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ABSTRACT

Algorithms will be demonstrated for how to embed

complete bipartite graphs onto 2xn type grids, where the

minimum grid cutwidth is attained. The algorithms that

will be created will be utilizing a vertex formula found in

Matt.Johnson's paper together with some newly developed

techniques. Johnson's vertex formula distributes the'

vertices of a graph evenly on a linear host, which will be

modified to work on 2xn type grids. Specifically,

algorithms will be demonstrated and proven for how to embed

the Ki,n and K2,n graphs into 2xn type grids, with the

minimum grid cutwidth. In addition, we will show some ■ 

embeddings for the K3<n graph. In general, we will utilize 

the algorithm for the K2<n graph to generalize an algorithm

for the Km<n graph, for m even.
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CHAPTER ONE

INTRODUCTION

Purpose of this Project

During the spring and summer of 1988, I began a

project with Dr. Chavez, Dr. Trapp, and Sara Hernandez,

with the support of the McNairs Scholar's Program, at

California State University, San Bernardino. The project

was titled, "Graph Theory: The Embedding of Complete M-ary

Trees into Grids as Means of Finding the Minimum Cutwidth"

[8]. After successfully completing this project, I felt

that research in this field of mathematics is an area that

I had developed a great interest for. As a consequence,

for this project I decided to pursue similar^ ideas using 

complete bipartite graphs. For this project we had decided

to pursue a solution for the problem that through an

algorithm the complete bipartite graph can be embedded in a

grid with the minimum grid cutwidth. In this project we

develop areas of the problem that will eventually point out

the way to the solution. Many people such as Matt Johnson

[6] , Alvin Sacdalan [9], and Annie Wang [11], under the

supervision and guidance of Dr. Joseph Chavez and Dr.

Rolland Trapp, have pursued similar ideas as the ones of
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this project. The reference page at the end will provide

the necessary information if one would like to locate these

papers. It is recommended but not a necessity that one

reads these papers, as they will facilitate in

understanding of the concepts and ideas that will be

discussed in this project. However, this paper has been 

written so that any individual with some math background

would be able to read and understand it. In addition, this

paper alone could be read without the need of any

background from other papers, as most ideas and terms have

been defined and discussed.

Technical Terms and Concepts

A graph, G = (V,E), consists of a finite set of

vertices, V, and a finite set of edges, E, joining pairs of 

distinct vertices. For example, Figures la through lc

below represent graphs where vertices and edges are

represented by points and lines.

a) b) c)
Figure 1. General Graphs
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A bipartite graph consists of two disjoint sets of 

vertices, A and B, where [a|= m and |b| = n, such that all 

edges connecting to vertices' in set A connect to vertices

in set B. In addition, no two vertices in the same set are

connected by an edge. A complete graph, Kn, is a graph

where each vertex is joined by an edge from all the other

vertices. A complete bipartite graph, Km,n, is a bipartite

graph that is complete. Figures 2a through 2c below are

examples of complete bipartite graphs.

a) Ki, 3 b) K2,3 c) K3,3

Figure 2. Bipartite Graphs

Embedding is the process of rearranging a graph's

known form onto a host graph.. For this project the only

host graph we are interested in is a grid. Figure 3

demonstrates two‘ways that.the. complete bipartite graph,

K2<4, can be embedded onto a 2x3 grid.

3



Host 2x3 GridsK2,4

Figure 3 . Embeddings of K2,4 onto Host 2x3 Grids

Notice that when we embed our graphs onto a grid host,

such as in Figure 3 above, we curve edges and avoid

connecting to a vertex. Technically what we mean by such a

description is that our edges are running vertically or

horizontally but not connecting with the vertex being

crossed over. Moreover, whenever a vh-edge is mentioned in

this paper we mean a curved edge that runs vertically first

and horizontally second, and similarly an hv-edge is one

that runs horizontally first then vertically second.

When embedding graphs onto grids you will notice that

the number of vertices of some graphs do not correspond to

the number of vertices in the grid. For example, notice

that if we embed a K1(4 graph onto a 2x3 grid there will be

an unused vertex. Whenever such an occurrence happens we

will use a gray vertex. Thus, it should be understood that

a gray vertex does not belong to the graph being embedded,

but is a needed vertex to keep the grid's rectangular

4



shape. See the Figure 4 below for an example of an

embedding of a Ki(4 graph onto a 2x3 grid.

Figure 4. KX(4 Embedded onto a 2x3 Grid

Several parameters have been studied when embedding

graphs onto host graphs, for instance, the bandwidth and

the cutwidth. The bandwidth is the parameter where one

tries to minimize the length of the longest edge in a host

graph. In this project the parameter that we are

interested in, while embedding onto host graphs, is the

process of achieving a minimum cutwidth from all the

different possible embeddings. To understand the cutwidth,

it is defined as the maximum of all the cuts, where the cut

is the number of edges running between adjacent vertices.

Since our host graphs will only consists of grids, we will

denote the host's cutwidth by the grid cutwidth. Moreover,

in a grid, the cut can be split up as either being a

vertical cut, if the two adjacent vertices lie on a

vertical alignment, or a horizontal cut, if two adjacent

vertices lie in a horizontal alignment. We will denote a

5



vertical cut by vcut and a horizontal cut by hcut to keep

names short. Figures 5a through 5c below demonstrate

different embeddings of the K2<4 graph onto 2x3 grids, with

different grid cutwidths. Notice that Figure 5a has only

hcuts of 2 and vcuts of 2, 0, and 2, thus the grid cutwidth

for this embedding is 2. Figure 4b has again hcuts of only

2 and vcuts 0, 4, 0, thus the grid cutwidth for this

embedding is 4. Finally, Figure 5c has hcuts of 3, 1, 3,

and 1 and vcuts 1, 2, and 1, thus the grid cutwidth for

this embedding is 3. Notice from all three of the

embeddings that Figure 5a the K2/4 graph, has the minimum

grid cutwidth. Thus the choice from among the three

embeddings would be the one in Figure 5a.

Figure 5. 2x3 Embeddings of K2(4 Graph

In an embedding of a complete bipartite graph onto a

host 2xn grid, the grid cutwith of a graph can be measured

using a counting technique, which we will call the cutwidth

counting technique. This cutwidth counting technique only

6



requires the placement of the m vertices of set A of the

Km,n graph on the grid without having to run any edges. The

technique goes as follows: between any two columns of

vertices count how many edges will cross through by looking

at how vertices of set A connect to vertices of set B, from

the left side of the grid to the right, and vise versa.

Then divide the total by two, since there is only two ways

to travel horizontally through the given column. This

specific technique will give you all the expected hcuts

throughout the grid. Using this same technique we can find

all the expected vcuts. Thus, taking the maximum of the

expected hcuts and vcuts one can determine the grid cutwith

of an embedding without having to run any edges. This

cutwidth counting technique is especially important when we

are determining the lower bounds for the embeddings of a

particular graph.

The location of any vertex in a grid can be described

by the coordinate (m,n), where m is the row and n is the

column of the vertex. See Figure 6 below for the locations

of two specific vertices, (1/1) and (2,4) on a grid.

7



• • • •

<—(2,4)

Grid Notation

if the entries of their

same and the other entry

vertex (1,1) is adjacent to

the Figure 7 below.

(1,2)
4

Figure 6.

Two vertices are adjacent

coordinates have one entry the

differs by one. For example,

vertices (1,2) and (2,1). See

(1.1) ->

(2.1) —»

Figure 7. Adjacent Vertices

While embedding graphs on grids, we will utilize an

algorithm from Matt Johnson's paper [2], for how to evenly

distribute and embed vertices of a complete bipartite graph

on a linear host graph. In addition, the algorithm also

minimizes the cutwidth of the linear host graph, which is a

particular area we are very interested in. Johnson's

algorithm contains a vertex distribution formula, which

lays vertices on a linear host graph evenly. The formula 

is described by L(xm/m+n) + 1/2.1, where given the position x

8



on a linear host graph, the formula tells you how many

vertices of set A should be placed to the left of x.

Figure 8 below shows what is meant by the positions x on a

linear arrangement.. Once. the m.vertices of set A and n

vertices of set B have been placed on a linear host graph,

we run edges from each of the m vertices of A to each of

the n vertices of B, allowing us to have the minimum

cutwidth in the linear host graph. We will call Johnson's

vertex distribution formula by the vertex formula just to

keep the wording short. Now let's look at an example that

illustrates how the formula works. Keep in mind that a

linear graph can be thought of as a lxn grid. In addition,

whenever we embed a complete bipartite graph we will always

use black vertices to identify the vertices of set A and

white vertices to identify the vertices of set B. Now

let's embed a K2(3 graph on a 1x5 grid. Table 1 below shows

the calculations for the different positions x, when m=2

and n=3. Looking at the table, notice that at x=l the

formula yields 0, which means no black vertices will be

placed on the vertices located on the left of x=l. When

x=2 the formula yields 1, which means that one black vertex

must be on the left of x=2. Therefore, we can assume that

it must be the vertex in position (1,2), since we had

9



already concluded that the vertex (1,1) could not be a

black vertex. Moreover, at x=3 the formula yields 1, which

means that a black vertex will not be placed in the

position (1,3) of 1x5 grid. At x=4 the formula yields a 2,

which means the vertex in position (1,4) will be the

position of the next black vertex. Finally, at x=5 the

formula yields 2, which again means that two black filled

vertices must be placed to the left of the position x=5,

which are actually located on the positions (1,2) and

(1,4). Figure 9 shows the placement and the embedding of

the m=2 and n=3 vertices of set A and B of the K2<3 graph

when using vertex formula. Note that this vertex formula

could also be made to apply to grids with multiple rows by

simply applying the formula to each individual row. The

only thing that the algorithm does not give is how to run

edges between the different rows or how many vertices of

set A to include on each row. Therefore this paper will

concentrate mainly in describing how to achieve such a task

while achieving the minimum grid cutwidth.

Table 1. X-Values for m=2 and n=3

X=1 X=2 X=3 X=4 X=5
m=2, n=3 0 1 1 2 2

10



X=1 x=2 X=3 x=4 x=5

Figure 8. Positions of X

Figure 9. Linear Embedding

11



CHAPTER TWO

THE LEMMAS

Lemma 1

For any graph embedded in a host graph, the contribution of

the cutwidth, from all vertices connecting to adjacent

vertices is at most one.

Proof:

Since no overlapping will ever be achieved by running edges

from two adjacent vertices, then cutwidth will only be

increased by 1. See Figure 10 for .an example.

Figure 10. Connecting Adjacent Vertices

In any embedding onto a grid the first set of edges

being run are always to adjacent vertices. As Lemma 1 will

point out the cutwidth will- only increase by 1, and for

this reason it. is the first and most crucial step to begin

with while embedding.□

12



Lemma 2

The Km>n graph is isomorphic to a Kn/m graph.

Proof:

It is obvious that if we interchange m and n then the

graphs KmiI1 and Km,n are isomorphic, simply because the m

vertices of set A are connecting to the•n vertices of set B

in the same manner that n vertices of B connect to the m

vertices of A.D

Since the embeddings of isomorphic graphs are simply

the rearrangements, then it is not very hard to see that

the embeddings must also be isomorphic. See Figure 11

below for an example of a K2,4 and K4,2 and notice that no

matter which graph you have, two vertices are connected to

four vertices, despite the fact that the graphs have color

differences.

Figure ll.,K2(4 and K4(2 Graphs

13



CHAPTER THREE

THE PROPOSITIONS

Proposition 1

The complete bipartite graph,' Ki,n, can be embedded in a: 

2x[(n+2)/2] grid, for n even, and 

2x[(n+l)/2] grid, for n odd,

with a minimum grid cutwidth of [~n/3~l.

Proof:

We will show that this proposition holds true by describing 

an algorithm that demonstrates how to embed the K1<n graph 

onto the specified grid sizes described in our proposition.

To begin, there will be a few things to keep in mind as we

demonstrate this algorithm. First, we will use the Vertex

Formula to place our single black vertex in the second row

only. Since the grid has symmetry, it would be the same to

place the black vertex on either the first row or the

second. The calculations using the Vertex Formula have

been provided in Table 2 below to assist in the placement

of the black vertex on the second row, for the different

embeddings.

14



Table 2. X-Values for m=l and Values of n

n=l n=2 n=3 n=4
X=1 1 0 0 0
x=2 1 1 1 0
x=3 1 1 1
x=4 1 1
x=5 1

Second, if in any embedding there is a vertex that will be

left unused, illustrated by the gray vertex, then we will

always place it at one end of the second row. If n is not

a multiple of four then we will place the gray vertex in

position (2,1), otherwise it is placed in the other corner

of the second row. What one may notice is that this gray

vertex will alternate between the corners of the second row

for the consecutive embeddings that contain this gray

vertex.

Now let's show that rn/3~| will generate the minimum 

grid cutwidth, for the embeddings of the K1/n graph. For

n > 4 the Vertex Formula will not place the black vertex on

a corner, but in a location closest to the center of the

second row. So it is easy to see that the black vertex

will only have three paths from which to run edges to the n 

white vertices. Since the black vertex has three ways to

run n edges onto n white vertices, then evenly distributing

15



the n edges among the three possible directions will yield

a lower bound of n/3. Now unless n is a multiple of 3, n/3 

will not equal a whole number. Thus, setting the lower 

bound to rn/3"| will secure that one side might have one more 

or less of an edge over the other two sides, since the n

edges will not evenly distribute among the three ways.

Moreover, for n < 3, the black vertex lies on a corner, but

fortunately enough the lower bound still applies. Looking

at the cutwidths of Figures 13a through 13c one can see

that the lower bound does verify for n < 3.

Let's begin by demonstrating our algorithm by

embedding the K1(9 graph onto a 2x5 host grid. Since the

second row is our choice of location for the black vertex,

then Table 2 above tells us that it will be placed in

position (2,3) . Using Lemma 1 we run the first set of

edges, which run from the black vertex to vertices (2,2),

(1,3), and (2,4). Then we run edges along the vertices of

the second row. So far, the max hcut of 2 is found between

the vertices adjacent to the black vertex on the second

row. See the Figure 12 below.

16



2 2

Figure 12. Partial Embedding of Ki)9 Graph

Now from this point we will concentrate on running

edges up to the first row utilizing the fact that we know

the lower bounds for the embedding of this cutwidth to be

3. Now let's start by running edges onto the vertices of

the first row, located to the right side of the black

vertex. We will only run one hv-edge, since the cut

between the black vertex and vertex (2,4) will have the

required lower bound of 3, as a consequence. The rest of

the edges going to the right hand side of the first row

will be vh-edges. Utilizing the same strategy on the left

hand side of the first row we can achieve similar results.

As a consequence, this strategy will always result in the

vcut, between the black vertex and the vertex above, to be

less than or equal to the hcuts next to the black vertex. 

See Figure 13i for the complete embedding of this example. 

Figure 13 below shows a complete list of embedding from Ki,i 

to Ki<13 so that one could verify this algorithm for a few

cases.

17



i y y

Figure 13. K1(i through Ki,i3 Graphs
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Now let's prove that this algorithm will work in

general. We will split the proof into four cases but will

only prove two in full, since the other two cases follow by

the same idea. In each case we will verify that the vcut

and the hcuts next to the black vertex will achieve a

minimum grid cutwidth of |”n/3~|. To keep things short when 

performing any calculations we will let the lower bound 

l”n/3"| = L.

Casel: When n = 4x+l, for x = 1,2,3...

The Kx<n Graph will be embedded in a 2x[(n+1)/2] grid.

Given the conditions on n and the particular grid size, the

Vertex Formula will place the black vertex in the most

center position of the second row. The second row will

contain (n-l)/4 white vertices on the left and right sides

of the black vertex. Running edges along the first row

will yield max hcuts of (n-l)/4 next to the black vertex.

See the Figure 14 below.

19
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Figure 14. Case l's Partial Embedding of Ki,n

Now in order to max the hcuts, up to the lower bound L, we

simply run two sets of (4L-n+l)/4 hv-edges up to the left

and right side of the first row from the black vertex.

This means that there will be a total of (4L-n+l)/2

vertices occupied by the hv-edges on the first row and n-2L

vertices left in the first row to run vh-edges. Thus,

running vh-edges will yield a vcut of n-2L. If we do a

quick check, we can see that the vcut is less than the

hcuts:

3^/31 > n

=> 3L > n

=> 2L + L > n

=5 L > n - 2L.

This implies that the minimum grid cutwidth is L = Tn/31.

20



1', 2,3...Case 2: When n =‘4x-l, for x =

Using the same strategy as above, we use the Vertex Formula

and place the black vertex on the most center position on

the second row. Notice that in this case the black vertex

have (n+l)/4 white vertices on the right and (n-3)/4 white 

vertices on the left. See Figures 13c, 13g, and 13k for

specific examples for which this case will be proving. Now

running edges along the second row yields max hcuts of 

(n+l)/4 and (n-3)/4 on the right and left. See Figure 15 

below for a description.

Figure 15. Case 2's Partial Embedding of Ki,n

Now if we run (4L-n-l)/4 hv-edges onto the left side 

and (4L-n+3)/4 hv-edges onto the right side of the first 

row, from the black vertex, we will max the hcuts up to the

lower bound. Since there will be (4L-n-l)/4 + (4L-n+3)/4

vertices occupied on the first row, doing the proper

subtraction from the (n+l)/2 total vertices available, 

yields once more n-2L vertices are left to run vh-edges.

21



So our vcut once again comes out to be n-2L, and we could

just use the same reasoning as Case 1 to show that the

hcuts are greater than or equal to the vcut. Thus again 

our lower bound L = Tn/s”! is our minimum grid cutwidth.

Using the same technique one can verify the other two

cases, when n = 4m and when n = 4m-2, where gray vertices

would be present. Therefore, in general we can see that 

this algorithm yields the minimum grid cutwidth of Fn/31,

concluding this proof.□

Proposition 2

The complete bipartite graph, K2<n, can be embedded in a:

2x[(n+2)/2] grid, for n even,

2x[(n+3)/2] grid, for n odd,

with minimum grid cutwidths of:

n/2, for n even,

(n+l)/2, for n odd.

Proof:

We will demonstrate an'algorithm which shows how to embed

the K2/I1 graph onto the specified grid dimensions, with a

the minimum grid cutwidths. Let's demonstrate how this

algorithm breaks down.

22



First, notice that the K2,n graph has two black

vertices. What we will do is place one black vertex in the

first row and the other in the second row. This way the

vertices can evenly distribute edges onto the other n white

vertices of the grid keeping the grid cutwidth to a

minimum. Using the Vertex Formula we place one black

vertex on the first row, and the other on the second row.

However, when placing a black vertex on the first row we

will reverse the orientation of the Vertex Formula, by

starting the x-values from the right hand side opposed to

the left. With such a technique one will notice that the

black vertices would either laid on top of or slightly

offset from each other. Again, Table 2 from Proposition 1

can be used to assist in the placement of the black

vertices, for the different embeddings.

Second, our embedding process will go as follows: we

will only run. hv-edges in our embedding when having to

connect edges from the black vertex in one row to white

vertices in the opposite row. This process makes sense

since we will be running the same number of edges from the

first row to the..second row and-vise versa, so there is no

need to run vh-edges at all. In addition, it allows us to

easily determine the cuts and more importantly the minimum

23



grid cutwidth of' the general embeddings. For some

embeddings we will actually run a vertical edge from the

black vertex to an adjacent vertex on the opposite row.

This edge will not contribute to the overall grid cutwidth

of the embeddings, since we will determine later that the

minimum grid cutwidth is an hcut within the rows.

Third, we will only create embedded host graphs for

the K2,n graphs , for n even, and utilize those embeddings

to create the graphs, for n odd. The process will simply

consist in the removal of edges connecting to the vertex in

position (1,1), from the n even cases, which yields the

embeddings for the n odd cases. Thus the gray vertex will

always be found in position (1,1) , for n odd cases.

Now let's embed a specific graph and show how the

algorithm works. Let's embed the K2<8 graph onto a 2x5

grid. Using the Vertex Formula and its calculations in

Table 2, we see that the black vertices will lay on top of

each other and in positions (1,3) and (2,3) . If we run'

edges along the individual rows, from the black vertices,

the max hcut so far will be 2, since two white vertices are

positioned to the left and right of the black vertices.

Finally, let's run hv-edges between the rows, and the

result can be seen in Figure 16h. Notice that the grid
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cutwidth for this embedding is 4, which checks with the

minimum grid cutwidth claimed, by this proposition. Now 

let's show how to derive the embedding of the K2,7 graph 

from the embedding of 'thehK2;(8 graph. If we eliminate all 

the edges connecting onto the white vertex (1,1) in the

embedding .of the K2;8 graph we will achieve our desired

result. See Figure 14g for the result of the embedding of

the K2,7 graph. Notice that this embedding also has a

minimum grid cutwidth of 4, which again checks with the

claim of this proposition. In actuality, this will always

be the result with such a technique-in this proposition. 

Figures 14a through 14f have been provided as verifications 

of this algorithm for the cases n=l through n=6.

Figure 16. K2<1, through K2/8 Graphs
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Let's demonstrate how this algorithm works in general,

and verify that our embedding process achieves the minimum

grid cutwidth. We’will split the proof into two cases.

Case 1 will prove the case when the black vertices lay on

top of each other, just like Figure 16h. Case 2 will prove

the case when the black vertices lay slightly offset from

each other, just like Figure 16f. So we have determined

that when n = 4x, for x = 1,2,3... then K2,n graphs fall under

Case 1, and when n = 4x-2, for x = 1,2,3,... then K2,n graphs

fall under Case 2.

First let's prove that the lower bound for the n even

cases is n/2. Now each of the black vertices will be

located in the most central location of the grid, where

only two directions are available from which to send edges

up to white vertices. Now each black vertex has a total of

n/2 white vertices to connect to, on both the left and

right hand side. So there are two directions from which

edges can travel from each black vertex to white vertices,

either through top or bottom. See the calculation below,

which yields the lower bound for this case.
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LB = [1 (n/2) + 1 (n/2)] /2

=5 LB = [n/2 + n/2] /2

LB = n/2

In the same way, we can determine the lower bound for

n odd cases. Notice that when n is odd the grid dimensions

will include an extra vertex to keep the grid's rectangular

shape. Remember that we use gray vertex to identify this

specific vertex, which will be located somewhere in the

grid. Let's place the gray vertex on the left hand side of

the grid, and calculate the lower bound for such cases.

Since the gray vertex is located on the left side then the

max hcut will be found on the immediate right of the black

vertices. Each black vertex will connect to (n+l)/2 white

vertices on its left in only two ways. Performing a 

similar calculation as was'done previously the lower bound

will come out to (n+l)/2. See the calculation below.

■ , LB = . [2 (n+l)./2..] /2-

=> LB = [2 (n+1) ] /4

=>■ LB = (n+l)/2

Case 1: When n = 4x, for x = 1,2,3,...-

Let's embed the Ki,n graph into a 2x[(n+2)/2] grid. Keep in

mind that in this case the black vertices are in the most
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central position. Using the Vertex Formula we find that

the positions of the black vertices will be (1,(n+4)/4) and

(2,(n+4)/4). On the left and right hand sides of both 

rows, we will find n/4 white vertices. Since our embedding

process will be the same when running edges from one row

onto the other we will keep things short by focusing on the

second row only. But keep in mind that whatever is done to

the second row will have to be done exactly to the first

row. If we run edges along the row the max hcut will be

n/4 at this point, on the immediate hcuts of black vertex,

Now running hv-edges from the black vertex onto the

opposite row will add an extra n/4 edges onto the immediate

hcuts of the black vertex. Thus this brings the to

immediate hcuts of the black vertex to a max of n/2, which

checks with this proposition's grid cutwidth. See Figure

17 below for an illustration of this general embedding.

Figure 17. Case l's Embedding of K2,n, for n Even
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Now using the result of this, general embedding above

we can obtain the K2,n-i graph by removing the edges

connecting to vertex (1,1). Since the removal of the edges

from vertex (1,1) does not affect the right side of the 

general embedding above, then the embedding K2<n_i graph will 

have the same max hcut as the embedding of the K2,n graph.

Case 2 : When n = 4x-2, for x = 1,2,3,...

This case' is very similar to Case 1, although the only 

difference is in the positioning of the black vertices by

the Vertex Formula. For this case the black vertices are

in positions (1, (n+6)/4) and (2, (n+2)/4) in the first and

second row. We will find (n+2)/4 on the left and (n-2)/4

white vertices on the left and right hand sides of the

first row. The same will happen for the black vertex on 

the second row, but in the reverse order. Again, by the

symmetry of the grid, we will just focus on the second row.

If we run edges along the row the hcuts at this point will

be (n-2)/4, on the immediate hcut on the left and (n+2)/4 

on the immediate hcut on the right of the black vertex.

Running hv-edges between the rows we will have added an

extra (n+2)/4 edges on the immediate left and (n-2)/4 on

the immediate right side of the black vertex. Thus this
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brings the hcut to a max of n/2 on the right of the black

vertex. See the Figure 18 below for a description of this

general embedding.

Figure 18. Case 2's Embedding of K2jI1, for n Even

Now using this general embedding above we can obtain

the prior embedding, the K2,n-i graph, by removing the edges

connecting to vertex (1,1). Again, this embedding will

also have the same max hcut as the above general embedding.

Finally, let's show that the max vcut is less than or

equal to the max hcut. Now the max vcut will be 2 located

between any two vertically aligned white vertices, and the 

max hcut is n/2. Let's do a quick check.

2 < n/2

4 < n

As we can see n/2 is greater than or equal to 2 when n > 4.

For n < 4, see the specific embeddings in Figure 16a
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through 16c as a verification that the max vcut is less

than or equal to the max hcut in each embedding.

Thus, we have shown in Case 1, Case 2, and the

verification above that minimum grid cutwidth is n/2 for 

the Embedding of the K2,n graph onto the specified grid

sizes. □

Embedding the K3<n Graph

Figures 19a through 19g below show the embeddings for

the graphs K3,i, through K3,7. Now the K3,i graph in Figure 

19a was derived using Lemma 2 from the embedding of the KX(3

graph in Proposition 1. The embeddings for the K3<n graph,

where n is odd, were created using an algorithm. The

embeddings for the K3<n graph, where n is even, were derived

by removing the edges of a vertex that was located in a

different location on the first row for different

embeddings. For the embeddings of K3<4 through K3/7 graphs

in Figures 19d through 19g, the embeddings were split up

into three individual parts so as to facilitate

visualization of the embedding algorithm. Moreover, one

may notice that the gray vertex for some embeddings can be

found in the interior part of the grid, in comparison to

Propositions 1 and 2, where it was mainly located on
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corners. Now let's describe the algorithm we utilized to

embed the K3,n graphs for n odd and n < 15. First, we will

always place two black vertices on the second row and one

black vertex on the first row positioning them using the

Vertex Formula. Table 3 below and Table 1 from Proposition

1 will provide all the calculations needed to assist in the

layout of these black vertices.

Table 3. X-Values for m=2 and Values of n

n=l n=2 n=3 n=4
X=1 1 1 0 0
x=2 1 1 1 1
x=3 2 2 1 1
x=4 2 2 1
x=5 2 2
x=6 2

Second, when running edges from the single black vertex

onto the second row we will only run hv-edges. In

addition, when running edges from the two black vertices on

the second row onto white vertices on the first row we will

alternate using hv-edges and vh-edges. The alternation can

be described as follows: first, the. black vertex farthest

to the left on the second row will run hv-edges onto the 

white vertices located on its left and right on the closest

pair. The next farther pair of white vertices will be
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connected using vh-edges and at this point is where

alternation takes place. The other black vertex farthest

to the right on the second row will do just the opposite, 

where vh-edges are run first, then hv-edges. Now to get

the cases where m is odd we would remove the edges from a

particular white vertex located on the first row. One can

determine the location by comparing to consecutive

embeddings where n is odd, and noticing which column was

removed on the larger embedding to derive the smaller

embedding. This column points out the location on the

first row where one should place the gray vertex. See

Figures 19g and 19e below, and notice that the first column

in Figure 19g removed yields 19e. Also it can be seen that

the gray vertex for Figure 19f is located on the first

vertex of the first row. Moreover, we have verified this

algorithm ourselves up to n < 15, except when n=5. In

particular, one can verify the algorithm provided in Figure

19 for the embeddings of the K3<2 through K3(7 graphs, with 

the exception of the K3/5 graph.
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• Figure 19. K3<i, through K3<7 Graphs

This algorithm seems like it will go farther than n=15 

and might actually be the algorithm that does the embedding 

job, but describing the grid cutwidth, as we found, could

be very tricky. The only embedding that did not fit the 

criteria of this algorithm was the embedding for the K3<5
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graph displayed in Figure 19e above, where we modified the

algorithm for one particular edge. Notice that the single

black vertex on the first row actually runs a vh-edge,

contrary to the algorithm, which said that only hv-edges

would be utilized when connecting to white vertices on the

second row from this black vertex.

Let's show that the algorithm we demonstrated above

actually yields the minimum grid cutwidth for the

embeddings of Figure 19. In particular, let's show that

the embedding of the K3<7 graph in Figure 19g does in fact

have the minimum grid cutwidth. Keep in mind that the same

argument we will use for the embedding of the K3;7 graph

will work for the rest of the embeddings. Now the

embedding of the K3/7 graph has a grid cutwidth of 5, if we

check all the cuts in Figure 19g. Let's show that the

lower bound is in fact 5. Now there are 2 central

locations to start from, where we could place a vertical

line and use the cutwidth counting technique to find the

lower bound. So let's choose the one farthest to the left,

which cuts the embedding into 1 black and 3 white on the

left side and 2 black and 4 white on the right side of the

vertical line. Calculating hcut will yield:
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hcut [1 (4) +2 (3) ] /2

=> hcut = 5

Now suppose we interchange black and white vertices about

the vertical so that white vertices from the left

interchange with black vertices from the right. The

outcome can be categorized into two cases. One case will

be when 2 black and 2 white vertices are on the left and 1

black and 5 white vertices are on the right side. The

second case will be when 3 black and 1 white vertices are

on the left and 0 black and 6 white vertices are on the

right of the vertical line. The calculations below will

determine the hcuts for each case at the vertical line.

hcut = [2 (5)+1 (2) ]/2

=> hcut = 6

and

hcut = [3 (6)+0 (1) ]/2

=> hcut = 9

As we can see, it is clear that the lower bound must be 5,

which matches with the grid cutwith of the embedding of the 

K3,7 graph.
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CHAPTER FOUR

THE THEOREMS

Theorem 1

For m and n even, the Complete Bipartite Graph, Km>n, can be

embedded in a 2x[(n+m)/2] grid, with the minimum grid

cutwidth of mn/4.

Proof:

One may notice that this theorem partially generalizes

Propositions 2 of Chapter 2 for the m and n even cases. In

actuality, Proposition 2 was meant to give a better

understanding once we arrive to this generalization. So

the same algorithm will be applied to this general theorem

as a consequence. Let's recall the main parts of the

algorithm that apply to this generalization. First, we

will only use the algorithm to embed the cases where m < n.

Recall that the embeddings for Km<n when n < m are derived

using Lemma 2 from the embeddings of Kn;m where n < m. 

Second, the m black vertices of Km<n will be split in half, 

such that m/2 vertices will be distributed evenly along on 

each row, using the Vertex Formula. Remember that we

reverse the orientation of the Vertex Formula for the first

row by starting from the right hand side opposed to
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starting from the left for the second row. Lastly, if

edges will travel between the rows then only hv-edges will

be used.

We will break the proof into three major cases. For

each major case our proof will consist in showing that the

lower bound for the grid cutwidth will correspond to the

same value as the upper bound for our embedding algorithm.

One will notice after going through each of the major cases

that the most central location of the layout plays an

important role when determining the grid cutwidth of an

embedding. For this reason, for each of the figures, in

each major case, a vertical line has been placed in the

most central location of the layout of vertices. Keep in 

mind that the vertical line is not part of the embedding,

but that it only serves a purpose when performing

calculations.

Case 1

We will prove the cases where the layout of the black

vertices on the rows appears slightly offset. This

particular vertex layout occurs when both n and m are

multiples of four or when both n and m are not multiples of
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four. See Figures 20a and 20b below for the general

descriptions of these layouts.

o • o-e o-e o •• • o-e
• o e-o e-o • o o e-o

o-e o
e-o •

a)

Figure 20

b)

Case l's Vertex Layout of K^n

Now for each layout in Figure 20 the vertical line

splits the grid in half where there are m/2 black and n/2

white vertices on both sides. Using the cutwidth counting

technique let's determine the hcut at the location where

the vertical line has been placed for of the layouts above.

So m/2 black vertices on the left will connect to n/2 white

vertices on the right with edges, and the same will happen

in the opposite direction. In addition, edges connecting

black and white vertices only have two ways from which to

travel through the vertical line. So the calculation

performed below, using the cutwidth counting technique,

will determine the hcut for the layouts at the vertical

line in Figure 20 above.
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hcut = [ (m/2) * (n/2) + (m/2) * (n/2) ]/2

=> hcut = [mn/4 +mn/4]/2

=3 hcut '= [2mn/4]/2

=> hcut = mn/4

Now let's show that the lower bound for the grid

cutwidth cannot be less than mn/4 for each layout in Figure

20. Suppose that for each of the layouts we interchanged

black vertices from the left hand side of the vertical line

with white vertices from the right. Notice that it would

be the same, if we did such a thing in the opposite

direction. Let i represent the number of these particular

switches of black and white vertices about the vertical

line. Notice that with each switch there will be less

black and more white vertices on the left and the opposite

effect happens on the right. Although, the switching

leaves the number of vertices on both sides of the vertical

line unchanged. So there will be m/2-i black and n/2+i

white vertices on the right, and m/2+i black and n/2-i

white vertices on the left of the vertical line. Now lets

determine the hcut at the vertical line for each switch.

Remember that the edges connecting black and white vertices

travel through the vertical line in only two ways. So the
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calculation below, using the cutwidth counting technique,

determines the hcut at the vertical for each specific

switch.

hcut = [(m/2-i)*(n/2-i) + (m/2+i) *(n/2+i)]/2 

=> hcut = [2mn/4 + 2i2]/2

=> hcut = mn/4 + i2

As we can see from the result of the calculation, when i=0

the smallest hcut will be mn/4. Thus the lower bound for

both of these layouts is found to be mn/4.

Now let's show that the upper bound for the grid

cutwidth of our embedding process, for each layout in

Figure 20, will be at most mn/4. Remember that in our

embedding process only hv-edges are used when connecting

vertices from one row onto the other row. So let's

calculate the hcut on the second row about the vertical

line. Notice it would be the same if have chosen the first

row, because of the symmetry of the layout and our

embedding process. Now m/4 black vertices on the left of

the vertical line will connect to n/2 white vertices on the

right side of the vertical line, through either a

horizontal edge or a hv-edge. The same could be said with

the m/4 black vertices located on the right side of the

vertical line. So if we calculate the hcut at the vertical
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line for each layout, using the cutwidth counting

technique, we get that the:

hcut = (m/4) (n/2) + (m/4) (n/2)

=> hcut = mn/8 + mn/8

=> hcut = mn/4.

Now let's show that if we move the vertical line into

other locations then the hcut is less than or equal to

mn/4. Let i represent the number of black and j the number

of white vertices that get switched from one side of the

vertical to the other side as a consequence of moving the

vertical line. Let's shift the vertical line towards the

right and calculate the result, and make a note that the

same can be done if we would shift it towards the left.

Shifting the vertical line towards the right implies.that

there are m/4+i black and n/2+j white vertices on the left 

side, and m/4-i black and n/2-j white vertices on the right

side of the vertical line. Now if we calculate the hcut,

using the cutwidth counting technique, for each particular

shift of the vertical line, we get that the hcut will be:

hcut = (m/4+i)*(n/2-j) + (m/4-i)*(n/2+j)

=> hcut = 2mn/8 - 2ij

=> hcut = mn/4 - 2ij
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As we can see the max hcut of mn/4 will occur when i = 0, j=0

or i,j=0. Thus the upper bound for the grid cutwidth of

the layouts must be mn/4.

Case 2

We will prove the case where the layout of the vertices on

the rows appears to be on top of each other, and the

numbers of black and white vertices are both multiples of

four. See Figure 21 below for the general description of

the layout.

• o-e o • o-e o 
e. o-e o • o-e o

Figure 21. Case 2's Vertex Layout of Km<n

Once more the vertical line splits the grid in half,

where there are m/2 black and n/2 white vertices on both

sides. If we use the cutwidth counting technique to

determine the hcut at the location of the vertical line

then the result will mn/4, which can be exactly calculated

like in Case 1.

Now let's show that the lower bound for the grid

cutwidth cannot be less than mn/4. Suppose again that we

interchanged black vertices from the left side of the
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vertical line with white vertices from the right. Notice

once more that it would be the same, if we did such a thing

in the opposite direction. Let i represent the number of

these particular switches of black and white vertices about

the vertical line. So there will be m/2-i black and n/2+i

white vertices on the right, and m/2+i black and n/2-i

white vertices on the left of the vertical line. Now let's

determine the hcut at the vertical, line for each switch,

which is performed below.

hcut = [(m/2-i)*(n/2-i) + (m/2+i)*(n/2+i)]/2

=> hcut = [2mn/4 + 2i2]/2

=> hcut = mn/4 + i2

As we can see again from the result of the calculation,

when i=0 the smallest hcut will be mn/4. Thus the lower

bound for this particular layout is found to be mn/4.

Now let's show that the upper bound for the grid

cutwidth for our embedding process on this layout will be

at most mn/4. Calculating the hcut on one of the rows

about the vertical line can be done in the same way as in

Case 1, and in reality the calculations follow in the exact

same way.
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So let's show that if we move the vertical line into

other locations then the hcut is less than or equal to 

mn/4. In the same way as Case 1, let i represent the 

number of black and j the number of white vertices that get

switched from one side of the vertical line to the other

side. Again we will shift the vertical line towards the

right and calculate the result. Shifting the vertical line

towards the right implies that there are m/4+i black and

n/2+j white vertices on the left side, and m/4-i black and 

n/2-j white vertices on the right side of the vertical

line. Now if we calculate the hcut for each particular

shift of the vertical line, the hcut will be:

hcut = (m/4+i)*(n/2-j ) + (m/4-i)*(n/2+j)

=> hcut = 2mn/8 - 2ij

=> hcut = mn/4 - 2ij

As we can see the max hcut of mn/4 will occur when i=0, j=0

or i,j=0. Thus the upper bound for the grid cutwidth of 

this layout must be mn/4.

Case 3

For this major case we will prove the rest of the cases

where the black vertices are laid out on top of each other.

These layouts are different in a few ways, but are
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characterized by the fact that vertical line does not

partition the black and white vertices equally on both

sides. See Figure 22 below for the general descriptions of

the three layouts.

O •-O
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Figure 22. Case 3's Vertex Layout of Km<n

Now each particular layout requires its own proof, but

we will show the proof of one of the layouts, where the

same type of set up could be used to prove the other two.

So we will work with the layout on Figure 22a. Notice

right away that there are (m-2)/2 black and n/2 white

vertices on the left, and (m+2)/2 black and n/2 vertices on

the right of the vertical line. If we calculate the hcut

at the location of the vertical line as we have done before

it will be once again mn/4. See the calculation below.
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hcut =■[(m-2)/2*n/2 +(m+2)/2*n/2]/2

'=> hcut = [(m-2)n +(m+2)n]/8

=> hcut = [2mn]/8

=> hcut = mn/4

Now let's show that the lower, bound for the grid

cutwidth cannot be less than mn/4. Using the same

techniques as in Case 2 we interchange black vertices from

the left side of the vertical line with white vertices from

the right. Let i represent the number of these particular

switches of black and white vertices about the vertical

line. So there will be (m-2)/2-i black and n/2+i white

vertices on the right, and (m+2)/2+i black and n/2-i white

vertices on the left of the vertical line. Now let's

determine the hcut at the vertical line for each switch,

which is performed below.

hcut = [((m-2)/2-i)*(n/2+i) + ((m+2)/2+i)*(n/2-i)]/2

=> hcut = [(m-2)n/4 + (m+2)n/4 - 2i2]/2

=> hcut = [(2mn/4 - 2i2]/2

=> hcut = mn/4 + i2

As we can see again from the result of the calculation,

when i=0 the smallest hcut will be mn/4. Thus the lower

bound for this particular layout is found to be mn/4.
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Now let's show that the upper bound'for the grid 

cutwidth of our embedding process will be at most mn/4, for 

this layout. Let's start by calculating the hcut on the

second row about the vertical line as we have done before

with the other cases. So there are (m-2)/4 black vertices

on the left that will connect to n/2 white vertices on the

right of the vertical line. Also there are (m+2)/4 black

vertices on the right that will connect to n/2 white

vertices on the left of the vertical line. Now lets

calculate the. hcut about the vertical line.

hcut = (m-2)/4 * n/2 + (m+2)/4 * n/2

=> hcut = [(m-2)n + (m+2)n]/8

=> hcut = [2mn] /8

=> hcut = mn/4

So let's show that if we move the vertical line into

other locations then the hcut is less than or equal to 

mn/4. In the same way as Case 2, let i represent the 

number of black and j the number of white vertices that get

switched from one side of the vertical to the other side.

Again we will shift the vertical towards the right and

calculate the result. Shifting the vertical line towards

the right implies that there are (m-2)/4+i black and n/2+j
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white vertices on the left side, and (m+2)/4-i black and

n/2-j white vertices on the right side of the vertical

line. Now if we calculate the hcut for each particular

shift of the vertical line, the hcut will be:

hcut = (m-2)/4+i)*(n/2-j) + (m+1)/4-i)*(n/2+j)

=ri> hcut = (m-2)n/8 + (m+2)n/8 - 2ij

=> hcut = 2mn/8 -2ij

=> hcut = mn/4 - 2ij

As we can see the max hcut of mn/4 will occur when i=0,

j=0, or i,j=0. Thus the upper bound for the grid cutwidth

of this layout must be mn/4.

Finally, we need to check that the max vcut for our

embedding algorithm is less than or equal to mn/4. Since

we are only using hv-edges to connect from one row onto the

other row then the max vcut should be found between two

adjacent white vertices in a vertical position. The reason

is that hv-edges will travel through the adjacent white

vertices through the top and the bottom. Since each white

vertex has m/2 black vertices connecting to it from the

opposite row then the max vcut should be m. Let's show

that m must be less than or equal to mn/4.
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m < mn/4

4m < mn

4 < n

As we can see mn/4 is greater than or equal to m when n > 4.

Now when n < 4 then we need to check the case when n=2,

since n is even. The Km,2 graph classifies the case when

n=2. Remember from Lemma 2 that the Kra,2 graph is

isomorphic to the K2<m graph, and from Proposition 2 the max

hcut is greater than or equal to the max vcut.

In brief, the max hcut is greater than or equal to the

max vcut. In addition, with every case we have shown that

the upper bound and the lower bound for the grid cutwidth

match. Therefore, our embedding algorithm does in fact

have the minimum grid cutwidth.□

Theorem.2

For m even, n odd, and n 3 the Complete Bipartite Graph,

Km,n/ can be embedded in a 2x-[ (n+m+1) /2] grid, with the 

minimum grid cutwidth of: mn/4, if m is a multiple of 4, 

and (mn+2)/4 if m is not. a multiple of 4.
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Proof:

Proving this Theorem will be much easier since the same

cases and similar calculations will be performed as in

Theorem 1. Much of the setup from Theorem 1 and the same

style of proof of matching the lower and upper bound will

be utilized in this theorem. We will split the proof of

this theorem into two cases. Case 1 will show the cases

where m is a multiple of four and the actual cutwidth for

these cases is mn/4. Case 2 will show the cases where m is

not a multiple of four and the actual cutwidth for these

cases is (mn+2)/4. In addition, by removing the edges of a

white vertex on a corner of the layouts of Theorem 1 will

yield the layouts for the two cases in this theorem. In

general it will not matter which corner this specific

vertex is located in.

Casel: When m = 4x, for x = 1,2,3...

For this case there are three layouts of vertices from

Theorem 1 that fall under this case. See Figure 23 below

for the three different layouts. We will show a proof for

one of these layouts, but keep in mind that the same

argument can be done for the other two layouts.
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Figure 23. Case l's Vertex Layouts for n Odd

Let's work with the layout in Figure 23a and determine

the lower bound for this layout. Notice that the gray

vertex is located in the position (1,1) at a corner. If we

calculate the hcut at the location of the vertical line,

using the cutwidth counting technique, the result will be

mn/4. See the calculations below.

hcut = [(m/2)(n+l)/2 + (m/2)(n-l)/2]/2

=> hcut = [m(n+l)/4 + m(n-l)/4]/2

=> hcut = [mn + m + mn - m] / 8

=> hcut = [2mn]/8

=> hcut = mn/4

Let's switch black and white vertices about the

vertical line as was we did in the previous theorem and

52



calculate the hcut at every switch. Again let i represent

the number of switches. So the hcut is:

hcut = [(m/2+i)(n+l+2i)/2 + (m/2-i)(n-l-2i)/2]/2

=> hcut = [(m/2+i)(n+l+2i) + (m/2-i)(n-l-2i)/4

=> hcut = [mri + 2i + 4i2]/4

=> hcut = mn/4 + i/2 + i2

As we can see when i = 0, the lower bound is mn/4.

Now let's calculate the upper bound for this layout.

Again using the same ideas from Theorem 1, let's calculate

the hcut on the second row on the location of the vertical

line. See the calculation below'.

hcut = (m/4)(n+l)/2 + (m/4)(n-1)/2

=> hcut = [m(n+l) + m(n-l)]/8

=> hcut = [mn + m + mn-m]/8

=> hcut = [2mn]/8

=> hcut = mn/4

Now let's calculate the hcut, by moving the vertical

line towards the right, at every location along the second

row as it was done in Theorem 1. Again let i represent the

number of black and j the number of white vertices that get

switched to the left hand side of the vertical. So the

hcut at every location along the second row is:
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hcut = (m/4+i)(n+1-2j)/2 + -(m/4-i) (n-1+2j)/2

=> hcut = [2mn/4 + 2i - 4ij]/2

=> hcut = mn/4 + i - 2ij

As we can see when i=0 or i,j=0 the max hcut is mn/4. Thus

the upper bound is mn/4.

Case 2 : When m 4x, for x = 1,2,3...

Very similar to Case 1 let's prove one layout and the same

argument can be done for the other two cases. See Figure

24 below for the descriptions of the layouts of this case.

o • ■ •■o • o • o © • o • o- •
o • ■ • o • o •• • o o • o • o ■

a) b)

© • ...© • o •

• o • ©... • o
c)

Figure 24. Case 2's Vertex Layouts for n Odd

Let's prove the layout in Figure 24a. Again let's show the

lower bound. To save time we will jump to the calculations

that help us determine the lower bound. There are (m+2)/2

black and (n-l)/2 white vertices on the left hand side of
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the vertical line. In addition, there are (m-2)/2 black

and (n+1)/2 white vertices on the right hand side of the

vertical line. If we switch black and white vertices about

the vertical line as we did in the previous case, then the

calculation below, using i to represent every switch,

should yield the hcut at every switch.

hcut = [(m+2+2i)/2*(n+l+2i)/2 + (m-2-2i)/2*(n-l-2i)/2]/2

=> hcut = [(m+2+2i)(n+l+2i) + (m-2-2i)(n-l-2i)]/8

=F> hcut = [2mn + 4 + 8i2]/8

=> hcut = (mn+2)/4 + i2

As we can see when i=0 the minimum hcut is (mn+2)/2. Thus

the lower bound is (mn+2)/2.

In the same way as Case 1, let's determine the upper

bound for the second row. Again i and j represent the

number of black and white vertices that get switched from

the right hand side of the vertical line to the left side

as a consequence of moving the vertical line to the right.-

The calculations below will determine the max hcut.

hcut = (m+2+2i)/4*(n+1-2j )/2 + (m-2-2i)/4*(n-1+2j)/2

=> hcut = [(m+2+2i)(n+1-2j) + (m-2-2i)(n-l+2j)]/8

=> hcut = [2mn + 4 - 8j + 4i -8ij]/8

=> hcut = (mn+2)/4 + (-2j+i-2ij)/2
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As we can see when i,j >0 then (-j+i-ij)/2 < 0, thus for 

i = 0 the max hcut will be (mn+2)/4. Therefore, the upper

bound for this layout is mn+2)/4.

Finally, we need to check that the max vcut is less

that or equal to mn/4 and (mn+2)/4. Using the same

reasoning as Theorem 1, the max vcut should be m between

two vertically aligned white vertices. Doing the same

checks we get:

m < (mn+2)/4

4m < mn+2

4m-2 < mn

4-2/m < n

and

m < mn/4

4m < mn

4 < n

As we can see (mn+2)/4 and mn/4 are greater than or equal

to m when n > 4. Since n is odd and n 3, we only need to

check the case when n=l. The Km>1 graph classifies the case 

when n=l. Remember from Lemma 2 that the Km<i and Ki,m 

graphs are isomorphic, and in Proposition 1 we proved that

the max hcut is greater than or equal to the max vcut.
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So we have proven that the minimum grid cutwidths can

be achieved in Case 1 and Case 2, and that the max vcut is

less than or equal to the max hcut. Thus this concludes

the proof for this theorem.□
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CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

This project began with the goal to break the ground

on a conjecture: Through a given algorithm any complete

bipartite graph, could be embedded in such a way that the

minimum grid cutwidth could be achieved. Therefore, we

decided to look into an idea in Alvin Sacdalan's paper [9],

where he proved a general problem that a complete graph

could be embedded into grid in such a way that the minimum

grid cutwidth could be achieved. Sacdalan's first approach

was to prove that a complete graph can be embedded into a

2xn grid in such a way that minimum grid cutwidth could be

achieved. Once a proof was generated he then used the

techniques of the proof to prove the general problem. As a

result, we decided to take the same approach and first look

into proving that a complete bipartite graph could be

imbedded into a 2xn grid in such a way that the minimum

grid cutwidth could be achieved. In this paper we broke]

the problem into two cases, where the m vertices of set A

is even and where the m vertices of set A is odd, for the

Km,n graph. In this paper we managed to prove the even
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case, but only managed to prove a few cases for the odd n

case.

Recommendations

If one wants to pursue the general problem this paper

broke ground into; one needs to come up with a proof for

the odd case. We recommend looking into the specific cases

we have already investigated for the odd case.

Nevertheless, one should pay close attention to this

paper's propositions and theorems, where we used Matt

Johnson's vertex formula for linear grids to successfully

prove some results for the 2xn grid. In actuality, we used

Johnson's vertex formula to place vertices of complete

bipartite graphs into appropriate positions of the 2xn

grid, which allowed us to embed complete bipartite graphs

with more facility.

Once a proof has been achieved for the odd case, one

should investigate if the proof for the odd and even cases

could be extended to other grid sizes.
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APPENDIX

TECHNICAL TERMINOLOGY
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APPENDIX

TECHNICAL TERMINOLOGY

Bipartite Graph - A graph that consists of two disjoint 

sets of vertices, A and B, where |A|= m and |b|= n, such 

vertices in A are joined by edges from vertices in B.

Cut - The number of edges running between adj acent

vertices.

Cutwidth - The maximum of all the cuts in a given graph.

Complete Graph - A graph where each vertex is joined by an

edge from all the other vertices.

Complete Bipartite Graph - A bipartite graph that is

complete. Denoted as a Km,n Graph.

Embedding - The process or rearranging a graph's known form

onto a host graph.

Graph - A graph, G = (V,E), consists of a finite set of

vertices, V, and a finite set of edges, E, joining pairs of

distinct vertices.

Grid - a set of vertices in a rectangular form.

Grid Cutwidth - Same as cutwidth, but particularly reserved

for a grid.
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Horizontal Cut - The number of edges running between

adjacent vertices', which lay in a horizontal layout.

Denoted as the'vcut.

Horizontal Vertical Edge - a curved edge that runs

horizontally first and vertically second. Denoted as a

hv-edge. \

Linear Graph - A graph where the vertices are arranged in a

linear fashion.

mxn Grid - A grid with m rows and n columns.

Tree - A graph that consist of branches and paths with no

complete cycles.

Vertical Cut - The number of edges running between adjacent

vertices, which lay in a vertical layout. Denoted as the

vcut.

Vertical Horizontal Edge - A curved edge that runs

vertically first and horizontally second. Denoted as a

vh-edge.
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