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ABSTRACT 

We present the framework of projective geometry. This 

framework allows us to study the reconstruction of three

dimensional structure and motion from sequences of two

dimensional images of the available features of an object. 

This theory is derived in the context of the affine camera, 

which preserves parallelism and generalizes the 

orthographic, scaled orthographic and para-perspective 

camera models. 

We derive explicit recognition polynomials for the 

detection of rigid three-dimensional motion from two weak

perspective views by using Kontsevich's equation. In 

addition to detection of rigid motion, these polynomials 

can be used to recognize a given three-dimensional object 

from two-dimensional views,. and in fact to reconstruct its 

depth coordinates. 

We also provide some interesting theorems in linear 

algebra which arise as generalizations of theorems used in 

developing the recognition polynomials. 
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CHAPTER ONE 

PROJECTIVE GEOMETRY 

The study of projective geometry is related to the 

sort of sensors that machines and humans use for vision. 

It is known from geometric optics that any system of lenses 

can be approximated by a system that realizes a perspective 

projection of the world onto a plane. The simplest way to 

look at such a system is to look at it projectively. Here 

is the general definition of projective space of any 

dimension. 

Definition: a point of an n dimensional real projective 

is represented by an (n+l) vector of real coordinates 

x= [ Xi,X2,···,xn+I], where at least one of the xi is nonzero. 

The numbers are called the homogeneous or projective 

coordinates of the point, and the vector xis called a 

coordinate vector. Note that the correspondence between 

points and coordinate vectors is not one to one. 

Note that an (n+l) x (n+l) matrix A such that det(A)-::f:-0 

defines a linear transformation on Rn+I which may be
' 

interpreted as a projective isomorphism ofP11 to itself. 
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Definition: i) (n+l)x(n+l) matrix A with detA:;cO is called 

a collineation. ii) the set of collineations is a group and 

this group is also known as the projective group. iii) a 

projective basis is a set of (n+2) points of pn such that 

no (n+l) of them are linearly dependent. Any point x of 

pn can be described as a linear combination of the (n+l) 

points of the standard basis: 

n+I 

x = Ix;e;' 
i=l 

where X; are the projective coordinates in this basis. 

P1For n = l, projective space is called the projective line; 

P2 is called the projective plane; P3 is called simply 

P 1projective space. The space is the simplest of all 

projective spaces and many structures embedded in higher-

dimensional projective spaces have the same structure as 

P1
• In P1

, a point on the line can be written as x = 

P 2The space is used to model the image plane as a 

P 2projective plane. A point in is defined by three 

numbers(xi,x2 ,x3 ), not all zero. There are objects other by 

a triplet of numbers ( u1 , ·u2 , u3 ) , not all zero. The points 
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and the lines form coordinate vectors x and u defined up to 

3 

a scale factor. The equation of the line is then 'z:u;X; = 0 
i=l 

P2in the standard projective basis of • Formally, there is 

no difference between points and lines in P 2 
• This is 

known as the principle of duality. Among all possible 

lines, the one whose equation is x 3 = 0 is called the line at 

infinity of P 2
, denoted by t . Each line L= ( u1 , u2 , u3 ) in 

3 

the projective plane of the form of 'z:u;X; = 0 intersects l"' 
i=l 

at the point (-u2 ,ui,O), which is the point at infinity of 

the line L. 

There is a structure of the projective plane that has 

numerous applications, especially in stereo and motion: 

P2Definition: A pencil of lines is the set of lines in 

P 2passing through a fixed point. Any pencil of lines in 

is projectively isomorphic to the one-dimensional 

projective space P' . 

P 3A point x in , known as the projective space, is 

defined by four numbers (~'~'~'~), not all zero. There 

are objects other than just points and lines in P 2 
, such as 

3 



planes. A plane is also defined as a four numbers 

( u"u2 ,u3 , u4 ) , not all zero. . The points and the planes form a 

coordinate vector x and u defined up to a scale factor. 

4 

The equation of this plane is then I:Uixi = 0 in the standard 
i=l 

projective basis ( ei,e2 ,e3 ,e4 , e5 ) of P 3 • A line is defined as 

the set of points that are linearly dependent on two points 

and P 2 • Among all possible planes, the one whoseP 1 

equation is x4 = 0 is called the plane at infinity or ~ 
00 

of 

P 3 • As in the case of the projective plane, it is often 

useful to think of the points in the plane at infinity as 

the set of directions of the underlying affine space. For 

example, the point of projective coordinates [x1 , x2 , x3 , OJ 

represents the direction parallel to the vector [x1 , x2 , x3 ] 

and indeed it does not matter whether.x1 , and arex2 x3 

defined up to a scale factor, since the direction does not 

change. 

4 
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CHAPTER TWO 

CAMERA MODELS 

There is a deep relationship between camera models and 

projective geometry. So I would like to look at camera 

models. A simple camera model can be considered from two 

sta6dpoints. One is a geometric model and the other is 

physical model. In this paper, we are only interest in a 

geometric model. 

~-•_-~ -----

/ 
/ 

/1
--- image 

object 

Figure 1. Image Formation in a Pinhole Camera 

Let us considir the system consists of two screens. In the 

first screen, a small hole has been punched and through 

this bole some rays of light reach on the second screen. 

We can directly build a geometric model of the pinhole 

5 



--------------------------------

camera that consists of a plane R, called the retinal plane 

in which the image is formed through an operation called a 

perspective projection: The distance f from the optical 

center C to the retinal plane R is called the focal length 

of the camera. 

lvI 

Figure 2. The Pinhole Camera Model 

This is used to form the image m in the retinal plane of 

the three-dimensional point M as the intersection of the 

line CM with the plane R. 

Let us take a look at camera model in further detail. 

We can choose the coordinate system X = ( Xi,X2 ,X3 ) for the 

3D space and x = ( Xi,X2 ) for. 2D space, for example we can 

think of 2D space as the retinal plane. The coordinate 

6 



system X = ( Xi,X2 ,X3 ) is called the standard coordinate 

system of the camera. The relationship between image 

coordinates x and 3D space coordinates can be written in 

terms of a projection matrix P 

Pi2 Pi3lP,, P,, j x, 
X2 

(1)P2, P22 P23 P24 
X3 

P31 P32 P33 P34 
X4 

related to x and X by x 

X 

Thus a camera can be considered as a system that 

performs a linear projective transformation from the 

P 3 P2projective space into the projective plane • We 

sometimes refer to the three-dimensional coordinate system 

X as the world coordinate system. Also, the camera can be 

considered as a system that depends upon both intrinsic and 

extrinsic parameters. Intrinsic parameters are those that 

do not depend on the position and orientation of the camera 

in space. There are four intrinsic parameters such as the 

7 



scale factors a and av and the coordinates and of the
11 

u0 v0 

intersection of the optical axis with the image plane. 

There are six extrinsic parameters, three for the rotation 

and three for the translation of the camera, which define 

the transformation from the world coordinate system to the 

coordinate system of the camera. 

There is a special case of the projective camera 

called the affine camera. This affine camera can be 

written using equation (1) with P31 = P32 = P33 = 0 : 

Fi2 Fi3[P.1 P,,1 
pa.ff= ~I P22 P23 P24 (2) 

0 0 P34 

It corresponds to a projective camera with its optical 

center at the plane at infinity; consequently, all 

projection rays are parallel. We can decompose P aJJ • 

Gil G12 Gl3 Gl4 
C12 0 0c1,ff G21 G22 G23 G24[c"Paff= CP 11 G= C21 C22 c23 o 1 0 

G31 G32 G33 G34 
c31 C32 C33 0 0 0 ~1 

G41 G42 G43 G44 

The 3x3 matrix C accounts for intrinsic camera parameters 

and represents a 2D affine _transformation (hence 

= 0) . We assume there is no shear in the camera axesC31 =C32 

and use four parameters, 
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0 

f 

0 

where~ is the camera aspect ratio, f the focal length and 

(ox,oy) the principal point (where the optic axis intersects 

the image plane). The 3x4-matrix Pn performs the parallel 

projection operation, and the 4x4 matrix G accounts for 

extrinsic camera parameters, encoding the relative position 

and orientation between camera and the standard coordinate 

system. Therefore the affine camera covers the composed 

effects of i) a 3D affine transformation between world and 

camera coordinate system; ii) parallel projection onto the 

image plane; and iii) a 2D affine transformation of the 

image. 

In terms of inhomogeneous image world coordinates, the 

affine camera is written 

x = MX + t 

p 
where M= lMu J is a 2 x 3 matrix with elements Mu = Pu and 

34 

t ( Fi4 Fi4 J is a 2 vector giving the projection of the 
P34 , P34 • 

origin of the world coordinate frame which is X 0. A 

9 



major property of the affine camera is that it preserves 

parallelism: lines that are parallel in the world remain 

parallel in the image. 

(o) (b\ 

Figure 3. Camera Models: (a) perspective 
(all rays pass through a single projection 
point 0, and the intersection of the ray 
star with the image plane generates the 
image); (b) orthographic (all rays are 
parallel, with the optical center Oat 
infinity) ; (c) weak perspective (combined 
orthographic and perspective projection). 
For (b) and (c), parallel lines in the 
scene remain parallel in the image; this 
isn't truefor (a). 

I would like to introduce some special cases of the 

affine camera, such as orthographic projection, weak 

10 



perspective projection, and para-perspective projection 

cameras. 

The 

parallel 

onto the 

orthographic projection camera is modeled by rays 

to the optical axis projected orthographically 

average depth plane zc= Z~. 

Wot1d point Xi: 

(X~ Z 1 

Average depth 
'"ptn.ne'' 

f Image "plane" 

Optical 
cent.re 

,, 
;-.. 

Figure 4. One-dimensional Image Formation 
The image is the line zc = f . 

For xP (perspective) projection is along the 

ray connecting the world point Xe to the 
optical center. For x 0,.1h ( orthographic) , 

projection is perpendicular to the image. 
For x~ (para-perspective), Xe is first 

projected onto the average depth plane at 
angle 0, and then projected perspectively 
onto the image plane; x~ (weak perspective) 

is a special case of xPP with 0 = 90° 
(i.e.,orthographic projection onto the 
average depth plane). 

11 



Next, we look at the weak perspective projection 

camera. Consider the familiar camera centered perspective 

equations, where each point is scaled by its individual 

depth z~ and all projection rays converge to the optical 

center: 

In above equation, Xe= ( Xe,Ye,ze) denotes coordinates in the 

camera frame. When the camera field of view is small and 

the depth variation of the object ~ Zt = Zt -z;.,e is small 

compared to the average distance of the object from the 

camera z;ve, the indivictual depths zt maybe approximated by 

Z~, giving a weak perspective or scaled orthographic 

camera: 

We can say the weak perspective camera is a combination of 

the orthographic and perspective projection. Coordinates 

measured in a world coordinate system (X) are related to Xe 

by a rigid transformation Xe= RX+ T, where Risa 3x3 

12 



translation vector representation the origin of the world 

frame. The depth of a point Xi measured along the line of 

sight in the camera frame is then Zt = R;Xi+ Tz. The center 

of the point set is denoted x_ and the depth variati6n of 

the object is given by jj_Zi
C = RT 

3 (Xi- Xave) • The weak 

perspective projection equations are then 

X 
y 

z 
1 

Next, we look at para-perspective camera. The para-

perspective camera generalizes weak perspective case, such 

that projection of the scene point onto the average depth 

plane occurs parallel to the optic axis by projecting 

direction. Since the average depth plane remains parallel 

to the image plane, the perspective projection stage simply 

introduces a scale factor. The lD case takes the form 

Xpp = ~ (Xe -/j_Zc cot0), 
zave 

where 0 denotes the angl~ between the projection direction 

and the positive X-axis. In the 2D case, the projection 

direction is described by two angles ( 0x,0y) , where 0x lies 

13 



in the X-Z plane and 0Y is the equivalent angle in the 

Y-Z plane. Factoring in camera calibration parameters and 

the rigid transformation between the camera and world 

coordinate frames gives 

cot0x! 
cot0Y 

1 

14 



CHAPTER THREE 

EPIPOLAR LINES AND PLANES 

The concept of an epipolar lines and plane is familiar 

in stereo and motion. The ·epipolar constraint relates a 

point in one image to a line in the other image depending 

on the intrinsic and extrinsic camera parameters. 

First, we can take look at a very powerful constraint that 

arises from the geometry of stereo vision. 

Figure 5. The Epipolar Geometry 

Given in the retina plane R1 , all possible physicalm1 

points M that may have produced are on the infinitem1 

half-line (mi,C1), where .Ci is optical center. All possible 

matches of in the plane are located on the image,m2 m1 R2 

through the second imaging system, of this infinite half-

15 



lirie. This image is an infinite half-line ep2 going through 

the point E2 , which is the intersection of the line (Ci,C2 ) 

with the plane R2 • 

Figure 6. (Ci,C2 ) is Parallel to the Plane R1 : 

is oo; the epipolar lines are parallel in theE1 

plane and at intersect at in the plane R2 ,R1 E2 

is called the epipole of the second camera with respectE 2 

to the first~ and the line ~ 2 is called the epipolar line 

of point in the retinal plane of the second camera.m1 R2 

The corresponding constraint is that, for a given point m1 

in the plane R1 , its possible matches in the plane R2 all 

lies on a line. The epipolar constraint is of course 

symmetric and for a point in the plane R2 , its possiblem2 

matches in the retinal plane all lie on a line ep1R1 

through the epipole E1 , which is the intersection on the 

16 



line (Ci,C2 ) with the plane R1 • The lines ep1 and ePz are the 

intersections of the plane C1MC2 , called the epipolar plane 

defined by M, with the planes and , respectively.R1 R2 

E2 at 
00 

Figure 7. (c1,C2 ) is Parallel to the Planes 

R, and R2 : and E2 are at oo; the epipolarE1 

lines are parallel in both planes and R2 •R1 

When the plane R1 or the plane R2 , or both, are parallel to 

the line (Ci,C2 ), one or both epipoles go to infinity and the 

epipolar lines in one plane or both become parallel. The 

situation where both planes are parallel to the line (C1,C2 ) 

is often assumed because of its simplicity. Let's compute 

the epipolar geometry. In this section, the notation~ is 

to indicate projective quantities. For example, x denotes 

a projective coordinate vector, which is defined up to a 

17 



multiplicative nonzero scalar, and x denotes a vector of 

Rn. Let mi'= P1 M and m2 = P2 M be two cameras. The 

coordinates of the two optical centers, C, (i= 1,2), in the 

world reference frame, are obtained by solving the 

following two systems of linear equations: P,M= 0, where 

i = l,2. 

Since each epipole is the image by the ith camera of theE1 

other camera's optical center C1 ( j * i), the image 

coordinates of the epipoles Ei are obtained by applying 

matrices PI to the vectors C 1 ( i, j = l , 2 , i * j ) . 

Now, I like to show how, for a given point in the planem1 

R1 , the corresponding epipolar line ep1 can be computed. We 

need to points to determine a line. One of them is the 

- - [ P,-1 ]epipole E2 , which is given by e2 = P2 - \ Pi , and another 

point is the point at infinity of the optical ray (C1,m1 ). 

The image of this point in the second retinal plane ism2 

- ~ 

given by m2 = P2 f>i.-1 m1 A projective representation of ep2 is 

the cross product e2 I\ m 2 The cross product e2Am2 can be 

18 



written a Fm1 where Fis a 3x3 matrix. If we let E 2 be 

the 3x3 antisymmetric matrix representing the cross product 

with e2 • We have F = E2 P2 f>i.-1 
• Any pixel m2 on the epipolar 

~ T 

line of satisfies the equation m2 F m1 = 0. It showsep2 m1 

in particular that the roles of and are symmetric andm1 m2 

that the epipolar line of a pixel in the first retinalm2 

plane is represented by the vector F T m2 . 

19 



CHAPTER FOUR 

RECOGNITION OF RIGID THREE DIMENSIONAL MOTION FROM 

SEQUENECS OF TWO DIMENSIONAL IMAGES 

A recognition polynomial is a polynomial in the image 

data (i.e., the coordinates of the points in the given 

view) that evaluates to zero when the image data are 

consistent with those from.rigid motions of a given 3-D 

object. Using a Kontsevich's approach, we can derive 

explicit recognition polynomials for the detection of rigid 

3-D motion from two weak-perspective views. I would like 

to introduce Kontsevich's derivation of the two-view 

rigidity constraint in weak perspective projection. 

Kontsevich used some of the same geometric ideas as in 

Koenderink and van Doorn, notably the decomposition of 

rigid rotation into a rotation about the viewing direction 

and a rotation about an axis in the image plane. The 

motions we consider are rigid rotations in 3-D space or 

translations along the viewing direction that followed by 

uniform scaling so we can ignore translations parallel to 

and reflections through the viewing plane. 
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Suppose we have an object that has five distinguished 

points, labelled "0, 1, 2, 3, and 4." Let 0 be the 

displacement in R3 between point O and point j, in the 

first view (with j =1, 2, 3, 4) . Then r; is the 

corresponding displacement, in R3 
, in the second view. And 

let ff be the orthographic projection to the image plane, 

then the projected displacement can be written 

R3The fact is given an image plane, any rigid rotation in 

can be thought of as a composition of two rotations. The 

first is.a rotation about a unit axis vector v parallel to 

the image plane and second is a rotation about an axis 

vector perpendicular to the image plane. The second 

rotation takes the first axis vector v to a new unit vector 

v1 in the image plane. If the uniform scaling factor is s, 

11 1then we can let V =-V . 
s 

Consider the first of the decomposed rotations, around the 

axis v. Then the respective projections of 0 and p onto1 

v are equal and the second rotation takes v to v1
• If we 

let 0 be the edge between O and jafter that rotation, and 

21 



denote 7z-(r)) = p), then the respective projections of r) and 

1p} onto v are equal, and that these projections are the 

same as those rigid of~ and onto v. Thus p 1 ·v=p1 
I ·v. I p 1 

Finally, consider the scaling. Since 7l" is orthographic, 

the scaling factor of s results in p~=~} and, in equation 

v'=!v1 
, we can arrive at the linear Kontsevich equations: 

s 

0P1 ·V- P1I 
·V

I = ' 

with llvll =l, llv'JJ =M, IIP'JI =silPII · 
s 

The equation p 1 -v-p~·v'=0 is a homogeneous system of four 

linear equations in the four unknown coordinates c1, c2 , 

c;, where 

If we let = [;] ·, the condition for there to be a= [;J , p;p 1 

nontrivial solution to equation •v-p~ ·v' = 0 is that thep 1 

coefficient matrix have rank less than 4. Thus v and v' can 

be known only up to an overall scale factor; choosing a 

solution for which llvll=l allows us to compute the scale 

22 



factor s from the equation llv'II =M. This completes the 
s 

exposition of Kontsevitch's two-view derivation. 

Now, take look at how a recognition polynomial arises 

for the two-view weak perspective recognition of rigid 

motion. This is a polynomial in the 16 data values 

{ x1 ,y1 ,x:,y:} J=l, ...,4 which must evaluate to zero for there to be 

a rigid interpretation. The condition that equation 

p1 · v- p: ·v' = 0 has a nontrivial solution is then that the 

determinate of the coefficient matrix vanish. Ignoring the 

negative signs in the last two columns of this matrix, we 

get: 

X1 Y1 x'I y; 

X2 Y2 X2 
I 

Y2
I 

det =0 
X3 Y3 X3 

I y; 

X4 Y4 x'4 y~ 

Therefore the two-view recognition polynomial is the 

determinant in above. 

The recognition polynomial is a polynomial in 16 variables, 

corresponding to the image plane coordinates of the weak 

perspective projections of four feature points in each of 

the two views. To use the polynomial for the detection of 

rigid motion, given two weak perspective views of an 

23 



actual object with, say, five feature points, an observer 

can choose one of the points. Then, if the image 

coordinates of the four remaining feature points in the two 

views satisfy the recognition polynomial, we may infer that 

the 3-D motion is rigid with probability one. To use the 

polynomial for the recognition of a given object, suppose 

we know the image plane coordinates of five feature points 

on the object. We can use these coordinates to assign 

numerical values to those variables in the polynomial which 

correspond to the first view. This gives a reduced 

polynomial in eight variables. Then, given a view of a 

novel object with four feature points, we can plug the 

image plane coordinates of these points into the reduced 

polynomial, and if the result is 0, we may infer that the 

novel object coincides with the memory object with 

probability one. 

Theorem: Let A be a 4x4 matrix with rank 3. Let A be the 

3x4 matrix obtained from A by deleting the last row. Let 

A; be the ith column of A. 

defined by 

24 



cI = - det(A 2 
, A 3 

, A 4 ) 

I - - -

cI = - det(A 1 
, A 2 

, A 4 
) 

is a nontrivial solution to Ax= 0. Moreover, if both of 

the 2x2 diagonal minors of A are nonsingular, then in this 

I I 

solution both vectors ( c"c2 ) T and ( c1 ,c2 ) T are nonzero. 

Lemma: Let A(k) be the 3 x 4 matrix obtained from A by 

deleting the kth row. Let·C(k) be the vector (c1,c2 ,c1 ,c2 )T 

I I 

obtained from A(k) as C = (c"c2 ,c1 ,c2 ) 
T is from A . Then C is a 

nonzero scalar multiple of C. 

25 



CHAPTER FIVE 

RECONSTRUCTION OF THREE DIMENSIONAL MOTION FROM 

SEQUENCES OF TWO DIMENSIONAL IMAGES 

Kontsevich performed a change of.coordinates so as to 

simplify the depth reconstruction. To this end, define 

A -~ I 

ev, = (c/ + c~) 2 (c1 

A A A A 

Thus eu,ev,ez (where ez is the unit vector perpendicular to 

the image plane) forms an orthogonal coordinate system, as 

A A A 

does e11,,ev',ez. 

A I A 

Now define the u coordinates in the new systems: 

11 -C2XJ +C1Y1 
P1,11=e,,·p1= 1 

(ct+ Ci)2 
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Note that the v,v I coordinates, defined similarly, are equal 

for corresponding points. Now let the z-coordinate of the 

edge be r1,z • For each angle a, we haver1 

. ) (P1,11JP~,11, = ( cos a -sma 
rJ,= 

= PJ,u cosa- r1,z sma 

Hence 

r1,z = p J,u cot a - P~,11, csca , \/ a . 

Letting ,1, = cota,µ =csca, we have: 

r. = ,1,p. - µp'. ,
J,Z j,U 'J:"' j,ll 
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CHAPTER SIX 

SOME THEOREMS IN LINEAR ALGEBRA 

Euler's Theorem: Any RE S0(3) can be written R = R;RJ'R;, 

where ( ¢,0,lf/) are Euler angles of R and R: is a rotation 

through angle¢ around the·positive Z-axis. 

S 2Proof: Let n be the north pole of • If BE S0(3) with 

Bn =Rn, set C = RB-1 
• Then CE S0(3) and R =CB; CBn = Bn . 

i.e., C is a rotation about Bn (and Rn). 

Now 30 such that R%n has the same latitude as Rn and 3¢ 

such that R;, (R%n) = Rn . (:.we can set R;,R%=B) 

i.e. , R = CR¢R% where C is a rotation about Rn= Bn . 

I\ I\ I\ 

Lemma: If A is a rotation about r and Br= u, for some 

I\ 

rotation B then BAB-1 is a· rotation about u. 

I\ 

Proof: (BAB-1)u = BAB-1Br 

I\ 

=BAJr 

I\ 

=BAr 

I\ 

=Br 

I\ 

=u 
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As a consequence, we can say that any rotation C about 

u = Br is of the form BAB-1
, where A is a rotation about r, 

since by the lemma, A= B-1CB is a rotation about r = B-1u. 

Then C =BAB-1 
• 

Now with R =CB, ( B = R;R%) and C is a rotation about 

Bn(= Rn), we have that C = BDB-1 with D = R;. 

Finally R = BDB-1B 

=BD 

Theorem: Let A be a 3x3 matrix with rank 2. Let A be the 

3x3 matrix obtained from A by deleting the last row. Let 

A; be the ith column of A. 

Then the vector C = ( c1 , c2 , c3 ) T defined by 

c1 = -det ( A 2 
, A 3 

) 

c2 = det ( A 1 
, A 3 

) 

is a nontrivial solution to A x = 0 and C; =/:- 0 . 

Proof: Expanding the determinant of A off the nth row, we 

get 
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-a31 det(A 2 ,A 3 J + a 32 det(A 1,A 3 
J - a 33 det(A 1,A 2 

l= 0,since A has 

rank less than n. That is, c3 = 0.a31 c1 +a32 c2 +a33 

Thus the vector C = ( c1 , c2 , c3 ) 
T is orthogonal to the row A3 • 

By the theory of determinants C is orthogonal to all the 

rows of A, i.e., is a solution to Ax= 0. 

Moreover, since A has rank exactly 2, C can not be the zero 

vector. I.I 

Let's check if AC= 0. 

12 13a11c1 + a c 2 + a c 3 l-
a21C1 + a22C2 + a23C3 -

a31C1 + a32C2 + a33C3l 

all a12 a13 

a21 a22 a23 0n,C2 = 
C3 

a31 a32 a33 

-2 -3 -1 -3 -\ -2 
-a11 det(A ,A )+a12 det(A ,A )-a31 det(A ,A ) 

-2 -3 -\ -3 -1 -2 
-a21 det(A ,A )+a22 det(A ,A )-a32 det(A ,A) 

-2 -3 -1 -3 -J -2 
- a 31 det(A , A ) + a 32 det(A ·, A )- det(A , A )a 33 

If 2x2 minors of A are nonsingular than in this solution 

vectors c;'s are nonzero. 

Let c1 = 0, then from AC= 0 we infer 

t::: :::l[:J[~] 
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Since C =J:. 0 and we are assuming c1 = 0, 

nontrivial solution to 3x3 system. This contradicts 2x2 

minors of A are nonsingular. Therefore c1 =J:. 0. A similar 

argument holds for c2 = 0 and c3 = 0. Thus c;'s are nonzero 

Theorem: Let A be a nxn matrix with rank n-1. Let A be 

the (n-l)xn matrix obtained from A by deleting the last 

row. Let A; be the i th column of A . Then the vector C = 

... , en) 
T defined by 

c1 = -det ( A 2 
, A 3 

, A 4 
, ••• , A 11 

) 

A 11= det ( A 1 
, A 3 

, A 4 
, ••• , )C 2 

c3= -det ( A 1 
, A 2 

, A 4 
, ••• , A 11 

) 

CI. = ( - 1) ; d et ( A 1 
f A 2 

f ••• f A i-1 f A i+l f ••• f A) 

A 2 , A n-1)en= ( -1) ndet ( A 1 
' A 3

' , ... 

is a nontrivial solution to A x = 0. 

Proof: Expanding the determinant of A off the nth row, we 

get 

-2 -3 An A' A3 
- anl det ( A , A , . . . , )+ an2 det ( , , , ••• I A II)+ ... + 
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n A I A 2 A n-1(-1) anndet( , , .•. I )= 0, since A has rank less than n . 

That is, a111c,+an2C2+ •.. +a1111cn= 0. 

Thus the vector C = ( c1 , c2 , c3 , ... , en) 
T is orthogonal to the 

row A
11 

• By the theory of ~eterminant C is orthogonal to 

all the rows of A, i.e., is a solution to Ax= 0. � 

Let's check if AC= 0. 

0 

G11C1 + G12C2 + G13C3 ••• + alnCn 

G21C1 + G22C2 + G23C3 • • • + Gz,,C11 

-2 -3 -11 -I -3 -n -J -2 -n-1 
det(A ,A , ... ,A )+a12 det(A ,A , ... ,A )+ ... +(-1) 11 det(A ,A , ... ,A )-a11 a111 

-2 -3 -n -I -3 -n -I -2 -n-1 
-a21 det(A ,A , ... ,A )+a22 det(A ,A , ... ,A )+ ... +(-1) 11 det(A ,A , ... ,A )a211 

-? -3 -n -I -3 -n -I -? -11-I 
det(A-,A , ... ,A )+a det(A ,A , ... ,A )+ ... +(-l)"a det(A ,A-, ... ,A )-a111 112 1111 

= (0,0, ... ,0) T . 

Theorem: Let A be a 4x4 matrix with rank 2. Then we 

provide a general algorithm for finding a basis of the null 

space of A (i. e, for solutions to Ax= 0); Pick any pair of 

non-trivial solution vectors given below. 
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Proof: Let B be the row-reduced matrix obtained from A . 

Rearrange if necessary so that the last two rows of B are 

zero. 

all Ql2 G13 al4 

G21 G22 G23 G24 

0 0 0 0 

0 0 0 0 

X1 

X 2 

X3 

X4 

= 

Let B be the 3x4 matrix obtained from 

-; 
last row. Let B be the ith column of 

0 

0 

0 

0 

B by deleting its 

B. The null set of 

A and B are identical (subject to the rearranging 

described above), so it suffices to find solutions to 

Bx= 0 . Solutions can be found as follows. 

If we let x4 =0, then the solution will be 

-2 -3 
= det(B ,B ) =x1 a12 a23 -a13a 22 

-1 -3 
= -det(B ,B ) = -(aua23x2 -a13 a21 ) 

-] -2 
x3 = det(B ,B ) = aua22 -a I2 a21 ) 

If we let x 3 =0, then the solution will be 

-1 -2 
=-det(B ,B) =x4 a11 a22 -a12 a21 
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If we let x2 =0, then the solution will be 

-3 -4 
= -det(B , B ) =x1 a13 a24 -a14 a23 

-I -3 
= -det(B ,B ) =x4 a11 a23 -a13 a21 

If we let = 0, then the solution will bex1 

-3 -4 
= -det(B ,B ) =x2 a13 a24 -a14 a23 

In each case it is verified by direct computation that the 

given vector is a solution. 

The question is: are any of these vectors non-trivial? 

Since B has rank 2, at least one 2x2 sub-matrix of the 

matrix consisting of the first two rows has to be nonzero 

(since the matrix has rank 2 and any other 2x2 sub-matrix 

has automatically zero determinants). 

By inspection of the solutions given above, we see that 

this particular 2x2 determinant, whatever it is, appears in 

two distinct vectors, both of which are therefore non

trivial. 

Furthermore, these two vectors must be linearly 

independent, since the zero entries are different from each 
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other. Thus they form a basis of the two-dimensional 

solution space to Bx= 0 and therefore also to Ax= 0. � 
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