor.

30

$ sudo xl dmesg

31

Figure 2.8: Xen Architecture and Kernel in dmesg Log File.

32

In figure 2.8, I/O virtualization, SVM, AMD-Vi and IOMMU are all enabled,

these are all the flags that indicate if the VM can run on the system or not. At the

end it also shows that Dom0 is allocate with 8 virtual CPUs from the physical

HW.

Step 5: Configure the network interface

Use this command to open network interface location

$ sudo nano /etc/network/interfaces

. The interface should be set as in figure 2.9

33

Figure 2.9: Configure Network Interface in Xen Virtualization.

Step 6: Configure Ubuntu 14.04 LTS x64 VM on Xen Project environment

Create logical volume (LV) on host machine virtual group (VG) to store

VM’s virtual hard drive

$ sudo lvcreate -L 12G -n ubuntu-hvm /dev/ubuntu-vg

Create ubuntu guest VM config file in this directory /etc/xen/ubuntu-

hvm.cfg

34

Figure 2.10: Ubuntu Virtual Machine Configuration File.

 In figure 2.10, guest VM name is ubuntu-hvm, VM type is HVM, virtual

memory allocate to this VM is 4048 MBytes, number of virtual cpu assign to this

VM is 1. At first, before installing Ubuntu 14.04 to this VM, the boot drive path is

set to /home/xenproject/ where the iso file of Ubuntu 14.04 LTS is located, after

installing Ubuntu on this VM, the boot drive path is set to the logical volume

directory created at the beginning of step 4: /dev/ubuntu-vg/Ubuntu-hvm.

Step 7: Configure Windows XP SP2 x64 VM on Xen Project environment.

35

Similar to step 6, create logical volume (LV) on host machine virtual group

(VG) to store VM’s virtual hard drive

$ sudo lvcreate -L 9G -n windowsxp-hvm /dev/ubuntu-vg

Create windows guest VM config file in this directory /etc/xen/windowsxp-

hvm.cfg

Figure 2.11: Windows Virtual Machine Configuration File.

36

In figure 2.11, similar to step 6, guest VM name is windowsxp-hvm, VM

type is HVM, virtual memory allocate to this VM is 4048 MBytes, number of

virtual cpu assign to this VM is 1. At first, before installing Ubuntu 14.04 to this

VM, the boot drive path is set to /home/xenproject/ where the iso file of Windows

XP SP2 is located, after installing Ubuntu on this VM, the boot drive path is set to

the logical volume directory created at the beginning of step 4: /dev/ubuntu-

vg/windowsxp-hvm.

Step 8: Verify VMs’ logical volume on the system

pvdisplay, vgdisplay, and lvdisplay are used to display physical volume

(PV), volume groups (VG) in PV, and logical volumes (LV) in VG. This is the way

LVM manage the partition.

37

Figure 2.12: Display VMs’ Logical Volumes in the Hosted LVM Partition.

 According to figure 2.12, LV ubuntu-hvm, which stores the Ubuntu 14.04

VM OS, has the size of 12 GBytes, and is located under ubuntu-vg which is the

volume group of Xen Project system. Similarly, LV windowsxp-hvm, which stores

the Windows XP VM OS, has the size of 9 GBytes, and is also located under

ubuntu-vg.

38

Step 9: Create VMs on Xen hypervisor

In Xen hypervisor, use create command to create VM.

Figure 2.13: Create Ubuntu 14.04 LTS VM and Windows XP SP2 VM.

Use xl list to check if the VMs were created and guest domains are

running together with domain0.

Figure 2.14: Xen Hypervisor Domains List.

39

 In figure 2.14, Xen hypervisor is domain 0 wiith 8 virtual CPUs, Ubuntu-

hvm is running on domain 3 with 1 virtual CPU, and windowsxp-hvm is running

on domain 4 with 1 virtual CPU.

gncviewer can be used to view the VM’s desktop.

Step 10: Destroy VMs on Xen hypervisor

Figure 2.15: Destroy Ubuntu 14.04 LTS VM and Windows XP SP2 VM Command

in Xen Hypervisor.

At the end, to shutdown Xen hypervisor, all VMs must be destroyed first,

otherwise next time the system can’t boot into GUI, this may be a technical issue

on Xen Project v4.4

2.3.2 Oracle Virtualbox

VitualBox is a free open source hypervisor type-2 virtualization software

provided by Oracle, that requires VT-x or AMD-V from the HW [35].

40

Due to the very friendly graphic user interface (GUI), VitualBox has

become one of the most common use virtualization environment in normal daily

PC usage. The VirtualBox’s GUI simply provides basic feature for users such as

create VM, start VM, pause VM, and stop VM (including hibernate and

shutdown).

VitualBox works with many different OSs such as Windows, Linux,

MacOS, OpenSolaris, FreeBSD… In general, VitualBox supports 3 types of

virtual hard drive format: VDI which is VitualBox standard, VMDK that is provided

by VMWare, and VHD from Windows Virtual PC.

41

Figure 2.16: VirtualBox and VMware Architecture.

As shown in figure 2.16, VirtualBox and VMware shares the same

architecture, where the hypervisor is treated as an application on host OS. Since

these tools are too popular among common users, there will be no detailed

discussion about the virtualization environment creating process in this thesis.

The virtualization system created by VirtualBox will have the same specifications

as mentioned in table 2.1.

42

2.4 System Events Log

In data science, the data collected during system’s operation can provide

valuable information about actual or potential error/failure behaviors that already

occurred or may happen in the future, to verify assumptions made in analytical

models.

Logging includes recording system activities and network activities and

maintaining the recorded data of the system at the same time. Normally people

refer to the recorded data as logging. Logging is essential to understand the

activitieis of complicated system, especially system with less users’ interaction

such as server system.

Event logs is a set of recorded events, which are generated during the

execution session of a system, in order to provide an audit trail that can be used

in the future to understand the activity of the system and to diagnose problems if

any occurs.

In computing, an event is an action or occurrence, either from normal or

error/failure activity, recognized synchronously by event logging software. PC's

events can be generated or triggered by the system, by users, or in the other

ways.

 Traditionally, computer’s system event logs are standardized following

syslog standard (RFC 5424, 2009) as shown in table 2.x.

43

Table 2.2: The Sample Set of Traditional Event Log.

… … …

4:47:24 PM udisksd LG-notice

4:47:25 PM NetworkManager LH-info

4:47:32 PM NetworkManager LG-info

4:47:40 PM kernel LG-warning

4:47:40 PM kernel LG-notice

4:47:52 PM dbus LG-notice

4:47:52 PM kernel LG-warning

4:50:03 PM kernel LH-debug

4:50:15 PM IPSec WG-Information

4:50:28 PM DCOM WG-Information

4:50:28 PM EventLog WG-Information

4:50:35 PM pulseaudio LG-err

… … …

 However, this thesis will look at system logs in the other perspective,

similar to the Flow-net Logging approach [36] as demonstrated in figure 2.17.

The advantage of this approach is it also contains specific relationships between

events, thus can be very useful trace-back diagnostic.

44

Figure 2.17: The Flow-net Logs Approach [36].

2.4.1 Windows Events Logging

Windows Event logging provides a standard, centralized way for software

and system applications to record important software and hardware events.

Windows application, operating system, and other system services record those

important events, such as low-memory conditions or excessive attempts to

access a disk. Later on if an error or failure occurs, the system administrator will

use those important events to determine what caused the error, attempt to

recover any lost data, and prevent the error from recurring. By periodically

viewing the event log, the system administrator may be able to identify problems

(such as a failing hard disk) before they cause damage [37].

45

In Windows OS, event logging is implemented as a system service that

runs in the background and wait for triggering activity to start recording events.

Windows event logging service stores recorded events in a log file called evt

extension file. Windows OS has three types of log file: application log, security

log, and system log. For system availability and reliability investigation purposes,

this thesis will only focus on system log.

System event logs are classified into five severity levels, as explained in

table 2.3 [37].

Table 2.3: Windows Event Log’s Severity Levels [37].

Event type Description

Error

An event that indicates a significant problem such as loss of

data or loss of functionality. For example, if a service fails to

load during startup, an Error event is logged.

Warning

An event that is not necessarily significant, but may indicate a

possible future problem. For example, when disk space is low,

a Warning event is logged. If an application can recover from

an event without loss of functionality or data, it can generally

classify the event as a Warning event.

Information
An event that describes the successful operation of an

application, driver, or service. For example, when a network

46

driver loads successfully, it may be appropriate to log an

Information event. Note that it is generally inappropriate for a

desktop application to log an event each time it starts.

Success

Audit

An event that records an audited security access attempt that is

successful. For example, a user's successful attempt to log on

to the system is logged as a Success Audit event.

Failure

Audit

An event that records an audited security access attempt that

fails. For example, if a user tries to access a network drive and

fails, the attempt is logged as a Failure Audit event.

Below is an event-log file structure designed by Microsoft;

_EVENTLOGHEADER

_EVENTLOGRECORD 1

_EVENTLOGRECORD 2

...

_EVENTLOGRECORD N

<BLANK SPACE>

The _ELF_LOGFILE_HEADER is a structure that is written at the

beginning of an event log by the event-logging service, to define information

about the event log.

47

typedef struct _EVENTLOGHEADER {

 ULONG HeaderSize;

 ULONG Signature;

 ULONG MajorVersion;

 ULONG MinorVersion;

 ULONG StartOffset;

 ULONG EndOffset;

 ULONG CurrentRecordNumber;

 ULONG OldestRecordNumber;

 ULONG MaxSize;

 ULONG Flags;

 ULONG Retention;

 ULONG EndHeaderSize;

} EVENTLOGHEADER, *PEVENTLOGHEADER;

 The _EVENTLOGRECORD is a structure that contain an event record

detailed information. One evt file can have N _EVENTLOGRECORD, depends

on the user’s predefined file size.

typedef struct _EVENTLOGRECORD {

 DWORD Length;

 DWORD Reserved;

 DWORD RecordNumber;

 DWORD TimeGenerated;

 DWORD TimeWritten;

 DWORD EventID;

 WORD EventType;

 WORD NumStrings;

 WORD EventCategory;

 WORD ReservedFlags;

 DWORD ClosingRecordNumber;

 DWORD StringOffset;

 DWORD UserSidLength;

 DWORD UserSidOffset;

 DWORD DataLength;

 DWORD DataOffset;

} EVENTLOGRECORD, *PEVENTLOGRECORD;

 Details about those parameters in _ELF_LOGFILE_HEADER and

_EVENTLOGRECORD are available on MSDN official website [37].

48

By default, Windows provides a software named Event Viewer as a tool

that allows user to view and examine event logs. However, many attributes

values in _EVENTLOGRECORD cannot be seen in Event Viewer. Besides Event

Viewer, there are several other tools serving this purpose, some are quite

popular such as Wevtutil or LogParser. However, after some considerations,

none of them can provide complete information about one

_EVENTLOGRECORD. Therefore, for specific investigation, a converter was

built to convert evt file format to txt file format using C++ programming language.

The converter is named evt2txt.cpp, the source code will be provided later in

Appendix A of the thesis. Below is the sample event log in txt format after

conversion.

49

HeaderSize: 48,

Signature: 1699505740,

MajorVersion: 1,

MinorVersion: 1,

StartOffset: 48,

EndOffset: 32436,

CurrentRecordNumber: 142,

OldestRecordNumber: 1,

MaxSize: 32476,

Flags: 0,

Retention: 0,

EndHeaderSize: 48,

Event Record ID: 0,

 Length: 192,

 Reserved: 1699505740,

 RecordNumber: 1,

TimeGenerated In epoch: 1464232167,

 TimeGenerated In local datetime: Wed May 25 20:09:27 2016,

 TimeWritten In epoch: 1464232167,

 TimeWritten In local datetime: Wed May 25 20:09:27 2016,

 EventID in hexadecimal: 2147489657,

 EventID:6009,

 EventType: 4,

 NumStrings: 4,

 EventCategory: 0,

 ReservedFlags: 0,

 ClosingRecordNumber: 0,

 StringOffset: 98,

 UserSidLength: 0,

 UserSidOffset: 98,

 DataLength: 0,

 DataOffset: 186,

 Source name: EventLog,

 Computer name: MACHINENAME,

 Keyword:Classic,

 User:N/A,

 UserName:N/A,

 Event Data (String):

5.02.,

3790,

Service Pack 2,

Uniprocessor Free,

Data: 00E93020,

 Length: 192,

 Description: Microsoft (R) Windows (R) 5.02. 3790 Service Pack 2

Uniprocessor Free.,

50

Event Record ID: 1,

 Length: 128,

 Reserved: 1699505740,

 RecordNumber: 2,

TimeGenerated In epoch: 1464232167,

 TimeGenerated In local datetime: Wed May 25 20:09:27 2016,

 TimeWritten In epoch: 1464232167,

 TimeWritten In local datetime: Wed May 25 20:09:27 2016,

 EventID in hexadecimal: 2147489653,

 EventID:6005,

 EventType: 4,

 NumStrings: 7,

 EventCategory: 0,

 ReservedFlags: 0,

 ClosingRecordNumber: 0,

 StringOffset: 98,

 UserSidLength: 0,

 UserSidOffset: 98,

 DataLength: 0,

 DataOffset: 120,

 Source name: EventLog,

 Computer name: MACHINENAME,

 Keyword:Classic,

 User:N/A,

 UserName:N/A,

 Event Data (String):

,

,

,

,

8,

0,

0 ,

Data: 00E930B0,

 Length: 128,

 Description: The Event log service was started.,

 According to the information provided in this log file, this file contains 142

recorded events, with the total size of 32.476 Bytes. The first recorded event was

written at Wed May 25 20:09:27 2016, by the EventLog service, and the

EventType value is 4, this means the severity level of this event is ‘information’,

as refer to table 2.4.

51

Table 2.4: EventType Value Reference Table from MSDN [37].

Value Description

0 Success

1 Error

2 Warning

4 Information

8 Audit Success

16 Audit Failure

2.4.2 Linux System Logging

 Linux OS has syslogd (or syslog-ng) as the syslog daemons to record

system event log. Syslogd includes two system applications: klogd and syslogd.

Klogd manages the all event logging process from kernel, while syslogd

manages event logging process from applications. Besides, there are other third

parties application that can produce their own logs. Event logging in Linux are

recorded in the time generated, and follow the syslog standard, thus it lacks the

ability to store relationship between events.

52

 In Linux event logging process, the triggered event information is first kept

in buffer, then the event logging daemon will write the event to the log file

periodically. Accordingly, the timestamp of the event doesn’t necessarily mean

the actual time the event happened, it is the time when an event is generated

and written.

Table 2.5: Severity Level in Ubuntu 14.04 LTS x64 [39].

Severity Keyword Description

Emergency emerg
System is unusable.

A panic condition.

Alert alert

Action must be taken immediately.

A condition that should be corrected immediately,

such as a corrupted system database.

Critical crit Critical conditions, such as hard device errors.

Error err Error conditions.

Warning warning Warning conditions.

Notice notice

Normal but significant conditions.

Conditions that are not error conditions, but that may

require special handling.

53

Informational info Informational messages.

Debug debug

Debug-level messages.

Messages that contain information normally of use

only when debugging a program

In Ubuntu 14.04 LTS, an event’s structure is vary depends on user’s

preferable format in /etc/rsyslog.conf file. Below is the sample modified-template

and output.

$template strtpl,"PRI: %pri-text%,\nSeverity: %syslogseverity-

text%,\nFacility: %syslogfacility-text%,\nTimeGenerated:

%timegenerated%,\nTimeReported: %timereported%,\nHostname:

%HOSTNAME%,\nProgramName: %programname%,\nFromHost: %fromhost%,\nTAG:

%syslogtag%,\nInfoUnitType: %iut%,\nMsg: %msg%,\nRawMsg:

%rawmsg%\nProtocolVersion: %protocol-version%,\nStructuredData:

%structured-data%,\nAppName: %app-name%,\nProcid: %procid%,\nMsgid:

%msgid%,\nInputname: %inputname%\n\n"

54

PRI: daemon.info,

Severity: info,

Facility: daemon,

TimeGenerated: May 26 03:43:40,

TimeReported: May 26 03:43:40,

Hostname: UbuntuHost,

ProgramName: NetworkManager,

FromHost: UbuntuHost,

TAG: NetworkManager[698]:,

InfoUnitType: 1,

Msg: <info> Activation (eth0) Stage 3 of 5 (IP Configure Start)

started...,

RawMsg: <30>May 26 03:43:40 NetworkManager[698]: <info> Activation

(eth0) Stage 3 of 5 (IP Configure Start) started...

ProtocolVersion: 0,

StructuredData: -,

AppName: NetworkManager,

Procid: 698,

Msgid: -,

Inputname: imuxsock

 The parameters includes in the event above are quite similar to the

parameters in a Windows event, therefore it is not necessary to go any deeper

here.

2.5 Common Users’ Behavior Simulation

 This thesis considers common users of a mid-range cloud renting PC

regarding to a normal PC user whose daily tasks on the computer are as simple

as using MS Office, drawing, internet surfing, listening to music, watching movie,

and other simple calculating. The reason behind this consideration is, with such

renting cloud PC specs, the user can’t do any special overload computation, or

dedicated gaming or visual art designing. Apparently, there is a potential for

55

further experiment, to test overload computing on cloud machine with higher

specs, this will be mentioned later in Chapter 4.

 A use case diagram is designed as displayed in figure 2.18, to specify all

task that may be run on a cloud VM. From this use case diagram, an auto tool

named AutoUser.cpp was built using C++ programming language, this tool will

automatically perform all the task a user can do in the order of time, one by one,

the second task will be performed 5 seconds after the first task, etc. When all the

tasks are running, the tool will set a 30 seconds timing, after 30 seconds, it will

start killing all the tasks one by one. When finish killing all the tasks, the tool will

wait for 10 seconds before repeating all the process all over again. The tool will

do these repeatedly infinite times, until getting a terminating command from

keyboard.

 For better understanding, the user activities simulation process from the

beginning until the end is described in an activity diagram as shown in figure

2.19.

56

Figure 2.18: Common User’s Use Case Diagram.

57

Figure 2.19: Auto User Simulation Activity Diagram.

2.6 Data Collection Strategy

 Data collection is performed once every third days of the three days

sessions and, consists of these main steps:

58

 The virtualization hypervisor type-1 and type-2 environments were

deployed sequentially every 3 to 6 days, the specifications of each

machine in the environment were as described in Chapter 2.3;

 All the VMs in the virtualization environment were set to run AutoUser.cpp

since day one to day 3;

 All the machines in the virtualization environment have the event-log

format template configure as described above in Chapter 2.4;

 Backup System event logs of each machines (PMs and VMs) to a

dedicated machine used for data preprocessing and network training. The

other extra back up files are stored on Google Cloud to prevent data loss

from hardware failure.

The back-up event logs collected from each machine, which was generated

during the same running period, are concatenated into a single file in the order of

time. Each event in this concatenating process only contains useful attributes

values. All these values at the end will be quantify into numbers to make them

understandable with neural network.

The data collected using this strategy corresponds to a one month experimenting

period (from December 2017 to January 2018). At the end there were five distinct

concatenated sets, three from VirtualBox environments during three discrete

performing time, and two from Xen Hypervisor environments during two discrete

performing time.

59

2.7 Chapter Summary

This chapter provided an overview about virtualization in IaaS cloud, and

described the process to simulate specific environments with detailed

information. It also explained about target user expectation and data collection

process. Next chapter will discuss about neural network time series, as well as

how those data will be used in the network.

60

3. NEURAL NETWORK TIME SERIES MODEL AND SYSTEM FAILURE

PATTERN DETECTION

3.1 Chapter Introduction

Neural network time series model is a new application of neural network in

detecting and predicting sequential events. Similar to episode mining introduced

in Chapter 1, given a set of event sequence and the length of maximum support

threshold, neural network time series model can detect all frequent episodes.

But, more than what episode mining can do, neural network time series model

can also learn the rules of how a frequent episode occurs, and predict which

event is going to happen following those rules. This gives motivation to find out

answer for the question: “Whether neural network time series model can predict

failure events that may occur in cloud environment before it actually happens ?”.

3.2 NARX Network Model

In MATLAB, neural network time series model is classified into three

different types:

 Nonlinear Autoregressive (NAR net) - Predict series y(t) given ny past

values of y(t). The function for NAR net is defined as:

𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … , 𝑦(𝑡 − 𝑛𝑦))

 Nonlinear Input-Output - Predict series y(t) from x(t) past values input,

given nx past values of x(t).

61

𝑦(𝑡) = 𝑓(𝑥(𝑡 − 1), 𝑥(𝑡 − 2), … , 𝑥(𝑡 − 𝑛𝑥))

 Nonlinear Autoregressive with External Input (NARX net) – Predict series

y(t) given ny past values and another series x(t) with nx past values (nx can be

equal to ny). The function for NARX net is defined as:

𝑦(𝑡) = 𝑓 (𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … , 𝑦(𝑡 − 𝑛𝑦), 𝑥(𝑡 − 1), 𝑥(𝑡 − 2), … , 𝑥(𝑡 − 𝑛𝑥)) (4)

Among those three, NARX net solution has more input vectors, thus,

obviously it can generate the most accurate results. Therefore, the thesis will use

NARX net model for further experiments.

 Technically, NARX net is a type of feed forward neural network that takes

a series of event as the input. The length of the series is defined as Input-Delay

(ID) which is referred to nx value in equation (4), and Feedback-Delay (FD) which

is referred to ny value in equation (4). For example, the NARX net with ID = 15

and FD = 30, when predicting the next value yt, will take the input series including

15 last x(t) (from xt-15 to xt-1) and 30 last y(t) (from yt-30 to yt-1).

Accordingly, choosing the right value for ID and FD is very important to

help improve the NARX net outcome accuracy. Using the cross-correlation and

auto-correlation are among the techniques that are widely used for this purpose.

Cross-correlation is used between two discrete time series, the higher

cross-correlation value means the more similarities between the two time series,

this method is used to find out the best ID value between x(t) and y(t).

62

𝑥𝑐𝑜𝑟𝑟(𝑋, 𝑌, 𝑙𝑎𝑔) = ∑ 𝑋[𝑛] x 𝑌[𝑛]

𝑛−1

𝑛−0

 (17)

In actual experiments, after several tries, shifting y(t) to the right side of

x(t) 30 columns (lag = 30) gives the most significant xcorr(X, Y, 30) = 4.38.

Therefore, ID value is chosen as 30.

Calculating auto-correlation function is the same as calculating cross-

correlation function, the only difference here is, auto-correlation is used between

one time series and itself with a lag value time shift.

𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟(𝑌, 𝑙𝑎𝑔) = ∑ 𝑌[𝑛] x 𝑌[𝑛 + 𝑙𝑎𝑔]

𝑛−1

𝑛−0

 (18)

In actual experiments, autocorr(Y,30) = 12.75 is the most significant auto-

correlation value. Therefore, FD value is also chosen at 30.

Table 3.1: NARX Net Input Data.

ProgramName SeverityLevel

… …

udisksd LG-notice

NetworkManager LH-info

NetworkManager LG-info

kernel LG-warning

63

kernel LG-notice

dbus LG-notice

kernel LG-warning

kernel LH-debug

IPSec WG-Information

DCOM WG-Information

EventLog WG-Information

pulseaudio LG-err

… …

In the NARX net model used in this thesis experiment, the number of

hidden neuron in hidden layer is defined as

𝑛𝐻𝑖𝑑𝑑𝑒𝑛 = ⌈
𝑛𝐼𝑛𝑝𝑢𝑡 + 𝑛𝑂𝑢𝑡𝑝𝑢𝑡

𝑛𝐼𝑛𝑝𝑢𝑡𝑉𝑒𝑐𝑡𝑜𝑟
⌉ (4)

 As shown in table 3.1, the NARX net input data will have 2 vectors

Program-Name and Severity-Level, so nInputVector will be equal to 2. FD and ID are

both equal to 30, therefore the NARX net will take 30 last values of Program-

Name vector and 30 last values of Severity-Level vector, this means nInput is

equal to 30x2 =60. And the network output only return one y(t) value, this means

nOutput = 1. At the end nHidden = upper-bound((60+1)/2) = 31.

64

Figure 3.1: NARX Net Model Deployed in this Thesis Experiments..

In some special case, ID can be 0 which can be described as 𝑦(𝑡) =

𝑓(𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … , 𝑦(𝑡 − 𝑛𝑦), 𝒙𝒕, 𝑥(𝑡 − 1), 𝑥(𝑡 − 2), … , 𝑥(𝑡 − 𝑛𝑥)) by adding

𝑥𝑡, or can be visualized as shown in table 3.2. Setting ID = 0 can improve the

prediction output Y significantly, but in this situation, ProgramName and

SeverityLevel of one event are generated at the same time, and are written to the

system log file at the same time, therefore this approach cannot be used.

Table 3.2: Visualization of NARX Net Taking Input Data with Input-Delay

Equal to ‘0’.

ProgramName SeverityLevel

… …

udisksd LG-notice

NetworkManager LH-info

NetworkManager LG-info

kernel LG-warning

65

kernel LG-notice

dbus LG-notice

kernel LG-warning

kernel LH-debug

IPSec WG-Information

DCOM WG-Information

EventLog WG-Information

pulseaudio ?

3.3 Data Preparation

Because neural network only take quantified input value, therefore every

value in raw data in table 3.1 has to be mapped with specific reference tables as

shown in table 3.3 and 3.4.

Table 3.3: Severity Level Reference Table.

LH-Emerg 1

LH-Alert 2

LH-Crit 3

LH-Err 4

LH-Warning 5

LH-Notice 6

LH-Info 7

LH-Debug 8

LG-Emerg 9

LG-Alert 10

LG-Crit 11

LG-Err 12

LG-Warning 13

66

LG-Notice 14

LG-Info 15

LG-Debug 16

WG-Error 17

WG-Warning 18

WG-Information 19

Table 3.4: Program Name Reference Table.

winOS LinuxOS Guest LinuxOS Host mapping number

 anacron 0

 NetworkManager 1

 kernel 2

 bluetoothd 3

 gnome-session 4

 colord 5

 acpid 6

 rtkit-daemon 7

 pulseaudio 8

 dbus 9

 whoopsie 10

 rsyslogd 11

 nvidia-persistenced 12

 avahi-daemon 13

 polkitd 14

 wpa_supplicant 15

 cron 16

 ntpdate 17

 restorecond 18

 accounts-daemon 19

 ModemManager 20

 udisksd 21

 dhclient 22

 dnsmasq 23

 ntfs-3g 24

 rsyslogd-2039 25

 mtp-probe 26

67

 polkitd 27

 failsafe 28

 restorecond 29

 AptDaemon 84

 AptDaemon.PackageKit 85

 AptDaemon.Worker 86

 AptDaemon.Trans 87

 dnsmasq-dhcp 88

 irqbalance 89

 xenstored 90

 xenproject 91

 logger 92

 cracklib 93

 avahi-autoipd(xenbr0) 101

 anacron 30

 NetworkManager 31

 kernel 32

 bluetoothd 33

 gnome-session 34

 colord 35

 acpid 36

 rtkit-daemon 37

 pulseaudio 38

 dbus 39

 whoopsie 40

 rsyslogd 41

 nvidia-persistenced 42

 avahi-daemon 43

 polkitd 44

 wpa_supplicant 45

 cron 46

 ntpdate 47

 restorecond 48

 accounts-daemon 49

 ModemManager 50

 udisksd 51

 dhclient 52

 dnsmasq 53

 ntfs-3g 54

68

 rsyslogd-2039 55

 mtp-probe 56

 polkitd 57

 failsafe 58

 restorecond 59

 AptDaemon 94

 AptDaemon.PackageKit 95

 AptDaemon.Worker 96

 AptDaemon.Trans 97

 dnsmasq-dhcp 98

 irqbalance 99

 cracklib 100

EventLog 60

DCOM 61

PlugPlayManager 62

IPSec 63

Workstation 64

NtServicePack 65

Setup 66

USER32 67

Dhcp 68

Tcpip 69

AeLookupSvc 70

W32Time 71

Service Control
Manager 72

WinHttpAutoProxySvc 73

AeLookupSvc 74

Windows Update Agent 75

SideBySide 76

HTTP 77

Print 78

Application Popup 79

Win32k 80

WindowsMedia 81

SRService 82

sr 83

69

After completely quantified, the input data will be divided into three

subsets:

 Training set (70%) – Neural network analyzes this set, detects rules and

repeating pattern, these will be learnt by adjusting weight between connections of

input neurons and hidden neurons.

 Validating set (15%) – This set is used to validate the pre-trained neural

network after each epoch (or iteration). If the network performance is not close to

the goal, the network training process will continue the next epoch. Neural

network completes training process only when the neural network performance

can reach a certain goal, or the training process has reached maximum epochs

limit or training time limit.

 Testing set (15%) – The use of this set is similar to validating set, but this

set will only be used once, the output of this set is the final outcome of the neural

network in a neural network training strategy.

3.4 Levenberg-Marquardt Backpropagation Training

Back propagation is a method that uses output results to adjust input

parameters’ values, in order to achieve better results in the future. This plays an

important role in neural network training, after training and validating process,

backpropagation technique is used to update weight values on each edges

connect between neurons.

70

Let T = {T1, T2…Tn} be the set of target, Y = {y1, y2 … yn} be the set of

output, T and Y from one network training solution must have the same size. The

set of errors E = {E1, E2 … En} is defined as

𝐸 = 𝑇 − 𝑌 (5)

Figure 3.2: Weight Adjusting in One Epoch in NN Training Process.

In neural network, one epoch is equivalent to one training iteration. After

one epoch, new output Y = {y1, y2 … yn} is generated. From equation (1) and (2)

𝑎𝑖−1 = 𝑦𝑖 =
1

1 + 𝑒−𝑦𝑖
=

1

1 + 𝑒−(∑ 𝑥𝑖.𝑤𝑖
𝑛
𝑖=1 +𝑏𝑖)

=
𝑒∑ 𝑥𝑖.𝑤𝑖

𝑛
𝑖=1 +𝑏𝑖

1 + 𝑒∑ 𝑥𝑖.𝑤𝑖
𝑛
𝑖=1 +𝑏𝑖

 (6)

71

Let W = {w1, w2 … wn} be the set of weights, given total mean squared

error MSE and neuron’s input value a as described in equation (1) and equation

(3) in Chapter 1, respectively, applying the chain rules in partial derivatives, the

gradient between W and MSE, or how much changing a value in W can affect

MSE, is defined as

𝜕𝑀𝑆𝐸

𝜕𝑤𝑖
=

𝜕𝑀𝑆𝐸

𝜕𝑦𝑖
∗

𝜕𝑦𝑖

𝜕𝑎𝑖−1
∗

𝜕𝑎𝑖−1

𝜕𝑤𝑖
 (7)

Figure 3.3: Visualize the Chain Rules in Finding Gradient between MSE and

Weight.

72

From equation (6), apply the derivative of the logistic function

𝜕𝑦𝑖

𝜕𝑎𝑖
= 𝑦𝑖(1 − 𝑦𝑖) =

1

1 + 𝑒−(∑ 𝑥𝑖.𝑤𝑖
𝑛
𝑖=1 +𝑏𝑖)

 (1 −
1

1 + 𝑒−(∑ 𝑥𝑖.𝑤𝑖
𝑛
𝑖=1 +𝑏𝑖)

) (8)

From equation (3), 𝑀𝑆𝐸 =
1

𝑛
 [(𝑇𝑖 − 𝑦𝑖)

2 + (𝑇𝑖−1 − 𝑦𝑖−1)
2 + ⋯+

 (𝑇1 − 𝑦1)
2 , consider partial derivative of MSE with respect to yi, all the values

from yi-1 to y1 does not affect it, therefore (𝑇𝑖−1 − 𝑦𝑖−1)
2 + ⋯+ (𝑇1 − 𝑦1)

2

becomes 0. Let yi be a constant in this partial derivative equation, using the rules

for ordinary differentiation:

𝜕𝑀𝑆𝐸

𝜕𝑦𝑖
= 2 ∗

(𝑇𝑖 − 𝑦𝑖)
(2−1)

𝑛
 =

2(𝑇𝑖 − 𝑦𝑖)

𝑛
 (9)

Similarly, from equation (1), 𝑎𝑖−1 = 𝑤𝑖𝑦𝑖 + 𝑤𝑖−1𝑦𝑖−1 + ⋯+ 𝑤1𝑦1 + 𝑏𝑤𝑏 ,

consider partial derivative of ai-1 with respect to wi, all the values from wi-1 to w1

does not affect it, therefore 𝑤𝑖−1𝑦𝑖−1 + ⋯+ 𝑤1𝑦1 + 𝑏𝑤𝑏 becomes 0. Let wi be a

constant in this partial derivative equation, using the rules for ordinary

differentiation:

𝜕𝑎𝑖−1

𝜕𝑤𝑖
= 1 ∗ 𝑤𝑖𝑦𝑖

(1−1)
 = 𝑤𝑖 (10)

 Replace equation (8), (9), (10) to equation (7):

73

𝜕𝑀𝑆𝐸

𝜕𝑤𝑖
=

𝜕𝑀𝑆𝐸

𝜕𝑦𝑖
∗

𝜕𝑦𝑖

𝜕𝑎𝑖−1
∗

𝜕𝑎𝑖−1

𝜕𝑤𝑖

=
2(𝑇𝑖 − 𝑦𝑖)

𝑛
∗

1

1 + 𝑒−(∑ 𝑥𝑖.𝑤𝑖
𝑛
𝑖=1 +𝑏𝑖)

 (1 −
1

1 + 𝑒−(∑ 𝑥𝑖.𝑤𝑖
𝑛
𝑖=1 +𝑏𝑖)

) ∗ 𝑤𝑖

=
2𝑤𝑖(𝑇𝑖 − 𝑦𝑖)

𝑛
 ∗

1

1 + 𝑒−(∑ 𝑥𝑖.𝑤𝑖
𝑛
𝑖=1 +𝑏𝑖)

 (1 −
1

1 + 𝑒−(∑ 𝑥𝑖.𝑤𝑖
𝑛
𝑖=1 +𝑏𝑖)

) (11)

Having the steep from equation (11), let η be the learning parameter, to

decrease the error in next training iteration from winextEpoch, this steep value will be

subtracted from current weight wi, the back propagation algorithm is defined as

winextEpoch = 𝑤𝑖 − 𝜂 ∗
𝜕𝑀𝑆𝐸

𝜕𝑤𝑖
 (12)

Levenberg-Marquardt (LM) algorithm is an update version of Gauss-

Newton algorithm, both can only be used when the network performance is

calculated in mean or sum of squared errors. Gauss Newton algorithm is a

commonly used method to find nonlinear least-squared errors curve fitting line.

Consider J as a Jacobian matrix between error set E = {E1, E2 … En} and weight

set W = {w1, w2 … wm}, with m >= n, matrix J is defined as

74

𝐽 =

[

𝜕𝐸1

𝜕𝑤1

⋯
𝜕𝐸1

𝜕𝑤𝑚

⋮ ⋱ ⋮
𝜕𝐸𝑛

𝜕𝑤1

⋯
𝜕𝐸𝑛

𝜕𝑤𝑚]

 (13)

 𝐽𝑇𝐽 will become the Hessian matrix and 𝐽𝑇𝐸 will become the gradient, this

will replace the gradient in equation (12), and the weight adjusted for next epoch

winextEpoch will be calculated by Gauss-Newton equation below

winextEpoch = 𝑤𝑖 − (𝐽𝑇𝐽)−1 𝐽𝑇𝐸 (14)

 Levenberg-Marquardt backpropagation improve Gauss Newton algorithm

by adding μI to equation (14) to ensure the matrix is invertible. Matrix I is an

Identity matrix: [
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

], parameter μ will decrease after every successful

epoch that makes network performance value goes down, and will increase if the

next training epoch may potentially make network performance goes up.

winextEpoch = 𝑤𝑖 − (𝐽𝑇𝐽 + μI)−1 𝐽𝑇𝐸 (15)

 When parameter μ = 0, LM backpropagation becomes a Gauss Newton

backpropagation.

75

3.5 Training Validation

Since the purpose of the thesis is to predict failure events, after NARX net

has generated the output matrix, all the non-failure events predicted should be

neglected to preserve the accuracy of the experiment. Let F = {WG-failure, LG-

failure, LH-failure} be the set of failure events, the target set of failure events T’ =

{T’1, T’2 … T’m}, with m < n, is generated by selecting all the elements from T that

has SeverityLevel value listed in F; Y’ = {y’1, y’2 … y’m} is the set of output

corresponding to T’. The new network performance valuation equation MSE’ is

defined as:

𝑀𝑆𝐸′ =
1

𝑚
 ∑(𝑦′𝑖 − 𝑇′𝑖)

2

𝑚

𝑖=1

 (16)

The data collection using in this experiments was accumulated during

December 2017, including 5 datasets, 3 from VirtualBox environment and 2 from

Xen Project environment, as shown in table 3.5. Two NARX net had been trained

with a dataset in each environment, particularly, the NARX net 1 was trained with

VirtualBox 2nd dataset [X2,T2], and the NARX net 2 was trained with Xen Project

1st dataset [X4,T4].

76

Table 3.5: Data Collection during December 2017.

Number of

events included
Dataset

VirtualBox

1st 19,745 [X1, T1]

2nd 38,938 [X2, T2]
Trained with

NARX net 1

3rd 3,725 [X3, T3]

Xen Hypervisor
1st 335,933 [X4, T4]

Trained with

NARX net 2

2nd 209,943 [X5, T5]

After being trained with dataset [X2, T2] and [X4, T4], NARX net 1 and

NARX net 2 have learnt failure pattern in System Events Log and can predict the

next coming failure event. They are then fed other input dataset such as [X1, T1],

[X3, T3], and [X5, T5] to generate Y1, Y3 and Y5. Table 3.6 validate the accuracy

in each output set Y generated in each NARX net model.

Table 3.6: Training Validation with each Dataset Using MSE’.

 MSE'

 [X1, T1] [X2, T2] [X3, T3] [X4, T4] [X5, T5]

77

NARX net 1 0.0682 0.0117 0.0973 0.0377 0.0483

NARX net 2 0.1196 0.0196 0.3356 0.000215 0.0451

 Obviously, the NARX net will always give better prediction accuracy with

the set they were trained with. In the first situation, NARX net 1 was trained with

[X2, T2] and 0.0117 is the lowest MSE’ it can perform. In the second situation,

NARX net 2 was trained with [X4, T4] and 0. 000215 Is also the lowest MSE’ it

can perform.

Consider MSE’ = 0.1 as 90% accuracy in failure event predicting,

according to table 3.6, the NARX net 1 can always give prediction with the

accuracy higher than 90%, not only in Virtual Box environment, but also in Xen

Hypervisor environment, this makes it a better choice when using in an undefined

virtualization environment. However, the NARX net 2 can give higher accuracy

when it comes to Xen hypervisor environment (over 99.989% is almost a perfect

prediction strategy).

Besides MSE’, plotRegression() and plotResponse() are some good tools

for training validation. Plot Regression shows the relationship between the

outputs of the network and the targets. If the training were perfect, the network

outputs and the targets would be exactly equal, but the relationship is rarely

perfect in practice. In figure 3.4, the dashed line in each plot represents the

perfect result – outputs = targets, the solid line represents the best fit linear

78

regression line between outputs and targets, the R value is an indication of the

relationship between the outputs and targets. R = 1 indicates that there is an

exact linear relationship between outputs and targets. If R is close to zero, then

there is no linear relationship between outputs and targets.

Figure 3.4: Plot Regression of NARX Net 1 When Training with [X2, T2].

79

Figure 3.5: Plot Regression of NARX Net 2 When Training with [X4, T4].

Plot Response plot the target set Ts and output set Y on the same axis, to

show the errors between them.

80

Figure 3.6: Plot Response of NARX Net 1 When Training with [X2, T2].

 In figure 3.6, among thousands of events, only three have predicting

errors bigger than 5. Most of them have predicting errors between 0 and 2, which

indicates this is a success training. 30% of the failure events have a completely

predictable pattern, as the errors are 0.

81

Figure 3.7: Plot Response of NARX Net 2 When Training with [X4, T4].

 From figure 3.7, Xen hypervisor environment is clearly more predictable,

because of the overwhelmingly large amount of system events generated by

Dom0. Not only the failure event, but all other types of events in Xen environment

is potentially predictable, as the MSE was 0.1842 (equivalent to 91.38%

accuracy).

3.6 Chapter Summary

This chapter presented the complete process that was used to design a

neural network time series model, the techniques behind how to choose the

Input-Delay & Feedback-Delay values, how to choose the number of hidden

neuron, and most importantly, the implementation of LM training techniques in

82

traditional neural network back propagation approach. At the end, it also

mentioned about some successful experimenting results using this neural

network design and the dataset described in chapter 2.

83

4. CONCLUSION AND FUTURE DIRECTION

4.1 Conclusion

Cloud failure event is predictable

According to recent experiments, failure in virtualization system is

predictable by using time delay neural network. The predictability level in

Hypervisor type 2 system is less accuracy than in hypervisor type 1 system, due

to the lack of directly and fully control all hardware components of the physical

machine. Furthermore, in hypervisor type 2, not only the failure events, but other

events are also predictable, with the accuracy fall between 80% - 92% when

using MSE measurement, this promises a great potential in cloud computing

supervising effectiveness.

 However, like many other experiments, all the results are generated from

simulated environment, therefore it still needs more practical and realistic

experimenting data. This can be considered as one of the future directions. The

lack of real users activities and real cloud network interface are two of the major

things that can cause incorrect assumptions in this paper.

There was an argument about whether or not the real cloud system with

VMs on different geographic location can cause delay in event recording, thus

may shuffle the events order and incorrect the pattern recognition process.

However, according to Windows and Linux official documents about system

event logs, the characteristic of system event log recording is to record an event

84

that has happened in the past, and use it for system forensics if there’s any

system crash in the future, accordingly, delay in event generating and event

writing is acceptable and tolerable.

In conclusion, the success of this technique opens a new approach to

cloud computing data analysis, virtualization system’s failure prediction and

prevention. If it can be used in the industry, It will help increasing the stability of

cloud service, the reliability of cloud providers, as well as reducing frustration and

depression in cloud users.

4.2 Future Direction

In the small scale or experiment, applying the same approach on slightly

different platform or changing the way of data collecting can provide better

understanding about this technique. The future recommending virtualization

system should has the same design, but should be launched on the more

powerful physical machine, that can handle 8 or 16 VMs with identical specs or

higher. More VMs will force system hypervisor to work harder, and record more

interrelation events. The more communications between VMs can be fed to the

neural network system, the more accurate predictions the neural network system

can generate. For data collecting method, the simplest way is to change virtual

users’ behavior (described in chapter 2.6). By consecutively launch heavy

applications in all VMs, the system will reach its peak, where the sharing

resource is overwhelmed by the amount of tasks, this will squeeze the

85

performance of the hypervisor domain, thus can generate more valuable result

about its VMs managements strategies. Another variant of this direction should

be designed to focus only on a particular part of the physical machine, such as

network card, or GPU, or BUS controller, to experience how predictable it is to

predict failure that may occur in certain part of the physical machine in sharing

environment.

The second direction is to answer the question: “whether or not, these

predictable failures can be prevented from happening in the virtualization

system? “. To answer this question, after fully trained, the neural network system

should be adapted in real time virtualization system as an AI virtual assistant.

Throughout the time, this AI virtual assistant will take all the system events as

input and return upcoming events with high failure rate. The job of the researcher

in this future study is to find a way to prevent these failure events from

happening. In the end if there are significantly fewer failures occurrence, this can

be considered as a positive answer for that question.

And last but not least, from managing, recognizing and predicting system

events, there’s a potential to propose a new cloud computing reliability

frameworks. This new framework should measure IaaS cloud reliability level

based on certain characteristic such as the frequency of critical/failure events,

the mean risk rate that failures may occur in the system, the frequency of event

patterns with high failure rate… As mentioned in chapter 1.1, reliability level is

one of the most important characteristic in cloud computing environment. This

86

new framework can give great contributions and more accuracy measurements

to cloud systems that are trying to use the adaptive version of this neural network

system as an AI virtual assistant, hence can enormously improve this AI virtual

assistant performance.

87

APPENDIX A

SETUP VIRTUALIZATION ENVIRONMENT AND DATA COLLECTING

88

UbuntuAutoUsers.cpp

1. #include <iostream>
2. #include <stdlib.h>
3. #include <unistd.h>
4. using namespace std;
5.
6. int main()
7. {
8. int i=1;
9. while (i==1)
10. {
11. system("libreoffice --

norestore wordtest.doc &");
12. sleep(3);
13. system("libreoffice --

norestore exceltest.xlsx &");
14. sleep(3);
15. system("libreoffice --

norestore ppttest.pptx &");
16. sleep(3);
17. system("gedit txttest.txt &");
18. sleep(3);
19. system("gimp painttest.jpg &");
20. sleep(4);
21. system("totem videotest.mp4 &");
22. sleep(3);
23. system("firefox http://ebay.com &");
24. sleep(3);
25. system("midori http://ebay.com &");
26. sleep(3);
27. system("gnome-calculator &");
28. sleep(3);
29. system("nautilus &");
30. sleep(3);
31. system("gnome-system-monitor &");
32.
33.
34. sleep(20);
35. system("killall soffice.bin");
36. sleep(2);
37. system("killall gedit");
38. sleep(2);

89

39. system("pkill -e script-fu");
40. sleep(2);
41. system("pkill -e gimp");
42. sleep(2);
43. system("killall totem");
44. sleep(2);
45. system("killall firefox");
46. sleep(2);
47. system("killall midori");
48. sleep(2);
49. system("killall gnome-calculator");
50. sleep(2);
51. system("killall nautilus");
52. sleep(2);
53. system("killall gnome-system-monitor");
54. sleep(1);
55. system("rm -r /tmp/*");
56. sleep(5);
57. system("rm -

r /home/vboclinuxguest/.cache/mozilla/firefox/*");
58. sleep(5);
59. }
60. return 0;
61. }

WindowsAutoUsers.cpp

1. #include <iostream>
2. #include <windows.h>
3. #include <stdlib.h>
4. #include <time.h>
5.
6. using namespace std;
7.
8. int main()
9. {
10. int loop = 1;
11. while (loop == 1)
12. {
13. system("start C:\\wordtest.doc");
14. Sleep(2000);
15. system("start C:\\exceltest.xlsx");

90

16. Sleep(2000);
17. system("start C:\\ppttest.pptx");
18. Sleep(2000);
19. system("start notepad.exe C:\\txttest.txt");
20. Sleep(2000);
21. system("start mspaint.exe C:\\painttest.jpg");

22. Sleep(2000);
23. system("start C:\\videotest.mp4");
24. Sleep(2000);
25. system("start firefox.exe http://ebay.com");
26. Sleep(2000);
27. system("start iexlore.exe http://bing.com");
28. Sleep(2000);
29. system("start calc");
30. Sleep(2000);
31. system("start explorer.exe");
32. Sleep(2000);
33. system("start taskmgr Performance");
34.
35.
36. Sleep(10000);
37. system("taskkill /im winword.exe");
38. Sleep(2000);
39. system("taskkill /im excel.exe");
40. Sleep(2000);
41. system("taskkill /im powerpnt.exe");
42. Sleep(2000);
43. system("taskkill /im notepad.exe");
44. Sleep(2000);
45. system("taskkill /im mspaint.exe");
46. Sleep(2000);
47. system("taskkill /im vlc.exe");
48. Sleep(2000);
49. system("taskkill /im calc.exe");
50. Sleep(2000);
51. system("taskkill /im iexplore.exe");
52. Sleep(2000);
53. system("taskkill /im chrome.exe");
54. Sleep(2000);
55. system("taskkill /im ExplorerXP.exe");
56. Sleep(2000);
57. system("taskkill /im taskmgr.exe");

91

58.
59. Sleep(1000);
60. }
61. return 0;
62. }

rsyslog.conf

1. # /etc/rsyslog.conf Configuration file for rsyslog.
2. #
3. # For more information see
4. # /usr/share/doc/rsyslog-

doc/html/rsyslog_conf.html
5. #
6. # Default logging rules can be found in /etc/rsyslog.d/50-

default.conf
7.
8.
9. #################
10. #### MODULES ####
11. #################
12.
13. $ModLoad imuxsock # provides support for local system

logging
14. $ModLoad imklog # provides kernel logging support
15. #$ModLoad immark # provides --MARK-

- message capability
16.
17. # provides UDP syslog reception
18. #$ModLoad imudp
19. #$UDPServerRun 514
20.
21. # provides TCP syslog reception
22. #$ModLoad imtcp
23. #$InputTCPServerRun 514
24.
25.
26. ###########################
27. #### GLOBAL DIRECTIVES ####
28. ###########################
29.
30. #

92

31. # Use traditional timestamp format.
32. # To enable high precision timestamps, comment out the

 following line.
33. #
34. $ActionFileDefaultTemplate RSYSLOG_TraditionalFileForm

at
35. $template strtpl,"PRI: %pri-

text%,\nSeverity: %syslogseverity-
text%,\nFacility: %syslogfacility-
text%,\nTimeGenerated: %timegenerated%,\nTimeReported: %time
reported%,\nHostname: %HOSTNAME%,\nProgramName: %programname
%,\nFromHost: %fromhost%,\nTAG: %syslogtag%,\nInfoUnitType:
%iut%,\nMsg: %msg%,\nRawMsg: %rawmsg%\nProtocolVersion: %pro
tocol-version%,\nStructuredData: %structured-
data%,\nAppName: %app-
name%,\nProcid: %procid%,\nMsgid: %msgid%,\nInputname: %inpu
tname%\n\n"

36. $ActionFileDefaultTemplate strtpl
37.
38. # Filter duplicated messages
39. $RepeatedMsgReduction on
40.
41. #
42. # Set the default permissions for all log files.
43. #
44. $FileOwner syslog
45. $FileGroup adm
46. $FileCreateMode 0640
47. $DirCreateMode 0755
48. $Umask 0022
49. $PrivDropToUser syslog
50. $PrivDropToGroup syslog
51.
52. #
53. # Where to place spool and state files
54. #
55. $WorkDirectory /var/spool/rsyslog
56.
57. #
58. # Include all config files in /etc/rsyslog.d/
59. #
60. $IncludeConfig /etc/rsyslog.d/*.conf

93

evt2txt.cpp

1. // ConsoleApplication1.cpp : Defines the entry point for the
 console application.

2. //
3. #include <iostream>
4. #include <fstream>
5. #include <vector>
6. #include <string.h>
7. #include <string>
8. #include <time.h>
9. #include <iomanip>
10.
11. using namespace std;
12. using PCHAR = char *;
13.
14. typedef unsigned long ULONG;
15. typedef struct _EVENTLOGHEADER {
16. ULONG HeaderSize;
17. ULONG Signature;
18. ULONG MajorVersion;
19. ULONG MinorVersion;
20. ULONG StartOffset;
21. ULONG EndOffset;
22. ULONG CurrentRecordNumber;
23. ULONG OldestRecordNumber;
24. ULONG MaxSize;
25. ULONG Flags;
26. ULONG Retention;
27. ULONG EndHeaderSize;
28. } EVENTLOGHEADER, *PEVENTLOGHEADER;
29.
30. typedef unsigned long DWORD;
31. typedef unsigned short WORD;
32. typedef struct _EVENTLOGRECORD {
33. DWORD Length;
34. DWORD Reserved;
35. DWORD RecordNumber;
36. DWORD TimeGenerated;
37. DWORD TimeWritten;
38. DWORD EventID;
39. WORD EventType;

94

40. WORD NumStrings;
41. WORD EventCategory;
42. WORD ReservedFlags;
43. DWORD ClosingRecordNumber;
44. DWORD StringOffset;
45. DWORD UserSidLength;
46. DWORD UserSidOffset;
47. DWORD DataLength;
48. DWORD DataOffset;
49. } EVENTLOGRECORD, *PEVENTLOGRECORD;
50.
51.
52. struct WevtutilTextFile {
53. string newEventID;
54. string newKeyword;
55. string newUserSID;
56. string newUsername;
57. string newDescription;
58. };
59.
60.
61. void main()
62. {
63. _EVENTLOGHEADER logheader;
64. _EVENTLOGRECORD logRecord;
65.
66. vector<WevtutilTextFile> WevtutilTxtFileVector;
67.
68. ifstream file, wevtutilTxtFile;
69. //file.open("C:\\Windows\\System32\\winevt\\Logs\\

Application.evtx", ios::in | ios::binary);
70. file.open("D:\\win2k3.evt", ios::in | ios::binary)

;
71.
72. wevtutilTxtFile.open("D:\\win2k3.txt", ios::in);
73.
74. string wevtutilTxtFind, newUserSID, newUsername, n

ewEventID, newKeyword, newDescription;
75.
76.
77. wofstream output;
78. output.open("D:\\out.txt");
79.

95

80.
81. if (!file)
82. printf("couldn't open evt file\n");
83. else
84. if (!output)
85. printf("couldn't open output.txt file");
86. else
87. if (!wevtutilTxtFile)
88. printf("couldn't open wevtutil text fi

le");
89. else
90. {
91.
92. //Reading the header
93. //file.read((char*)&logheader, sizeof(

_EVENTLOGHEADER));
94. file.read((PCHAR)&logheader, sizeof(_E

VENTLOGHEADER));
95. output <<
96. /*"number of bytes in Header" << "

: " <<
97. sizeof(_EVENTLOGHEADER) << "\n" <<

*/
98. "HeaderSize" << ": " <<
99. logheader.HeaderSize << ",\n" <<
100. "Signature" << ": " <<
101. logheader.Signature << ",\n" <<
102. "MajorVersion" << ": " <<
103. logheader.MajorVersion << ",\n" <<

104. "MinorVersion" << ": " <<
105. logheader.MinorVersion << ",\n" <<

106. "StartOffset" << ": " <<
107. logheader.StartOffset << ",\n" <<

108. "EndOffset" << ": " <<
109. logheader.EndOffset << ",\n" <<
110. "CurrentRecordNumber" << ": " <<
111. logheader.CurrentRecordNumber - 1

<< ",\n" <<
112. "OldestRecordNumber" << ": " <<

96

113. logheader.OldestRecordNumber << ",
\n" <<

114. "MaxSize" << ": " <<
115. logheader.MaxSize << ",\n" <<
116. "Flags" << ": " <<
117. logheader.Flags << ",\n" <<
118. "Retention" << ": " <<
119. logheader.Retention << ",\n" <<
120. "EndHeaderSize" << ": " <<
121. logheader.EndHeaderSize << ",\n" <

< endl;
122.
123. }
124. //find string from wevtutil export txt file
125.
126. for (int vectorcounting = 0; vectorcounting < logh

eader.CurrentRecordNumber - 1; vectorcounting++) {
127. WevtutilTxtFileVector.push_back(WevtutilTextFi

le()); //add 1 more element to vector
128. while (!wevtutilTxtFile.eof()) {
129. getline(wevtutilTxtFile, wevtutilTxtFind);

 //go through text file line by line
130. if (wevtutilTxtFind.find("Event ID:") != s

tring::npos) {
131. newEventID = wevtutilTxtFind;
132. for (int i = 0; i < newEventID.length(

); i++)
133. if (newEventID[i] == ' ') newEvent

ID.erase(i, 1);
134. WevtutilTxtFileVector[vectorcounting].

newEventID = newEventID;
135. //strcpy_s(str2charEventID, newEventID

.c_str());
136. }
137. if (wevtutilTxtFind.find("Keyword:") != st

ring::npos) {
138. newKeyword = wevtutilTxtFind;
139. for (int i = 0; i < newKeyword.length(

); i++)
140. if (newKeyword[i] == ' ') newKeywo

rd.erase(i, 1);
141. WevtutilTxtFileVector[vectorcounting].

newKeyword = newKeyword;

97

142. //strcpy_s(str2charnewKeyword, newKeyw
ord.c_str());

143. }
144. if (wevtutilTxtFind.find("User:") != strin

g::npos) {
145. newUserSID = wevtutilTxtFind;
146. for (int i = 0; i < newUserSID.length(

); i++)
147. if (newUserSID[i] == ' ') newUserS

ID.erase(i, 1);
148. WevtutilTxtFileVector[vectorcounting].

newUserSID = newUserSID;
149. //strcpy_s(str2charnewnewUserSID, newU

serSID.c_str());
150. }
151. if (wevtutilTxtFind.find("User Name:") !=

string::npos) {
152. newUsername = wevtutilTxtFind;
153. for (int i = 0; i < newUsername.length

(); i++)
154. if (newUsername[i] == ' ') newUser

name.erase(i, 1);
155. WevtutilTxtFileVector[vectorcounting].

newUsername = newUsername;
156. //strcpy_s(str2charnewnewUsername, new

Username.c_str());
157. }
158. if (wevtutilTxtFind.find("Description:") !

= string::npos) {
159. newDescription = wevtutilTxtFind;
160. while (!(wevtutilTxtFind.empty())) {
161. getline(wevtutilTxtFile, wevtutilT

xtFind);
162. newDescription = newDescription +

wevtutilTxtFind;
163. }
164. WevtutilTxtFileVector[vectorcounting].

newDescription = newDescription;
165. //strcpy_s(str2charnewDescription, new

Description.c_str());
166. }
167. if (wevtutilTxtFind.empty()) break;
168. }

98

169. }
170. char str2charnewnewUserSID[100];
171. char str2charnewnewUsername[100];
172. char str2charEventID[100];
173. char str2charnewKeyword[100];
174. char str2charnewDescription[2000];
175.
176. //Loop on every record
177. int startOfLog;
178. int totalElement = logheader.CurrentRecordNumber -

 1;
179. for (int numberFile = 0; numberFile < logheader.Cu

rrentRecordNumber - 1; numberFile++) {
180. //assign vector value
181. totalElement--;
182. strcpy_s(str2charEventID, WevtutilTxtFileVecto

r[totalElement].newEventID.c_str());
183. strcpy_s(str2charnewKeyword, WevtutilTxtFileVe

ctor[totalElement].newKeyword.c_str());
184. strcpy_s(str2charnewnewUserSID, WevtutilTxtFil

eVector[totalElement].newUserSID.c_str());
185. strcpy_s(str2charnewnewUsername, WevtutilTxtFi

leVector[totalElement].newUsername.c_str());
186. strcpy_s(str2charnewDescription, WevtutilTxtFi

leVector[totalElement].newDescription.c_str());
187.
188. //Save the position
189. startOfLog = file.tellg();
190. //Read log record
191. file.read((char*)&logRecord, sizeof(_EVENTLOGR

ECORD));
192.
193.
194. ////////////////Here are the other information

 (section 'Remarks' on the 'EVENTLOGRECORD structure' link
195.
196.
197. //Reading sourcename
198. wchar_t buffData;
199. wstring SourceName;
200. file.read((char*)&buffData, sizeof(wchar_t));

201. while (buffData != L'\0') {

99

202. SourceName.push_back(buffData);
203. file.read((char*)&buffData, sizeof(wchar_t

));
204. }
205. string wstr2strSourceName(SourceName.begin(),

SourceName.end());
206. char str2charSourceName[100];
207. strcpy_s(str2charSourceName, wstr2strSourceNam

e.c_str());
208.
209. //Reading computer name
210. wstring ComputerName;
211. file.read((char*)&buffData, sizeof(wchar_t));

212. while (buffData != L'\0') {
213. ComputerName.push_back(buffData);
214. file.read((char*)&buffData, sizeof(wchar_t

));
215. }
216. string wstr2strComputerName(ComputerName.begin

(), ComputerName.end());
217. char str2charComputerName[100];
218. strcpy_s(str2charComputerName, wstr2strCompute

rName.c_str());
219.
220.
221. //Sets the position to the SID offset
222. int readCursor = startOfLog + logRecord.UserSi

dOffset;
223. file.seekg(readCursor);
224.
225.
226. char *userSid = NULL;
227. //char str2charuserSid[100];
228. if (logRecord.UserSidLength != 0)
229. {
230. userSid = (char*)malloc(logRecord.UserSidL

ength*sizeof(char));
231. file.read((char*)userSid, logRecord.UserSi

dLength); //Reading the sid
232.

 //Here you can work on the SiD (but you need win32
 API)

100

233.
234.

 //string chr2struserSid = string(userSid);
235.

 //char str2charuserSid[100];
236.

 //strcpy_s(str2charuserSid, chr2struserSid.c_str()
);

237. }
238. //free(userSid);
239.
240.
241. //Sets the position to the Strings offset
242. readCursor = startOfLog + logRecord.StringOffs

et;
243. file.seekg(readCursor);
244. wstring buffString;
245. vector<wstring> allStrings;
246.
247. //Reading all the strings
248. for (int i = 0; i < logRecord.NumStrings; i++)

 {
249. file.read((char*)&buffData, sizeof(wchar_t

));
250. while (buffData != L'\0') {
251. buffString.push_back(buffData);
252. file.read((char*)&buffData, sizeof(wch

ar_t));
253. }
254. allStrings.push_back(buffString);
255.
256. buffString.clear();
257. }
258.
259.
260. //Sets the position to the Data offset
261. readCursor = startOfLog + logRecord.DataOffset

;
262. file.seekg(readCursor);
263. unsigned char *Data = (unsigned char *)malloc(

logRecord.DataLength*sizeof(unsigned char));
264. file.read((char*)Data, logRecord.DataLength);

//Lecture des données

101

265. char *uc2cData = reinterpret_cast<char *> (Dat
a);

266.
267. string chr2strData = string(uc2cData);
268. char str2charData[100];
269. strcpy_s(str2charData, chr2strData.c_str());
270.
271.
272. //Sets the position to the end of log offset
273. readCursor = startOfLog + logRecord.Length - s

izeof(DWORD);
274. file.seekg(readCursor);
275. DWORD length;
276. file.read((char*)&length, sizeof(DWORD));
277.
278.
279. //Do what you want with the log record

280. output <<
281. "Event Record ID" << ": " <<
282. numberFile << ",\n " <<
283. "Length" << ": " <<
284. logRecord.Length << ",\n " <<
285. "Reserved" << ": " <<
286. logRecord.Reserved << ",\n " <<
287. "RecordNumber" << ": " <<
288. logRecord.RecordNumber << "," << endl;
289.
290.
291. //convert DWORD -> epoch time_t -> time -

> string
292. struct tm timet2timeTimeGenerated;
293. time_t dword2timetTimeGenerated;
294. dword2timetTimeGenerated = logRecord.TimeGener

ated;
295. localtime_s(&timet2timeTimeGenerated, &dword2t

imetTimeGenerated);
296. char time2stringTimeGenerated[32];
297. asctime_s(time2stringTimeGenerated, 32, &timet

2timeTimeGenerated);
298. time2stringTimeGenerated[24] = ',';
299. time2stringTimeGenerated[25] = '\0';
300. output <<

102

301. "TimeGenerated In epoch" << ": " <<
302. logRecord.TimeGenerated << ",\n " <<
303. "TimeGenerated In local datetime" << ": "

<<
304. (char*)&time2stringTimeGenerated << "\n ";

305.
306.
307. //convert DWORD -> epoch time_t -> time -

> string
308. struct tm timet2timeTimeWritten;
309. time_t dword2timetTimeWritten;
310. dword2timetTimeWritten = logRecord.TimeWritten

;
311. localtime_s(&timet2timeTimeWritten, &dword2tim

etTimeWritten);
312. char time2stringTimeWritten[32];
313. asctime_s(time2stringTimeWritten, 32, &timet2t

imeTimeWritten);
314. time2stringTimeWritten[24] = ',';
315. time2stringTimeWritten[25] = '\0';
316. output <<
317. "TimeWritten In epoch" << ": " <<
318. logRecord.TimeWritten << ",\n " <<
319. "TimeWritten In local datetime" << ": " <<

320. (char*)&time2stringTimeWritten << "\n ";
321.
322.
323. output <<
324. "EventID in hexadecimal" << ": " <<
325. logRecord.EventID << ",\n " <<
326. (char*)&str2charEventID << ",\n " <<
327. "EventType" << ": " <<
328. logRecord.EventType << ",\n " <<
329. "NumStrings" << ": " <<
330. logRecord.NumStrings << ",\n " <<
331. "EventCategory" << ": " <<
332. logRecord.EventCategory << ",\n " <<
333. "ReservedFlags" << ": " <<
334. logRecord.ReservedFlags << ",\n " <<
335. "ClosingRecordNumber" << ": " <<

103

336. logRecord.ClosingRecordNumber << ",\n " <<

337. "StringOffset" << ": " <<
338. logRecord.StringOffset << ",\n " <<
339. "UserSidLength" << ": " <<
340. logRecord.UserSidLength << ",\n " <<
341. "UserSidOffset" << ": " <<
342. logRecord.UserSidOffset << ",\n " <<
343. "DataLength" << ": " <<
344. logRecord.DataLength << ",\n " <<
345. "DataOffset" << ": " <<
346. logRecord.DataOffset << ",\n " <<
347.
348. "Source name" << ": " <<
349. (char*)&str2charSourceName << ",\n " <<
350.
351. "Computer name" << ": " <<
352. (char*)&str2charComputerName << ",\n " <<

353.
354. //"User SID" << ": " <<
355. //logRecord.UserSidLength << ",\n " <<

356. (char*)&str2charnewKeyword << ",\n " <<
357. (char*)&str2charnewnewUserSID << ",\n " <<

358. (char*)&str2charnewnewUsername << ",\n " <

<
359. "Event Data (String):" << endl;
360.
361. for (int i = 0; i < logRecord.NumStrings; i++)

 {
362. string wstr2strEventData(allStrings.at(i).

begin(), allStrings.at(i).end());
363. char str2charEventData[1000];
364. strcpy_s(str2charEventData, wstr2strEventD

ata.c_str());
365. output <<
366. (char*)&str2charEventData << "," << en

dl;
367. }
368.
369. output <<

104

370. "Data" << ": " <<
371. Data << ",\n " <<
372. "Length" << ": " <<
373. length << ",\n" <<
374. (char*)&str2charnewDescription << ",\n " <

< endl;
375.
376.
377. //Clean before reading next log
378. ComputerName.clear();
379. SourceName.clear();
380. allStrings.clear();
381. //free(Data);
382. }
383.
384. file.close();
385. output.close();
386.
387. }

105

APPENDIX B

DATA PREPROCESSING

106

UbuntuPreproccesedMacro.vba

1. Sub UbuntuPreproccesed()
2. '
3. ' UbuntuPreproccesed Macro
4. '
5.
6. '
7. Columns("G:G").EntireColumn.AutoFit
8. Columns("G:G").Select
9. Range("G217").Activate
10. Selection.Copy
11. Columns("C:C").Select
12. Range("C217").Activate
13. ActiveSheet.Paste
14.
15. Columns("A:A").Select
16. Selection.Insert Shift:=xlToRight, CopyOrigin:=xlF

ormatFromLeftOrAbove
17. Selection.Insert Shift:=xlToRight, CopyOrigin:=xlF

ormatFromLeftOrAbove
18. Selection.Insert Shift:=xlToRight, CopyOrigin:=xlF

ormatFromLeftOrAbove
19. Selection.Insert Shift:=xlToRight, CopyOrigin:=xlF

ormatFromLeftOrAbove
20. Selection.Insert Shift:=xlToRight, CopyOrigin:=xlF

ormatFromLeftOrAbove
21. Columns("I:I").Select
22. Selection.Copy
23. Columns("A:A").Select
24. ActiveSheet.Paste
25. Range("B1").Select
26. Application.CutCopyMode = False
27. ActiveCell.FormulaR1C1 = "=RC[-1]+0"
28. Range("B1").Select
29. Selection.AutoFill Destination:=Range("B1:B966")
30. Range("B1:B966").Select
31. Columns("B:B").Select
32. Selection.Copy
33. Columns("C:C").Select
34. Selection.PasteSpecial Paste:=xlPasteValues, Opera

tion:=xlNone, SkipBlanks _

107

35. :=False, Transpose:=False
36. Application.CutCopyMode = False
37. Selection.NumberFormat = "mm/dd/yyyy hh:mm:ss"
38. Columns("A:B").Select
39. Range("B1").Activate
40. Selection.Delete Shift:=xlToLeft
41. Columns("E:E").Select
42. Selection.Copy
43. Columns("C:C").Select
44. ActiveSheet.Paste
45. Columns("F:F").Select
46. Application.CutCopyMode = False
47. Selection.Copy
48. Columns("B:B").Select
49. ActiveSheet.Paste
50. Columns("D:AA").Select
51. Application.CutCopyMode = False
52. Selection.Delete Shift:=xlToLeft
53. Selection.Delete Shift:=xlToLeft
54. Range("D5").Select
55.
56. Range("D1").Select
57. ActiveCell.FormulaR1C1 = "=""LG-""&RC[-1]"
58. Range("D1").Select
59. Selection.AutoFill Destination:=Range("D1:D966")
60. Range("D1:D966").Select
61. Selection.Copy
62. Columns("E:E").Select
63. Selection.PasteSpecial Paste:=xlPasteValues, Opera

tion:=xlNone, SkipBlanks _
64. :=False, Transpose:=False
65. Columns("C:D").Select
66. Range("D1").Activate
67. Application.CutCopyMode = False
68. Selection.Delete Shift:=xlToLeft
69. End Sub

WindowsPreproccesedMacro.vba

1. Sub WindowsPreproccesed()
2. '
3. ' WindowsPreproccesed Macro

108

4. '
5.
6. '
7. Columns("D:D").Select
8. Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatF

romLeftOrAbove
9. Selection.Insert Shift:=xlToRight, CopyOrigin:=xlFormatF

romLeftOrAbove
10. Range("E1").Select
11. ActiveCell.FormulaR1C1 = "=""WG-""&RC[1]"
12. Range("E1").Select
13. Selection.AutoFill Destination:=Range("E1:E536")
14. Range("E1:E536").Select
15. Columns("E:E").Select
16. Selection.Copy
17. Range("D1").Select
18. Selection.PasteSpecial Paste:=xlPasteValues, Opera

tion:=xlNone, SkipBlanks _
19. :=False, Transpose:=False
20.
21. Columns("E:N").Select
22. Selection.Delete Shift:=xlToLeft
23. Columns("C:C").Select
24. Selection.Insert Shift:=xlToRight, CopyOrigin:=xlF

ormatFromLeftOrAbove
25. Range("C1").Select
26. ActiveCell.FormulaR1C1 = "=RC[-2]+RC[-1]"
27. Range("C1").Select
28. Selection.AutoFill Destination:=Range("C1:C536")
29. Range("C1:C536").Select
30. Columns("C:C").Select
31. Selection.NumberFormat = "mm/dd/yyyy hh:mm:ss"
32. Columns("C:C").EntireColumn.AutoFit
33. Columns("C:C").Select
34. Selection.Insert Shift:=xlToRight, CopyOrigin:=xlF

ormatFromLeftOrAbove
35. Columns("D:D").Select
36. Selection.Copy
37. Columns("C:C").Select
38. Selection.PasteSpecial Paste:=xlPasteValues, Opera

tion:=xlNone, SkipBlanks _
39. :=False, Transpose:=False
40. Columns("A:B").Select

109

41. Application.CutCopyMode = False
42. Selection.Delete Shift:=xlToLeft
43. Columns("B:B").Select
44. Selection.Delete Shift:=xlToLeft
45. End Sub

CombineDataMacro.vba

1. Sub CombineDataPreproccesed()
2. '
3. ' CombineDataPreproccesed Macro
4. '
5.
6. '
7. Columns("A:A").Select
8. ActiveWorkbook.Worksheets("Sheet1").Sort.SortFields.Clea

r
9. ActiveWorkbook.Worksheets("Sheet1").Sort.SortFields.Add

Key:=Range("A1"), _
10. SortOn:=xlSortOnValues, Order:=xlAscending, Da

taOption:=xlSortNormal
11. With ActiveWorkbook.Worksheets("Sheet1").Sort
12. .SetRange Range("A1:C3725")
13. .Header = xlNo
14. .MatchCase = False
15. .Orientation = xlTopToBottom
16. .SortMethod = xlPinYin
17. .Apply
18. End With
19. Selection.Delete Shift:=xlToLeft
20. Range("C1").Select
21. ActiveCell.FormulaR1C1 = _
22. "=IF(LEFT(RC[-1],2)=""WG"", VLOOKUP(RC[-

2],R80C11:R103C14,4,FALSE),IF(LEFT(RC[-
1],2)=""LG"",VLOOKUP(RC[-
2],R43C12:R79C14,3,FALSE),VLOOKUP(RC[-
2],R2C13:R42C14,2,FALSE)))"

23. Range("C1").Select
24. Selection.AutoFill Destination:=Range("C1:C3725")

25. Range("C1:C3725").Select
26. Selection.Copy

110

27. Columns("D:D").Select
28. Selection.PasteSpecial Paste:=xlPasteValues, Opera

tion:=xlNone, SkipBlanks _
29. :=False, Transpose:=False
30. Range("E1").Select
31. Application.CutCopyMode = False
32. ActiveCell.FormulaR1C1 = ""
33. Range("H10:H17").Select
34. Selection.Copy
35. Range("I10").Select
36. ActiveSheet.Paste
37. Range("G18:G20").Select
38. Application.CutCopyMode = False
39. Selection.Copy
40. Range("I18").Select
41. ActiveSheet.Paste
42. Application.CutCopyMode = False
43. Range("E1").Select
44. ActiveCell.FormulaR1C1 = "=VLOOKUP(RC[-

3],R2C9:R20C10,2,FALSE)"
45. Range("E1").Select
46. Selection.AutoFill Destination:=Range("E1:E3725")

47. Range("E1:E3725").Select
48. Selection.Copy
49. Columns("F:F").Select
50. Selection.PasteSpecial Paste:=xlPasteValues, Opera

tion:=xlNone, SkipBlanks _
51. :=False, Transpose:=False
52. Range("F6").Select
53. Application.CutCopyMode = False
54. Columns("E:E").Select
55. Selection.Delete Shift:=xlToLeft
56. Columns("C:C").Select
57. Selection.Insert Shift:=xlToRight, CopyOrigin:=xlF

ormatFromLeftOrAbove
58. Selection.Delete Shift:=xlToLeft
59. Selection.Delete Shift:=xlToLeft
60. Columns("A:B").Select
61. Selection.Delete Shift:=xlToLeft
62. Columns("C:J").Select
63. Selection.Delete Shift:=xlToLeft
64. End Sub

111

APPENDIX C

DESIGNING NEURAL NETWORK NON-LINEAR TIME SERIES AND PLOT

VALIDATION

112

nnetGenerated.m

1. X = Input_set;
2. T = Target_set;
3. net = narxnet(1:30,1:30,32);
4. [Xs,Xi,Ai,Ts] = preparets(net,X,{},T);
5. net = train(net,Xs,Ts,Xi,Ai);
6. view(net)
7. Y = net(Xs,Xi,Ai)

mse_editted.m

1. function y = mse_editted(Reference_Image, Target_Image)
2.
3. Reference_ImageReference_Image = Reference_Image;
4. Target_ImageTarget_Image = Target_Image;
5. [M N] = size(Reference_Image);
6. count =0;
7. sum_err =0;
8. value1 =0;
9. value2 =0;
10.
11. for i=1:M
12. for j=1:N
13. value1 = Target_Image{i,j};
14. value2 = Reference_Image{i,j};
15. %fprintf('%d \n',value1);
16. if value1 == 4 || value1 == 12 || value1 == 1

7
17. %if value1 == 4
18. countcount= count+1;
19. %error = Target_Image{i,j} - Reference_Ima

ge{i,j};
20. error = value1 - value2;
21. sum_err = error * error;
22. end
23. end
24. end
25.
26. y = sum_err/count;
27. end

113

plotregression_editted.m

1. function out1 = plotregression(varargin)
2. %PLOTREGRESSION Plot linear regression.
3.
4. %% ===
5. % BOILERPLATE_START
6. % This code is the same for all Transfer Functions.
7.
8. persistent INFO;
9. if isempty(INFO), INFO = get_info; end
10. if nargin == 0
11. fig = nnplots.find_training_plot(mfilename);
12. if nargout > 0
13. out1 = fig;
14. elseif ~isempty(fig)
15. figure(fig);
16. end
17. return;
18. end
19. in1 = varargin{1};
20. if ischar(in1)
21. switch in1
22. case 'info',
23. out1 = INFO;
24. case 'data_suitable'
25. data = varargin{2};
26. out1 = nnet.train.isNotParallelData(data);
27. case 'suitable'
28. [args,param] = nnparam.extract_param(varargin,

INFO.defaultParam);
29. [net,tr,signals] = deal(args{2:end});
30. update_args = standard_args(net,tr,signals);
31. unsuitable = unsuitable_to_plot(param,update_a

rgs{:});
32. if nargout > 0
33. out1 = unsuitable;
34. elseif ~isempty(unsuitable)
35. for i=1:length(unsuitable)
36. disp(unsuitable{i});
37. end
38. end

114

39. case 'training_suitable'
40. [net,tr,signals,param] = deal(varargin{2:end})

;
41. update_args = training_args(net,tr,signals,par

am);
42. unsuitable = unsuitable_to_plot(param,update_a

rgs{:});
43. if nargout > 0
44. out1 = unsuitable;
45. elseif ~isempty(unsuitable)
46. for i=1:length(unsuitable)
47. disp(unsuitable{i});
48. end
49. end
50. case 'training'
51. [net,tr,signals,param] = deal(varargin{2:end})

;
52. update_args = training_args(net,tr,signals);
53. fig = nnplots.find_training_plot(mfilename);
54. if isempty(fig)
55. fig = figure('Visible','off','Tag',['TRAININ

G_' upper(mfilename)]);
56. plotData = setup_figure(fig,INFO,true);
57. else
58. plotData = get(fig,'UserData');
59. end
60. set_busy(fig);
61. unsuitable = unsuitable_to_plot(param,update_a

rgs{:});
62. if isempty(unsuitable)
63. set(0,'CurrentFigure',fig);
64. plotData = update_plot(param,fig,plotData,up

date_args{:});
65. update_training_title(fig,INFO,tr)
66. nnplots.enable_plot(plotData);
67. else
68. nnplots.disable_plot(plotData,unsuitable);
69. end
70. fig = unset_busy(fig,plotData);
71. if nargout > 0, out1 = fig; end
72. case 'close_request'
73. fig = nnplots.find_training_plot(mfilename);
74. if ~isempty(fig),close_request(fig); end

115

75. case 'check_param'
76. out1 = ''; % TODO
77. otherwise,
78. try
79. out1 = eval(['INFO.' in1]);
80. catch me, nnerr.throw(['Unrecognized first arg

ument: ''' in1 ''''])
81. end
82. end
83. else
84. [args,param] = nnparam.extract_param(varargin,INFO

.defaultParam);
85. update_args = standard_args(args{:});
86. if ischar(update_args)
87. nnerr.throw(update_args);
88. end
89. [plotData,fig] = setup_figure([],INFO,false);
90. unsuitable = unsuitable_to_plot(param,update_args{

:});
91. if isempty(unsuitable)
92. plotData = update_plot(param,fig,plotData,update

_args{:});
93. nnplots.enable_plot(plotData);
94. else
95. nnplots.disable_plot(plotData,unsuitable);
96. end
97. set(fig,'Visible','on');
98. drawnow;
99. if nargout > 0, out1 = fig; end
100. end
101. end
102.
103. function set_busy(fig)
104. set(fig,'UserData','BUSY');
105. end
106.
107. function close_request(fig)
108. ud = get(fig,'UserData');
109. if ischar(ud)
110. set(fig,'UserData','CLOSE');
111. else
112. delete(fig);
113. end

116

114. drawnow;
115. end
116.
117. function fig = unset_busy(fig,plotData)
118. ud = get(fig,'UserData');
119. if ischar(ud) && strcmp(ud,'CLOSE')
120. delete(fig);
121. fig = [];
122. else
123. set(fig,'UserData',plotData);
124. end
125. drawnow;
126. end
127.
128. function tag = new_tag
129. tagnum = 1;
130. while true
131. tag = [upper(mfilename) num2str(tagnum)];
132. fig = nnplots.find_plot(tag);
133. if isempty(fig), return; end
134. tagnumtagnum = tagnum+1;
135. end
136. end
137.
138. function [plotData,fig] = setup_figure(fig,info,isTrai

ning)
139. PTFS = nnplots.title_font_size;
140. if isempty(fig)
141. fig = get(0,'CurrentFigure');
142. if isempty(fig) || strcmp(get(fig,'NextPlot'),'new

')
143. if isTraining
144. tag = ['TRAINING_' upper(mfilename)];
145. else
146. tag = new_tag;
147. end
148. fig = figure('Visible','off','Tag',tag);
149. if isTraining
150. set(fig,'CloseRequestFcn',[mfilename '(''close

_request'')']);
151. end
152. else
153. clf(fig);

117

154. set(fig,'Tag','');
155. set(fig,'Tag',new_tag);
156. end
157. end
158. set(0,'CurrentFigure',fig);
159. ws = warning('off','MATLAB:Figure:SetPosition');
160. plotData = setup_plot(fig);
161. warning(ws);
162. if isTraining
163. set(fig,'NextPlot','new');
164. update_training_title(fig,info,[]);
165. else
166. set(fig,'NextPlot','replace');
167. set(fig,'Name',[info.name ' (' mfilename ')']);
168. end
169. set(fig,'NumberTitle','off','ToolBar','none');
170. plotData.CONTROL.text = uicontrol('Parent',fig,'Styl

e','text',...
171. 'Units','normalized','Position',[0 0 1 1],'FontSiz

e',PTFS,...
172. 'FontWeight','bold','ForegroundColor',[0.7 0 0]);

173. set(fig,'UserData',plotData);
174. end
175.
176. function update_training_title(fig,info,tr)
177. if isempty(tr)
178. epochs = '0';
179. stop = '';
180. else
181. epochs = num2str(tr.num_epochs);
182. if isempty(tr.stop)
183. stop = '';
184. else
185. stop = [', ' tr.stop];
186. end
187. end
188. set(fig,'Name',['Neural Network Training ' ...
189. info.name ' (' mfilename '), Epoch ' epochs stop])

;
190. end
191.
192. % BOILERPLATE_END

118

193. %% ===
====

194.
195.
196. % TODO - Implement try/catch & CloseRequestFcn to avoi

d errors when figure
197. % is closed during call to a plot function
198.
199. function info = get_info
200. info = nnfcnPlot(mfilename,'Regression',7.0,[]);
201. end
202.
203. function args = training_args(net,tr,data)
204. yall = nncalc.y(net,data.X,data.Xi,data.Ai);
205. y = {yall};
206. t = {gmultiply(data.train.mask,data.T)};
207. names = {'Training'};
208. if data.val.enabled
209. y = [y {yall}];
210. t = [t {gmultiply(data.val.mask,data.T)}];
211. names = [names {'Validation'}];
212. end
213. if data.test.enabled
214. y = [y {yall}];
215. t = [t {gmultiply(data.test.mask,data.T)}];
216. names = [names {'Test'}];
217. end
218. if length(t) >= 2
219. t = [t {data.T}];
220. y = [y {yall}];
221. names = [names {'All'}];
222. end
223. args = {t y names};
224. end
225.
226. function args = standard_args(varargin)
227. if nargin < 2
228. args = 'Not enough input arguments.';
229. elseif (nargin > 2) && (rem(nargin,3) ~= 0)
230. args = 'Incorrect number of input arguments.';
231. elseif nargin == 2
232. % (t,y)
233. t = { nntype.data('format',varargin{1}) };

119

234. y = { nntype.data('format',varargin{2}) };
235. names = {''};
236. args = {t y names};
237. else
238. % (t1,y1,name1,...)
239. % TODO - Check data is consistent
240. count = nargin/3;
241. t = cell(1,count);
242. y = cell(1,count);
243. names = cell(1,count);
244. for i=1:count
245. t{i} = nntype.data('format',varargin{i*3-2});
246. y{i} = nntype.data('format',varargin{i*3-1});
247. names{i} = varargin{i*3};
248. end
249. param.outputIndex = 1;
250. args = {t y names};
251. end
252. end
253.
254. function plotData = setup_plot(fig)
255. plotData.numSignals = 0;
256. end
257.
258. function fail = unsuitable_to_plot(param,t,y,names)
259. fail = '';
260. tt1 = t{1};
261. if numsamples(t1) == 0
262. fail = 'The target data has no samples to plot.';

263. elseif numtimesteps(t1) == 0
264. fail = 'The target data has no timesteps to plot.'

;
265. elseif sum(numelements(t1)) == 0
266. fail = 'The target data has no elements to plot.';

267. end
268. end
269.
270. function plotData = update_plot(param,fig,plotData,tt,

yy,names)
271. PTFS = nnplots.title_font_size;
272. trainColor = [0 0 1];

120

273. valColor = [0 1 0];
274. testColor = [1 0 0];
275. allColor = [1 1 1] * 0.4;
276. colors = {trainColor valColor testColor allColor};
277.
278. % Number of signals
279. for i=numel(tt):-1:1
280. if numsamples(tt{i}) == 0
281. % Remove empty datasets
282. tt(i) = [];
283. yy(i) = [];
284. names(i) = [];
285. end
286. end
287. numSignals = length(names);
288. fprintf('numSignals %d \n',numSignals);
289.
290. % Create axes
291. if (plotData.numSignals ~= numSignals)
292. set(fig,'NextPlot','replace');
293. plotData.numSignals = numSignals;
294. if numSignals == 1
295. plotData.titleStyle = {'fontweight','bold','font

size',PTFS};
296. else
297. plotData.titleStyle = {'fontweight','bold','font

size',PTFS};
298. end
299. plotcols = ceil(sqrt(numSignals));
300. plotrows = ceil(numSignals/plotcols);
301. for plotrow=1:plotrows
302. for plotcol=1:plotcols
303. i = (plotrow-1)*plotcols+plotcol;
304. if (i<=numSignals)
305.
306. a = subplot(plotrows,plotcols,i);
307. cla(a)
308. set(a,'DataAspectRatio',[1 1 1],'Box','on');

309. xlabel(a,'Target',plotData.titleStyle{:});
310. hold on
311. plotData.axes(i) = a;
312.

121

313. plotData.eqLine(i) = plot([NaN NaN],[NaN NaN
],':k');

314. color = colors{rem(i-
1,length(colors))+1};

315. plotData.regLine(i) = plot([NaN NaN],[NaN Na
N],'LineWidth',2,'Color',color);

316. % plotData.regLine(i) = plot([NaN NaN],[NaN N
aN],'LineWidth',2,'Color',colors(0.5));

317. plotData.dataPoints(i) = plot([NaN NaN],[NaN
 NaN],'ok');

318. plotData.dataPoints2(i) = plot([NaN NaN],[Na
N NaN],'ok','Color',color);

319. legend([plotData.dataPoints(i),plotData.regL
ine(i),plotData.eqLine(i)], ...

320. {'Data','Fit','Y = T'},'Location','NorthWe
st');

321.
322. end
323. end
324. end
325. screenSize = get(0,'ScreenSize');
326. screenSizescreenSize = screenSize(3:4);
327. if numSignals == 1
328. windowSize = [500 500];
329. else
330. windowSize = 700 * [1 (plotrows/plotcols)];
331. end
332. pos = [(screenSize-windowSize)/2 windowSize];
333. set(fig,'Position',pos);
334. end
335.
336. % Fill axes
337. % fprintf('%d \n',numSignals);
338. for i=1:numSignals
339. set(fig,'CurrentAxes',plotData.axes(i));
340. y = cell2mat(yy{i}); yy = y(:)';
341. t = cell2mat(tt{i}); tt = t(:)';
342.
343.
344. t2 = [];
345. y2 = [];
346. count =1;
347. for j=1:numel(t)

122

348. if t(1,j) == 4 || t(1,j) == 12 || t(1,j) == 17

349. t2(1,count) = t(1,j);
350. y2(1,count) = y(1,j);
351. countcount = count +1;
352. end
353. end
354.
355. name = names{i};
356. [r,m,b] = regression(t2,y2);
357. mm = m(1); bb = b(1); rr = r(1);
358. lim = [min([y2 t2]) max([y2 t2])];
359. line = m*lim + b;
360.
361. fprintf('r %d \n',r);
362. fprintf('m %d \n',m);
363. fprintf('b %d \n',b);
364. fprintf('lim %d \n',lim);
365. fprintf('line %d \n',line);
366. %fprintf('y %d \n',y);
367. %fprintf('t %d \n',t);
368.
369. set(plotData.dataPoints(i),'XData',t2,'YData',y2);

370. set(plotData.regLine(i),'XData',lim,'YData',line)

371. set(plotData.eqLine(i),'XData',lim,'YData',lim);
372.
373. set(gca,'XLim',lim);
374. set(gca,'YLim',lim);
375. axis('square')
376.
377. ylabel(['Output ~= ',num2str(m,2),'*Target + ', nu

m2str(b,2)],...
378. plotData.titleStyle{:});
379. title([name ': R=' num2str(r)],plotData.titleStyle

{:});
380. end
381.
382. drawnow
383. end

plotresponse_editted.m

123

1. function out1 = plotresponse(varargin)
2.
3. % Throw error if called with a Phased Array object.
4. if (nargin > 0) && ~isempty(strfind(lower(class(varargin{1})

),'phased'))
5. error(message('nnet:plotresponse:PhasedArrayMethodShouldBe

Called'));
6. end
7.
8. %% ===
9. % BOILERPLATE_START
10. % This code is the same for all Transfer Functions.
11.
12. persistent INFO;
13. if isempty(INFO), INFO = get_info; end
14. if nargin == 0
15. fig = nnplots.find_training_plot(mfilename);
16. if nargout > 0
17. out1 = fig;
18. elseif ~isempty(fig)
19. figure(fig);
20. end
21. return;
22. end
23. in1 = varargin{1};
24. if ischar(in1)
25. switch in1
26. case 'info',
27. out1 = INFO;
28. case 'data_suitable'
29. data = varargin{2};
30. out1 = nnet.train.isNotParallelData(data);
31. case 'suitable'
32. [args,param] = nnparam.extract_param(varargin,

INFO.defaultParam);
33. [net,tr,signals] = deal(args{2:end});
34. update_args = standard_args(net,tr,signals);
35. unsuitable = unsuitable_to_plot(param,update_a

rgs{:});
36. if nargout > 0
37. out1 = unsuitable;
38. elseif ~isempty(unsuitable)
39. for i=1:length(unsuitable)

124

40. disp(unsuitable{i});
41. end
42. end
43. case 'training_suitable'
44. [net,tr,signals,param] = deal(varargin{2:end})

;
45. update_args = training_args(net,tr,signals,par

am);
46. unsuitable = unsuitable_to_plot(param,update_a

rgs{:});
47. if nargout > 0
48. out1 = unsuitable;
49. elseif ~isempty(unsuitable)
50. for i=1:length(unsuitable)
51. disp(unsuitable{i});
52. end
53. end
54. case 'training'
55. [net,tr,signals,param] = deal(varargin{2:end})

;
56. update_args = training_args(net,tr,signals);
57. fig = nnplots.find_training_plot(mfilename);
58. if isempty(fig)
59. fig = figure('Visible','off','Tag',['TRAININ

G_' upper(mfilename)]);
60. plotData = setup_figure(fig,INFO,true);
61. else
62. plotData = get(fig,'UserData');
63. end
64. set_busy(fig);
65. unsuitable = unsuitable_to_plot(param,update_a

rgs{:});
66. if isempty(unsuitable)
67. set(0,'CurrentFigure',fig);
68. plotData = update_plot(param,fig,plotData,up

date_args{:});
69. update_training_title(fig,INFO,tr)
70. nnplots.enable_plot(plotData);
71. else
72. nnplots.disable_plot(plotData,unsuitable);
73. end
74. fig = unset_busy(fig,plotData);
75. if nargout > 0, out1 = fig; end

125

76. case 'close_request'
77. fig = nnplots.find_training_plot(mfilename);
78. if ~isempty(fig),close_request(fig); end
79. case 'check_param'
80. out1 = ''; % TODO
81. otherwise,
82. try
83. out1 = eval(['INFO.' in1]);
84. catch me, nnerr.throw(['Unrecognized first arg

ument: ''' in1 ''''])
85. end
86. end
87. else
88. [args,param] = nnparam.extract_param(varargin,INFO

.defaultParam);
89. update_args = standard_args(args{:});
90. if ischar(update_args)
91. nnerr.throw(update_args);
92. end
93. [plotData,fig] = setup_figure([],INFO,false);
94. unsuitable = unsuitable_to_plot(param,update_args{

:});
95. if isempty(unsuitable)
96. plotData = update_plot(param,fig,plotData,update

_args{:});
97. nnplots.enable_plot(plotData);
98. else
99. nnplots.disable_plot(plotData,unsuitable);
100. end
101. set(fig,'Visible','on');
102. drawnow;
103. if nargout > 0, out1 = fig; end
104. end
105. end
106.
107. function set_busy(fig)
108. set(fig,'UserData','BUSY');
109. end
110.
111. function close_request(fig)
112. ud = get(fig,'UserData');
113. if ischar(ud)
114. set(fig,'UserData','CLOSE');

126

115. else
116. delete(fig);
117. end
118. drawnow;
119. end
120.
121. function fig = unset_busy(fig,plotData)
122. ud = get(fig,'UserData');
123. if ischar(ud) && strcmp(ud,'CLOSE')
124. delete(fig);
125. fig = [];
126. else
127. set(fig,'UserData',plotData);
128. end
129. drawnow;
130. end
131.
132. function tag = new_tag
133. tagnum = 1;
134. while true
135. tag = [upper(mfilename) num2str(tagnum)];
136. fig = nnplots.find_plot(tag);
137. if isempty(fig), return; end
138. tagnumtagnum = tagnum+1;
139. end
140. end
141.
142. function [plotData,fig] = setup_figure(fig,info,isTrai

ning)
143. PTFS = nnplots.title_font_size;
144. if isempty(fig)
145. fig = get(0,'CurrentFigure');
146. if isempty(fig) || strcmp(get(fig,'NextPlot'),'new

')
147. if isTraining
148. tag = ['TRAINING_' upper(mfilename)];
149. else
150. tag = new_tag;
151. end
152. fig = figure('Visible','off','Tag',tag);
153. if isTraining
154. set(fig,'CloseRequestFcn',[mfilename '(''close

_request'')']);

127

155. end
156. else
157. clf(fig);
158. set(fig,'Tag','');
159. set(fig,'Tag',new_tag);
160. end
161. end
162. set(0,'CurrentFigure',fig);
163. ws = warning('off','MATLAB:Figure:SetPosition');
164. plotData = setup_plot(fig);
165. warning(ws);
166. if isTraining
167. set(fig,'NextPlot','new');
168. update_training_title(fig,info,[]);
169. else
170. set(fig,'NextPlot','replace');
171. set(fig,'Name',[info.name ' (' mfilename ')']);
172. end
173. set(fig,'NumberTitle','off','ToolBar','none');
174. plotData.CONTROL.text = uicontrol('Parent',fig,'Styl

e','text',...
175. 'Units','normalized','Position',[0 0 1 1],'FontSiz

e',PTFS,...
176. 'FontWeight','bold','ForegroundColor',[0.7 0 0]);

177. set(fig,'UserData',plotData);
178. end
179.
180. function update_training_title(fig,info,tr)
181. if isempty(tr)
182. epochs = '0';
183. stop = '';
184. else
185. epochs = num2str(tr.num_epochs);
186. if isempty(tr.stop)
187. stop = '';
188. else
189. stop = [', ' tr.stop];
190. end
191. end
192. set(fig,'Name',['Neural Network Training ' ...
193. info.name ' (' mfilename '), Epoch ' epochs stop])

;

128

194. end
195.
196. % BOILERPLATE_END
197. %% ===

====
198.
199. function info = get_info
200. info = nnfcnPlot(mfilename,'Time-

Series Response',7.0,[...
201. nnetParamInfo('outputIndex','Output Index','nntype.p

os_int_scalar',1,...
202. 'Index of output/target element to plot.'), ...

203. nnetParamInfo('sampleIndex','Sample Index','nntype.p

os_int_scalar',1,...
204. 'Index of the time-

series sample to plot.'), ...
205.]);
206. end
207.
208. function args = training_args(net,tr,data)
209. y = nncalc.y(net,data.X,data.Xi,data.Ai);
210. tt = {gmultiply(data.train.mask,data.T)};
211. names = {'Training'};
212. if ~isempty(data.val.indices)
213. tt = [tt {gmultiply(data.val.mask,data.T)}];
214. names = [names {'Validation'}];
215. end
216. if ~isempty(data.test.indices)
217. tt = [tt {gmultiply(data.test.mask,data.T)}];
218. names = [names {'Test'}];
219. end
220. args = {y tt names net.sampleTime};
221. end
222.
223. function args = standard_args(varargin)
224. if nargin < 2
225. args = 'Not enough input arguments.';
226. return;
227. end
228. if nargin > 2
229. z = varargin{end};
230. if nntype.pos_int_scalar('isa',z)

129

231. sampleTime = z;
232. varargin(end) = [];
233. else
234. sampleTime = 1;
235. end
236. end
237. if nargin == 2
238. % plotresponse(t,y)
239. t = nntype.data('format',varargin{1});
240. y = nntype.data('format',varargin{2});
241. if nargin < 3, sampleTime = 1; else sampleTime = v

arargin{3}; end
242. err = nntype.data('check',y);
243. if ~isempty(err),nnerr.throw(nnerr.value(err,'Outp

uts')); end
244. err = nntype.data('check',t);
245. if ~isempty(err),nnerr.throw(nnerr.value(err,'Targ

ets')); end
246. args = {y {t} {''} sampleTime};
247. else
248. y = nntype.data('format',varargin{end});
249. varargin(end) = [];
250. count = length(varargin)/2;
251. if length(varargin) ~= (count*2)
252. error(message('nnet:Args:IncorrectNum'));
253. end
254. tt = cell(1,count);
255. names = cell(1,count);
256. for i=1:count
257. tt{i} = nntype.data('format',varargin{i*2-1});
258. names{i} = nntype.string('format',varargin{i*2})

;
259. end
260. args = {y,tt,names,sampleTime};
261. end
262. end
263.
264. function plotData = setup_plot(fig)
265. PTFS = nnplots.title_font_size;
266. plotData.numSignals = 0;
267. plotData.axis1 = subplot(2,1,1);
268. plotData.axis2 = subplot(2,1,2);
269. pos1 = get(plotData.axis1,'Position');

130

270. pos2 = get(plotData.axis2,'Position');
271.
272. bottom = pos2(2);
273. top = pos1(2) + pos1(4);
274. totalHeight = top - bottom;
275. topHeight = totalHeight * 0.70;
276. middleHeight = totalHeight * 0.05;
277. bottomHeight = totalHeight - middleHeight - topHeigh

t;
278. pos1(2) = bottom + bottomHeight + middleHeight;
279. pos1(4) = topHeight;
280. pos2(4) = bottomHeight;
281.
282. set(plotData.axis1,'Position',pos1);
283. set(plotData.axis2,'Position',pos2);
284.
285. set(plotData.axis1,'Box','on',...
286. 'XTickLabelMode','manual','XTickLabel',{})
287. plotData.title1 = title(plotData.axis1,'Time-

Series Response','FontWeight','bold','FontSize',PTFS);
288. plotData.ylabel1 = ylabel(plotData.axis1,'Output and

 Target','FontWeight','bold','FontSize',PTFS);
289.
290. set(gca,'Box','on')
291. plotData.ylabel2 = ylabel(plotData.axis2,'Error','Fo

ntWeight','bold','FontSize',PTFS);
292. plotData.xlabel2 = xlabel(plotData.axis2,'Time','Fon

tWeight','bold','FontSize',PTFS);
293.
294. windowSize = [700 500];
295. screenSize = get(0,'ScreenSize');
296. screenSizescreenSize = screenSize(3:4);
297. pos = [(screenSize-windowSize)/2 windowSize];
298. set(fig,'Position',pos);
299. end
300.
301. function fail = unsuitable_to_plot(param,y,tt,names,sa

mpleTime)
302. fail = '';
303. t1 = tt{1};
304. if numsamples(t1) == 0
305. fail = 'The target data has no samples to plot.';

131

306. elseif sum(numelements(t1)) == 0
307. fail = 'The target data has no elements to plot.';

308. elseif numtimesteps(t1) == 0
309. fail = 'The input data has no timesteps to plot.';

310. elseif numelements(t1) < param.outputIndex
311. fail = {...
312. sprintf('Output Index is out of range: %g',param

.outputIndex),'',...
313. sprintf('The target data only has %g elements.',

numelements(t1))};
314. elseif numsamples(t1) < param.outputIndex
315. fail = {...
316. sprintf('Sample Index is out of range: %g',param

.outputIndex),'',...
317. sprintf('The target data only has %g elements.',

numelements(t1))};
318. end
319. end
320.
321. function plotData = update_plot(param,fig,plotData,yy,

tt,names,sampleTime)
322. numSignals = length(names);
323. if (plotData.numSignals ~= numSignals)
324. plotData.numSignals = numSignals;
325. cla(plotData.axis1);
326. hold(plotData.axis1,'on');
327. errorColor = [1 0.6 0];
328. fitColor = [0 0 0];
329. colors = {[0 0 1],[0 0.8 0],[1 0 0],[1 1 1]*0.5};

330. plotplotData.errorLine = plot(plotData.axis1,[NaN

NaN],[NaN NaN],'LineWidth',2,...
331. 'Color',errorColor);
332. plotplotData.fitLine = plot(plotData.axis1,[NaN Na

N],[NaN NaN],'LineWidth',1,...
333. 'Color',fitColor);
334. plotData.targetLines = zeros(1,numSignals);
335. plotData.outputLines = zeros(1,numSignals);
336. targetLegends = cell(1,numSignals);
337. outputLegends = cell(1,numSignals);
338. for i=1:numSignals

132

339. c = colors{min(i,4)};
340. plotData.targetLines(i) = plot(plotData.axis1,[N

aN NaN],[NaN NaN],'.',...
341. 'LineWidth',1.5,'Color',c);
342. plotData.outputLines(i) = plot(plotData.axis1,[N

aN NaN],[NaN NaN],'+',...
343. 'MarkerSize',6,'LineWidth',1,'Color',c);
344. if ~isempty(names{1})
345. targetLegends{i} = [names{i} ' Targets'];
346. outputLegends{i} = [names{i} ' Outputs'];
347. else
348. targetLegends{i} = 'Targets';
349. outputLegends{i} = 'Outputs';
350. end
351. end
352. legend(plotData.axis1,[interleave(plotData.targetL

ines,plotData.outputLines),...
353. plotData.errorLine,plotData.fitLine], ...
354. [interleave(targetLegends, outputLegends),{'Erro

rs','Response'}]);
355.
356. cla(plotData.axis2);
357. hold(plotData.axis2,'on')
358. plotplotData.baseLine2 = plot(plotData.axis2,[NaN

NaN],[NaN NaN],'k');
359. plotData.errorLines2 = cell(1,numSignals);
360. plotData.errorPoints2 = cell(1,numSignals);
361. for i=1:numSignals
362. c = colors{min(i,4)};
363. plotData.errorLines2{i} = plot(plotData.axis2,[N

aN NaN],[NaN NaN],'LineWidth',2,...
364. 'Color',errorColor);
365. plotData.errorPoints2{i} = plot(plotData.axis2,[

NaN NaN],[NaN NaN],'.',...
366. 'LineWidth',1.5,'Color',c);
367. end
368. end
369.
370. TIME = cell(1,numSignals);
371.
372. Y = cell(1,numSignals);
373. T = cell(1,numSignals);
374. yy = nnfast.getsamples(yy,param.sampleIndex);

133

375. yy = nnfast.getelements(yy,param.outputIndex);
376. yy = cell2mat(yy);
377.
378. for i=1:numSignals
379. t = nnfast.getsamples(tt{i},param.sampleIndex);
380. t = getelements(t,param.outputIndex);
381. t = cell2mat(t);
382. y = yy;
383.
384. %fprintf('y %d \n',y);
385. %fprintf('t %d \n',t);
386. t2 = []; y2 = []; count = 1;
387. for j=1:numel(t)
388. if t(1,j) == 4 || t(1,j) == 12 || t(1,j) == 17

389. t2(1,count) = t(1,j);
390. y2(1,count) = y(1,j);
391. countcount = count +1;
392. end
393. end
394.
395. fprintf('t2 %d \n',t2);
396.
397. TS = size(t2,2);
398. time = (1:TS)*sampleTime;
399.
400. nani = find(isnan(t2));
401. t2(nani) = [];
402. y2(nani) = [];
403. time(nani) = [];
404.
405. TIME{i} = time;
406. T{i} = t2;
407. Y{i} = y2;
408. set(plotData.outputLines(i),'XData',time,'YData',y

2);
409. set(plotData.targetLines(i),'XData',time,'YData',t

2);
410.
411. fprintf('y2 %d \n',numel(y2));
412.
413. e = t2-y2;
414. q = length(e);

134

415. ydata = reshape([e; zeros(1,q); nan(1,q)],1,q*3);

416. xdata = reshape([time; time; nan(1,q)],1,q*3);
417. % fprintf('xdata %d \n',xdata);
418. % fprintf('ydata %d \n',ydata);
419. set(plotData.errorLines2{i},'XData',xdata,'YData',

ydata);
420. xdata = time; %[time time];
421. ydata = e; %[e zeros(1,q)];
422. set(plotData.errorPoints2{i},'XData',xdata,'YData'

,ydata);
423. end
424. TIME = [TIME{:}];
425. Y = [Y{:}];
426. T = [T{:}];
427. time = (1:TS)*sampleTime;
428. set(plotData.fitLine,'XData',time,'YData',y2);
429.
430. % fprintf('y %d \n',numel(yy));
431.
432. numPoints = length(Y);
433. spaces = nan(1,numPoints);
434. TIME = [TIME; TIME; spaces];
435. Y = [Y; T; spaces];
436. TIMETIME = TIME(:)';
437. YY = Y(:)';
438. xlim = minmax(TIME);
439. %fprintf('T %d \n',T);
440. %fprintf('Y %d \n',Y);
441. if (xlim(1) == xlim(2)), xlimxlim = xlim + [-

1 1]; end
442. set(plotData.errorLine,'XData',TIME,'YData',Y);
443. set(plotData.axis1,'XLim',xlim);
444. set(plotData.axis1,'YLimMode','auto');
445. set(plotData.title1,'String',...
446. sprintf('Response of Output Element %g for Time-

Series %g',...
447. param.outputIndex,param.sampleIndex));
448.
449. set(plotData.axis2,'XLim',xlim);
450. set(plotData.axis2,'YLimMode','auto');
451. set(plotData.baseLine2,'XData',xlim,'YData',[0 0]);

135

452. legend(plotData.axis2,plotData.errorPoints2{1},'Targ
ets - Outputs');

453. end
454.
455. % SUPPORT
456.
457. function y = interleave(a,b)
458. y = reshape([a;b],1,2*length(a));
459. end

136

REFERENCES.

[1] L. J. Tobin, V. Saurabh, “We’ve looked at Clouds from Both Sides Now,”

SRII Global Conference (SRII), 2011 Annual, pp.342-348, doi:

10.1109/SRII.2011.46

[2] N. Sang-Ho, H. Eui-Nam, “A methodology of Assessing Security Risk of

Cloud Computing in User Perspective for Security-Service-Level

Agreements,” Innovative Computing Technology (INTECH), IEEE, 2014

Fourth International Conference, pp.87-92, doi:

10.1109/INTECH.2014.6927759

[3] Lifeng Wang; Zhengping Wu, "A Trustworthiness Evaluation Framework

in Cloud Computing for Service Selection," in Cloud Computing

Technology and Science (CloudCom), 2014 IEEE 6th International

Conference on , vol., no., pp.101-106, 15-18 Dec. 2014, doi:

10.1109/CloudCom.2014.107

[4] Li, W.; Yang, Y.; Yuan, D., "Ensuring Cloud data reliability with minimum

replication by proactive replica checking," in Computers, IEEE

Transactions on , vol.PP, no.99, pp.1-1, doi: 10.1109/TC.2015.2451644

[5] Zhengping Wu, "Multi-cloud policy enforcement through semantic

modeling and mapping," in Semantic Computing (ICSC), 2015 IEEE

International Conference on , vol., no., pp.448-451, 7-9 Feb. 2015, doi:

10.1109/ICOSC.2015.7050849

137

[6] Zhengping Wu; Nailu Chu; Peng Su, "Improving Cloud Service Reliability

-- A System Accounting Approach," in Services Computing (SCC), 2012

IEEE Ninth International Conference on , vol., no., pp.90-97, 24-29 June

2012, doi: 10.1109/SCC.2012.33

[7] Farhad Ahamed, Seyed Shahrestani and Athula Ginige, “Cloud

Computing: Security and Reliability Issues,” Communications of the

IBIMA, vol. 2013, Article ID 655710, 12 pages, doi: 10.5171/2013.655710

[8] V. K. Upadhyay, V. L. Desai, "Cloud Computing Security Issue And

Barriers," International Journal of Modern Trends in Engineering and

Research (IJMTER), Volume 02, Issue 03, [March - 2015] e-ISSN: 2349-

9745, p-ISSN: 2393-8161

[9] A. Ghobadi, R. Karimi, F. Heidari and M. Samadi, "Cloud computing,

reliability and security issue," Advanced Communication Technology

(ICACT), 2014 16th International Conference on, Pyeongchang, 2014, pp.

504-511, doi: 10.1109/ICACT.2014.6779012

[10] O. Beaumont, P. Duchon and P. Renaud-Goud, "Approximation

algorithms for energy minimization in Cloud service allocation under

reliability constraints," 20th Annual International Conference on High

Performance Computing, Bangalore, 2013, pp. 295-304. doi:

10.1109/HiPC.2013.6799123

[11] M. I. M. Almanea, "A Survey and Evaluation of the Existing Tools that

Support Adoption of Cloud Computing and Selection of Trustworthy and

138

Transparent Cloud Providers," Intelligent Networking and Collaborative

Systems (INCoS), 2014 International Conference on, Salerno, 2014, pp.

628-634. doi: 10.1109/INCoS.2014.42

[12] Cloud Security Alliance. About the CSA Security, Trust & Assurance

Registry (STAR). [Online] Cloud Security Alliance

https://cloudsecurityalliance.org/star/ [Accessed: November 10, 2015]

[13] Cloud Security Alliance. Cloud Controls Matrix (CCM). [Online] Cloud

Security Alliance https://cloudsecurityalliance.org/research/ccm

[Accessed: November 25, 2015]

[14] European Network Information Security Agency. [Online] ENISA

https://cloudsecurityalliance.org/star/ [Accessed: December 5, 2015]

[15] Michael Sheng, Talal H Noor, Abdullah Alfazi, Jingning Lin and Jeriel

Law, “Trust Feedback Dataset,” [Online] Cloud Armor

http://cs.adelaide.edu.au/~cloudarmor/ds.html [Accessed: October 25,

2015]

[16] F. Díaz-del-Río, J. Salmerón-García and J. L. Sevillano, "Extending

Amdahl's Law for the Cloud Computing Era," in Computer, vol. 49, no. 2,

pp. 14-22, Feb. 2016. doi: 10.1109/MC.2016.49

[17] G. Cybenko, Approximation by superpositions of a sigmoidal function,

Mathematics of Control, Signals and Systems 2 (1989), no. 4, 303–314,

Feb. 1989, p-ISSN: 0932-4194

139

[18] SPEC RG Cloud Working Group, Ready for Rain? A View from SPEC

Research on the Future of Cloud Metrics. (2016). Technical Report:

SPEC-RG-2016-01. Retrieved from https://arxiv.org/pdf/1604.03470.pdf

[19] W. v. d. Aalst and E. Damiani, "Processes Meet Big Data: Connecting

Data Science with Process Science," in IEEE Transactions on Services

Computing, vol. 8, no. 6, pp. 810-819, Nov.-Dec. 1 2015. doi:

10.1109/TSC.2015.2493732

[20] W. M. P. van der Aalst, W. Z. Low, M. T. Wynn and A. H. M. ter Hofstede,

"Change your history: Learning from event logs to improve processes,"

2015 IEEE 19th International Conference on Computer Supported

Cooperative Work in Design (CSCWD), Calabria, 2015, pp. 7-12. doi:

10.1109/CSCWD.2015.7230925

[21] X. Ao, P. Luo, C. Li, F. Zhuang and Q. He, "Online Frequent Episode

Mining," 2015 IEEE 31st International Conference on Data Engineering,

Seoul, 2015, pp. 891-902. doi: 10.1109/ICDE.2015.7113342

[22] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee,

D. Patterson, A. Rabkin, I. Stoica et al., "Above the clouds: A berkeley

view of cloud computing," EECS Department, University of California,

Berkeley, Tech. Rep. UCB/EECS-2009-28, 2009

[23] Wu Chenkang, Zhu Yonghua, Pan Shunhong, "The SLA Evaluation

Model for Cloud Computing", Proc. International Conference on Computer

140

Networks and Communication Engineering (ICCNCE 2013), pp. 331-334,

May. 2013. doi: 10.2991/iccnce.2013.83

[24] M. H. Ghahramani, M. Zhou and C. T. Hon, "Toward cloud computing

QoS architecture: analysis of cloud systems and cloud services," in

IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 1, pp. 6-18, Jan. 2017.

doi: 10.1109/JAS.2017.7510313

[25] A. Kovari and P. Dukan, "KVM & OpenVZ virtualization based IaaS open

source cloud virtualization platforms: OpenNode, Proxmox VE," 2012

IEEE 10th Jubilee International Symposium on Intelligent Systems and

Informatics, Subotica, 2012, pp. 335-339. doi:

10.1109/SISY.2012.6339540

[26] D. Qingfeng, L. Huan, Y. Kanglin and Q. Juan, "VM Reliability Modeling

and Analysis for IaaS Could," 2017 International Conference on Cyber-

Enabled Distributed Computing and Knowledge Discovery (CyberC),

Nanjing, China, 2017, pp. 258-265. doi: 10.1109/CyberC.2017.77

[27] A. Stanik, M. Hovestadt and O. Kao, "Hardware as a Service (HaaS): The

completion of the cloud stack," 2012 8th International Conference on

Computing Technology and Information Management (NCM and ICNIT),

Seoul, Korea (South), 2012, pp. 830-835. p-ISSN: 978-1-4673-0893-9

[28] Mathworks. (2017). Neural Network Toolbox: User's Guide (r2017b).

Retrieved December 08, 2017 from

www.mathworks.com/help/pdf_doc/nnet/nnet_ug.pdf

141

[29] D. Svozila, V. Kvasnickab, J. Pospichalb, "Introduction to multi-layer feed-

forward neural networks," Chemometrics and Intelligent Laboratory

Systems, vol. 39, no. 1, pp. 43-62, Nov. 1997. doi: 10.1016/S0169-

7439(97)00061-0

[30] Stuart J. Russell and Peter Norvig. 2003. Artificial Intelligence: A Modern

Approach (2 ed.). Pearson Education. ISBN: 0137903952

[31] J. Sahoo, S. Mohapatra and R. Lath, "Virtualization: A Survey on

Concepts, Taxonomy and Associated Security Issues," 2010 Second

International Conference on Computer and Network Technology,

Bangkok, 2010, pp. 222-226. doi: 10.1109/ICCNT.2010.49

[32] Wei Jing, Nan Guan and Wang Yi, "Performance isolation for real-time

systems with Xen hypervisor on multi-cores," 2014 IEEE 20th

International Conference on Embedded and Real-Time Computing

Systems and Applications, Chongqing, 2014, pp. 1-7. doi:

10.1109/RTCSA.2014.6910557

 [33] G. J. Popek, R. P. Goldberg. "Formal requirements for virtualizable third

generation architectures," Commun. ACM 17, pp. 412-421, Jul. 1974. doi:

http://dx.doi.org/10.1145/361011.361073

[34] Xen Project Documentation (2017, October 28). Retrieved from

https://www.xenproject.org/help/documentation.html

[35] User Manual (2018), Oracle VM VirtualBox User Manual. Retrieved from

https://www.virtualbox.org/manual/

142

[36] L. Zeng, Y. Xiao and H. Chen, "Accountable logging in operating

systems," 2015 IEEE International Conference on Communications (ICC),

London, 2015, pp. 7163-7167. doi: 10.1109/ICC.2015.7249469

[37] Windows Events (2016, October 22). In Windows Desktop app

technologies. Retrieved from https://msdn.microsoft.com/en-

us/library/windows/desktop/aa964766(v=vs.85).aspx

[38] C. Simache, M. Kaaniche and A. Saidane, "Event log based dependability

analysis of Windows NT and 2K systems," 2002 Pacific Rim International

Symposium on Dependable Computing, 2002. Proceedings., 2002, pp.

311-315. doi: 10.1109/PRDC.2002.1185651

[39] R. Gerhards, "The Syslog Protocol," RFC 5424, Mar. 2009. doi

10.17487/RFC5424

[40] A. Reynaldi, S. Lukas and H. Margaretha, "Backpropagation and

Levenberg-Marquardt Algorithm for Training Finite Element Neural

Network," 2012 Sixth UKSim/AMSS European Symposium on Computer

Modeling and Simulation, Valetta, 2012, pp. 89-94. doi:

10.1109/EMS.2012.56

	NEURAL NETWORK ON VIRTUALIZATION SYSTEM, AS A WAY TO MANAGE FAILURE EVENTS OCCURRENCE ON CLOUD COMPUTING
	Recommended Citation

	USE OF MEMORY-RESIDENT COMPUTER RECREATION PROGRAMS TO REDUCE WORKPLAE STRESS

