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ABSTRACT

This project's purpose was to understand the workings

of a new theorem introduced in a professional paper on the

cutwidth of meshes and then use this knowledge to apply it

to the search for the cyclic cutwidth of the n-cube.

Before being able to use the theorem though, problems with

the theorem needed to be worked out. In fact, the theorem

was found to be stated wrong in the paper. Actual examples

were found to contradict what the theorem stated.

It was then found that the theorem did not accurately

represent the propositions, corollaries and a theorem that

formed it. It was also found that another proposition was

needed to complete the theorem, that is, to allow the

theorem to accurately describe all cases under

consideration. A proposition was then created and proved

using techniques worked out in the proof of the other

propositions and corollaries of the theorem.

After completing the theorem, product, structures

of meshes were looked at. These structures were called

mesh cubes. Mesh cubes of the type Pn x Pn x Pn are similar

to the n-cube in many ways and so a theorem on the cyclic

cutwidth of mesh cubes became the next step. Proving a-
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theorem on the upper bounds of the cyclic cutwidth of mesh

cubes became the main goal of the application portion of

our work in this project.

The Theorem states: If n>2

n is even ccw (Pn x Pn x Pn)< n2 - n + 1

n is odd ccw (Pn x Pn x Pn)< n2 + 1

In words, it says that the cyclic cutwidth of a three

dimensional mesh cube of equal dimension is equal to the

length of an edge (the number of vertices along an edge)

squared, plus one , minus the length Of the edge if the

edge length is even; if the edge length is odd, then it is

the square of an edge plus one.

The result of this work has been insightful and the

result of our proof on the upper bounds is interesting. It

indicates a, sort-of, "two dimensionality" of 3

dimensional objects when it comes to cyclic cutwidth. It

may be this idea that helps reduce the complexity of the

n-cube so that it is solvable.
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CHAPTER ONE

INTRODUCTION

Purpose of Project

We began this project with a common goal in mind; to

contribute to the solution of the cyclic cutwidth of the

n-cube. Dr. Chavez has been working toward this and I

became interesting in it during Dr. Chavez's class on Graph

Theory. During the class, Dr. Chavez distributed a work by

Schroder et al., 5), which used a new technique to prove a

theorem on meshes. However, when Dr. Chavez tested the

theorem with examples he found flaws. He then encouraged

students to consider the accuracy of the theorem.

I have chosen to explore the cyclic cutwidth of the

n-cube as my graduate project, I will correct errors

within Schroder's Theorem, master the techniques used in

it's proof and finally apply these idea's to some aspect

of the n-cube which may give us insight into the cyclic

cutwidth solution.

Overview

The work in this project will focus on Schroder's

Theorem on the cyclic cutwidth of meshes. The theorem as

stated in 5) is:
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Schroder's Theorem: For m > n > 3

n-1, if m=n is even

ccw (PmxPn) = n, if n is odd or m=n+2 is

n+1, otherwise

By looking at specific examples, problems with this

theorem were encountered. As a result, the various

propositions and corollaries that make up the lower

bounds of Schroder's Theorem and Rolim's Theorem that

makes up the upper bounds, were dissected. Subsequently,

it was found that the theorem did not accurately reflect

the theorem, propositions and corollaries that were used

to construct it. Furthermore, a new proposition was

needed to complete the lower bounds of the theorem. A

proof was then constructed for the missing proposition:

Proposition 1: For n > 3,

ccw(Pn+2 x Pn) > n if n is even

Subsequently, a new theorem was constructed:

Theorem 1: For m > n > 3

n - 1, if m = n, and n is even

ccw(Pm x Pn) = n, if n + 2 > m > n, and n odd or even

n + 1, if m > n + 2, and n is odd or

if m > n + 2, and n is even

2



With a completed theorem on the cyclic cutwidth of

meshes, the techniques and facts- regarding these meshes

were applied to a structure similar to the n-cube.

Insight and conjectures on structures P/ x Pm x Pn were

found and a theorem for these structures was developed.

Technical Terms and Concepts

In order to ensure the reader's ability to-

understand the following discussions, a few important

definitions and concepts are now presented. Non-technical

definitions and illustrations are in the appendix.

Types of Graphs

Graph-A graph G = (V,E,9), consists of a vertex-set V,

edge-set E, and a boundary function 9,

+
J J

which identifies the pair of vertices incident to each

edge.

Tree - A graph that is connected and acyclic.

Mesh - A mesh, denoted Pm x Pn, is the Cartesian product

of two paths.

Path - A sequence of distinct vertices (xi, x2, ..., xn) 
such that Xi is adjacent to xi+i.
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H - Layout - An H-Layout of G is an ordered pair (71, PK)

consisting of:

(i) A one-to-one correspondence 71 between the

vertices of G and those of H, and

(ii) A collection PK of paths in H, one path

joining 7i(v) and 7t(w) for each pair of

adjacent vertices v and w in G.

Cutwidth - The cutwidth cn(G) of the layout (71, Pn) is the

maximum number of times an edge e of H appears in the set

of paths P„. The cutwidth c(G) of G in H is the minimum

of the cutwidths taken over all layouts (ti, P^) of G in

H.

Linear cutwidth - The linear cutwidth, denoted lcw(G), is

the cutwidth of G embedded in a linear chassis layout.

Cyclic Cutwidth - The cyclic cutwidth, denoted ccw(G), is

the cutwidth of G embedded in a cycle layout.

N-cube - The graph of the n-dimensional cube, Qn, has

vertex set {0,l}n, the n-fold Cartesian product of {0,1}.

Thus |V[ = 2n. Qn has an edge between two vertices

(n-tuples of 0's and l's) if they differ in exactly one

entry.

4



CHAPTER TWO

THE THEOREM AND ITS•PROBLEMS

Confirming a Problem

The techniques in Schroder's Theorem, 5), may be of

use in solving the cyclic cutwidth of the n-cube.

Unfortunately, we have found several flaws in the theorem.

Specifically, the theorem did not support certain examples

we created to test it.

In this chapter we will dissect Schroder's Theorem

and show that it does not accurately reflect the theorem,

propositions, and corollaries that make it. We will

construct a Theorem 1 using the theorem, propositions, and

corollaries as the building blocks, and verify it's

accuracy. Lastly, we will demonstrate that Theorem 1 will

need an additional proposition in order to complete it.

Hence the creation of Proposition 1.

Schroder's Theorem: For m > n > 3

n - 1, if m = n is even

CCW (Pm X Pn) n, if n is odd or m = n + 2 is even

n + 1, otherwise

5



Schroder's Theorem can be broken down into four individual

n is even, ccw(Pn x Pm) = n-1

n is odd, ccw(Pmx Pn) = n

statements:

(1) if m = n

(2) if m > n

(3) if n + 1 < m < n + 2 n is even, ccw(Pn+2 x Pn) = n

(4) if m > n + 2 n is even, ccw(Pm>n+2 x Pn) = n + 1

By looking at easy to verify examples, a contradiction to

part (2) of the theorem can be easily demonstrated.

Following are a few examples.

Example 1. ccw (P7 x P3) = 4,. which is n + 1 and

not n = 3. See Figure 1 below.

Figure 1. A 7 x 3 
Mesh Has Cutwidth 4

Example 2. ccw (P6 x P3) = 4, which is n + 1 and

not n = 3. See Figure 2 below. Notice the lower bound

for this shape is found using the conventional

6



method as opposed to example 1. The choice of

method is determined by the shape of the structure.

X

Figure 2. A 6 x 3 Mesh 
Has Cutwidth 4.

Example 3. ccw (P5 x P3) = 4, which is n + 1 and

not n = 3. See Figure 3 below.

Figure 3'. A 5 x 3 Mesh 
Has Cutwidth 4.

By noting these examples, the nature of the problem within

the stated theorem is difficult to identify. It is then

necessary to look at the individual components, the

theorem, propositions, and corollaries of Schroder's

theorem to see what parts of the theorem are implied.
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A Look at the Components

The theorem as stated in 5) uses equalities, however

it is actually composed of two separate parts; the lower 

bounds consisting of greater than or equal to symbols,

and the upper bounds consisting of less than or equal to

symbols. The proof in 5) is for the lower bounds of the

theorem. The proof of the upper bounds is in 6).

We are particularly interested in the proof on the

lower bounds because it gives us an idea of the minimum

cutwidths of meshes. It is these concepts and techniques

that may help us find a solution to the n-cube problem.

In looking at the problems that are associated with

Schroder's Theorem and the proofs of its components, it

is important that we look at both the upper and lower

bounds. This is what we will do in this section of the

paper.

First, let us state the theorem and the component

parts that make up the lower bounds and the upper bounds:

Schroder's Theorem:- For m > n > ■3

n - 1, if m = n is even

ccw (Pm x Pn) n, if. n is odd or m = n + 2 is even

n + 1, otherwise



The following propositions and corollaries give the

lower bounds of Schroder's Theorem:

Schroder's Prop. 1: for n > 3

ccw(Pn X Pn) > n - !L if n is even

ccw(Pn X Pn) — U if n is odd

Schroder's Prop. 2‘: for n > 3

ccw(Pn+2 x Pn) > n + 1 if n is odd

Schroder's Cor. 1: for n > 3

ccw ( Pn+1 x ■Pn) > n ’ for all n

Schroder's Prop. 3: for n > 4

CCW(Pn+3 X Pn) > n+1 for all n

The upper bounds of Schroder's Theorem are made up of

Rolim's Theorem.

Rolim's Theorem For m, n > 2" it holds

(1) ccw(P2 x Pn) = 2, if n = 3, 4

(2) ccw(P2 X Pn) = 3, if n > 5

(3) CCW ( Pn X Pn) < n - 1, if n is even

(4) CCW ( Pn X Pi) < n, if i = n, n+1

(5) min{m+1, n+1 }/2 < ccw(Pm x Pn) < min{m+l,n+l}

9



Let us attempt to form Schroder's Theorem by using the

theorem, propositions and corollaries that make it.

First, Schroder's Theorem broken into four statements

looks like:

(1) if m = n, n is even CCW (Pn X Pm) > n - 1

(2) if m > n, n is odd CCW (Pm X Pn) > n

(3) if m < n + 2, n is even CCW (Pm X Pn) > n

(4) if m > n + 2, n is even CCW ( Pm>n+2 X Pn) > n + 1

Combining the various parts of the theorem, corollaries,

and propositions of the lower and upper bounds, the

following parts of the theorem are implied:

Schroder's Prop . 1 and Rolim's Thm.. (3) =5 part (1)

Schroder's Prop . 1 and Rolim's Thm. (4) =5 part (2)

conditionally

Schroder's Corr . 1 and Rolim's Thm. (5) =P part (3)

Schroder's Prop . 3 and Rolim's Thm. (5) =R part (4)

A problem :is <encountered when we look at Proposi

2 and part (2) of Schroder's Theorem. Proposition 2

states when m is two more than n and n is odd the

cutwidth is n+1. For example for P5 x P3, the cutwidth

according to Proposition 2 is 4. By Schroder's Theorem it

is 3. By our previous examples, a cutwidth of n + 1 or 4

10



is confirmed. In fact, below is- Table 1 where the results

of many meshes are listed. The starred items represent

conflicts with the theorem and confirm Proposition 2.

Table 1. Samples of Mesh Cutwidths

ccw = n - 1 ccw = n ccw = n + :

p4 X P4 p3 X P3 p5 X P3**
Pe X Pe p5 X P4 Pe X p3**

p4 X P3 P7 X p3**
Pe X P4 P7 X p4
P8 X Pe

This indicates that the theorem as stated in the

paper does not reflect the propositions, corollaries, and

Theorem 6.1 which where used to make it. This requires a

correction of the theorem.

A New Proposal

The best way to proceed at this point is to take a

realistic look at what can be implied by the individual

parts provided by the theorem, propositions and

corollaries used to create Schroder's Theorem. Let us

again look at the lower bounds (propositions and

corollaries).

(1) for n > 3 ccw(Pn x Pn) > n - 1 if n is even

11



(2) for n > 3 ccw(Pn X p:n) > n if n is odd
(3) for n > 3 COW (Pn+1 X Pn) > n for all n

(4) for n > 3 COW (Pn+2 X Pn) > n + 1 if n is odd

(5) for n > 4 CCW (Pn+3 X Pn) > n + 1 for all n

Rolim's Theorem (upper bounds) in 6) implies

(6) for n > 3 ccw(Pn x Pn) < n-1 if n is even

(7) for n > 3 cow (Pi x Pn) < n if n is even and i = n

(8) for n > 3 cow (Pi x Pn) < n if n is even and i = n+1

(9) for n > 3 cow (Pi x Pn) < n if n is odd and i = n

(10)for n > 3 ccw (Pi x Pn) < n if n is odd and i = n+1

(11)for n > 3

If we combine

ccw(Pm x Pn) < n+1 all

these statements:

values of m > n

Statements (1) and (6)=>ccw(Pn x Pn) = n-1 if n is ' even

Statements (2) and (9)=>ccw(Pn x Pn) = n if n is odd

Statements (3) , (8 ) and (10) =>ccw (Pn+1 x Pn) == n for all n

Statements (4) and (11) =>ccw (Prn>n+i x pn:) = n+1' if n is odd

Statements (5) and (11) => CCW ( Pm>n+3 x Pn ) = n+1 for all n

With this new structure established, let us compare

these statements with specific examples we have generated

to see if we have full agreement. Table 2 illustrates a

12



wide range of examples created for confirmation.

Table 2. A Table of Mesh Cutwidths

ccw = n - 1 ccw = n ccw = n +

p4 X P4 p3. X P3 p5 X P3
Pe X Pe p5 X P4 Pe X P3

p4 X P3 P7 X P3
Pe X P7 X P4
p8 X Pg9r * -A-

A quick review of these results indicates one

problem with the above statements. The starred items in

Table 2 are not addressed. These items represent the

case:

ccw (Pn+2 x Pn) if n is even

The question then is, "can the statement:

ccw (Pn+2 x Pn) > n if n is even

be proved?"

In the following chapter, we review the methods of

proof used for Schroder's Theorem. We then apply these

methods to the above statement to get Proposition 1,

which will then allow us to complete Schroder's Theorem

to obtain Theorem 1.

13



CHAPTER THREE

A.REVIEW OF METHODS

Introduction

So far we have shown flaws in Schroder's Theorem. We

then attempted to reconstruct the theorem based on-the

theorem, propositions, and corollaries that were used to

build it. At this point, we discovered that there was a

case left out, therefore a new statement had to be

constructed: ccw(Pn+2 x Pn) > n if n is even. This statement

will become our new proposition, Proposition 1. First, we

will need to prove’ it. Before we prove Proposition 1, we

will present the techniques used to prove the previous

propositions and corollaries of Schroder's Theorem.

’ - Proof Overview

The proof of Schroder's Theorem is made of several

parts. For each corollary or proposition different

techniques must be used. In this review of methods, we

will review the techniques that apply generally to the

theorem and specifically to the proof of Schroder's

Proposition 1.

14



The format of the proof will be like this. First

Schroder's Lemma is proven. This lemma applies to all

cases of the proof. Next, the proof of Schroder's

Proposition 1 will begin and the concept of embedding will

be addressed. Finally, a claim will be made and proved.

This claim will involve the two cases that arise when an

even or odd number of vertices are used.

Schroder's Lemma

Schroder's Lemma is used as a tool in the following

proof. It is developed to provide a means of separating

vertices in a mesh into two separate and equal parts and

colors on a cycle.

Schroder's Lemma: For k, I > 1, consider any 2(k + /)

vertex cycle with vertices labeled consecutively by 0, 1,

2,..., 2(k + I) - 1. Color arbitrary 2k vertices by black

and the rest of the vertices by gray. Then there exist

k+ I consecutive vertices on the cycle containing exactly

k black and I gray vertices.

What follows is a sketch of how the lemma works. Take

any number of black and gray vertices, say 2k black and 21

gray. The total number of vertices is 2(k + I) . Create a

cycle of 2 (k + I) vertices and color arbitrarily 2k

15



vertices black and the rest gray. There is always a way of

cutting the cycle into two parts such that we are

guaranteed to have k + I consecutive vertices in a part

and where there is exactly k black and I gray vertices in

it. Below in Figure 4 is an arbitrary arrangement of 14

vertices, 8 black and 6 gray:

Figure 4. An Arbitrary 
Arrangement of 8 Black 
and 6 Gray Vertices.

In Figure 5 below, we attempt to cut the arrangement 'so

that the vertices are divided equally, that is, 7 vertices

in part I and 7 vertices in part II.

16



We see that in one part we have six black vertices and 1

gray and in the other part we have 2 black and 5 gray. By 

rotating the cut in a clockwise fashion by one vertex,

nothing will change since each part will lose and gain a

black vertex. The next rotation will exchange a gray for a

black vertex. See Figure 6 below.

Figure 6. Successive Rotations of Cut.

After repeated rotations, the situation with the same

number of black and gray vertices on one side can be

achieved. This is shown below in Figure 7.

Figure 7. An Equal 
Number of Black 
and Gray.

This will always be. the case, since by rotating the cut

you can always separate an even number of vertices. Once

this is done, you have separated both colors.

17



Proof of Schroder's Proposition 1 

The techniques in the proof of Schroder's Proposition

1 highlight the essential strategies for all the proofs of

the lower bounds that make up Schroder's Theorem, First,

we will prove a technique called embedding. Then, a claim

will be made and it will be proven. Its proof will involve

the introduction of two routing algorithms. This will

allow us to satisfy the requirements‘of Schroder's

Proposition 1 when n is even. Next, a technique will be

introduced to address when n is odd. It will make use of a

dual graph to gain an extra cut.

Schroder's Proposition 1 : For any n > 3

ccw (Pn x Pn) > n-1 if n is even

n if n is odd

Proof:

Embedding

Take a Pn x Pn mesh and color only the outer vertices

of the mesh. Color the bottom row and .the last column

black with the exception of the top vertex. Color the rest

of the outer vertices gray. See Figure 8.

18



Take these colored vertices and embed them on a cycle.

According to Schroder's Lemma, we can cut the

Figure 8. A 5 x 5 Mesh.

corresponding cycle such that each part contains n - 1

black and n - 1 gray vertices. This cut on the cycle

induces a similar cut into two parts on the mesh, as shown

below in Figure 9.

Figure 9. A Cut on Cycle that Induces a Similar Cut on 
the Mesh.

We now estimate the size of this cut. Ignoring any

interior vertices, we can see this cut is at least as
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large as the number of edges it crosses, which is eight.

These paths can be looked at as disjoint edge paths

between each half of the cut mesh.

In the discussion below a few new terms will be used

Edge disjoint refers to the condition that the routing of

edges between part I black vertices and part II black

vertices must not share an edge. Tn is a subgraph of a

Pn x Pn graph. It is the half of the graph that contains

only one color of outer vertices using Schroder's Lemma.

Claim: There are n-1 edge disjoint paths between black

vertices with one vertex in part I and the second in part

II. Moreover, these paths can be routed in Tn only.

This claim refers to the graph in Figure 10 below.

•

1

?

> I

Figure 10. A 5 x 5 Mesh.

Proof of Claim: The proof uses induction on n. The

assumption begins at n > 5 since the smaller cases are
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trivial. It is assumed that the claim holds for every

subgraph Tn_i, Tn_2, and so on.

Consider a subgraph T5 of P5 x P5 in Figure 11 below.

i iii

Figure 11. The Subgraph T5.

Half of the black vertices are from part I of the cut, and

the other half is from part II.

Schroder's Routing Algorithm 1: If two vertices are from

different parts, that is one from Part I and the other

from part II, and they are of the form (i,l), (n,i), where

1 < i < n, then we connect them by the following shortest

path between them as in Figure 12. Now deleting the

darkened edges creates a new Tn _ x or T4 subgraph as shown

in Figure 13.
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In figure 12 below, we see that vertex (2,1) is in

part I and the corresponding vertex (5,2) is in part II.

This allows Routing Algorithm 1 to be used.

i i i i ii

Figure 12. An Edge 
Using Algorithm 1.

------------------(

■b . J

—-----------<

f J

►

r * p

1.1 3.1 4.1 5.1

I III

'Figure 13. A T4 Subgraph.

The claim is met by induction since, we reduced the Tn

graph to a Tn-i graph. This makes.sense, intuitively,

since we only need to do reductions n-2 times before we

create a Tx subgraph. A Tx graph will give us only one. .

edge and the claimed n-1 edge disjoint, paths.
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The T.n graph in Figure 11 could have been labeled 
differently such as below in Figure 14.

Figure 14. An Alternate Labeling 
of Part I and II Vertices.

Here the outer vertices are mixed between the two parts

the cycle was cut into. The algorithm above will not work

on this graph because it requires us to find the

corresponding vertex in the opposite half of the bisected

cycle, but there is not one. For example, the vertex

(3, l)'s corresponding vertex is (5,3), but in this case

they are both in part I and cannot create an edge. A new

algorithm is required.

Schroder's Routing Algorithm 2: Look at the corresponding

vertices, for example, (2,1) and (5,2). When they are in

the same half of the graph, in this case part II, look for

a similar situation that occurs in part I, such as (3,1)

and (5,3) . This condition exists since we ruled out the

corresponding vertices in algorithm 1. Next, route the
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edge disjoint path to the vertex of opposite part but on

the same side of the mesh as below in Figure 15.

--- 1
•

►

1 J9 ► 4

1.1 2.1 3.1 4.1 5.1

I II I II I

5.4

5.3

5.2

II

I

II

Figure 15. An Alternate Routing,

Now, delete these edges and reduce the graph to a Tn_2

graph as below in Figure 16.

5.4 II

1,1 4.1 5,1

I II I

Figure 16. A Tn_2.

By induction, a Tn_2 satisfies the claim,. Hence, the claim

is proven.

It must be noted that it depends on how the outer

vertices are partitioned as to which algorithm must be

used to achieve the induction process. A case in
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point is the graph below in Figure 17. The T3 in this case

yields 2 edge disjoint paths by the first algorithm.

*
I

4 ii

Figure 17. 
Example 1 of T3.

In Figure 18 below, we still have a T3 graph but a

different labeling. Using the second algorithm we getI
three disjoint paths.

-Z

Figure 18. Example 
2 of T3.

The idea here is that we are only looking for the lower

bounds and one or the other of the algorithms will yield

this. Once we are able to reduce the graph, our goal is

achieved.

It is also important to point out that we have only

looked at edge disjoint paths of black vertices. We must

do the same for the other half of the mesh, which is
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composed of only gray vertices. Since the structure of the

mesh is symmetric, another exact copy of a Tn graph will

be used with the same algorithms to get the same results;

a cut of n-1. The overall graph then supplies n-1 + n-1 =

2n-2 disjoint paths which implies a cyclical cutwidth of

at least (2n-2)/2 = n-1. Hence, the claim is proven.

If n is even, the above technique will meet the n-1

cutwidth requirement of Schroder's Proposition 1 stated

below.

ccw (Pn x Pn) > n-1 if n is even.

If n is odd, as in P5 X P5 , an additional disjoint edge

path must be found to satisfy the cutwidth requirement of

n for odd n as stated in Schroder's Proposition 1 below.

ccw (Pn x Pn) > n if n is odd.

A new technique must be introduced.

Dual Graph Technique: Take the P5 x P5 mesh and create its

dual graph. A dual graph is created by placing a vertex in

every region of the original graph, including the exterior

region, and if any two regions share a face, an edge is

placed there. The new vertices are given the coordinates

of the original vertex in the lower left corner of the
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region where it was

labeled v. The dual

Figure 19. A

created. The exterior vertex is

for P5 x P5 is below in Figure 19.

Dual Graph Created from P5 x P5.

A new mesh-like graph is created similar to a P4 x P4.

Let us look at the properties between the original

mesh, which we will call G, and the dual, which we will

call G'. In Figure 20 below is Graph G with all edge paths

created by the routing algorithms.

i i i i
Figure 20. Graph G.

The existing algorithms gave us 2n-2 edge disjoint paths

as a lower bound. Let us now create an edge cut.
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The edge cut is created by a path, which cuts each

disjoint edge path above. Such a path is below in Figure

21.

Figure 21. An Edge Cut Path.

The path cuts all 8 disjoint edge paths. This path creates

a corresponding cycle C in the dual G' in Figure 22.

Figure 22. A Cycle in G'.

The cycle, which is 8 edges in length, is shown in gray in

Figure 22.

28



Now let us create a new P5 x P5 mesh with black

vertices placed across the top outer vertices (except the

far left) and down vertically along the far right column.

This corresponds to a new orientation of the original

mesh. Creating its dual and cycle would create the cycle

C' in the dual below in Figure 23.

Combining these two orientations in one graph we have

Figure 24 below.

Now let us consider the paths created by C U C'. We

see that these cycles must always intersect in two places

by nature of the fact that cycle C must begin at one

corner vertex and finish at the opposite corner, while the

cycle C' must do the same with the other two corner

vertices. Without loss of generality, we can make
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the requirement that these two graphs must intersect at a

vertex (k, I), where I > (n+l)/2. This condition simply

Figure 24. Cycle C and C' Together.

requires the newly created path, C u C', to go at least

halfway up the mesh. Without this, a lower bound would not

be achieved.

The shortest path formed by C U C' and contains in

general v, (1/ 1), (k, 2), (n-1, 1), and looks like the

example in Figure 25 below.

The number of edges used moving vertically is

2[(n+l)/2 -1]. The number of edges used horizontally is n-

2. An expression for the total paths are 2[(n+l)/2] + (n-

2) + 2 or 2n-l. Therefore, the edge length of this path is
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then 2n-l or with n = 5 this becomes 9. Notice in Figure

26 below, that this edge cut also separates vertices

Figure 25. The Shortest 
Path in C u C'.

Figure 26. The Separation 
of Vertices (i,l) Through (n-1,1).

(i, l)where i =1,2,3, ..., n-1, from the rest of the

boundary vertices in Pn x Pn. Hence, this edge cut
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corresponds to a cut on a cycle where in part I is the

vertices (i,l), where i = 1,2,3, ..., n-1, and in part II is

the rest of the vertices. This edge cut then corresponds

to a cyclical cutwidth of Pn x Pn > [(2n—1)/2] and hence

ccw(Pn x Pn)= n, if n is odd. This then satisfies the

cutwidth of n required by Schroder's Proposition 1 for odd

n. End of proof.

In conclusion, we have introduced the proof of

Proposition 1 of Schroder's Theorem. In the next chapter,

we will use these techniques to prove our new proposition,

which will then complete Schroder's Theorem and become our

Theorem 1.
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CHAPTER FOUR

PROOF OF NEW PROPOSITION

Overview

In chapter 2, we learned that Schroder's Theorem was

incomplete and that a new statement was necessary to

finish it. In chapter 3, we reviewed the techniques of the

proof that are necessary for creating a proof of our new

statement, for n > 3 ccw(Pn+2 x Pn) > n if n is even.

In this chapter, we prove the above statement and so it

becomes Proposition 1.

As aid to understanding the proof, we will create an

example to work with. This example must meet the

requirements of a Pn+2 x Pn mesh. We will use a Pg x P4.

Next, we will color the outer vertices black and gray, as

required by 5). Then we partition these vertices to part I

and part II. We will use a labeling that we know will give

us the ideal lower bound. Because our mesh.is asymmetric,

we create Tn+i subgraphs, instead of Tn subgraphs. Next, we

apply our routing algorithms on it and reduce it to a Tn.

At this point we achieve a edge cut of n by induction.

Finally, we double it for both subgraphs, the black and

gray, then divide by two to get our cut of n.
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The Proof of Proposition 1

Proposition 1: for n > 3 ccw(Pn+2 x Pn) > n if n is even

Proof:

First, we label the outer vertices of the mesh. Because

our mesh is rectangular, we must adjust the coloring and

labeling of the outer vertices to fit our graph. Label the

vertices black if (i,l), where i = 2,3, 4,n+2 and

(n+2,j), where j = 2,3,4,...,n. Label the rest of the outer

vertices gray. See Figure 27 below.

f X ---- 1 1

- ►

♦---- -I---- 1 I--------- 1 1---- 1 1-------- 1 >

Figure 27. A P6 x P4 with Outer 
Vertices Colored.

We have n black vertices across the bottom and n black

vertices along the vertical column to the far right.

Next, we partition the outer vertices. The partition

in Figure 28 below usually produces the lower bound case.
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The reason for this is due to the fact that it allows us

to use Routing Algorithm 1.

i i i i

■-----------1 ----------- - >

i i i i
Figure 28. A Lower Bound Partition.

In this case, instead of creating two Tn subgraphs, we

create two Tn+i subgraphs. One Tn+1 subgraph is shown below

in Figure 29.

Figure 29. A Tn+i Subgraph.

Beginning with Tn+i, and using routing algorithm 1, we get

a series of subgraphs formed by creating an edge and then

eliminating it and reducing the graph. The first reduction

is illustrated in Figure 30 below. Once this reduction is
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is performed we have a Tn subgraph, and an edge cut of n by

induction.

(5.4)

(5.3)

15,1)

(1.1) (2.1) (3.1) (4.1) I I I I

(1.1) (3.1) (4.1)

Figure 30. The First Edge Reduction.

Since there are actually two Tn+1 subgraphs that are

reduced to Tn, we then have a cutwidth of 2(4)/2 = 4 or, in

general, 2n/2 = n.

End of proof.
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CHAPTER FIVE

CYCLIC CUTWIDTH OF MESH CUBES

Introduction

In the preceding chapters we introduced a theorem on

cyclic cutwidths of meshes and illustrated techniques used

in the proof of such a theorem. We also corrected problems

with the stated theorem and introduced Theorem 1 and

Proposition 1 in support of that process. We now come to

the main purpose of the paper.

The purpose of the paper was to use the preceding

work to gain insight into the cyclic cutwidth of the n-

cube. The next step in this process is to look at

structures that are similar to the n-cube, yet not as

complex. A structure that could provide the necessary

insight might be what we will call mesh cubes. We define a

mesh cube as the product of a mesh (Pm x Pn) and P/. These

structures are three-dimensional and can be square or

rectangular. Since n-cubes can be represented as square in

shape, square mesh cubes may offer the needed insight.

Thus the final topic of this paper will be exploring the

cyclic cutwidth of square mesh cubes, graphs formed by the

product of a mesh of form Pn x Pn and Pn or Pn x Pn x Pn.

37



Overview

In this chapter we will present a new theorem on the

upper bounds of square mesh cubes. Next, we will prove the

theorem using examples for verification.

Terminology

To aid in understanding, a few new terms must be

created. Below are terms that will apply in this chapter.

Mesh cube - The product graph P/ x Pm x Pn.

Square mesh cube - The product graph Pn x Pn x Pn.

Rectangular mesh cube - The product graph P/ x Pm x Pn

where 1, m, and n cannot all be equal.

Vertical connecting edge - A vertical edge that connects a

mesh to a copy of that mesh to form a mesh cube.

Augmented graph - A mesh with the additional edges that

connect it to another mesh.

Augmenting edges — edges that form an augmented graph.

Augmenting vertex - a vertex incident to an augmenting

edge.

The New Theorem

Based on explorations with mesh cubes, the following

theorem is on the upper bounds of mesh cubes.
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Theorem 2: If n>2

ccw(Pn x Pn x Pn) < n2 - n + 1 if n is even

ccw(Pn x Pn x Pn) < n2 + 1 if n is odd

Proof:

Case 1 (even n)

We will use P4 x P4 x P4 as in Figure 31 below to

illustrate the proof.

Laying the cube flat on one face we can see that

P4 x P4 x P4 can be thought of as four copies of P4 x P4

with corresponding vertices connected as below in Figure

32. In this proof, we will orient this graph vertically so

that the edges which connect each P4 x P4 are vertical and

will be .referred to as vertical connecting edges.
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The four copies will then be looked at separately and a

relationship between a copy and linear cutwidth will be

developed.

Figure 32. Four Copies of P4 x P4. This graph is 
oriented horizontally for purposes of illustration.

Looking at one copy of P4 x P4, we can visualize how

it may be embedded on a cyclic chassis as in Figure 33

below.

Since P4 x P4 is symmetric about a point in it's center,

we can make a cut from the center perpendicular to the
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outside edge and consider only half of P4 x P4 and' it's

augmenting edges as below in Figure 34.

/ / \ \
Figure 34. P4 x P4 
Consists of Two 
P4 ■ x P2's
With Augmenting Edges.

This half is P4 x P2 with augmenting edges or Pn x Pn/2 with

n augmenting edges in general. We will use the notation

AUG( )when speaking of augmented graphs.

It is easy to see, the upper bound of

ccw(P4 x P4)must be at least lcw(P4 x P2)as in Figure 35

below. In general, this is lcw(Pn x Pn/2) •

Figure 35. A Mesh Represented in a Linear Embedding.

Lemma 1: For even n, lew (Pn x Pn/2) (n/2)+l

Proof of Lemma 1:

Looking at P4 x P2 we can see that, as a minimum, the
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linear cutwidth will be the number of horizontal paths

shown in black below in Figure 36.

Figure 36. Horizontal Paths..

Since the other edges are vertical, we must consider them.

In the best case, we will consider that a vertical path

does not overlap or double up on itself as shown below in

Figures 37 and 38.

Figure 37. Double Up.

Figure 38. Overlap.

As a result, the vertical edges contribute at least one

edge, but one is certainly achievable. Generalizing, an
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expression for the number of horizontal edges will be n/2,

and hence, an expression for the upper bounds would be

(n/2) +. 1. End of proof of Lemma 1. .

Next, we consider the augmenting edges between one

Pn x Pn/2 and the other as shown below in Fugre 3 9 as thin

curved lines.

Figure 39. Augmenting Edges.

An augmented P4 x P2 or AUG(P4 x P2) is shown in Figure 40.

Figure 40. An Augmented P4 x P2.

From this point on, we will use AUG when we speak of an

augmented mesh as shown in Figure 40.
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Lemma 2: For even n, lew[AUG(Pn x Pn/2) ] < lcw(Pn x Pn/2) +

n/2 - 2 = n - 1.

Proof of Lemma 2:

We will use Pg x P4 to illustrate the proof. An augmented

Pg x P4 is shown below in Figure 41.

By Lemma 1, lew (P8 x P4) < 5. Next, we consider the

augmenting edges and what they contribute. Let us consider

each half of the graph and its augmenting edges as shown

below in Figure 42.

Figure 42. Half of an 
Augmented P8 x P4.

Embedding each half in a linear chassis and exploring

cutwidth contributions, we can determine the maximum
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cutwidth values and see how the augmenting edges influence

the value of the■Cutwidth.

First, P8 x P4 has a linear cutwidth of 5. For the

embedding in Figure 43, we see that we' reach a maximum of

7 'then the cutwidth drops again. This layout was achieved

by letting the vertical edges simply fall right to the

Horizontal, we will call-this.the "Falling Fence" method..

Embedding. .. .. . ‘

Exploring the other half of the .graph, using the "Falling

Fence" method, we see that the cutwidth values are

different than in Figure 43. We see in Figure 44 that

three of the four augmenting edges add to the cut of

P8 x P4 in this half and may establish our upper bound.
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Yet, upon exploring our layouts, we see that the right -

half could have been' laid out the same as the left half.

77 6 8 8 888

Figure 44, A Series of Cutwidths. for a Right Linear 
Embedding.

Figure 45. The Standard "Falling Fence" Method Above and 
the "Failing Inwards" Method Below.' i .• - - .. \

The cutwidth of the non-aUgmented. graph in either method, 

is the same because the right half becomes the left'half

‘ ■ - 4 6 ■ 'h' , "s '-■■■■



with augmenting edges in a similar orientation.

In general, we can gain an.upper bound by assuming

all augmenting edges except the outside two will

contribute to the cut. Since in each half, there are n/2

augmenting edges and the outside 2 do not contribute, we

gain (n/2) - 2 edges. Thus, lew [AUG(Pn x Pn/2) ] - lcw(Pn x

Pn/2)+ n/2 - 2 = n/2 + 1 + n/2 - 2 = n - 1. End of proof of

Lemma 2.

Next, let us consider the effect that multiple copies

of Pn x Pn/2 have on the linear cutwidth. We consider n

copies of Pn x Pn/2 and the vertical connecting edges.

Lemma 3: For even n, lew [AUG (Pn x Pn/2 x Pn) ] < n{lcw[AUG(Pn 

x Pn/2)]}+l = n[lcw(Pn x Pn/2) + (n/2) -2] + 1 = n2 - n + 1.

Proof of Lemma 3:

We will use 4 copies of P4 x P2 to illustrate the proof.

Below in Figure 4 6 is a linear layout of P4 x P2.

Figure 46. A Linear Layout of P4 x P2.

Taking the layout of one copy, then creating n copies and

connecting their vertical edges, we have Figure 47 below.
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Without considering the effect of the gray vertical

connecting edges, we see, in Figure 47, that the upper

Figure;47. Four Copies of P4 x P2 
with Connecting Vertical Edges.
The vertical edges are thick gray.

bound is achieved by multiplying lew (P4 x P2) by 4,

yielding 4«3 = 12. Hence, for n copies of Pn x Pn/2, the

expression would be n[lcw(Pn x Pn/2) + (n/2)-2] .

In addition, we must consider the vertical connecting

edges in Figure 47 above, shown in gray. To explore this,

we must create a linear layout of Figure 46. We create the

layout by representing the gray vertical connecting edges

in Figure 47 as horizontal lines between the n-1 copies of

the original as shown below in Figure 48.

The linear cutwidth of the layout in Figure 48 is 12

as shown below in Figure 49. From Figure 49 the linear
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cutwidth is achieved without crossing a vertical

connecting edge. Hence the vertical connecting edges do

Figure 48. A Linear Layout of N Copies. The vertical 
connecting edges are the horizontal gray edges.

not contribute to the cut. Thus, the linear cutwidth of a

vertically connected P4 x P2 or (P4 x P2) x P4 is less than

or equal to 4 [lew (P4 x P2) ] = 4(3) = 12.

Finally, we must look at the contributions of

augmenting (P4 x P2)x P4. Below in Figure 50 is the left

half of Figure 48 with augmenting edges.
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We can approach Figure 50, by comparing it to Figure

49. In Figure 50 we see that an additional edge was found

that increased the cutwidth to 13. This edge is due to

13 13 13 12 13 13 13 12

Figure 50. Cutwidths of an Augmented 
(P4 x P2) x P4.

the fact that in Figure 50 a vertical edge must be cut

across to achieve the maximum cutwidth. Recall in Lemma 2,

we determined that the two outside augmenting edges do not

need to be considered. Thus in Figure 50, an upper bound

of 13 can be achieved by adding one edge cut for the

connecting vertical edge not counting the two outside

augmenting edges and their 3 copies.

In conclusion, the expression n-1 for the initial one

copy, as in Figure 46, is then multiplied by n for the n 

copies of that graph, as in Figure 49, to get n2 -n, and
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then adding one for the vertical connecting edge to get 

n2 - n + 1. The resulting expression is then developed: 

lcw[AUG(Pn X Pn/2 x Pn) ] < n[lcw (Pn x Pn/2) + (n/2) - 2] + 1 

= n2 - n + 1. End of proof of Lemma 3.

Earlier, we showed that a mesh could be embedded in a

cycle as in Figure 51 below.

Figure 51. A Mesh 
Represented as a Cycle.

Next we considered only half of the mesh and found it's

linear cutwidth. As a last step, we must show how this

translates to cyclic cutwidth.

Any linear embedding can be represented as a cycle by

bending the linear chassis to form a cycle or an arc of a

cycle. Since we only need to be concerned with half of the

mesh, our linear embedding dealt with only half the mesh

and half the cycle as shown in Figure 52 and 53.

Since the linear cutwidth will then represent cyclic

cutwidth, our formula becomes ccw (Pn x Pn x Pn) = n[lcw (Pn

x Pn/2) + (n/2) -2] + 1.
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In conclusion, we began with a single copy of

Pn x Pn/2. We found its linear cutwidth as

Figure 53. A Cyclic Representation 
of a Linear Embedding.

lcw(Pn x Pn/2)= n/2 + 1. We considered the connecting edges

so we have n/2 + 1 + n/2 - 2 = n - 1. Since, we have n 

copies, we have n(n - 1)= n2 - n. Next, the n copies 

contribute an additional vertical edge and we get n2 - n +

1. And finally, since ccw(Pn x Pn x Pn)< n[lcw (Pn x Pn/2) +
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(n/2)-2] + 1, we get ccw(Pn x Pn x Pn)< n2 -n + 1, if n is

even.

End of proof of case 1.

Case 2: n is odd

We will use a P5 x P5 x P5 as in Figure 54 below to

illustrate the proof.

Much of the proof will be the same as .the n is even case

yet there are significant differences. Let us first look

at how 1 of the five copies of the P5 x P5 mesh will be

embedded on a circular chassis as in Figure 55.

We see that we lose the symmetry of the even mesh.

Because of this, we must cut the mesh in a way such that

one part is larger than the other is. Since we are
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interested in an upper bound, we must consider the larger

half, which is the left portion of the mesh shown below in

Figure 56.

Figure 55. Embedding a P5 x P5 in a Cycle.

We see that the larger half is P5 x P(5+d/2 = P5 x P3 and in

general this will be Pn x P(n+i)/2- As a result, the upper

bound of the cyclic cutwidth of P5 x P5 will be found by

looking at the 5 copies of P5 x P3 and its augmenting

edges.
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Lemma 4: For odd n, lew (Pn X P(n+l)/2) (n+l)/2 + 1

The proof of this lemma is similar to Lemma 1.

Lemma 5: For odd n, lew [AUG(Pn x P(n+n/2 )1 lew (Pn x

P(n+l)/2 ) + (n+l)/2 - 2.

Proof of Lemma 5: We will use P5 x P5 to illustrate the

lemma. In the proof of the related lemma in the even case,

we saw that either half of the mesh provided the upper

bound. In the odd case, we see that, similar to the

splitting of the P5 x P5 mesh in Figure 56 above, we must

split the P5 x P3 or Pn x P(n+i)/2 in general, and consider

the routing of the augmenting edges. By the location of

the augmenting vertices, colored gray in Figure 57 below,

Figure 57. Splitting a 
P5 x P3.

we see that we must route the additional augmenting edge

on the left side in the linear layout as in Figure 58.
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In fact, this splitting could now be looked at as

increasing the graph to a half a P6 x. P3.

I
I
I
I

Figure 58. Splitting a Linear Layout of P5 x P3.

The left side routing will then determine the upper bound

as in Figure 59.

Figure 59. Cutwidths From a Left-side Routing.

Without the augmenting edges, the cutwidth of the linear

layout of P5 x P3 is 4. As a result of the left-side

routing, only 1 of the three edges, or (5+1)/2 -2=1,
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contributes an edge to the cut. In general, this will be

(n+l)/2 - 2. End of proof.

Lemma 3, which deals with the contributions of the

vertical edges holds for odd n. Hence, n copies of a Pn x

P(n+i)/2< will contribute a cutwidth of n[lcw(Pn x P(n+u/2) +

(n+1) /2 - 2] +1.

The rest of the odd n proof is analogus to the even

case. Simplifying n[lcw(Pn x P(n+i>/2)+ (n+l)/2 - 2] + T, we 

substitute lew (Pn x P(n+i>/2) = (n+l)/2 + 1, so we get 

n[(n+l)/2 + 1 + (n+1)/2 -2] + 1. Combing like terms inside 

the brackets, we get n[n+l -1] + 1 = n2 + 1. Finally, the 

ccw (Pn x Pn x Pn)< n2 + 1, if n is odd.

End of proof. □

57



CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

In chapter 5 we proved that the cyclic cutwidth of

square mesh cubes, mesh cubes of the form Pn x Pn x Pn , 

has an upper bound of n2 - n + 1, if n is even, and 

n2 +1, if n is odd. In this chapter we turn our attention 

to the purpose of that endeavor, to gain insight and

direction into the cyclic cutwidth of the n-cube. In the

following discussion we list possible insights gained from

this project that may help in the solution of the n-cube.

1. In determining an upper bound we learned that

vertical edges contribute one additional edge to the

cutwidth. This may also be true of the n-cube.

2. The symmetry of the mesh cube allowed us to reduce

the complexity of the problem and consider only half

of the original cube. N-cubes are also symmetric and

may be approached in a similar manner.

3. Mesh cubes involved multiple copies of less complex

structures. We were able to find the essential

structure, the mesh, and then use it and its multiple

copies to find the upper bounds of a more complex
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structure. The n-cube is a structure built from

multiple copies of other structures; hence, a similar

technique may be useful.

4. Embedding the structure on a linear chassis provided

the tool for determining the upper bounds. Linear

embedding may be a useful tool in looking at the n-

cube upper bounds.

5. The center of a cube is the center of the cycle.

6. A square orientation in which the cube stands on a

face which is the base of the structure and the

cyclic distribution of the mesh cubes vertices within

that plane seems to be the optimum orientation for

determining mesh cube cyclic cutwidths.

7. The cutwidths of square mesh cubes can be found by

taking the cutwidth the outside mesh (for example n-

1, if n even) and multiplying it by the width of the

mesh (n) and then adding one for the vertical edges.

Recommendations

As a result of our work, we see several directions in

which future research could go. Below is a list of

possible research areas in the future.'

1. Determine the upper bounds on asymmetrical mesh
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cubes.

2. Determine lower bounds of mesh cubes.

3. Utilize the edge-counting techniques introduced in

■ Chapter 3 on structures that have diagonal edges such

as Q3.

4. Develop an edge counting technique for mesh cubes

such as that used for meshes.

5. Determine if the cyclic cutwidth of all mesh cubes

can be found by taking the product of the outside

mesh and multiplying by the width and then adding one

for the vertical edges.

60



APPENDIX

TECHNICAL TERMINOLOGY
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APPENDIX

TECHNICAL TERMINOLOGY

Cut - The maximum number of edges between adjacent

vertices that are cut across on a specific graph.

Cutwidth - The cutwidth of a graph is the minimum cut

achieved through all possible orientations of the graph.

The cutwidth from one type of graph can be compared by

translating its vertices to another type of graph and

finding its cutwidth, usually the translation is to a

linear graph or a cyclic (circular) graph.

Cycle Graph - A graph where the vertices are arranged in

a circular fashion.

Cyclic Cutwidth - The minimum of the cut values of

various arrangements of a set of vertices and its

corresponding edges. Within one arrangement, the ccw is
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the maximum cut between any set of vertices, as shown

below.

Linear Cutwidth - The minimum of the cutwidth values of

various linear arrangements of a set of vertices and its

connecting edges. Within one arrangement, the lew is the

maximum cut between any set of vertices.

cut cut cut
2 2 3
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Linear Graph - A graph where the vertices are arranged in

a linear fashion.

Mesh - A Pm x Pn mesh is a graph that is constructed with 
m columns and n rows of vertices.

N-cube - An n-cube indicated by Qn ,is built by beginning

with a Qi (one cube) and continually duplicating the

previous graph and then connecting the corresponding

vertices.
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Tree - A graph that consists of branches and paths with 
no complete cycles.
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