
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2003

Taxonomy of synchronization and barrier as a basic mechanism Taxonomy of synchronization and barrier as a basic mechanism

for building other synchronization from it for building other synchronization from it

Pauline Braginton

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the OS and Networks Commons

Recommended Citation Recommended Citation
Braginton, Pauline, "Taxonomy of synchronization and barrier as a basic mechanism for building other
synchronization from it" (2003). Theses Digitization Project. 2288.
https://scholarworks.lib.csusb.edu/etd-project/2288

This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2288&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2288&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/2288?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2288&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

TAXONOMY OF SYNCHRONIZATION AND BARRIER AS A

BASIC MECHANISM FOR BUILDING OTHER

SYNCHRONIZATIONS FROM IT

A ThesisI
Presented to the

Faculty of

California State University,
ISan Bernardino

In Partial Fulfillment

of the Requirements for the Degree
IMaster of ^cience
I

in

Computer Science

by

Pauline Braginton

March 2003

TAXONOMY OF SYNCHRONIZATION AND BARRIER AS A

BASIC MECHANISM FOR BUILDING OTHER

SYNCHRONIZATIONS FROM IT

A Thesis

Presented .to the

Faculty of

California State; University,I
1San Bernardino
I.
1

Pauline Brdginton

March 2003
I:

Approved1 by:

Dr. - George Georgiou

Date

I

I
© 2003 Pauline Braginton

ABSTRACT

A Distributed Shared Memory (DSM) system consists ofI
several computers that share a 'memory area and has no

global clock (since each machine is slightly slower of

faster that the others). Therefore, an ordering of

events in the system is necessary. For example: theI
messages in this system need to be delivered in the exact

Iorder in which they are sent since a message cannot be
I

received before it is sent. i
I

Synchronization is a mechdnism for coordinatingI
activities between processes, which are program

instantiations in a system. Tq synchronize processes in

a DSM system, ordering of events is a necessary task in

order to ensure mutual exclusio'n (it makes sure that if

one process is in the Critical Section then the other

processes will be excluded from doing the same thing).

Critical Section (CS) is the part of the program where

the shared memory is accessed. In order to coordinate

between processes in the system and allow them to
I

broadcast and deliver messages in order, a consensus

needs to be reached.

A consensus can be found in an area of memory that

allows processes to reach a common decision despite

iii

potential process failures. Failures can happen when a

process stops participating in ,the algorithm (Benign
I

failure) or when a process sends incorrect information

(Byzantine failure) . However, 'in the presence of faults,I
Iconsensus can't be reached m an asynchronous system,

where no upper bound on message delay is assumed. In
t

asynchronous, system, there is a possibility of1 ' ■ I,
non-termination; there is no way of knowing if a processi'

ihas crashed or if - it's just run, very slow and will
I

eventually send, an answer. i
i

Semaphore is a synchronization tool that helps to
i

overcome difficulties of CS problems. The semaphore's

atomic (uninterruptible) operations (wait and signal)
iguarantees mutual exclusion and the order in which
iprocesses are allowed to enter the CS does not matter.

However, in a DSM system the order of events is essential
i

and in this paper a deterministic (repeatable in the same
I

sequence) semaphore algorithm is introduced.

Another common synchronization construct is a

barrier. A barrier is a global synchronization point in

a parallel program where the number of processes expected

to arrive is' known in advance. ! When the last process

arrives, all processes execute,J release, and reach the
I

iv

barrier again. A simple implementation of barrier

synchronization can result in memory hot-spots,

especially in large scale shared-memory multi-processors

containing hundreds of processors and memory modules

communicating through an interconnection network.

Different solutions to solve this problem are introduced.

If a barrier is a form of 'synchronization, can the

reverse also be true; can any form of synchronization be
i

a barrier?

When considering the facts' about semaphore and

barrier synchronization, is it possible to reverse the

synchronization operation? If a semaphore will be used

as a barrier, and a barrier releases its processes all atI
once, we will get a chaotic result. All the processes

will enter the CS all at once, and the operation will
I

violate mutual exclusion in a semaphore. This paperI
considers these obstacles. '

By controlling the way processes are released to CS,

I show that a semaphore can be a barrier. For the

purpose of proof, it needs to be stated that although

there are many types of semaphores, one algorithm type is

critical in defining this operation. A counter semaphore

is needed to guarantee a deterministic operation

v

(verifiable and repeatable algorithm in the same

sequence). 1

My new algorithms are using a counter semaphore and

they work as follows: each process identification (id) is

added and accumulates to a list while waiting to enter

CS. This is accomplished in a regimen order resembling a

sergeant giving orders to his subordinates who are

standing in a line; the sergeant gives out orders (the

last process to arrive at the b'arrier) and the soldiers

in line are the processes, contained in the list. When
I

the sergeant orders his subordinates to exit the line,

they can leave the line in two ways: one by one

(Algorithm2) or all at once (Algorithml). The list (line
i

of soldiers) forms a barrier, which deterministically
Ireleases the processes from it.' Algorithm2 insures that

each process is released after a signal or a message,

forming a semaphore. Algorithml insures that all

processes are released all at once, forming a barrier.

By the reduction of barrier and semaphore to each

other, when two algorithms perform the same amount of

work (steps), it can be proven that a barrier is a form

of synchronization and the reverse (any form of
I

synchronization is barrier) is also correct. Both

vi

algorithms: barrier and semaphore, will be theoretically

proven to perform the same amount of work in an order of

0(n) steps. Therefore, the reverse can also be true; if

a barrier is a form of synchronization, any form of

synchronization can be a barriep.

I

vii

ACKNOWLEDGMENTS

I would like to begin by Thanking My Advisor, Dr. E.

Gomez, Dr. J. Torner, and Dr. C. Georgiou for being the
I

members of my committee. I am grateful for the guidance

and helpful discussions by my advisor Dr. Gomez. I thank

Dr. Torner for always been willing to provideI
encouragement, and for Dr. Georgiou for being a great

instructor. J

I am grateful to the Department of Computer-ScienceI
at California State University [San Bernardino, forI
providing me with the Mil scholarship.

viii

TABLE OF CONTENTS

ABSTRACT..................... J.................. .

ACKNOWLEDGMENTS.............. .'....

LIST OF TABLES............... J.....................

LIST OF FIGURES.....................................
CHAPTER ONE: BACKGROUND

1.1 Introduction........ .!......................
_ i

1.2 Purpose of the Thesis ^
I

1.3 Context of the Problem:

1.4 Significance of the Thesis
I

1.5 Assumptions..........[.....................

1.6 Limitations and Delimitations

1.6.1 LimitationsJ.....................

1.6.2 Delimitations ..J..........................
1.7 Definition of Terms

[1.8 Organization of the Thpsis
i

CHAPTER TWO: TAXONOMY OF SYNCHRONIZATION
I

2.1 Introduction......... i.....................
2.2 Defining Synchronization

i

2.3 Event Ordering....... I.....................

2.3.1 Partial Ordering
i

2.3.2 Total Ordering J.....................
2.4 Mutual Exclusion..... I.....................

iii

viii

xii

xiii

10

10

10
10
11

14

15
17

23

23
24

26

1
9
9

ix

2 5

2 6

2 7

2 8

2.4.1 Test and Set Lock (TSL)
Instructions•.................

f2.4.2 Sleep and Wakeup
2.4.3 Semaphores

2.4.4 When We Don't Have Shared
Resource.....J......................I

Mutual Exclusion in a Distributed Shared
Memory System..............................
2.5.1 A Centralized Algorithm
2.5.2 Distributed Algorithm

I
2.5.3 Token Ring Algorithm

Election Algorithms ini Distributed
Shared Memory System . J.....................I
2.6.1 The Bully Algorithm
2.6.2 Ring Algorithm .J.....................

Barrier Synchronization
2.7.1 Central Barrier,.....................

I2.7.2 Centralized Barrier with Sense
Reversal......[.....................

I2.7.3 Fuzzy Barrier . .,.....................
2.7.4 Software Combining Tree

I
2.7.5 Adaptive Combining Tree
2.7.6 Tree Barriers with Local

Spinning-Tournament Barrier

2.7.7 My Algorithm . . J.....................
Consensus............ J.....................

2.8.1 What is Consensus?

27
27
28

30

30
31
33
35

38

39

40
41

43

44

45
49
54

56

60

60

61

x

642.8.2 Discussion
2.8.3 Consensus in Asynchronous System 70
2.8.4 Consensuses in ^Synchronous System 81

I
2.8.5 Conclusion t..................... 84

2.9 Summary............. l...................... 85

CHAPTER THREE: METHODOLOGY I
3.1 Introduction........7.......'..............I
3.2 Obstacle............1......................

3.3 My Algorithm
3.3.1 Making a Barrier from a Semaphore

■ I3.3.2 Making a Semaphore from a Barrier

3.4 Summary.............i......................

93
93
94

95

97

98

CHAPTER FOUR: DISCUSSION ' 1II
4.1 Introduction........)...................... 100

I4.2 Amount of Work-Order Required 102
4.3 Summary.............,...................... 103

REFERENCES................... J...................... 105

xi

LIST OF TABLES

Table 1. Consensuses in Asynchronous System 65I
Table 2. Consensuses in Synchronous System 69

xii

LIST OF FIGURES

Figure 1. Lamport's Algorithm 'Corrects the
Clocks............ '......................I 25

Figure 2 . Counter Semaphore . . ■..................... 30

Figure 3 . Centralized Algorithm 32

Figure 4 . Distributed Algorithm 35
Figure 5 . Token Ring Algorithm 36
Figure 6. Bully Algorithm :.................... 40

Figure 7 . Central Barrier :............1....... 43
Figure 8 . Centralized Barrier with Sense

Reversal..........2..................... 45

Figure

Figure

9 . Fuzzy Barrier 47

10. Combining Tree....j...I 50

Figure 11. Combining Tree-Pseudocode 53
Figure 12 . Adaptive Combining Tree 55
Figure 13 . Tree Barriers with Local

Spinning-Tournament Barrier-Pseudocode . . . 58

Figure 14 . Tree Barriers with Local
Spinning-Tournament Barrier 59

Figure 15 . Hierarchy of Maximum,Number of
Mistakes that can be, Made............... 81

Figure 16. Making a Barrier from a Semaphore 96

Figure 17 . Making a Semaphore from a Barrier 98

xiii

CHAPTERiONE

BACKGROUND
I

1.1 Introduction
I

A Distributed Shared Memory (DSM) system consists of
i

several computers that share a memory area. ProcessesI
(i.e. executing programs) in a DSM need to communicate

with each other frequently. There.are three issues
I

concerning the need for communication between processes:

how one process can pass information to another, how to

make sure that two or more processes ’do not get into each
Iother's way when engaging in critical activities (when

two processes try to get hold of the same resource), andI
how to sequence properly when dependencies are present.l
Processes that act together in a group form a group

communication.

A group is a collection of -processes that act

together in some system. When a message is sent to the

group itself, all members of the group receive it. It is

a form of "one-to-many" communication and is constructed

with point-to-point communication where there is one

sender and many receivers. Group communication is a
I

communication mechanism in which a message can be sent to

1

multiple receivers in one operation. It requires two

properties: the first one is atomic broadcast, which

insures that a message sent to the group arrives to all

members of the group or to none' of them and the second

one is ordering, which means that messages are delivered

in the exact order in which they are sent. For

successful communication, processes need to cooperate andI
synchronize with one another.

Synchronization is a mechanism for coordinating

activities between processes ini the system: between
i

sender and receiver, between joint activity of

cooperating processes, and serialization of concurrent

access to shared objects by multiple processes.

Synchronization in a DSM system needs to coordinate

between processes; although, no J common clock or global

time source exits. I
IA DSM system has no global,clock since each machine
I

is slightly slower or faster than the other. Toi
synchronize a system without global agreement on time,

Lamport (1995) suggested that all processes need to agree

on the order in which events occur (happened-before)

rather than trying to agree on real time. Ordering of

2

I

events in the system is a necessary task in order to

ensure mutual exclusion in a DSM system.

When a process has to read' or update shared data, it

first enters a Critical Section; (CS), the part of the
I

program where the shared memory! is accessed. While a
i

process is in the CS, mutual exclusion ensures that no

other process will use the shared data (CS) at the same

time. A process-coordinator, perform some special role,
I

insures mutual exclusion in a DSM. Different algorithm

designs on how the coordinator achieves mutual exclusioni
(Lamport, Richard and Agranta, and the Token Ring

Ialgorithm [Tanenbaum, 1995]) and-how to elect the
i

coordinator will be discussed in this paper. The
l

coordinator, who grants permission to enter the CS, needsI
to be elected by the processes in the system. Two ways

of electing a coordinator will t»e considered. One way is
I

"The Bully Algorithm" which locates the process with the

highest process number. The second way is the "Ring
I

Algorithm" which builds an ELECTION message containing

its own process number and sends the message to the

processes next to it in a circular fashion. Eventually,

the process receives an incoming message containing its

own process number and the message type becomes the

3

coordinator. At this point, the coordinator circulates

once again to inform everyone else who the coordinator is

(Tanenbaum, 1995).
1

In order to coordinate between processes in a
iIsystem, there is a need to agre'e on something. For

example: electing a coordinator,, deciding whether to

commit a transaction or not, synchronizing, and so on.

A consensus is an area in memory that allows
Iprocesses to reach a common decision in order to
icommunicate. A Consensus allows processes to broadcast

and deliver messages in such a yay that processes agree
i

on the set of messages they deliver and on the order of
i

message deliveries. In order tb reach consensusesI
between processes, the order in which the events occur is

iessential in solving synchronization problems. For
I

example: a message cannot be received before it is sent.

When all processes agree on the' order of events, mutual

exclusion can be reached. f
I

The general goal of -distributed agreement algorithms
I

is to have all the non-faulty processors reach consensus

on some issues and to do that within a finite boundedI
time. There are two kinds of process failures: one kind

I
is when a process stops participating in the algorithm

4

(Benign failure), and the other kind is when a process
I

sends incorrect information (Byzantine failure).i
Consensus in the presence of faults is difficult.i

iTherefore, the consensus algorithm design depends on the
I

type of system that is considered. Is the system

synchronous or asynchronous?

In a synchronous system where the message system is

completely reliable, the following assumptions are made:

restriction on time bound, only processes are subject toI
fail, any delivered message can! arrive without errors,

Iand the communication graph is connected. In a Benign

failure, a death of a process ip immediately detected
Isince there is a finite time on a message delay.

In an asynchronous system,1 no assumptions can be

made about upper bound on message delays; therefore, a
I

slow process cannot be distinguished from a dead process

According to Fischer et al., (1985) a totally

asynchronous system can't tolerate even a single

unannounced process death. Also, according to Lynch et

al. (1986), exact agreement in asynchronous system can't

be reached. If assuming lower bound, only approximate

agreement can be reached with the condition that the

total number of processes is more than five times the

5

number of possible faulty processes. In addition,

Chandra D. and Toueg S. (1996),' introduce failure

detectors algorithm. This is a, mechanism that maintains

a list of processes that are suispected to have crashed

and can be infinitely adding and removing suspected

processes from the list. This ^implies an infinite upper

bound on message delay, where exact agreement with

guaranteed termination is not' possible in an asynchronous

system.
I

Semaphore synchronization ..protects critical sections
.x"'I fby its two atomic (uninterruptible) operations: wait and /

signal. It is guaranteed that 'once a semaphore operation

has started, no other process can access the semaphore

until the operation has completed or has blocked (wait).

If one or more processes were unable to complete an

earlier operation, one of them is chosen by the system

and is allowed to complete its ^operation. However, the
order in which processes are al'lowed to enter to CS does

not matter. ,

Another common synchronization operation is a

barrier. Upon reaching a barri'er, a process must stall,t
(wait until all participating processes reach the

I
barrier). After the last process reaches the barrier,

6

all the processes are released.. The barrier brings a

group of processes to a known global state before

proceeding to a new phase of computation. In a

shared-memory system with multiple processors, typical

implementations of a barrier are done with the use of

spin on a variable. When a process spins on a variable,r
it spins on a loop until the shared variable "release" is

read 1. In a large scale shared-memory, especially if

multi-processors containing hundreds of processors
Icommunicate through a shared memory, this implementation

results in memory hot-spots. For this reason, different
isolutions are introduced. '

If a barrier is a form of synchronization, can the

reverse apply? Is every synchronization a barrier? Can

it be proven that a semaphore is a barrier? Can they

perform the same amount of work1(N steps)?

In focusing on a DSM software solution, there is a

need to find a way, so that a semaphore will release its

processes to a CS in sequential order. However, the

standard semaphore is not deterministic (not repeatable

in the same sequence). In addition, if we use a
I

semaphore as a barrier, and a barrier releases its

processes all at once, we will liave bunch of processes

7
I
j

enter into the CS all at once. , Now, we'll get a chaotic

result, which violates mutual exclusion in semaphore.I
Therefore, an algorithm that will take advantage of a

Counter Semaphore can work in a

solution.

proven theoretical

To create a deterministic semaphore, a Counteri
Isemaphore can be used in the algorithm as follows: a

process identification (id) is. added and accumulated to a
i

list while they are waiting to enter the CS. The list of

processes forms a barrier, whiclk waits for its last
iprocess to arrive. Once the last process arrives, the

process can deterministically (in order) be released. By

controlling the way the processes are released from thei
accumulated list (barrier), we can see that a semaphorei
and barrier are reversible. ,

I
If processes are released from the list (barrier)

i
one by one, after a signal or a message, we can make a

I
semaphore from a barrier with a Iwork of 0(N) steps.

Also, if processes are released 'from the list (barrier)

all at once with a "for loop", w;e can make a barrier from

semaphore with a work of 0(N)steps. When considering
I

these facts it is possible to reverse the assumption and

8

theoretically prove that any synchronization can be

expressed as a barrier.

1.2 Purpose of the Thesis

The purpose of the thesis is: if a barrier is a form

of synchronization, can we express any synchronization as

a barrier?

1.3 Context of the Problem

The context of the problem was to reduce barrier and

semaphore to each other.

1.4 Significance of the
Thesis

Since a semaphore is non-deterministic, the

significance of the thesis is to find a mechanism in a

DSM system, so that a semaphore will release its

processes to a CS in a sequential order. In addition, a

barrier waits for the last processes to arrive and then

release all its processes from a global point. If a

semaphore operates like a barrier, there is a danger that

all processes will enter CS all at once and will violate

mutual exclusion. The way we can control this chaos, is

bye regulating the way the processes are released from

the list. Both, barrier and semaphore are reducible to

9

each other and require the same amount of work of order

0 (n) .

1.5 Assumptions

The following assumptions were made regarding the

thesis:

1. The system is asynchronous.

2. Assume no failure.

3. Number of processes, N, that we are waiting for

is known ahead.

1.6 Limitations and
Delimitations

During the development of the thesis, a number of

limitations and delimitations were noted. These

limitations and delimitations are presented in the next

section.

1.6.1 Limitations
The following limitations apply to the thesis:

1. The reduction of semaphore and barrier to each

other can not work with a binary semaphore.

1.6.2 Delimitations

The following delimitations apply to the thesis:

10

1. The reduction of barrier and semaphore to each

other can only work with a counter semaphore.

This way a process can register and add its

process id/priority to a list. The processes

that are accumulated in the list form a

barrier.

2. When processes are released all at once

(Algorithml), we can make a barrier from a

semaphore by releasing the processes within a

"for loop". Also, when the processes are

released one by one, (Algorithm2) we can make a

semaphore' from a barrier by releasing the

processes one at a time using a signal

operation.

1.7 Definition of Terms
The following terms are defined as they apply to the

thesis:

Atomic broadcast - It designs in a way that when a

message is sent to a group, it will either arrive

correctly at all members of the group, or at none of

them.

11

Atomic operation - It guarantees that once an operation

has started, no other processes can interfere, until

the operation has completed or blocked.

Benign/Fail-stop Failures - In this kind of failure, a

faulty process crashes, stops operating, but does

not perform wrong operations (deliver messages that

were not sent).

Byzantine Failures - Byzantine failures can send messages

when it is not supposed to, make conflicting claims

to other processes, act dead for a while and then

revive itself, etc.

Clock skew - It is the difference in time values.

Consensus - It has an area in memory that is identical in

every process. All processes must agree on the same

single value.

Critical Section (CS) - It is a part of the program where

the shared memory is accessed.

Deterministic algorithm - It is verifiable and repeatable

in the same sequence with the assumption of a given

finite group of processes.

Diameter - This is the longest path between any two

nodes.

12

Distributed Shared Memory (DSM) system - This is a

collection of individual computing devices that can

communicate with each other while sharing a memory

address space.

Fault-tolerant system - It is a system that can maintain

a reasonable number of process or communication

failures.

Group Communication - These are- processes that act

together in a group.

Logical clock - It is not the actual clock in the usual

sense. It agrees on the order of which event happed

first.

Mutual Exclusion - This is a way of insuring that if one

process is using a shared variable or file, the

other processes will be excluded form doing the same

thing.

Network - Collection of channels

carries its destination address inside it, and this

address is used for routing.

Physical clock - It shows the real time.

Process - It is a program in execution.

Timeout - A period of time after, which an error

condition is raised if some event hasn't occur. A

13

common example is in sending a message. If the

receiver does not acknowledge the message within

some preset timeout period, a transmission error is

assumed to occur.

T-resilient - When no more that t processes fail before

or during execution.

1.8 Organization of the
Thesis

The thesis is divided into four chapters. Chapter

One provides an introduction to the context of the

problem, purpose of the thesis, significance of the

thesis, limitations and delimitations and definitions of

terms. Chapter Two consists the taxonomy of

synchronization. Chapter Tree documents the Methodology

used in this thesis. . Chapter Four presents the

discussion from the thesis. Finally, the references.

14

CHAPTER TWO

TAXONOMY OF SYNCHRONIZATION

2.1 Introduction
Several techniques in solving synchronization

problems in a DSM environment are described. Since there

is no global clock in a DSM system, different computers

have different frequencies. Therefore, Lamport (1995)

suggested that all processes needs to agree on the order

in which events occur rather then on the exact time. The

use of a timestamp and the event of "happened before"

relation meet the requirements for global time. Ordering

of events in the system is a necessary task in order to

ensure mutual exclusion in a DSM system. The following

algorithm guarantees mutual exclusion: Lamport, Richard ■

and Agranta, and the Token ring algorithm (Tanenbaum,

1995). A process-coordinator insures mutual exclusion in

a DSM system. A coordinator is being elected by using

the "The Bully Algorithm" and the "Ring Algorithm"

(Tanenbaum, 1995). Reaching ordering in synchronization

requires consensus between processes. A consensus in the

presence of faults is difficult. Therefore, assumptions

about the system (whether if it is synchronous or

15

asynchronous) and on the kind of faults (Benign or

Byzantine failure) that can occur will be discussed.

According to Fischer et al, (1985) a totally asynchronous

system can't tolerate even a single unannounced process

death.

A barrier is a synchronization point where processes

are forced to wait until all processes have arrived.

Then they are all released- simultaneously. The "Central

Barrier" and the "Tree Barriers" algorithms are discussed

(David & Singh, 1999) . Different implementations of

barrier synchronizations are also presented in this

paper. Also, processes upon reaching a barrier are idle

while waiting for other processes to reach the barrier.

Thus, no useful work is done by the processes while

waiting to synchronize at the barrier. The following

algorithms: "Adaptive Combining Tree" and the "Fuzzy

Barrier" by Gupta, (June 1989) are solutions to avoid

latency at the barrier.

Semaphore synchronization is used to ensure that

only one process at any time can be utilizing a resource.

They can only be used in a system with a shared memory.

If there is no shared memory, there is no CS problem and

a semaphore is not needed.

16

2.2 Defining Synchronization

Processes in a DSM need to communicate with other

processes by inter-process communication, exchange of

data between one process and another, either within the

same computer or over a network. There are three major

components of ,a synchronization event. The first

component is the acquire method: a method by which a

process tries to gain the right to enter the critical

section or proceed past the event synchronization. The

second component is a waiting algorithm: a method by

which a process waits for a synchronization to become

available. For example: if a process tries to acquire a

lock but the lock is not free, or to proceed past an

event but the even has not yet occurred.. The third

component is the release method: a method for a process

to enable other processes to proceed past a

synchronization event. For example: an implementation of

the Unlock operation, a method for the last process

arriving at a barrier to release the waiting process, or

a method for notifying a process waiting at a

point-to-point event that the event has occurred.

Mutual exclusion ensures that certain operations on

certain data are performed by only one process at a time.

17

In other words, when a process is using a shared variable

or a file, the other processes are excluded form entering

the CS. A semaphore is a synchronization algorithm that

supports mutual exclusion. There are two ways in which a

process is waiting to enter the CS: busy waiting and

blocking. Busy-waiting means that the process spins in a

loop that repeatedly tests for a variable to change its

value. A release of the synchronization event by another

process changes the value of the variable and allows the

waiting process to proceed. Unless there is a reasonable

expectation that the wait will be short, busy-waiting

wastes CPU time. Under blocking, the process does not

spin but simply blocks (suspends) itself and releases the

process if it finds that it needs to wait. It will be

awakened and made ready to run again when the release it

was waiting for occurs. Blocking has higher overhead

since suspending and resuming a process involves the

operating system, but it makes the processor available to

other threads or processes that have useful work to do.

Busy-waiting avoids the cost of suspension but consumes

the processor and cache bandwidth while waiting.

Blocking is more powerful than busy-waiting because, if

the process or thread that is being waited upon is not

18

allowed to run, the busy-wait will never end. Software

implementations of synchronization constructs are usually

included in system libraries.

Synchronization in a DSM system uses atomic exchange

in message passing. A data transfer occurs whenever a

data in one storage element is transferred into another.

If one process sends a copy of a data (that is in the

sender's address space) into a region of the receiver's

address space, communication occur. A synchronization

operation must take place to indicate that the value is

ready to be read. The order of the event is of

importance since we can't receive a message before it was

sent. Events may be point-to-point, involving a pair of

processes, or they may be global, involving all processes

or a group, of processes for example: a barrier [4] .

A new definition about synchronization for

deterministic and non-deterministic order of processes

was established during a thesis discussion with Dr. E.

Gomez. The new definition of synchronization arrives

through the following process: assuming that there are

two possible relations between two or more processes for

any two given process. Processes can be executed at the

same time and order, or they can be executed not in the

19

same order. The time, is defined as T, and two processes

P and Q are in states j and k.

A semaphore is considered to be non-deterministic

since the order of which the processes are allowed to

enter to CS does not matter. And it may vary from one

execution of the program to the next (what matters is

that they do so one at a time). For example: process Pj

can enter CS before process Qk and can be expressed as

Pj < Qk• We need to measure time T such that for every

event Pj, we can assign it a time value T(Pj) and for

every event Qk we can assign a time value T(Qk) . This

must have the property that if Pj < Qk, then T(Pj) < T(Qk) -

Also, Process Qk can enter CS before processes Pj and can

be expressed as Qk < Pj. We can assign a time value T(Qk)

and for every event Pj we can assign a time value T(Pj) .

This must have the property that if Qk < Pj, then

T(Qk) < T(Pj) . We can conclude that the time that process

P can enter CS is not equal to the time that process Q

can enter CS as follows: T(Pj) != T(Qk) - If the order is

not the same for each execution it is non-deterministic.

In semaphore synchronization, processes can enter to CS

in any order they wish, therefore it is considered a

20

non-deterministic operation and it can be defined as

follows: T(Pj) != T(Qk).

On the other hand, the ordering of processes can be

considered to be deterministic if the event of happened

before exists. Which means that if event of process P

occurs before process Q, then Pj < Qk is true. Also, the

time value for processes P assigned as T(Pj) and the time

value for process Q assigned as T(Qk) . This time value

must have the property that if Pj < Qk, then T(Pj) < T(Qk) .

Therefore, order of events is deterministic and is

defined as follows: T(Pj) < T(Qk) .

A barrier is considered to be deterministic since

all processes can be released at the same time or in

order one after another. If process P is released at the

same time as process Q, then Pj - Qk. If time value T was

assigned to P, and the same time value was assigned to Q,

then T(Pj) is equal to T(Qk) . Therefore, barrier

synchronization can be defined as follows: T(Pj) = T(Qk)

or T(Pj) < T(Qk) .

In a DSM system, there is no global time. However,

time plays a major role in the synchronization of

processes. A computer timer is usually a precisely

machined quartz crystal. When kept under tension, quartz

21

crystals oscillate at a well-defined frequency that

depends on the kind of crystal, how it is cut, and the

amount of tension. However, it is impossible to

guarantee that the crystals in different computers all

run at exactly the same frequency. Lamport showed that

clock synchronization in a DSM system is possible by

pointing out that what matters is- that processes agree on

the order in which events occur, rather then agreeing on

the exact real time.

In order to synchronize (coordinate between

processes) and insure ordering of events in the system, a

set of formal rules describing how to transmit data,

especially across a network is needed. A barrier is a

point of global synchronization where all processes are

released from that point. While some processes are

waiting for all processes to arrive at the barrier,

latency arises in the synchronization operation.

Different algorithms to support synchronization problems

of event ordering, mutual exclusion, consensus, barrier

and semaphore will be introduced [20].

22

2.3 Event Ordering

It is sufficient that all machines agree on the same

time despite the absence of a global clock (time) in a

DSM system. According to Lamport, it is not essential

that the time to agree on will be the real time. The

concept of one event, is happening before another in a DSM

is examined, and is shown to define a partial ordering of

the events. A distributed algorithm is given for

synchronizing a system of logical clocks which can be

used to totally order the events.

2.3.1 Partial Ordering

The relation "happened before" is a partial ordering

of the events in the system. Lamport define the

expression a -> b as "a happens before b" which means

that all processes agree that first event a occurs then

event b occurs. If a and b are events in the same

process, and a occurs before b, then a -> b is true.

Also, if a is the event of a message being sent by one

process, and b is the event of the message being received

by another process, then a -> b is also true. A message

cannot be received before it is sent, or even at the same

time it is sent, since it takes a finite amount of time

to arrive. "Happens-before" is a transitive relation, so

23

if a -> b and b -> c, then a -> c. If two events, x and

y, happened in different process that do not exchange

messages, then x -> y is not true, but neither is y -> x.

These events are said to be concurrent, which means that

nothing can be said about when they happed or which is

first [20].

2.3.2 Total Ordering

To place a total ordering of events in the system,

an abstract point of view of time is introduced. Since

the definition cannot be based on a physical time, it

must be based on the order in which events occur. This

is done by assigning a number to an event. Where the

number is thought of as the time at which the event

occurred. Therefore, the clock condition must have the

property that if a < b then a time value C(a) < C(b). If

a is the sending of a message by one process and b is the

reception of that, message by another process, then C(a)

and C(b) must be assigned in such a way that everyone

agrees on the values of G(a). a-nd C(b) with C(a) < C (b) .

In addition, the clock time (C) must always go forward

(increasing), never backward (decreasing). Corrections

to the time can be made by adding a positive value, never

by subtracting one. Each message carries the sending

24

time according to the sender's clock. When a message

arrives and the receiver's clock shows a value prior to

the time the message was sent, the receiver fast-forwards

its clock to be one more than the sender time. This

operation is called a global clock. With one small time

addition, this algorithm meets the requirements for

global time. The time addition is such that between

every two events, the clock must tick at least once. If

a process sends or receives two messages in quick

succession, it must advance its clock by one tick in

between them. This description follows the illustration

in figure 1:

Figure 1. Lamport's Algorithm Corrects the Clocks

In some situations, an additional requirement is

desirable. That is, no two events ever occur at exactly

the same time. To achieve this goal, the number of the

process in which the event occurs can be attached to the

25

low-order end of the time, separated by a decimal point.

Using this method, time events can be assigned in a

distributed system, with the following conditions: if

event a happens before b in the same process,

C(a) < C(b). If a and b represent the sending and

receiving of a message, C(a) < C(b).

For all events a and b, C(a) != C(b). This

algorithm is a way to provide a total ordering for all

events in the system [20].

'2.4 Mutual Exclusion
Mutual exclusion is a way of making sure that if one

process is using a shared variable or file-, the other

processes will be excluded from doing the same thing.

Four conditions are needed in order to maintain mutual

exclusion:

1. No two processes may be simultaneously inside

their CS.

2. No assumptions may be made about speeds or the

number of CPUs.

3. No process running outside its CS may block

other processes.

26

4. No process should have to wait forever to enter

its CS [21].

2.4.1 Test and Set Lock (TSL) Instructions

If we are given assistance by the instruction set of

the processor we can implement a solution to the mutual

exclusion problem. The instruction we require is called

test and set lock (TSL). This instruction reads the

contents of the memory word lock, stores it in a register

and then stores a non-zero value at the address. This

operation is guaranteed to be indivisible; no other

process can access that memory location until the TSL

instruction has finished. The first instruction copies

the old value of lock to the register and then set lock

to 1. Then the old value is compared with 0. If it is

nonzero, the lock was already set, so the program just

goes back to the beginning and tests it again. Before a

process enters its CS, a process calls enter_region,

which does busy waiting until the lock is free. Then it

acquires the lock and returns. After the CS, the process

calls leave_region, which stores a 0 in lock [21].

2.4.2 Sleep and Wakeup

The pair Sleep and Wakeup are interprocess

communication that block instead of wasting CPU time when

27

they are not allowed to enter their CS. Sleep is a

system call that causes the caller to block, that is, to

be suspended until another process wakes it up. The

Wakeup call has one parameter, the process to be awakened

[21] .

2.4.3 Semaphores
A semaphore S in an integer variable that can be

accessed only through two atomic operations Wait and

Signal. Meaning, when one process is testing or

modifying the semaphore value, no other process can

modify the value [18]. There are two types of.

semaphores: a binary semaphore and a counter semaphore.

2.4.3.1 Binary Semaphore. A binary semaphore is a

semaphore with an integer value that can range only

between 0 and 1 [9]. If each process does a wait (down)

just before entering its critical region and signal (up)

just after leaving it, mutual exclusion is guaranteed

[21] .

2.4.3.2 Counter Semaphore. In a counter semaphore,

a process encounters a wait(s) command before it enters

into the CS and a signal(s) when it exits the CS. In the

wait(s) command, it checks to see if the CS is

accessible. If it is, it blocks the other processes by

28

decrement the semaphore value (s.value--;) and enters

into the CS. If another process tries to enter CS, it

adds its process id into the semaphore list and blocks

itself, wait. The process, who exits the CS, performs

signal(s) command. It increments the counter, removes

one of the process's id from the semaphore list, and wake

it up. There can be several ways of choosing a process

from the s.list: FIFO, Priority, Size, etc [9]. For

example,

Process 1 Process 2

{ - - - { • • •
} } ,
Wait(s) Wait(s)

CS CS
Signal(s) Signal(s)

2.4.3.3 Semaphore Counter Implementation. The

semaphore operation'can be defined as follows:

29

Type of struct
{

/‘Each semaphore has an integer value and a list of processes 7

Int value;
Int Sempahroe_List[max_proc];

} semaphore

Wait(S):
S.Value--;
If (S.Value < 0)
{

S.Semaphore_List <- pid; /* enter process id into the semaphore list. 7
block;

}
Signal(S): /‘A signal operation removes one process from the list of waiting processes,

and awakens that process. 7

S.Value++;
If (S.VIaue =< 0)
{

remove process P from the S.L;
wake up P;

}[9].__
Figure 2. Counter Semaphore

2.4.4 When We Don't Have Shared Resource

If there is no shared resource, there is no CS

problem. Therefore, there is no need for a semaphore.

When there is no shared resource, each processes has it's

own memory space and the scheduler takes a processes, run

it, and then make a context switch to a different

process.

2.5 Mutual Exclusion in a Distributed
Shared Memory System

To achieve mutual exclusion in a DSM system with a

single processor, several algorithms are being

introduced: One is the centralized algorithm, where one

30

process is elected as a coordinator. Whenever a process

wants to enter a CS, it sends a request message to the

coordinator and the coordinator sends -back a reply-

granting permission (if CS is available) to enter CS.

Another one is the Lamport's algorithm. It presents

total ordering of events in the system, where every

process agrees on the order of the timestamps. And the

last one is the token ring algorithm. When a process

acquires the token from its neighbor, it can enter the

CS, does its work, leaves -the region, and pass the token

to the next node.

2.5.1 A Centralized Algorithm

The centralized algorithm is the simplest way to

achieve mutual exclusion. One process is elected as the

coordinator. Whenever a process wants to enter a CS, it

sends a request message to the coordinator stating which

CS it wants to enter and asking for permission. If no

other process is currently in that CS, the coordinator

sends back a reply granting permission. When the reply

arrives, the requesting process enters the CS. Now, if

another process asks for permission to enter the same CS,

the coordinator knows that a different process is already

in the CS and cannot grant permission. In this case, the

31

coordinator will either block the waiting process or

reply "permission denied" while placing the request in a

queue. When a process exits the CS, it sends a message

to the coordinator releasing its exclusive access. The

coordinator then, takes the first item off the queue (of

the deferred request) and sends that process a grant

message.' This description follows the illustration in

figure 3:

Figure 3 Centralized Algorithm

This algorithm guarantees mutual exclusion because

the coordinator only lets one process at a time into each

CS. The requests are granted in the order in which they

are received and no process ever waits forever. This

method requires only three messages to enter and leave a

CS: a request, a permission to enter, and a release to

exit CS.

32

The disadvantage of this algorithm approach is that

the coordinator is a single point of failure. Therefore,

if it crashes, the entire system may go down. If

processes normally block after making a request, they

cannot distinguish a dead coordination from permission

denied since in both cases no message comes back. In a

large system, a single coordinator can become a

performance bottleneck.

2.5.2 Distributed Algorithm

The distributed algorithm, by Ricart and Agrawala's,

requires a total ordering of all events in the system.

Which means, for any pair of events such as messages, it

must be unambiguous which one happened first. When a

process wants to enter a CS, it builds a message which

contains the name of the critical region it wants to

enter, its process number, and the current time. It then

sends a message to all other processes, conceptually

including itself. The sending of messages is assumed to

be reliable, that it, every message is acknowledged.

When a process receives a request message from another

process, the action it takes depends on its state with

respect to the critical region named in the message.

These cases have to be distinguished: first, if the

33

receiver is not in the CS and does not want to enter it,

it sends back an OK message to the sender. Second, if

the receiver is already in the CS, it does not reply but

instead it queues the request. Third, if the receiver

wants to enter the CS but has not yet done so, it

compares the timestamp in the incoming message with the

one contained in the message that it has sent everyone.

The lowest one wins. If the incoming message is lower,

the receiver sends back an OK message. If the receiver's

message has a lower timestamp, the receiver queues the

(incoming) sender's request and sends nothing.

After sending out requests asking permission to

enter a CS, a process sits back and waits until everyone

else has given permission. As soon as all the

permissions are in, it may enter the CS. When it exits

the CS, it sends OK messages to all processes on its

queue and deletes them all from the queue. In case of a

conflict, the lowest timestamp wins and everyone agrees

on the ordering of the timestamps. This description is

follows the illustration in figure 4:

34

0

0 ©
Enters
critical

region •

Figure 4. Distributed Algorithm

This algorithm required n - 1 request messages, one

to each of the other process, and an addition n - 1 grant

messages, for a total of 2(n - 1).

The disadvantage of this algorithm is that if any

process crashes, it will fail to respond to requests.

This silence will be interpreted, as denial of permission

and the process cannot enter CS.

2.5.3 Token Ring Algorithm
Another approach to achieve mutual exclusion in a

DSM system is the token ring algorithm. This logical

ring is constructed in a way that each process is

assigned a position in the ring by a numerical order of

the network addresses or some other means. Each process

has to know who is next in line after itself. When the

ring is initialized, process 0 is given a token. The

token circulates around the ring and is passed form

process k to process k+1 in point-to-point messages.

35

When a process receives the token form its neighbor, it

checks to see if it is attempting to enter a critical

region. If so, the process enters the CS, does all the

work it needs to, and leaves the region. After it has

exited, it passes the token along the ring. It is not

permitted to enter a second critical region using the

same token.

If a process, is handed the token by its neighbor and

is not interested in entering a critical region, it just

passes it along. As a consequence, when no processes

want to enter any critical' regions, the token just

circulates at high speed around the ring. This

description follows the illustration in figure 5:

- , Token holder may
>. . . :enter critical

Figure 5. Token Ring Algorithm

In this algorithm, only one process has the token,

so only one process can be in a CS. Since the token

36

circulates among the process in a well-defined order,

starvation cannot occur. Once a process decides it wants

to enter a CS, at worst it will have to wait for every

other process to enter and leave one critical region.

The time varies from 0 (token just arrived) to n - 1

(token just departed).

Advantages: this algorithm allows only one process

in CS at a time. A dead,process will be detected when

its neighbor tries to give it the token and fails. Also,

a dead process can be removed from the group, and the

token holder can throw the token to the next member down

the line, or the one after that, if necessary.

Disadvantages: If the token is ever lost, it must be

regenerated. However, detecting that it is lost is

difficult, since the amount of time between successive

appearances of the token on the network is unbounded. If

a token has not been spotted for an hour does not mean

that it has been lost because someone may still be using

it [20].

37

2.6 Election Algorithms in
Distributed Shared

Memory System

Many DSM systems require that one process will act

as a coordinator. It is done by a group of processes

that choose one among them to be the leader

(coordinator). The existence of a leader is helpful

among processes communication and is helpful in achieving

fault-tolerance or in a deadlock situation. For example:

when a deadlock is created, due to processes waiting in a

cycle for each other, or in case of a hon-responding

process, this can be broken by electing one of the

processes as a new leader and removing the faulty process

from the cycle [2]. An election algorithms attempt to

locate the process with the highest process number and

designate it as the coordinator. Assume that every

process knows the process number of every other process.

The processes do not know which ones are currently up and

which ones are currently down. The goal of an election

algorithm is to ensure that when an election starts, it

concludes with all process agreeing on who the new

coordinator is to be.

38

2.6.1 The Bully Algorithm

When a process notices that the coordinator is no

longer responding to requests, it initiates an election.

A process, P, holds an election as follows: P sends an

election message to all processes with higher numbers.

If no one responds, P winds the election and becomes a

coordinator. If one of the higher-ups answers, it takes

over and P's job is done.

At any moment, a process can get an ELECTION message

from one of its lower-numbered colleagues. When such a

message arrives, the receiver sends an OK message back to

the sender to indicate that he is alive and will.take

over. The receiver then holds an election, unless it is

already holding one. Eventually, all processes give up

but one, and that one is the new coordinator. It

announces its victory by sending all processes a message

telling them that starting immediately it is the new

coordinator. If a process that was previously down comes

back up, it holds an election. If it happens to be the

highest-numbered process currently running, it will win

the election and take, over the coordinator's job. This

description follows the illustration in figure 6:

39

Figure 6. Bully Algorithm

2.6.2 Ring Algorithm

Another election algorithm is based on the use of a

ring, but without a token. Rings are a convenient

structure for message passing systems and correspond to

physical communication system [2].

Assume that the processes are physically or

logically ordered, so that each process knows who its

successor is. When any process notices that the

coordinator is not functioning, it builds an election

message containing its own process number and sends the

message to its successors. If the successor is down, the

sender skips over the successor and goes to the next

member along the ring, or the one after that, until a

running process is located. At each step, the sender

adds it's own process number to a list-message.

Eventually, the message gets back to the process that

40

started it all. That process recognizes this event when

it receives an incoming message containing its own

process number. At this point, the message type is

changed to COORDINATOR and circulated once again, this

time to inform everyone else who the coordinator is (the

list member with the highest number) and who the members

(from the list-message) of the new ring are. When this

message has circulated once, it is removed and everyone

goes back to work. The new coordinator does his job in

achieving mutual exclusion when a process wants to enter

CS [20] .

2.7 Barrier Synchronization

A barrier is a synchronization point in a parallel

program at which all processes participating in the

synchronization must arrive, before any of them can

proceed beyond the synchronization point [20]. A

software implementation of the barrier mechanism using

shared variables, especially in a shared-memory system

with multiple processors, has tow major drawbacks: one

is the execution of the barrier results in hot-spot

access. The second is that processes which are waiting

for other processes to reach the barrier cannot do any

41

useful work. While they are waiting, they are typically

spin on a lock and- waist CPU time.

A typical implementation of a barrier are created

with the use of spin on a lock. A lock that uses busy

waiting is called a spin lock. When a process spins on a

lock (variable), it spins on a loop until the shared

variable "release" is read 1. The problem is that in a

large scale shared-memory, especially if multi-processors

containing hundreds of processors communicate through a

shared memory, many processes are spinning on the lock

(variable), and the processes are continuously testing a

variable until the value 1 appears in the release

variable. Since only one process at a time can access

the shared memory "release", this implementation results

in memory hot-spot. Also, when a process is continuously

spins on a variable (lock), it results in busy waiting,

which wastes CPU time. This method is described as the

central barrier in the next section follows the

pseudocode in figure 7:

lock (counterlock); /"ensure update atomic */
if (count==0) release=0; /*first=>reset release */
count = count +1; /* count arrivals */
unlock (counterlock); /* release lock */
if (count==total) /* all arrived */
{

42

count=0; T reset counter 7
release=1; /‘release processes 7

}
else
{

spin (release—1); /* wait for arrivals 7

}[12].

Figure 7. Central Barrier

The central barrier algorithm uses busy wait.

2.7,1 Central Barrier

Central barrier is a software algorithm typically

implemented using a single lock, a single counter, and a

single flag, its length is of 0(N). In this algorithm, a

shared counter maintains the number of processes that

have arrived at the barrier and is incremented by every

arriving process. These increments must be mutually

exclusive. Assuming that there are N processes, the last

process that has arrived at the barrier checks to see if

the counter is equal to N. If not, it busy-waits on the

flag (flag = 0) associated with the barrier. If the

process is equal to N, it writes the flag to release the

N - 1 waiting processes (flag = 1), exit the barrier,

perform computation, and enter the barrier again.

However, if a process didn't see the flag change form the

first barrier before others have reentered the barrier

43

for the second time, it will continue to wait for the

flag to change to 1. It will never leave the spin loop

form the first barrier while the other processes may have

already entered the second instance of the barrier, and

the first of this will reset the flag to 0. But, the

flag will never reset to 1 since the previous processes

is still spinning on the flag.

Therefore, it is important to insure that all the

processes have to exit the previous barrier before

entering a new instance of a barrier. A solution to use

another counter to count the processes that leave the

barrier will increase latency and contention. Sense

reversal, which is described next, is a better solution

for this problem.

2.7.2 Centralized Barrier with Sense Reversal
This algorithm prevents processes form re-entering

the barrier before all processes have exited. It also

uses spin on a release. The use of a second counter to

count the leaving processes can incur latency and

contention. An alternate solution would be to have the

processes wait for different flag values on consecutive

instances of the barrier. A private variable is used per

process to keep track of which value to wait for in the

44

current barrier instance. A process needs two values 0

and 1 to toggle between each time. And they can be

toggled only when all processes reached the barrier. The

value of the flag is only changed once when all processes

have reached the new barrier instance [4]. This

description follows the pseudocode in figure 8:

BARRIER (bar_name, p)
{

local_sense=!(local_sense); /* toggle private sense variable 7
LOCK(bar_name.lock);
Mycount - bar_name.couter++; /‘mycount is a private variable 7
if (bar_name.count == p)

{
UNLOCK (bar_name.lock);
Bar_name.counter = 0; /‘reset counter for next barrier 7
Bar_name.flag = local_sence; /‘release waiting processes 7

}
else
{

UNLOCK (bar_name.lock);
While (bar_name.flag != Iocal_sense) {}; /*busy_wait for release 7

}
}[4]-

Figure 8. Centralized Barrier with Sense Reversal

2.7.3 Fuzzy Barrier
The fuzzy barrier algorithm, by Gupta, R., avoids

hot-spot accesses to a shared memory. It also avoids a

waiting process from not doing a useful work until all

participating processors reach the barrier

This algorithm works as follows. The barrier

includes a region of statements that can be executed by a

process while it awaits synchronization. Upon reaching

45

the first- instruction in the region, a process is ready

to synchronize. However, it can continue to execute the

remaining instruction in the region even if

synchronization has not yet occurred.

The barrier regions are constructed by a compiler

and consist of several instructions such that a process

is ready to synchronize upon reaching the first

instruction in this region and must synchronize before

exiting the region. The barrier can continue to execute

the remaining instructions in the region even if

synchronization has not yet occurred. The larger the

barrier region is, the more likely it is that none of the

processes will have to stall.

Instruction streams consist of barrier regions and

non-barrier regions. Where streams with no barrier

regions have no barrier synchronization and the barrier

region forces the processes to synchronize.

The fuzzy Barrier functions as follows: no processes

can execute an instruction form its respective

non-barrier region (U2) following the barrier region

until all processes have executed the instructions in

their respective non-barrier regions (Ul) preceding the

46

barrier region. This description follows the

illustration in figure 9:

Pl P2 Pn
Ol1 P2u| J" NON_BARRIER REGION (UNSHADED1)

REGION (SHADED)
TTP1

u2
TTP2

u2 NON_BARRIER REGION (UNSHADEDl)

Figure 9. Fuzzy Barrier

There are a few conditions that hold in a fuzzy

barrier for entering a region, exit a region, synchronize

and stalling. A process is considered to have exited a

region (barrier or non-barrier) of a stream if it has

completed the execution of all the instructions in that

region. A process is considered to have entered a region

if it has started the execution of an instruction form

that region. Processes can synchronize at the barrier if

and only if they have all exited their respective

non-barrier regions preceding the barrier region. A

process can enter a non-barrier region following a

barrier region if and only if synchronization has

occurred. Thus, if the synchronization has not occurred

when the process exits the barrier region, it is not

allowed to enter the non-barrier region and must idle,

47

and the execution of the stream is stalled. In short,

for a process to exit a non-barrier region it must

complete all instructions before it can. enter the barrier

region because of data dependency (that is forced by

iterations). A process that enters a barrier region

start executes instructions from this region and there is

no data dependency. This region forces all processes to

synchronize and then, only after the last processes

arrived, the processes can enter the non-barrier region

again.

In order to construct the barrier and non-barrier

regions the instructions that must be in the non-barrier

regions are identified. These instructions are referred

to as the marked instructions. All the instructions that

are starting with the first marked instructions and

ending at the last marked instruction are included in the

non-barrier region, and the remaining instructors are

form the barrier region.

Hot -spot accesses are avoided as the mechanism does

not rely upon shared memory to achieve synchronization.

This is done by implementing a mechanism in hardware,

where instruction streams are detected by the hardware to

ascertain when a process is ready to synchronize. All

48

participating processes are simultaneously informed of

this even, and when all of the processes have reached the

barrier, they simultaneously recognize that

synchronization has taken place [10].

A simple distributed way to coordinate the arrival

or release of processes is through a tree structure. By

distributing the variables among different memory modules

in the system the problem of memory contention is greatly

reduced. But, the process that is waiting for the last

process to arrive is busy waits on the variable.

Therefore, the use of spinning on a lock method is still

being used, which waist CPU time. The different ways of

tree structures are introduce as follows:

2.7.4 Software Combining Tree
Assuming a combining tree for synchronizing N

processes. The nodes of the tree represent variables

allocated from different memory modules in the system.

Each node contains a parent pointer, a counter that is

initialized to d, which is the number of children of each

node in the tree, and a notify filed used during the

notification of synchronization. The number of processes

(N) synchronizing at the barrier is an integer power of d

(N ~ dk). A process upon arriving at the barrier goes to

49

the leaf node assigned to it and decrements the counter.

If the counter is not zero there are other processes that

have not reached the barrier and the process remains at

that node and busy waits on the notify filed. If the

counter is zero, then it is the last process to arrive at

the node and it goes to the parent node and repeats the

above process until a process decrements the counter at

the root node to zero. Then, barrier synchronization

occurs [11]. The following example will illustrate a

binary combining tree, where the order in which four

processes Pi, P2, P3, P4 arrive at the barrier

as shown in figure 10(a):

respectively,

(e)(a) (b) (c) (d)

(a)Initial state, (b) Px decrements the counter (c) P2 decrement the
parent node. (d)P3 decrement the counter (e)P4 decrement the root node
to 0 .

Figure 10. Combining Tree

When process Pi arrives at the barrier, it goes to

the leaf node assigned to it and decrement the counter to

1, as shown in figure 10(b) . When process P2 arrives at

the barrier, it goes to the leaf node assigned to it and

50

decrements the counter (to 0). Then, P2 goes to the root

node and decrement the counter to 1, as shown in figure

10(c). When P3 arrives at the barrier, it goes to the

leaf node assigned to it and decrement the counter to 1,

as shown in figure 10(d). Finally, when the last

processes P4 arrives at the barrier, it decrements the

counter at the root node to 0 and barrier synchronization

occurs, as shown in figure 10(e).

Arcading to Gupta and Hil, the recursive algorithm

of an arrival of processes to determine - whether all

processes have reached the barrier is called the

recognition phase. When a process decrements the counter

at the root node to zero, barrier synchronization has

occurred and the notification through the notify field is

carried out. During the notification phase all processes

are notified about the occurrence of synchronization so

that they can continue execution.

The recognition phase needs to be considered two

cases. The first case deals with the situation in which

all processes arrive at the barrier simultaneously. The

second case arises when one of the processes arrives

later then all the other processes (Simultaneous arrival

51

is defined when one of the processes arrives before the

other enters the busy waiting stage).

During simultaneous arrival, the time to achieve

barrier synchronization is 0(dlogdN) . This is because d

processes arriving at a node must decrement counter one

at a time. Since there are logdN levels in the tree the

total time spent in synchronizing is 0(dlogdN) .

During non-simultaneous arrival, if all but one of

the processes has already arrived at the barrier, then

the last process must decrement the counter from the

lower most level to the root of the tree to detect

synchronization. This takes 0(logdN) in the detection of

barrier synchronization after the last .process has

arrived at the barrier.

For the notification phase it takes 0(dlogdN) time.

This is because the processes that reaches the root of

the tree has to go through logdN levels notifying the

processes and at each level it ensures that each on the

d - 1 processes receives the notification. In the

pseudocode (figure 11) the synchronization instructions

has the following form: <syncvar; test; oper>. The

syncvar is an integer synchronization variable allocated

in shared memory, test is a condition that is tested

52

prior to performing the operation on the synchronization

variable. If the test fails the operation is not formed

and the outcome of the test is sent to the process.

Process can issue the same instruction again or proceed

with execution. A star on the test condition (test*) is

used to indicate that the process will continue to issue

the instruction till it succeeds.

typedef struct node
{

int counter; //syncvar initial value = d
int notify; //syncvar initial value = 0
struct node *node;

}node;

ProcedureBarrier(node);
{
<node->counter; Null; Fetch(last)&Decrement>
if (last == 1)
{
/* d processes have arrived at node */
if(nod != root) Barrier(node.parent);
/* all processes have arrived at the barrier-begin

notification */
node->notify = d-1; /* notify siblings 7
/* wait for all siblings to notice 7
while(node->notify != 0);
/* reinitialize the current node 7
node->counter = d;
}
else
{

/* wait for notification and indicate receipt of
notification 7

<node->notify; (>0)*; Decrement
/* wait for all siblings to notice 7
while(node->notify !=0);
}

} [HI-___
Figure 11. Combining Tree-Pseudocode

53

This approach of combining tree also requires

busy-waiting at the nodes. Assuming that four processes

are arriving at the barrier in an order of Pi, P2, P3, P4

respectively. The nodes of the tree are labeled by the

processes busy-waiting at the nodes. When process P4

arrives, it has to go from the bottom of the tree, in

order to go to the root of the tree to recognize

synchronization. The adaptive combining tree is a way to

minimize latency at the barrier.

2.7.5 Adaptive Combining Tree

According to Gupta and Hil, the adaptive combining

tree achieves the appropriate tree structure dynamically.

The combining tree is originally organized as a binary

tree so that it can exploit maximum parallelism during

synchronization if the processes arrive simultaneously.

The adaptive tree is organized so that no process has to

visit multiple levels in the tree. When process P4

arrives, it recognizes synchronization immediately after

decrementing the counter at the root node. (It will go

directly to the root instead of going from the bottom of

the tree to the root, to announce that synchronization

occurred). This description follows the illustration in

figure 12:

54

Figure 12. Adaptive Combining Tree

Figure 12(a) is one step before the last process (P4)

arrives at the barrier. This step is the same step as in

figure 10(d). In figure 12(b) the last process to arrive

at the barrier (P4) goes directly to the root and

recognize synchronization.

This barrier implementation eliminates the latency

for barrier recognition in the non-simultaneous arrival

case. A binary tree is used to minimize the recognition

time in the simultaneous arrival case to 0(log2N) . The

notification process is also modified, resulting in a

barrier implementation that requires 0(log2N) time each

for recognition in the simultaneous arrival case and

performing the notification. The barrier is correctly

reinitialized, thus calling its repeated use in

synchronization [11]. In the next tree barrier with

local spinning, the processes are also busy-wait on a

55

loop until the last process arrives. However, the flag

to spin on can be allocated in the local memory of the

spinning processor rather than the one that goes up to

the parent level.

2.7.6 Tree Barriers with Local
Spinning-Tournament Barrier

This is a binary combining tree. In this case, the

barrier is performed without any atomic operations like

fetch & increment. It uses simple reads and writes as

follows: one process that arrives at each node is simply

spins on an arrival flag associated with that node. The

other processes that associates with that node, simply

write the flag when it arrives. The process whose role

was to spin now simply spins on the release flag

associated with that node while the other processes now

proceeds up to the parent node. This binary tree is

called a "tournament barrier", since one process can be

thought of as dropping out of the tournament at each step

in the arrival tree.

Another way to ensure local spinning is to use

P-node trees to implement a barrier among P processes,

where each tree node (leaf or internal) is assigned to a

unique process. The arrival and wake-up trees can be the

56

same, or they can be maintained as different trees with

different breaching factors. Each internal node

(process) in the tree maintains an array of arrival

flags, with one entry per child, allocated in that node's

local memory. When a process arrives at the barrier, if

its tree node is not a leaf, then it first checks its

arrival flag array and waits until its children have

signaled their arrival by setting the corresponding array

entries. Then it sets its entry in its parent's arrival

flag array and busy-waits on the release flag associated

with its tree node in the wake-up tree. When the root

process arrives and when all its arrival flag array

entries are set, this means that all processes have

arrived. The root then sets the release flags of all its

children in the wakeup tree. These processes break out

of their busy-wait loop and set the release flags of

their children, and so on until all process are released

[4]. This description follows the pseudocode in figure

13: (with the assumption of an arrival tree of branching

factor 4).

57

Struct tree_node
{

struct tree_node ‘parent;
int parent_sense = 0; T set flag to 0 7
int wkup_child_flags[2]; /* flags for children in wake-up tree 7
int child_ready[4]; /‘flags for children in arrival tree 7
int child_exists[4];

}
/‘nodes are numbered form 0 to P-1 level-by-level starting from the root 7

struct tree_node tree[P]; /* each element (node) allocated in a different memory 7
private int sense =1, myid;
private me = tree[myid];

barrier()
{

while (me.child_ready is not all TRUE) {}; /* busy-wait 7
set me.child_ready to me.child_exits; /* reinitialize for next barrier call 7

/* set parent’s child_ready flag, and wait for release 7
if (myid != 0) /* if process is not the root node 7

{

tree[
myid -1

4
].child_ready[(myid-1) mod 4] = true; /* find the parent and set arrival

flag array to true 7
while (me.parent_sense != sense) {}; /‘still busy wait 7

}
me.child_pointers[0].parent_sense = me.child_pointers[1].parent_sense = sense; /* release 7
sense = isense;
}[4]
Figure 13. Tree Barriers with Local Spinning-Tournament

Barrier-Pseudocode

The above code will be

illustration in figure 14:

followed by an the

58

Figure 14 Tree Barriers with Local Spinning-Tournament

Barrier

59

Figure 14 (a) is. the' initial state. 14(b) process P3

arrives

barrier.

at the barrier. 14(c) process P4 arrives

barrier.

at the

14(e). 14(d) process P5 arrives at the

process P6 arrives at the barrier. 14(f) process Pi

arrives at the barrier. 14(g) process P2 arrives at the

barrier. 14(h) the root (Po) releases its children.

14(i)Pi and P2 release their children.

2.7.7 My Algorithm
In my algorithm's implementation instead of using a

busy-wait on the lock, I use the block operation. Each

process that arrives at the barrier registers itself into

a list, which I called it a barrier-list. If a process

is not the last one to arrive, it goes to a block state

and "go to sleep". The last process that enters the

barrier-list wakes up the processes from the list and

they are released in an orderly manner from the barrier.

In this case, the block operation does not waist CPU

time, and the control is transferred to the CPU

scheduler, which selects another process to execute.

2.8 Consensus

In order to investigate if a barrier can be a

semaphore and if a semaphore can be a barrier, we need to

60

investigate whether a barrier will work under fixed

number of processes and whether or not a barrier is a

consensus problem. Also, we need to know if we can

arrive at consensuses in a synchronized network.

Consensus and synchronization are related because we can

synchronize if we can arrive on consensus. However, if

we can agree on synchronization can we get consensus?

2.8.1 What is Consensus?

When a system is free of failures, an agreement can

easily be reached among processes. A consensus protocol

is correct if it meets the following conditions:

consistency, validity and termination. The consistency

condition exists if all processes agree on the same value

and all decisions are final. The validity condition

exists if the input value is valid (exist). The

termination condition will take place if each process

decides on a value within a finite number of steps. For

example: assuming that two people are communicating with

each other through an e-mail, trying to make an

appointment. The consistency condition would be violated

if one of them will wait alone. The validity condition

would be violated if neither of them went to the meeting

61

place, and the termination condition would be violated if

they never agreed.

Reaching an agreement requires that each process has

its own initial value and all non-faulty processors must

agree on a single'common value. For- example: if the
‘ ■ 1

initial value of every non-faulty process is v, then they

agree upon a common value v [18]. Another example is:

that all process must agree on a binary value, based on

the votes of each process. They must all agree on the

same value, and that value must be the vote of at least

one process (they can't decide on 1 when they all voted

for 0) .

In a DSM system, each process may vote on whether to

commit a particular transaction, and if a single process

votes no, then the decided value must be no and all

processes must abort the transaction [2].

However, consensus in the presence of faults is

difficult because the systems have different levels of

synchrony or different kinds of failures. In considering

a synchronous message passing systems (message system is

completely reliable) two kinds of failures can occur: one

kind is the Benign (Fail-stop), which causes a process to

die at any time and stop participating in the algorithm.

62

The second kind are the Byzantine failures, where a

process sends incorrect information possibly according to

a malevolent plan. They can also send conflicting values

to other processes and preventing them from reaching an

agreement. Byzantine failures in asynchrouns systems are

either equivalent to those in synchronous systems (if the

malevolent process sends messages) or equivalent to

fail-stop failures [2].

A protocol that can tolerate up to t Byzantine

failures processes is said to be t-Byzantine resilient

and is sometimes called a Byzantine protocol. In the

absence of good ways of characterizing the kinds of

failures that can occur, protecting against Byzantine

failures is a conservative approach to a reliable system

design [7].

In a DSM system, all non-faulty processes should be

able to reach a common agreement even if certain

components in the system are faulty. Therefore,

non-faulty processes need to be free from the influence

of faulty processes. If faulty processes are dominant in

number, they can prevent non-faulty processor from

reaching a consensus [18].

63

2.8.2 Discussion

In a synchronous system we can arrive at consensus

if we know the diameter of the network or the number of

processes. In this case, the process will eventually

terminate (finish the execution), and we can also

determine its failure. However, if the network is

synchronized, but we have no knowledge of the network we

don't know how long it will take for a process to arrive.

Another question to consider is how can we halt on a

network with an arbitrary and a finite size? If at some

point we get no feedback, we don't know if it is a

faulted system or not. It could be that there is a nod

that is further, and the message didn't arrive yet.

Therefore, we need to know something about the network in

order to arrive- at consensus. If -we know the diameter of

the network, we can count the network. Assuming that the

number of processes is known, then the system is

synchronized and there is no process failure. Then, all

processes that agree to send messages and to wait for

confirmation eventually we will get the answer. If one

process fails, then-we don't get consensus.

In order to determine what kind of necessary

assumptions are needed in order to reach consensus,

64

several algorithms will be summaries in a table. The

table will present how consensus can be reached in

synchronous and in asynchronous systems with the

necessary assumption for each algorithm. In addition,

the final results are summaries for each algorithm. A

detailed algorithm description will follow the summary

table.

Table 1. Consensuses in Asynchronous System

Algorithm Name Authors Assumptions Results
"Impossibility of
Distributed
Consensus with
One Faulty
Process"

Fisher
et al.

No upper bound on
message delay
Reliable message
system
N processes
Processes do not
have access to
synchronized clocks
(can't use time out
algorithm)
Cannot detect a
death of a process
(can't tell if its
dead or just runs
very slow)
Processes are
modeled as automata
Atomic broadcast
Every message is
eventually delivered
as long as the
destination makes
infinitely many
attempts to receive

Possibility of
non
termination
Can't tolerate
even a single
unannounced
process death
Stopping of a
single process
at an
inappropriate
time can cause
failure to
reach
agreement

65

Algorithm Name Authors Assumptions Results
"Reaching
Approximate
Agreement in the
Presence of
Faults"

Lynch et
al.

Lower bound
No upper bound on
message delay assume
Each process input a
real value rather
than a binary value
All processes must
eventually decide on
a real values within
£ of each other.
Fixed number of N
processes
t-maximum number of
faulty processes
conditions holds:
1. all correct
process eventually
halt with output
values within £ of
each other.
2. the value output
by each correct
process must be in
the range of initial
values of the
correct processes
Each process waits
for n-t messages at
each round
All correct

processes can halt

at different times

Exact
consensus is
impossible
£ can be chosen
to be
arbitrarily
small to get
as close to
consensus as
desired
convergence is
guaranteed
when n>5t

66

Algorithm Name Authors Assumptions Results
"Unreliable
Failure Detectors
for Reliable
Distributed
Systems"

Chandra
and
Toueg

Arbitrary time bound
No bound on message
latency
Abstract properties
N processes
Every process p is
equipped with a
failure detector
Four classes of
failure detectors:
P, S <>P, and <>S.
Where, P > S and
<>P > <>S.
Have two properties:
completeness and
accuracy.
Completeness:
failure detector
eventually suspect
every process that
crashes
Accuracy: restricts
the mistakes that a
failure detector can
make
Solving consensus
for failure
detectors of class
S:
Satisfies strong
completeness and
week accuracy, at
least one correct
process is never
suspected
Solving consensus
using failure
detectors of class
<>S:
Satisfy strong
completeness and
eventual week
accuracy, there is a
time after which
some correct process

If there are
no
restrictions
on upper bound
and it takes
infinite time
to wait for
reply,
therefore the
results are
un-computable.

67

Algorithm Name Authors Assumptions Results
is never suspected,
f < \n/2\

Faulty processes are
are less than half
at least f"(r) +1)/2~]
processes are
correct
coordinator has a
priori knowledge
during round r:
c=(r mod n)+1
Solving consensus of
class <>W:
It satisfied the
weak completeness
and the eventually
week accuracy (which
means that
eventually some
conditions must hold
for a sufficiently
long period of time
until termination)
Weak Completeness-
there is a time
after which every
process that crashes
is permanently
suspected by some
correct process

68

Table 2. Consensuses in Synchronous System

Assumptions Authors Assumptions Results
"Reaching
Approximate
Agreement in the
Presence of
Faults"

Lynch et
al.

Byzantine
failures
Each process
input a real
value
All processes
must decide on
a real values
within e. of
each other.
Fixed number of
N processes
t-maximum
number of
faulty
processes
conditions
holds:
1. all correct
process
eventually halt
with output
values within e
of each other
2.. the value
output by each
correct process
must be in the
range of
initial values
of the correct
processes
Default value
is chosen for a
faulty process
All correct
processes can
halt at
different times

e can be chosen to
be arbitrarily
small to get as
close to consensus
as desired
convergence is
guaranteed when
n>3t

69

2.8.3 Consensus in Asynchronous System
In a fully asynchronous model, no assumptions are

made about relative speed of the processes or the delay

time in delivering messages. Therefore, there is no way

to tell whether the sender has failed or is just running

very slowly [7] . In asynchronous system, computations do

not proceed in lock steps; a process can send and receive

messages and perform computation at any time [18].

2.8.3.1 Impossibility of Reaching Consensus.

Fischer et al., assumes unbounded message delay in

delivering a message, unbounded processes' speeds, and

processes do not have access to synchronized clocks.

Since asynchronous system has no upper bound restrictions

on message delay, during execution a delay of a process

can cause the entire algorithm to wait indefinitely and

there is a possibility of non-termination. Every process

that waits for a response might wait forever and we don't

know if it's ever going to answer; the stopping of a

single process at an inappropriate time makes it

impossible for a process to tell whether another process

has died (stopped entirely) or just running very slowly.

In the asynchronous system, every message might

eventually delivered as long as the destination process

70

makes infinitely many attempts to receive. Also,

messages can be delayed, can be arbitrarily long, and can

be delivered out of order. Base on these assumptions, in

asynchronous distributed system there is no protocol that

can guarantee consensus even if a single process can fail

by stopping [8].

2.8.3.2 Reaching Approximate Agreement. Lynch et

al. says that the article that introduces the approximate

agreement algorithm contradicts the result of Fischer et

al. (which say. that consensus in the present of a faulty

process cannot be achieved). However, this article

actually supports Fisher's theory. Not only that Lynch

et al. develop a consensus algorithm with no upper bound

on time delay, they assuming a lower bound only on a

convergence rate to reach consensus. This means that the

time of a message delay can be arbitrarily long. In

order to reach consensus in asynchronous system, we need

to add some restriction on time bound. If we add an

upper bound on message delay we get synchronous system.

The goal of Lynch et al. is to reach an approximate

agreement rather than an exact agreement. This algorithm

works by successive approximation, with provable

71

convergence rate that depends on the ratio between the

faulty processes and the total number of processes.

The algorithm worked with the assumption is that

each process inputs a real value rather than a binary

value. Also, assuming a fixed, pre-assigned e > 0 (as

small as desired). The approximate agreement algorithm

must satisfy the agreement and Validity condition. The

agreement condition satisfies that all correct processes

eventually halt with output values that are within £ of

each other. For example, if two processes in T (subset

with non-faulty processes) enter halting states with

values r and s, respectively, then |r - s| < E . The

validity condition satisfies that the value output by

each non-faulty process must be in the range of initial

values of the non-faulty processes. For example, if a

process in T enters a halting state with value r, then

there exists processes in T having x and y as initial

values, such that x < r < y.

The algorithm works by successive approximation. At

each round, until termination is reached, each process

sends its latest value to all processes (including

itself). Each process only waits for n-t messages

72

(where t are faulty processes and n are the total number

of processes). For example, at round h, each non-faulty

process p performs the following steps: process p labels

its current value with the current round number h, and

then broadcasts this labeled values to all processes,

including itself. Process p waits to receive exactly

n - t round h values and collects these values into a

multiset V. Since there can be at most t faulty

processes, process p will eventually receive at least

n - t round h values.

On receipt of a collection V of values, the process

computes a certain function f(V) as its next value. The

function f is a kind of averaging function. In this way,

every round gets closer to the goal with a guaranteed

convergence rate. In the asynchronous system,

convergence is guaranteed when n > 5t [5].

Would like to note that the approximate agreement

algorithm works like the fuzzy barrier synchronized

algorithm. The fuzzy barrier doesn't have an exact

synchronization point. The barrier region has a range of

statements in which synchronization can take place.

Where in the approximate agreement, we don't have an

73

exact consensus value; the output value halts within a

range of £.

2.8.3.3 Unreliable Failure Detector. This article

also says that it contradicts the theory of Fisher et al

(exact agreement with guaranteed termination is not

possible in an asynchrony system even with only one

faulty process). On the contrary, it supports Fisher's

theory. This article presents a mechanism of failure

detectors that maintain a list of faulty processes.

However, the failure detectors can make mistakes by

entering a correct process to the list. This consensus

algorithm allows up to infinite number of mistakes. Thi

applies that if there can be infinite number of failure

there is also an infinite time to wait for a reply.

Therefore, there is an applied assumption that there is

an arbitrary time bound; there are no restrictions on

upper bound for message delay and the results are

un-computable.

The algorithm of Chandra and Toueg unreliable

failure detectors, works as follows: unreliable failure

detectors can be characterize in terms of two properties

completeness and accuracy. In general, completeness

74

requires that a failure detector eventually suspect every

process that actually crashes, while accuracy restricts

the mistakes that a failure detector can make.

Certain failure detectors allows any number of

process failures, while other failure detectors require a

majority of correct processes. This depends on the

hierarchy that the failure detectors form. The failure

detectors allow different number of mistakes; a correct

process can erroneously be added to the list of processes

that are suspected to have crashed. Base on mistakes and

repentance (the mistaken process is removed form the list

of suspected processes) a hierarchy of failure detector

is being chosen.

Four classes of failure detectors P, S, <>P, and

<> S satisfies the strong completeness are needed to be

presented. The strong completeness property satisfies

the condition that eventually, every faulty process is

suspected by every correct process. Where, P > S and

<> P > <>S. Therefore, algorithm that will solve

consensus for S will solve for P, and algorithm that will

solve consensus for <> S will solve for <> P. The

consensus algorithm that uses S tolerates any number of

75

failures. In contrast, the one that uses <>S requires a

majority of correct processes, the use of them depend on

the number of mistakes that the failure detectors can

make.

One of the central assumptions about the

asynchronous system is that a death of a process cannot

be detected and therefore we cannot distinguish a dead

process from a slow one. The failure detectors keep a

list of processes, which it thinks has crashed, and could

regularly inspect each process .to update its list. Since

failure detector can make an infinite number of mistakes,

each local failure detector module can repeatedly add and

then remove correct processes form its list of suspect.

all processes may be erroneously added to the lists of

suspects at one time or another. With maximum number of

mistakes that a failure detector it can solve consensus

using class <>S.

Class <>S is a class of failure detectors that

satisfy only strong completeness and eventual weak

accuracy property such that: (strong completeness)

eventually, every faulty process is suspected by every

correct process and (eventual weak accuracy) there is a

76

time after which some correct process is never suspected

by any correct process [14].

To solve consensus using <>S, the assumption is that

the maximum number of faulty processes (f) is less than

half, f < |”n / 2~| . That at least ["(n 4- 1) / 2~| processes are

correct. Also, assuming that all processes have a priori

knowledge of the list of (potential) coordinators; during

round r, the coordinator is process c = (r mod n) +1.

All messages are either to or from the "current"

coordinator. Every time a process becomes a coordinator,

it tries to determine a consistent decision value. If

the current coordinator is correct and is not suspected

by any surviving process, then it will succeed, and it

will broadcast this decision value. At each round every

process sends its current estimate of the decision value

times-stamped with the round number in which it adopted

his estimate, to the current coordinator (c). The

coordinator gathers [”(n + 1) / 2~| such estimates, selects the

one with the largest timestamp, and sends it to all the

processes as their new estimate. If c is a correct

process, every process sends an acknowledgement (ack) to

c to indicate that it adopted the new estimate. If the

77

processes suspects that the c crashed, they send nack,

not acknowledgement to c. The coordinator c waits for

[~(n + 1) / 2~] repl ies (acks or nacks). If all replies are

acks, then c knows that a majority of processes changed

their estimates to the new one and c broadcast the new

decision value.

Consensus using failure detector of class S,

satisfies strong completeness and weak accuracy, at least

one correct process is never suspected. This algorithm

tolerates up to n -'1 faulty process (in asynchronous

systems with n process), any number of process failures.

The algorithm runs through three phases. In phase

one, processes execute n - 1 asynchronous rounds during

which they broadcast and send their proposed values.

Each process p waits until it receives a round r message

from every process that is not in Dp (failure detector

list) before proceeding to round r + 1 (if message q is

added to Dp, while p is waiting for a message from q, p

stops waiting for q's message and proceeds to round

r + 1). In phase two, correct processes agree on a

vector Vp, based on the proposed values of all processes.

The ith element of this vector either contains the

78

proposed value of process pi or null. This vector

contains the proposed value of at least one process. In

phase three, every correct process decides on the first

non-null value and this satisfies termination of

consensus. No process decides more than once.

According to Chandra and Toueg consensus is also

solvable using class <> W, the weakest class of failure

detectors, in asynchronous systems with f < [~n / 2~]

(maximum number of faulty processes is less than half).

Failure detectors could make mistakes and can be

used to solve consensus despite such mistakes. A mistake

occurs when a correct process is erroneously added to the

list of processes that are suspected to have crashed. If

a process learns that its failure detector module made a

mistake, it takes a corrective action, repentance. For

example, suppose failure detector module at process p

erroneously adds q to Dp at time t. Then, p sends a

message toq and receives a reply. This means that q had

not crashed at time t and p knows that the module made a

mistake about q and the failure detector module at p

takes the corrective action of removing q from Dp. The

property for repentance is defined as follows: if a

79

correct process p eventually knows that q had not crashed

at time t, then at some time aft t, q is removed.

The hierarchy of repentant failure detectors differ

by the maximum number of mistakes they can make and

defined as flows:

1. SF(k)-the class of strongly k-mistaken failure

detectors (D makes at most k mistakes).

2. SF: the class of strongly finitely mistaken

failure detectors (D makes a finite number of

mistakes).

3. WF(k): the class of weakly k-mistaken failure

detectors (there is a correct process p such

that D makes at most k mistakes about p).

4. WF: the class of weakly finitely mistaken

failure detectors (there is a correct process p

such that D makes a finite number of mistakes

about p)

The hierarchy above is summaries as follows:

SF(0) > SF(1) >...SF(k) > SF(k+l) >...> SF. A similar

order holds for the WFs where SF> WF [3] . This

description follows the illustration in figure 15:

80

;H j

tor <*11 f <

,vr(o) - s- m

t '-.tisi tt'W «ak<ibl>
Itf ;■ yS vlV (wr«kesft)‘

Figure 15. Hierarchy of Maximum Number of Mistakes that

can be Made

2.8.4 Consensuses in Synchronous System

Systems in which there is a finite bounded delay on

the operations of the processes■and on their

intercommunication are said to be synchronous. In such

systems, unannounced process deaths, as well as long

delays, are considered to be faults [5].

In synchronous computation, processes in the system

run in lock step manner, where in each step, a process

receives messages, performs computation, and sends

messages to other process. A step of synchronous

computation is also referred to as a round. In

81

synchronous computation, a process knows all the messages

it expects to receive in a round.[18].

2.8.4.1 Approximate Agreement. According to Lynch

et al., the algorithm of the approximate agreement is

about reaching an agreement rather then exact agreement.

This algorithm works with the assumption that processes

are allowed to terminate at different times, meaning that

there is no upper bound on message delay. But,

synchronous system must restrict an upper bound and

should guaranty termination in a bounded time, which Lych

et al. fail to reach. If we don't have an upper bound on

message delay the system can be looked at as asynchronous

system. Since this algorithm doesn't guarantee

termination in a bounded time, the proof is incomplete

and the algorithm is un-computable. Although they don't

prove the approximate algorithm, it seems that it could

be proven correctly with an upper bound limit.

The algorithm works as follows: each process inputs

a real value rather than a binary value. Also, assuming

a fixed, pre-assigned e > 0(as small as desired). The

approximate agreement algorithm must satisfy the

following two conditions: all correct processes

82

eventually halt with output values that are within eof

each other, and the value output by each non-faulty

process must be in the range of initial values of the

non-faulty processes.

The algorithm works by successive approximation. At

each round, until termination is reached, each process

sends its latest value to all processes (including

itself). This algorithm is the same as in the

asynchronous system except that if a faulty process does

not send a value, then some default value, say 0, is

chosen. For example, at round h, each non-faulty process

p performs the following steps: process p broadcasts its

current value to all processes, including itself. Then,

process p collects all the values sent to it at that

round into a multiset V. If p does not receive exactly

one correct value from some particular other process

(meaning the other process is faulty), then p simply

picks some arbitrary default value to represent that

process in the multiset. The multiset V, therefore,

always contains exactly n values.

On receipt of a collection V of values, the process

computes a certain function f(V) as its next value. The

83

function f is a kind of averaging function. In this way,

every round gets closer to the goal with a guaranteed

convergence rate. In the synchronous system, convergence

is guaranteed when n > 3t. The function f is chosen to

eliminate the lowest and highest t values from the list

and take the average of the rest. The faulty processes

are unable to affect the convergence of the values [5].

Because of the algorithm assumption, which contradicts

the assumption of synchronous system, this algorithm is

un-computable.

2.8.5 Conclusion

Consensus allows processes to reach a common

decision based on the votes of each process. In order to

reach consensus, we need to make assumptions about the

system; we need to know whether the system is synchronous

or not. If there are restrictions on upper bound on

massage delay and if we know the number of participating

processes in the system, the system is synchronous.

A distributed system is asynchronous if there is no

upper bound on message delay or on the time necessary to

execute a step. The impossibility result to reach

consensus, by Fisher et al., for example has difficulty

of determining whether a process has actually crashed or

84

is only running "very slow." Asynchronous system depends

oh how we define time. If we choose an arbitrary long

time as an upper bound, we have the possibility of a

process never terminate. A process can wait

indefinitely, but eventually in a million years will

terminate which is just as good as non-termination.

Therefore, asynchronous system is un-computable.

To arrive at consensus and get a response from

another processes we need a restricted upper bound on

time. If we restrict a time bound on an asynchronous

system we get synchronous system. Then, we, can

successfully exchange messages and receive

acknowledgments and consensus can be reached. Once there

is a successful message exchange, synchronization occurs.

Therefore, if we can't reach consensus we can't

synchronize.

2.9 Summary
Chapter Two consists of a discussion of the relevant

literature to the taxonomy of synchronization in DSM. In

a DSM system there is no global clock or a set of

perfectly synchronized clocks. According to Lamport's

algorithm, the use of logical clocks can determine the

85

exact time relation in which two events occur. A further

definition for synchronization in discussions with Dr. E.

Gomez is introduced. Where there can only be two kinds

of time relation between events: deterministic or non

deterministic. In a deterministic time relation between

events, a process with a lower timestamp can be released

before a process with a later timestamp, or processes can

be released all at once in the same timestamp. On the

other hand, in the non-deterministic approach, processes

are not released in an orderly manner.

Mutual exclusion in a distributed environment can be

implemented in a variety of ways. In a centralized

approach, one of the processes in the system is chosen to

coordinate the entry to the CS. In the distributed

algorithm approach, the decision-making is distributed

across the entire system and is based on the

event-ordering scheme. A token ring algorithm is a

distributed algorithm, which is applicable to

ring-structured network with the approach of token

passing. Many distributed algorithms require a

coordinator. Therefore, two ways of electing a

coordinator were presented, the bully algorithm and the

ring algorithm. Where, in the bully algorithm, the

86

process with the higher number holds the election. In

the ring algorithm, at each step along the ring, the

sender adds its own process number to a list while

sending a message to its successor. The coordinator is

the list member with highest number.

A semaphore is a non-deterministic synchronization

tool that can be used to solve mutual exclusion problem.

The relation between times- of events in a semaphore is

the same as the one in the non-deterministic

synchronization. In a counter semaphore, S is an integer

variable that is accessed only through two standard

atomic operations: wait and signal. The wait and signal

operations are executed indivisibly. When a process

executes the wait operation and finds that the semaphore

value is not positive, it must wait and block itself into

a waiting queue. A blocked process should be restarted

when some other process executes a signal operation,

which changes the waiting state to the ready state. The

process is then placed in the ready queue. A binary

semaphore is a semaphore with an integer value that can

range only between 0 and 1, where the initial value is 1.

Binary semaphores are used to create mutual exclusion,

87

because at any given time only one process can get past

the wait operation.

Counting semaphores are used to synchronize access

to a shared resource by several concurrent processes,

which allow control on how.many processes can

concurrently perform an operation. This is relevant for

my thesis because I need so see if I can make a barrier

out of semaphore, and with the use of the list in the

counter semaphore I can create a barrier. I will also

need to see what can be done to make a semaphore

deterministic in order’ to investigate if semaphore can

become a basic synchronization mechanism.

Barriers are another synchronization mechanism,

which are intended for groups of processes. They have

the rule that no process may proceed into the next phase

until all processes are ready to proceed to the next

phase. Once the processes are release, they can be

released all at once or in an orderly manner, which

become the same definition as the deterministic

synchronization. This information is relevant in order

to make a further investigation if a barrier is indeed

the basic synchronization mechanism unit, or if we can

make any synchronization from any synchronization.

88

This chapter has explored many designs aspects of

barrier synchronization algorithms through software. In

the centralized barrier, all processes use the same lock

to increment the same counter when they signaled their

arrival, and all waited on the same flag variable until

they were released. On a large machine, the allowing for

all processes to access the same lock and to read and

write the same variable can lead to a lot of traffic and

contention and the use of a tree structure reduces hot

spots. Also, a tree structure is a distributed way to

coordinate the arrival or release of processes. It is

another message-based mechanism that is used to

synchronize between pairs of processes.

Some barrier algorithms were presented as solutions

to reduce latency of the waiting processes at the

barrier. For example, the software-combining tree

reduces memory contention by replacing the single lock

and counter of the centralized barrier by a tree of

counters. In the adaptive software-combining tree, the

processes that arrive early at the barrier adapt the

combining tree so that it'has a structure appropriate for

reducing the latency for the processes that arrive later.

In addition, the fuzzy barrier mechanism reduces the

89

idling of processes at the barrier by allowing the

processes to execute useful instructions while they are

waiting at the barrier.

In the consensus problem, a group of processes has

to arrive at a common decision; a set of processes must

all agree on a decision based on their initial states.

Consensus can be easy or difficult to achieve depending

on the kind of the system (synchronous or asynchronous)

and the algorithm assumptions. The assumptions have a

large impact on what can be achieved in practice. If an

upper bound on time is defined in a system, the system is

synchronous and consensus can be reached. If the upper

bound on message delay is arbitrary long, and only lower

bound is assumed, then the system is asynchronous and

consensus can't be reached.

Techniques such as "reaching approximate agreement

in the presence of faults" by Lynch at el. and

"Unreliable failure detectors for reliable distributed

system" by Chandra and Toueg suggested that it is

possible to reach consensus in asynchronous system.

However, they do not assume an upper bound on message

day, only an arbitrary upper bound which actually

supporting Fisher et al.'s theory, that consensuses can't

90

be achieve in asynchronous system. Since an upper bound

is not declared, we cannot tell if a process has died or

if it is just very slow in sending its message.

Moreover, in reaching consensus in synchronous system,

Lych at el., in the approximate algorithm, arrive at

incomplete proof because there is no restriction on upper

bound. However, it seems like it could be proven with an

upper bound and therefore could guarantee fault tolerant.

This algorithm also opens the door to a new area in

synchronization. It could apply that different relation

pairs of processes might interact with each other during

one synchronization; this could be defined as partial

synchronization and might reach approximate consensus.

Also, this algorithm resembles the Fuzzy barrier because

it doesn't have an exact synchronization point. Instead,

the Fuzzy barrier has an approximate synchronization

point.

Since a barrier is a form of synchronization and a

semaphore is a form of synchronization, a further

investigation is needed in order to find out if a

semaphore can be considered a barrier. In other word, a

further investigation is needed to find out if a barrier

91

and a semaphore are reducible to each other. This will

be discussed in Chapter Three, Methodology.

92

CHAPTER THREE

METHODOLOGY

3.1 Introduction

Chapter Three documents the steps used in the

Methodology of the thesis. Specifically, showing that a

barrier can be used as a semaphore and a semaphore can be

used as a barrier.

3.2 Obstacle
First, the standard semaphore is non-deterministic.

Which means, the order in which processes are allowed to

enter to CS does not matter. But, in a DSM system, the

order of events is important since we can't receive a

message before it is sent. How can we make the semaphore

deterministic?

Second, for instance, let assume that three

processes pi, p2, and p3 want ,to enter into CS and a

barrier replaces semaphore. By doing so, we receive a

chaotic result. This is because the processes that are

waiting for each other at the barrier are released all at

once into the CS; this operation violates mutual

exclusion. Therefore, there must be some mechanism to

93

coordinate processes during the release stage, before

entering CS.

My new algorithms are a solution for this problem.

They combine some features of barrier and some of the

counter semaphore and it works as follows. If we place a

barrier instead of a semaphore, before the CS, and modify

the way processes are released from the barrier list, the

same concept as the list semaphore counter, mutual

exclusion is not been violated. What actually happens is

that processes are waiting for each other at the barrier

point, and are released sequentially (one after another).

Processes can be released one after another according to

FIFO, priority, or size, etc.

3.3 My Algorithm

My two new algorithms, Algorithml and Algorithm2 are

presented. In Algorithml, all processes are released all

at once at the barrier point. In Algorithm2, processes

are released sequentially, one after another, using a

signal. In Algorithml I am making a barrier from a

semaphore. In Algorithm2 I am making a semaphore from a

barrier. The pseudocode for these algorithms is located

in page 95 and in page 97 of this thesis.

94

3.3.1 Making a Barrier from a Semaphore

In Algorithml, figure 16, each process that enters

the barrier increments.the counter (which counts the

number of processes arrive at the barrier point), enters

its process id into a local (barrier) list, and block

itself. This step is repeated until the Nth process

(last process) arrives at the barrier. Once the last

process (N) arrives, it clears the counter for the next

use and wake up the processes that are blocked, waiting

in the barrier. It does so by calling the

wake up processes function.

The wake up processes function, in Algorithml, works

as follows: all processes are released at once within a

"for loop" on the barrier list in an orderly manner. The

processes can be removed in an order of FIFO, by their

Priority, by Size, etc.

Assuming that the list can be a fixed or linked

list; when a process needs to register in a list (before

it fall a sleep) it adds the process id and its priority,

to the list. In this algorithm, a barrier can be mad out

of semaphore and the behavior of thea system would be

different. We get a list of processes that are being

released all at once within a "for loop". For example:

95

Pl P2

barrier() barrier()/* the semaphore are inside

the barrier/*

This description follows the pseudocode in figure 16:
y**

Algorithm 1: Making a Barrier from Semaphore
**y
barrier()
{

if(counter < N) /* processes are accumulated in a list forming a barrier 7
{

wait(S)
counter++; /* counts the number of processes that arrive at the barrier list. It's protected

by wait() and signal(). 7
Signal(S)
barrierjist <- pid; /* register process into the barrier list 7
go_to_sleep(); /* processes are in a block state (one of the O.S. services), waiting at the

barrier list until they are released. 7
}
else
{

counter = 0; /* clear counter for the next barrier. 7
wake_up_processes(mode); T last process that enters the barrier wakes up the

processes from the barrier list and they are released. 7
}

}
^**
This function is called by the last process that enters into the barrier. It removes the process
from the list and wakes them up.** i
wake_up_processes()
{

for(i = 0; i < (N-1); i++)
{
pid = get_&_remove_next_process_from_list(); /* in an order of FIFO, priority, etc. remove

the process from the list 7
wake_up(pid); /* processes from the barrier list go to the ready Q. 7
}

}

Figure 16. Making a Barrier from a Semaphore

96

3.3.2 Making a Semaphore from a Barrier

In Algorithm2, the barrier() function replaces the

wait(S) function that is in the counter semaphore. Each

process registers itself into the barrier list, and all

the processes are in a block state waiting for each other

at the barrier point. The last process to arrive enters

CS. When it exits the CS, it signals and wake up a

process from the barrier list (according to an order of

FIFO, Priority, etc.).

Each process is released from the barrier list after

a signal or a message. So, when the first released

process exits the CS, it sends a signal to release the

next process from the barrier; then, it can enter the CS.

This operation is repeated as long as there are processes

in the list. The behavior of the system would be as the

following example: assume three processes, Pl, P2 and P3.

pi : p2 : p3 :

barrier() barrier() barrier()

critical s. critical s. critical s

signal_b() signal_b() signal_b()

description follows the pseudocode in figure 17:

97

y******** ******* ****★*•***'*************•*****'*********★•*********•****•************'******★★**•**** **************

Algorithm 2: Making a Semaphore from a Barrier
★***★*★****★********★*★**★★★★*★★**★*****★***★**★*★★★*★★***★★*★★*★*★★★*★**★★**★****•*★★*★******★★****★*★★★i

barrierQ
{

iffcounter < N) /* processes are accumulated in a list forming a barrier */
{

wait(S);
counter++; /* counts the number of processes that arrive at the barrier list. It's protected

by wait() and signal() 7 '
Signal(S);
barrierjist <- pid; /* register process into the barrier list 7
go_to_sleep(); /* processes are in a block state (one of the O.S. services), waiting at the

barrier list until they are released 7
}
else
{

counter = 0; /* clear counter for the next barrier 7
} T the Nth process will go into CS 7

}

/* the process that exits CS, will send a signal to a process in the barrier list and it will be
released according in an order of FIFO, priority, etc. 7

wake_up() /* signal 7
if(barrierjist != EMPTY)

pid = get_&_remove_next_process_fromjist; /* (pid <- list; get and remove from the list 7
wake_up(pid);

J__
Figure 17. Making a Semaphore from a Barrier

3.4 Summary
The solution in reducing semaphore and barrier to

each other is by forcing all the processes to accumulate

in a list. This is done by using a counter; then each

process registers and blocks itself in the list. This

collection of waiting processes in a list forms a

barrier. All the processes at the barrier point are

waiting for the last process to arrive and wake them up;

then the processes can be released from the barrier.

98

By manipulating the way the processes are released

they can be waken up all at once, using a "for loop", or

by using a signal. After the processes are released,

they can enter CS without violating mutual exclusion.

Also, the processes are being released in an orderly

manner and the semaphore becomes deterministic (just like

a barrier). Therefore, we can make a barrier from a

semaphore and a semaphore from a barrier.

99

CHAPTER FOUR

DISCUSSION

4.1 Introduction

Included in Chapter Four is a presentation of the

findings of this thesis. It was found that if a barrier

is a form of synchronization, the reverse could also be

true (any form of synchronization can be a barrier).

Initially we can discuss that the reason we can reduce

semaphore to a barrier is because the barrier is the

basic mechanism for synchronizing processes. Therefore,

from a barrier we can create variations of

synchronizations and no other form of synchronization can

be used as a basic building mechanism. It could be

argued that there could be new synchronization methods to

be used as the basic form of synchronization (other then

a barrier). Then, might we not need to start with a

barrier? The answer lies in the basic definition of

synchronization in which there are two possible relations

between two or more processes. They can be deterministic

or non-deterministic. Obviously, we cannot rely on a

non-deterministic relation since the output will be

unpredictable. Therefore, we cannot build a new

100

non-deterministic synchronization mechanism. So, given a

basic synchronization unit, we need to look at a

deterministic relation only. This means that the

processes will be executed at the same time and in the

same order. If processes are executed at the same time,

it leads us to the basic definition of what a barrier is;

that is, all processes have to meet in a global point,

and execute at the same time. Therefore, a barrier is

the basic unit of synchronization and as its been shown,

we can build any form of synchronization from a barrier.

However, according to the discussion in section 4.2, the

amount of work it takes for a barrier and a semaphore to

release its processes in an orderly manner is 0(n).

Therefore, it can be argued that if we can build a

semaphore from a barrier and a barrier from a semaphore

(since they require the same amount of work); then, they

are both basic mechanism units of synchronization. Which

means that we can build any synchronization mechanism

from any synchronization mechanism. In other words, any

synchronization can be a basic mechanism for

synchronizing processes. This discussion is relevant

only under the assumptions that processes are released in

101

a deterministic order in a shared memory system and the

number of processes is known ahead' of time.

4.2 Amount of Work-Order Required

It was found that a barrier and a semaphore could be

reducible to each other where we can express a barrier as

a semaphore and a semaphore with a barrier. The amount

of work it takes for a semaphore and a barrier to release

processes in the same order is being compared.

In a Algorithml, building barrier synchronization

from semaphore synchronization, the processes are

released in a "for loop": for (1=0; I < (N - 1); I++),

which takes O(n) work. Therefore, to form a semaphore

from a barrier and a barrier from a semaphore takes equal

amount of work to deterministically release the processes

in order of O(n)steps.

In Algorithm2, when building semaphore

synchronization from barrier synchronization, processes

are released one at a time. Eventually, all processes

are removed form the list sequentially. Therefore, the

amount of work it takes to build a semaphore from barrier

is of order of 0(n).

102

4.3 Summary
In a Distributed Shared Memory (DSM) environment,

processes need to be synchronized and communicate with

each other in an orderly meaner. Using ordering of time

relation between two or more processes is a way of

achieving synchronization. Also, when a system has an

upper bound on time, processes can successfully exchange

messages and receive acknowledgments. If no process

needs to wait indefinitely for a reply, consensus can be

reached and synchronization occurs. Therefore, consensus

and synchronization are related because if we can arrive

at consensus we can synchronize, and if we can agree on

synchronization we can arrive at consensus. In addition,

barrier synchronization requires consensus and ordering.

To synchronize a barrier, we need to know in advanced the

number of processes to arrive at the barrier and the

order in which they arrive. Once all the processes

arrive at the barrier point, they all released in order,

and deterministic synchronization occurs. Because

barrier is deterministic and by definition it is the same

as the basic definition of synchronization, I

investigated if indeed the barrier is the basic mechanism

unit of all synchronizations or we can build any

103

synchronization from any synchronization. For the proof

I compared barrier to semaphore. To prove that semaphore

in a DSM can be a barrier I had to find a way to show

that semaphore can become deterministic; therefore, some

ordering needs to be provided. For the purpose of the

proof, I used semaphore counter as a way to know the

number of processes that arrive at the barrier_list ahead

of time. Then, each process added its process ID and

priority into the list. Also, the release of processes

from the barrier_list was done in an orderly manner, in

the order of 0(n). From these results we can see that

barrier and semaphore require the same amount of work to

deterministically release processes. Also, we can say

that a semaphore is deterministic and it arrives at

consensus. I have shown that we can make barrier from

semaphore and semaphore, from barrier. Furthermore, it

can be concluded that we can build any synchronization

mechanism from any synchronization mechanism.

104

REFERENCES ■

1. Aiken, A., and David, G., "Barrier Inference", EECS
Department, University of CA, Berkeley, 1998

2. Attiya, H. , and Welch, J-., Distributed Computing,
McGraw-Hill Publishing Comapany, 1998, pp.91-123

3. Chandra, T.D., and Toueg, S., "Unreliable Failure
Detectors for Reliable Distributed Systems", ACM,
Vol.43, No. 1, March 1996, pp.225-267

4. David, E.C., and Singh, J.P., Parallel Computer
Architecture- A Hardware/Software Approach, Morgan
Kaufmann Publishers, Inc. San Francisco, CA., 1999,
pg.57, 334-337, 353, 542-547, 704-705

5. Dolev, D., and Lynch, N.A., "Reaching Approximate
Agreement In The Presence of Faults," Journal of the
Association of Computing Machinery, Vol.33, No.3,
July 1986, pp.499-516

6. Eichenberger, A., and Abraham, G., "Impact of Load
Imbalance on the Design of Software barriers",
Proceedings of the 1995 International Conference on
Parallel Processing, August 1995, pp. 62-72

7. Fischer, M.J., "The Consensus Problem in Unreliable
Distributed Systems", YaleU/DCS/TR-273, February
2000, pp.1-16

8. Fischer, M.J., et al, "Impossiblity of Distributed
Consensus with One Faulty Process", Journal of the
Association of Computing Machinery, Vol.32, No.2,
April 1985, pp. 374-382

9. Galvin, S., Operating system concepts, Forth
Edition, Addition-Wesley publishing company, 1995

10. Gupta, R., "The Fuzzy barrier: A Mechanism for the
High Speed Synchronization of Processors," 3rd
International Conference on Architectural Support
for Programming languages and Operating Systems,
1989, pp. 54-63

105

11. Gupta, R., and. Hil, C.R., "A Scalable
Implementation of Barrier Synchronization Using an
Adaptive combining tree", International Journal of
Parallel Programming, Vol.18, No3, June 1989, pp.
161-180

12. Hennessy, J.L., and Patterson, D.A., Computer
Architecture, Morgan Kaufmann Publisher, Inc. San
Francisco, CA. Second Edition 1996, pp. 108-113,
694-706

13. Hill, J. M. , "Practical Barrier Synchronization",
The computing Laboratory Oxford Universtiy, Oxford,
UK, Oxf 3QD, 1997

14. Keidar, T., and Rajsbaum, S., "On the Cost of
Fault-Tolerant Consensus When There Are No Faults-A
Tutorial", Distributed Computing Column, June 200,
pages 45-63

15. Lynch, N. and Dwork, C.,' "Consensus in the Presence
of Partial Synchrony", Journal of the Association
for Computing Machinery,’ Vol. 35, No. 2, April 1988,
pp. 288-323

16. Raynal, M, et al, "Consensus-Based Fault-Tolerant
Total Order Multicast", IEE, Vol. 12, No.2, February
2001, pp. 147-156

17. Sangman M, et al., "Four-Ary Tree-Based Barrier
Synchronization for 2D Meshes Without Nonmemeber
Involvement" ,IEE Transactions on Computers, vol.50,
no.8, August 2001, pp.811-823

18. Singhal, M., and Shivarati, N.G., Advanced Concepts
in Operating Systems: distributed Database,
McGraw-Hill, Inc., 1994, pp.13-45

19. Sivaram, R, et al, "A Reliable Hardware Barrier
Synchronization Scheme", Depart, of Computer and
Information Science, The Ohio State University
Columbus, Oh., 1998

20. Tanenbaum, A.S., Distributed Operating Systems,
Prentic-Hall, Inc, 1995, pp.118-166,134-143

106

21. Tanenbaum, A.S., Modern Operating Systems, second
edition, Upper Saddle River, New Jersey, 2001, pp.
110-113

107

	Taxonomy of synchronization and barrier as a basic mechanism for building other synchronization from it
	Recommended Citation

