
California State University, San Bernardino California State University, San Bernardino 

CSUSB ScholarWorks CSUSB ScholarWorks 

Theses Digitization Project John M. Pfau Library 

2002 

Web-based interactive self-evaluation system for computer Web-based interactive self-evaluation system for computer 

science in generic tutorial system for the sciences project science in generic tutorial system for the sciences project 

Supachai Praritsantik 

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project 

 Part of the Computer Engineering Commons 

Recommended Citation Recommended Citation 
Praritsantik, Supachai, "Web-based interactive self-evaluation system for computer science in generic 
tutorial system for the sciences project" (2002). Theses Digitization Project. 2273. 
https://scholarworks.lib.csusb.edu/etd-project/2273 

This Project is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has 
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. 
For more information, please contact scholarworks@csusb.edu. 

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2273&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2273&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/2273?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F2273&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu


WEB-BASED INTERACTIVE SELF-EVALUATION SYSTEM FOR COMPUTER

SCIENCE IN GENERIC TUTORIAL SYSTEM FOR THE
SCIENCES PROJECT

A Project '
Presented to the

Faculty of
California State University,

San Bernardino

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

in
Computer Science

by

Supachai Praritsantik

March 2002



WEB-BASED INTERACTIVE SELF-EVALUATION SYSTEM FOR COMPUTER

SCIENCE IN GENERIC TUTORIAL SYSTEM FOR THE

SCIENCES PROJECT

A Project

Presented to the

Faculty of
California State University,

San Bernardino

by :I
Supachai Praritsantik

March 2002
i

Date



ABSTRACT

The goal of this master project, Web-basedI
Interactive Self-evaluated System (WISE), is to promote

and facilitate the use of new Java-based and Web-based

technologies in the development of teaching materials for 

Computer Science in particular, analysis of sorting

algorithms. This project is built as part of the Generic
Tutorial System for the Sciences (GTSS) project. WISE
promotes Web-based interactive exercises by providing

educators with the tools to create interactive exerciseI
materials. 1

As part of GTSS project, WISE provides both tutorials
and exercises. Students can study the interactive
tutorials and test the self-evaluation exercises.
Self-evaluation result indicates students' understanding.

WISE provides tools such as EZ question creator forI
creating question database and automatic exercises, and
knowledge base creator for creating new intelligent javaI
programs filled with how to create'automatic answer with 
prevented cheating policy. (

WISE uses object oriented and unified modeling 

language to design the system. To implement WISE system, 

Java Server Pages (JSP) and MySQL are used. JSP technology

makes WISE system possible to run over the Internet.

iii



ACKNOWLEDGMENTS

I would like to thank Dr. Concepcion, my advisor, for

guiding me in the steps I needed to take to get this 
master project done. Also thanks to Dr. Zemoudeh and

Dr.Georgiou for the time they invested guiding me to
create the question database.

And thanks to the Associated studies, Incorporated 
(ASI), for their grant to provide partial funding support
for this project.

Supachai Praritsantik

iv



TABLE OF CONTENTS

ii
iv
ii
x

1
1
2
2
2
5
8

10
13
13
13
36
37

37

47
53
59
60

ABSTRACT............................................ i
ACKNOWLEDGMENTS.................. ,..................
LIST OF TABLES...................................... vi
LIST OF FIGURES .....................................
CHAPTER ONE: SOFTWARE REQUIREMENT SPECIFICATION

1.1 Introduction ...............................
1.1.1 Purpose of Project ..................
1.1.2 Scope of Project ....................

1.2 Overall Project Description ................
1.2.1 Project Product . . .■..................
1.2.2 Functionality of Project ............I
1.2.3 System Analysis and Requirements ....
1.2.4 Hardware and Software Requirement ....
1.2.5 User Characteristics ................

1.3 Software Specific Requirements .............
1.3.1 External Interface^..................

CHAPTER TWO: DESIGN.................................
2.1 Architecture Design..... '............... . . .i

: 2.2.1 Sorting Algorithm Tutorials 
, Design................. ’..................

i2.1.2 Interactive Self-Evaluation System
, Design................. ,..................

i2.1.3 Database Design . . .,..................
2.2 Detailed Design......... ,..................

2.2.1 Connect Database C)_ass..............

v



2.2
2.2

' 2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2 .. 2
2.2
2.2
2.2
2.2
2.2

CHAPTER THREE

2 Query Bean Class ...................
3 Data Manipulation,Class .............

I
4 Connect File Class-..................
5 File Bean Class . ..1. ...................
6 Read File Bean Class............... .I
7 Score Bean Class ...................I
8 Create Choice Class . .................(
9 Shuffle Class . . . ....................
10 Random Number Class...... ..........

I11 Add Question General Class .........i
12 Add Question Java Class ............

i
13 Question Retrieval Manager Class . . . .
14 Question General,Class .............
15 Question Java Class ................

I
16 Table of ContentiCheck Class .......
17 Knowledge Base Check Class .........
18 Knowledge Base Deletion Class ......
19 User Information|Class .............

iTESTING

61
63
65
66
67
68
69
70
71
72
74
76
78
79
83
85
88
89

3
3
3
3
3

1
2
3
4
5-

The Testing Process . . •. . .....................
iUnit Testing........... ,...................
I

Subsystem Testing...... t...................
iSystem Testing......... ;......... ..........
I

Sample Session......... ,...................
I

3.5.1 Demonstration of Tutorial ...........

95
95

100
101
102
102

vi



3.5.2 General Question Creator ............
3.5.3 Knowledge Base Creator ..............
3.5.4 Easy Question Creator ...............

CHAPTER FOUR: MAINTENANCE MANUAL
4.. 1 Files and Directories .......................
4.2 Software Installation ......................
4.3 System Migration..... 1......................
4.4 Database Maintenance .......................
4.5 Recompilation ..............................

CHAPTER FIVE: CONCLUSIONS AND FUTURE DIRECTIONS
5.1 Conclusion.................................
5.2 Future Directions ..........................II

5.2.1 Adaptive Test . . ....................
i

5.2.2 Graphic Score Analyzer ..............
]

APPENDIX: GLOSSARY............ l................................................................
I

REFERENCES.................... '......................

103
104
105

107
108
109
110
111

113
114
114

115
116
120

vii



LIST OF TABLES

Table 1.1.

Table 1.2.

Table 1.3.

Table 1.4.

Table 2.1.
Table 2.2.
Table 2.3.
Table 2.4.
Table 2.5.
Table 2.6.
Table 2.7.
Table 2.8.
Table 2.9.
Table 2.10
Table 2.11
Table 2.12
Table 2.13
Table 2.141
Table 2.15
Table 2.16
Table 2.17
Table 2.18

Hardware Requirements for Development 
Phase............. 1..................... .
Software Requirements for Development 
Phase....................................
Hardware Requirements for Implement 
Phase............. ,......................
Software Requirements for Implement
Phase ............. .......................
Core Obj ects...... j............. .........

I
Computer Science Engine Objects ..........
New Application Objects ..................
Core Classes...... |................. . . . . .

i
Question Manager Objects............. . . . .

ITest Taking Objects t......................
Table of Content Manager .................
Knowledge Base Manager ...................
User Manager...... i.......................
Miscellaneous Objects ....................
User Information . . ........................

I
Tutorial ......... .'.......................
Table of Content . .........................
Exam Control...... '....... ...............I
Knowledge Base.... '.......................

IQuestion.................................
Question General . . ...................... . .

iQuestion Java..... j.... ...................

11

11

12

12
38
39
41
47

48
48
49
49
49
50
53
53
54
54
55
56
57
57

viii



Table 2.19
Table 2.20
Table 3.1.
Table 3.2.
Table 3.3.
Table 4.1.

Parameter....... . ........................
Score Table....... ,.......................
Unit Test Results ........................
Subsystem Test Results ...................
System Test Results .....  ................
Files in Main Directory ...................

58
59
96

101
102
107

1
1

I
i

■I

I
I

ix



LIST OF FIGURES
Figure 1.1. 
Figure 1.2. 
Figure 1.3. 
Figure 1.4.
Figure 1.5. 
Figure 1.6. 
Figure 1.7. 
Figure 1.8. 
Figure 1.9. 
Figure 1 ..10 
Figure 1.11
Figure 1.12
Figure 1.13
Figure 1.14 
Figure 1.15 
Figure 1.16 
Figure,1.17

Project Integration . . . ...................
Project Overview . .j......................

IOverview of Project ............ .........
Use Case Diagram . ........................
Authorization Page !......................i
Student Signup Page .....................
Forget Password Page ....................
Student Main Menu ........................
Test Selection Page.....................
Test Page ......... i......................i
User Modification Page ..................
Instructor Main Menu ....................
Add Table of Conterjt....................

Table of Content Management Page ........
Knowledge Base Creator Page .............I
Knowledge Base Management ...............

I
Adding General Question Form ............

2
3
4
6

14
15
16
17
18
19

Figure' 1.18 . Easy Question Creator Step One . .
Figure, 1.19. Easy Question Creator Step Two . .
Figure 1.20. Easy Question

1
Creator Step Three

Figure 1.21. Easy Question Creator Step Four .
Figure'1.22 
Figure 1.23 
Figure 1.24

Question Control Page ....................
Administrator Sign Up Page ..............
Tutorial Page.... \.......... .............

20
21
22
23
24
25
26
27
28
29
30
31
32
33

x



Figure 1.25
Figure 1.26
Figure 2.1.
Figure 2.2.
Figure 2.3.
Figure 2.4.
Figure 2.5.
Figure 2.6.
Figure 2.7.
Figure 2.8.
Figure 2.9.
Figure 2.10
Figure 2.11
Figure 2.12
Figure - 2.13
Figure 2.14
Figure 1 2.15
Figure 2.16
Figure 2.17
Figure■ 2.18
Figure: 2.19

iFigure. 2.20
1

Figure, 2.21
Figure; 2.22
Figure' 2.23

Insertion Sort Animation ................
Heap Sort Animation......................
Tutorial Applet Structure ...............
Insertion Sort Class Diagram ............

I'
Selection Sort Class Diagram ...........
Heap Sort Class Diagram .................

IQuick Sort Class Diagram ................
Project Class Diagram ............... ■....
Connect Database Class ..................
Query Bean Class . . i......................

•i
Data Manipulation Class .................I
Connect File Class 1......................
File Bean Class . . . 1......................i
Read File Bean Class ....................
Score Bean Class . . ■......................i-
Create Choice Class .....................
Shuffle Class...........................i
Random Number Class .....................
Add Question General Class ..............
Add Question Java Class .................i
Question Retrieval .Class.......... ......
Question General Cl'ass..... .............
Question Java Class ......................I
Table of Content Check Class ............
Knowledge Base Check Class ...............

xi

34
35
37
43
44
45
46
52
60
61
63
65
66
67
68
69
70
71
72
74
76
78
79
83
85

I



Figure
Figure
Figure
Figure
Figure
Figure

.24. Knowledge Base Deletion Class ........... 88

.25. User Information Class.................. 89I

.1. Sorting Algorithms Tutorial........ . 102

.2. General Question Creator ................  103

.3. Testing Knowledge Base Creator ..........  104

.4. Easy Question Creator................... 105

I

I

xii



CHAPTER ONE
SOFTWARE REQUIREMENT1 SPECIFICATIONI

I
1.1 Introduction

1.1.1 Purpose of Project t

There are many Web sites that provide interactive

tutorials for students such as CBT, GTSS, and etc. There 
is no evaluation of students' understanding and learning 

in these web sites. In order to 'solve this problem, the

idea of creating evaluation tool' was proposed in Fall 2000i
Ias a master project called "Web-based Interactive

Self-Evaluation System". '
I

The goal of this master project is to promote and
I

facilitate the use of new Web-based and Java-based
I

technologies in the development pf self-evaluation systemI
for computer science in particular, analysis of sorting

I
algorithms. This project is built as part of the GTSS 
system (see figure 1.1). WISE will promote Web-based 
interactive exercises by providing educators with the
tools to create interactive exercise materials. Students

are able to evaluate their understanding though exercises.

1



I
I

1.1.2 Scope of Project

WISE project will provide tools to create exercises \ 1
and to evaluate students' performance. Evaluation topics

are limited to sorting algorithms that include Selection 
Sort, Insertion sort, Bubble Sort, Quick Sort and Heap

ISort. These are important topicsiin computer science.
Students who understand sorting algorithms very well can

I
develop efficiently software. i

i

1.2 Overall Project Description 
i

1.2.1 Project Product 1
WISE system is designed to fun on the Internet.

Therefore students can access WISE system from anywhere.

As an extension from the GTSS project, WISE system makes

2



I

I
the final product "the complete 'tutorial system". The 

complete WISE project consists of two main parts, GTSS 
tutorial and WISE application server (see figure 1.2).

Project Product with Deployment Diagramr
Figure 1.2. Project Overview i

I
1.Sorting algorithm Tutorials. These tutorials

i
include the concept of each sorting algorithms, and

analysis of sorting algorithms in term of Big Oh notation.i
2.Interactive self-evaluation exercise system. This

system includes interactive exercise creator tool,

question management tool, and score analysis. These

easy-to-use tools will help instructors create interactive
' I

exercises in the area of sortingialgorithms. Creating some
I

of the exercises may require the programming to set rules

3



I

for WISE in order to generate multiple choices. This
information is kept in knowledge' base, which later on canI
be used to create more interactive questions.

Figure 1.3 shows how WISE works. The instructor
creates both tutorials and question exercises. Then the

GTSS Applets I
Vew applets

Creat Applets

/ Students

Professoi\
\

Choosecertain applet to student

\
Create, modify questions 

\

//
Answer questions 

/
/

/
"K

Sunlit the answers
I

Test page

\

\
\

\

/

Question Database

Figure |1.3 . Overview of Project

students are able to study and practice the

self-evaluation exercises, which'are created from the WISE

4



system. The system will evaluate* 1 the student scores with
I

the passing scores set by the instructors. If students
pass, they can start the next chapter otherwise they

irepeat the current chapter is required.

1.2.2 Functionality of Project

In WISE system, all functions are categorized by

level of users, which include student level, instructor
level and administrator level. Figure 1.4 shows a Use Case

diagram, which describes the functionalities provided by
WISE system. i

1.2.2.1 Instructor Level. The instructor is able to
i

create, edit and delete sorting algorithm questions by

using tools such as EZ question creator to create

questions and Question Manager to edit and delete
questions. Question Manager engine handles all activities
described above. The instructor can also access students'

I
record to view their score and evaluate students'
understanding.

5



Send Comment or Feedback 
to instructor or system

Figure 1.4. Use Case Diagram

6



1.2.2.2 Student Level. After the student finished

their tutorial applets, The Question Manager engine will 

generate a set of questions. Most questions automatically
generate answers. Then they are shuffled them by the
Question Manager engine. The Answer Manager engine is

I
responsible for counting score and recording it in the

student database. If the student passes the exam, the

student can start the next tutorial, otherwise the Answer 

Manager engine locks the current chapter until the student
passes the exam.

1.2.2.3 Administrator Level) System administrator or 
SA has the major task to maintain all the tables in the

I
WISE database and overall system) SA is able to create

instructor and student account. Students and instructorsI
Icannot delete their account unless the SA does. The User

Manager engine will handle these .tasks on the background.
User manager engine also checks user logins to ensure that
only registered student access the system.

SA has also to maintain the knowledge base. With the

knowledge base engine, SA can manage the knowledge base

that is used for creating new questions by the

instructors.

1

7



1.2.3 System Analysis and Requirements

The WISE system consists .of1 several components in ■ '■ s
order to work properly: a)Java Server Pages (JSP), b)Java

Database Connectivity driver (JDBC), and c)MySQL database 
engine. In this section, each component will be described 
briefly. In WISE system, all information will be stored in 
MySQL databases. The front-end applications will be

written by JSP. All applications I will use JDBC to connect

to databases. I
(a) Java Server Pages consists of powerful JAVA 

programming language integrated with the 

server-side script language based on extra markupI
language or XML. These itake JSP easy for dynamici
Web programming. Furthermore, JSP uses graphics
from HTML. As a result, JSP applications run 
faster. Compared to the(other server side 
language such as, Active Server Pages (ASP), PERL
or PHP, JSP has the major advantages of real

object-oriented, run faster, and highly reusable.I
JSP is a language of choice for creating dynamicI

' Web-based interaction.

! Since WISE contains many interactive forms
'■ to get data in or to display result out, it is a
, igood idea to use JSP imWISE system. Integration

8



of GTSS and WISE system!will not slow the system
Idown because WISE system will optimize GTSS
i

performance. ;
I

There are many advantages to use JSP in WISEI
system:

— WISE system is objett-oriented, which is the
same as GTSS. WISE can be very modular and

Ireadily adapted to new uses.
I

— As a teaching interactive material tool, a
I

well-written JSP program allows the

instructor to focus1attention precisely on
t

the point at hand. 1
I

- With build-in templates, it will be easy for

instructors of the computer sciences to[
develop additional interactive exercises with

: minimal requirement1 for programming.
i

(b) Java Database Connectivity defines a structured
interface to Standard Query Language (SQL)

I
database. The JDBC API provides Java developers

I
with consistent approach to accessing SQL

I I\ databases that is comparable to existing database
' I
; development techniques. I The JDBC API includes

I
classes for common SQL database constructs such

i
as database connections;, SQL statements, and

9



result sets. JDBC database drivers can either be' I I
written entirely in Java or they can be 

implemented using nativg methods to bridge Java
1

application to existing!database access

libraries.
I

(c) Databases are becoming a big part ofi
applications, and one of the most popular 
products is MySQL, from'MySQL.com. MySQL is a 

free product under General Public License. MySQL

has many advantages over the other database
Iengine products such as 1 reliability, speed, andI

capacity.

MySQL can run on ariy platforms such asI
windows 98 or NT, UNIX,'LINUX, and etc. Using

IMySQL is also easy to use with simple SQL
icommands.

1.2.4 Hardware and Software Requirement
In order to successful develop WISE system; the

i
hardware and software are a major concern. Minimum
requirements are specified here both a) development and b)

implement'phases.
I

(a:) Development Phase is the phase that involvesI
design, coding and debugging of this project. The 
following hardware and software specification are

10

MySQL.com


used to develop and test WISE to work properly

when it is launched.

Table 1.1. Hardware Requirements for Development Phase

Hardware Specification
Processor AMD Athlon 700 Mhz
Memory Micron 128 MB

Display card ATI rage fury 32 MB
BIOS American Megatrend 2.0

Table 1.2. Software Requirements for Development Phase

Software Specification
Operation system Windows ME, Redhat Linux

7.1 server
Browser Internet Explorer 5.5

JSP server Tomcat 3.2.1
Java Compiler JSDK 1.3.1

Database MySQL
Text Editor Notepad

Other script language JavaScript

WISE is mainly developed under windows ME
operating system. The main reasons developing it 

in Windows is that it is easy to design, code and 

debug since windows ME provides more friendly

graphic user interface. WISE is also tested on

11



Linux operating system to ensure that WISE system 
will run on any platform.

(b) The final product will be tested and run on Linux

Operating System. The GTSS server will include

all GTSS works, WISE system, and all future
extension projects.

Table 1.3. Hardware Requirements for Implement Phase

Hardware Specification
Processor Pentium 1 Gz.
Memory Micron 128 MB

Display card Gforce 32 MB
BIOS Dell BIOS 2.0

Table 1.4. Software Requirements for Implement Phase

Software Specification
Operation system Redhat Linux 7.1 server

Browser Netscape 4.7 for Linux
JSP server Tomcat 3.2.1 for Linux

Java Compiler JSDK 1.3.1 for Linux
Database MySQL for Linux

Text Editor VI

12



1.2.5 User Characteristics
Since this project is about analysis of sorting 

algorithms, the intended users include both computer

science instructors and students. Instructors need to have

some knowledge of Java' programming since some intelligent

questions require logic solutions on how to solve these
questions in the form of fragments of Java program.
Students need to know how to use the Internet.

1.3 Software Specific Requirements

1.3.1 External Interface
In this section, we will continue our discussion of

WISE's basic interfaces and functionality expectations.

13



1.3.1.1 Authorization. This is the main login page
(see figure 1.5). There are two input text fields,

username and password. All users, students, instructors
and system administrator, will use this login page.

Successful logins will bring the user to their own main

page.

Figure 1.5. Authorization Page

14



1.3.1.2 New Student Sign Up. This sign up page is 
designed for new students who want to sign up to use WISE

system (see figure 1.6). Student who provides all required
information will be registered and will be able to access

the system.

Eds £dt View Favorite;- Took ;-|iS;Addfess|i^j http://localhosl:8080/wise/jigniip.hliTj Pj p’iio jfjrbnksi^J isise

New User Signup For Student Only 

( * All fields ore required)

Login Information ?

;iy.Dor-e . ____ __ . _ f 1 J1 iToed«njf.nel "'«
Figure 1.6. Student Signup Page

15

http://localhosl:8080/wise/jigniip.hliTj


1.3.1.3 Forget Password Page. The student or 
instructor who forget their password can use this page by 

filling out his identification (see figure 1.7). WISE

system will send the password them through e-mail.

Password Finder:

Pelase put you username information in username box. WISE server will send your password to your e-mail.

Username: (7 ............ . ]

Subrt’il I

.......................... .............ii

Figure 1.7. Forget Password Page

16



1.3.1.4 Student Main Menu. This is the student main
menu (see Figure 1.8). Student can use this menu to use

WISE system. Start tutorial is to start all GTSS tutorial.

Self-Test exercise will link to the exercise page to test 
students' understanding. Students can check their scores 
at the score and statistic page. Students can also change 

their password, email at preference link. The logoff link
will end the student's session.

Fi’3 Edt Ye/. Tech He'fj I Address [dip //'ccctiwl G083/wise/loqp [;p ... ....................~D RGo j L"iV - El
asgj_____________'__________ ______________________ ____ _ ________ ■

.............. ... ,.... ................... .............. ...■

Figure 1.8. Student Main Menu

17



1.3.1.5 Test Selection Page. The student can choose 

the chapter that he/she wants to test (see Figure 1.9). By 
clicking "Create Exercise", the exercise- for that chapter
will create and show on screen. If the student clicks on

the "Back to Main", the student's main menu page will be 
brought back.

Edit„ View Fdvc Tools Help, | Addietss|i] http//lcc,h3sl6C9CMHist)>ta[L> J ?Go ILinks ffl,

WISE
il—

-g
‘Vct’-in i rfSell E\.r'ii<

l«.l.:ist--:.:nt.,r

Self Exercise Control Center

You are now studying tutorial chapter 3

Please select the following chapter to create exercise 

Chapter: [iTgJ

Please make sure you select chapter (bat you want to take a 
test After Clicking “create exercise". You may not change chapter 
test until you finish (be test (hat you just selected.

Create Exercise Sack to Main •

BlBKiHi -i

Figure 1.9. Test Selection Page

18



1.3.1..6 Testing Page. Shown in Figure 1.10 is the
test page created by WISE system. The student can answer

it at any time. After the student answers all the

questions, they will click "submit Your Answer". WISE will
check the answers and print the score report.

Please answer the question Induw * MiliusuH Intrrnd L'yplon i [Wnihmi Ufllnu ]

File. Edit View 'Favorites loots/Help . :, .

> ’ 2 tSrI 3d 0 3 f« * ,B [ search [ '

Please answer the question below:

Question: Give an analysis of running time (big oh) of the following program fragment:

Sum=0;

for(i=0;i<n;i++)

Sum++;

<~ AO(N)

OBO(NA2)

OCO(N72)

OD O(NlogN)

<•.’ E Non of Above

f Submit Your Answer

Done "*J" [ * My Computer ~ /

Figure 1.10. Test Page

19



1.3.1.7 Change User Information. Users who want to

change their user information or password can do it on 

this page (see Figure 1.11). There are two separate 
buttons here: "Change User Info" and "Change Password".
These buttons are self-explanatory. Clicking "Change User 
Info" action button will update the user name or e-mail.

Clicking "Change Password" will update password for the

current user.

:/ Flic Edit . Vkw Favortes ' |(iAddfess|i^) http://localhosl:8080/Hise/changeptef.|sp i jbinfccijSS] wSSe<

HO Done. . . AAA~ - ■ ■ - . ■ _____ _ __ , 1 j ij localmltanet _ i

Figure 1.11. User Modification Page

20

http://localhosl:8080/Hise/changeptef.%257csp


1.3.1.8 Instructor Main Menu. The instructor main

page shows links to perform many tasks (see Figure 1.12) .

"Table of Content" links to Table Of Content Manager to

create table of content of WISE system. "Knowledge Base"
links to knowledge base manager to create the knowledge
base. EZ question creator links to Java question creator.

Display question links to question manager. "Exam Control"

links to exam control page to set the number of question

per test and percent pass. Statistics links to score
manager to monitor student score.

£Ja

i’
i Edit Vsew • Fovciites iods Help |^T^JJ2^ocattTOst^8080/vyise/ioginjEp~ j Links

■1
Welcome: Arturo Concepcion

aama—
Manage tutorial table of content 
for using in create question

View student's score report of 
all tests sorted by chapter

H
I

|2:Knowledtio BaseX

Change your password and edit 
user information.

create knowledge base for using 
in ez question creator

Create question, modify, exam 
control

.... . J
Local intianet

Figure 1.12. Instructor Main Menu

21



1.3.1.9 Add Table of Content Page. This screen helps

the instructor handle the table of content in WISE system

(see Figure 1.13). After filling out all information and
clicks "submit", the system will add new content to the
database. "Reset" button will be used for clearing old
information. TOC manager page will bring instructor back

to the table of content main menu.

£#e jatlrt F^yoiites loots . I i A^titess http7/localhoslB080/wise/TOCAdd.isp 7^0 | Links ^3 wise

Please Provide the following infonnation:

Chapter No. j ~

Section No. j

Content Name [

Submit j j Reset j j TOC Main Menu j

ci

Dorie . ....... ... ___ . . . __ ____. . . . _ , ... . ....... *. _<{__[ ,j^ LocalinUanet
Figure 1.13. Add Table of Content

22



1.3.1.10 Display Table of Content. Display table of 

content menu will help the instructor handle table of

content in the WISE, system (see Figure 1.14) . "Edit"

button links to edit page to modify content. "Delete"
button links to delete page to delete unwanted content
from WISE system.

1
ft

!30 Pone,
Figure 1.14. Table of Content Management Page

23



1.3.1.11 Knowledge Base Creator. This screen will add

knowledge base to the database (see Figure 1.15) .

Knowledge base helps the instructor create questions in

the future. After filling out all the information and
clicking "submit", the system will write all information
to the database.

L £1= Kt FjraJw Too'. Help | j Ad/ass f£"hi

Lu a**-'@

73 ?Go jL«ua«e

I irowlri'qu rtast ficntur ,

knowledge Base Question 1 Stiinformatiori is needed

Simone

Knowledge Base Question

Sample Choice A

Sample Choice B.

Sample Choice C.

Sample Choice D.

Sample Choice E. 

Parameters Setting

Parameter name 1:

Parameter name 2: 

Parameter name 3: 

Parameter name 4: 

Parameter name 5: 

Function Call

< Please Provide Parameter Setting ;

..hl

JB
M

...a

A
.hi

'L i! o: Local mtanel ~

a
33

Figure 1.15. Knowledge Base Creator Page

24



1.3.1.12 Knowledge Base Display Page. This is a

similar screen to the table of content. Knowledge base

shows question in the question field (see Figure 1.16).
"Edit" button links to modify the knowledge base. "Delete"
button links to delete page, which will delete unwanted
knowledge.

File Edit Vteftt, favorites Tools help j1 Addfessj^O http://loca!hosl:B080/wise/kbaseViewBySeclmisp

^ - © a /%% u Q i'S- safe’
<^Go ‘jl-wks

DispMv/rrhh/npli'tr Knnwli'dfjf1 ’
Bubble Sort

No Question Answer Edit? Delete?

1
Given array of [5,4,3,2,1] after second pass in bubble sort, which of the 
following is correct?

aaa i

!Oto&alinaanel" d

Figure 1.16. Knowledge Base Management

25

http://loca%21hosl:B080/wise/kbaseViewBySeclmisp


1.3.1.13 General Question Creator. General question

creator shows the way to create non-calculation type of

question (see Figure 1.17). After filling out all the 

information and clicking "submit" button, Wise system will

add this question to the database. Reset button will clear
all information in all fields.

Fr'e Ec.!/ View Faverde; Tocr’s He'p j Address‘d'lllo'caihllceOAde/adlqlstionGlp tj Rgo' ki ks iS]use

- --A Q '^230 'IW gl '* ” '  ';

Figure 1.17. Adding General Question Form

26



1.3.1.14 Easy Question Creator. Easy (EZ) question 

creator is a tool to create calculation question by using 
the information from the knowledge base (see Figure 1.18).
EZ question creator consists of 4 easy steps. The first

step is show here. After selecting all information and

clicking "next" button, Wise will show the second step.

J Fite £d( Yaw Favorites Joofe.' fjefc _______ _______________ .... . n
j Search |» jfl ggj Yahotf Mail - [S] Photos tS{8Re{csee

EZ Question Creator For GTSS

j Step UPlease provide following information________ __ ________ _

| Pfease.select topic;] j " ^3’ j

[please select type of answer:||[fej|

nexi>>

Figure 1.18. Easy Question Creator Step One

27



1.3.1.15 Easy Question Creator Step 2. The knowledge
base that was setup from the last screen will show here
(see Figure 1.19). The instructor just chooses the
information from the list and click "next" to go to next

step. The instructor can click "back" to go back to the

previous screen.

fie EeEJ yrew Favorites loots Help

-Q V| (S'Si 0 i'S* I'l'W^tgR )sa»rrai|-|;BY»t™tW»l • jgPhotQ asriolcase.______,. : g
EZ Question Creator for GTSS

Step 2: Select Knowledge Base .......... ......j M

■ No t Knowledge Base Select .Sample

1
given array[l,2,3,4,5] after second pass on bubble 
sort, which of the following is true?

C Sample j

]' «Back [ ] Next» |

..... .. . ....... ...................UDonk i ” _ m m ~~~~~~ _ ... „.. ... _ ____ .! '["jisisumimtanet m)
Figure 1.19. Easy Question Creator Step Two

28



1.3.1.16 Easy Question Creator Step 3. This screen 
shows step three of EZ Question Creator (see Figure 1.20) .

This screen shows the detail of the question the user
intends to create based on selected knowledge base. After

filling out all information and clicking on "Next" button,
WISE will proceed to step four. The instructor clicks 

"Back" button to go to the previous step page.

29



1.3.1.17 Easy Question Creator Step 4. This is the

last screen for the calculation type of questions (see
Figure 1.21) . The instructor will choose "Auto Create
Answer" or define his own answers. The "Next" button will
save all information to database, which later on be ready

for system to create tests for the student.

; Ble MI yew Favootes Iods Help . ' EH
* - * ’ © 2) ® Yi 0' & j! * ffhl f^FI _ _J-------------------------------

Question Creator

CAuto"5eate03Qicen$tronqlyRe^mrnended)‘~ """...* LJ fl

<> «back I* next» I

Doge, ..,Lt  , JFT

Figure 1.21. Easy Question Creator Step Four

30



1.3.1.18 Question Control Page. After creating the
question, the instructor can control the number of

questions per exam per chapter (see Figure 1.22) . The

instructors can also control how many percent to pass each

exam. "Save Change" button will save all information to

database. "Back to Main" button will go back to the main
menu.

jl Efe felt Miew Favorites Tools Help_______ J,Addresshltp//localhosl 8080/wise/ques[ion_contfolisp 3 Frio junks

ia ia4;- 77 77.27.. i ~~'7 2' .

3
^3 .Done toco! intranet;

Figure 1.22. Question Control Page

31



1.3.1.19 Sign Up Page. This sign up page is

exclusively for administrator (see Figure 1.23) . User
classification includes student and instructor. Instructor

account can be created here. "Signup" button saves the

information to database. "Reset Form" button will clear

all information from this form.

Idit . Fi«n»es Iwls Help htlp:Mccatoo5t:8C80/wise/usei_add[sp J Links 4) wise

Figure 1.23. Administrator Sign Up Page

32



1.3.1.20 Tutorial Page. This is an example of 

tutorial. All tutorials have standard layout. "Next" 
button links to next tutorial pages.

'' ge frit Yiew Eamites look, hllp7/tegj;oatiqa[l/wise/chliia.oh1isp ____ . zifBo |Lifc Kfrjl

1 Algorithm Analysis (Review)

■X

An algorithm is a clearly specified set of instructions the computer will follow to slove a problem. 
Once an algorithm is given for a problem and detemined to be correct, an inportant next step is to 
determine the amount of resources, such as time and space, the algorithm will require. This 
process is known as algorithm analysis.

Algorithm analysis is mostly measuring of the computational time to run algorithm. Because the 
behavior of an algorithm may be different for each possible set of data, there needs to be a means 
for summarizing that behavior in simple, easily understood formulas. One way to derive these 
formulas is the big 0 notation. Big O notation, also called an efficiency indicator, is used to 
describe the growth rate of a function. The big O notation represents the running time needed to 
solve the computational steps.

51 JL

Dona . j 1 trAtanef"

J

Figure 1.24. Tutorial Page

33



1.3.1.21 Insertion Sort Animation. This is an

insertion sort animation written in Java. "Forward" button

shows next step of algorithm animation. "Back" button
shows backward step of algorithm. "Reset" button start
over applet. "Keyboard" button accepts user input from 
keyboard. Time complexity of insertion sort is 0(n2)

2'isejA.’u/iSoit (Int <ifj, ini N?
iBEGIN ",

intt i,j ,teiap,--. '
FOR. (i = 1; i < N; i++)."BEGIN' ■ - ' • ■

teiap=a ji] ; , ,

TOILE (j >=0 && at j] >.t.emp)
. . BEGIN

I al j+l)=a[jl

a[j+l]=temp;
END

END

III

Forward Back Reset Keyboard

Figure 1.25. Insertion Sort Animation

34



1.3.1.21 Heap Sort Animation. This is an example page

of Heap Sort. The time complexity of heap sort is
0(nlogn).

run
-shtic TOitf fteipTOf Hint v£J. jut ») {

f or\.(i=n/2;i>=G;i—>(,- *
.adjust_heap<v,i,n); _ . ? ir>,

for. (x«n-l;x>O;i—>{ \ * •
susp(v,O,i); . - ,
ad5ust_hoop(v,0,i); ' s fc. ,

' loop ' ' ; ' ‘

public static void ad^usn^heapdnt vfl, int position, int heapSite 
, while{position<hoapSise)(

mt eh’ildpos=position*2+l; . -
i fi{childpos-<h'eflpSise) { '■ -

if ( <ch±'ldpos+l<heapSise) 44 (v{childpos+lJ>vtchildposB )
* - : . ehildpoo++;' . , '

if <vfpositionj>vf childpesl

' swap<v,pos.ition,chiidpos> - • , • .
•« "statement'- ••>!''’■ _ - v ■> - . ,

poGition=childpes; , • -
>//while’loop . ' , . ’

Forward Rack Rnsnt Koylioard

Figure 1.26 Heap Sort Animation

<__Position
, Childoos

1!

35



CHAPTER TWO

DESIGN

After defining all software specification, the next

step in software development life cycle is.design. Design 
is a creative process. Software design guality is depended 
on understandability, verification and adaptability. To 
achieve this goal, Unified Modeling Language (UML) is used

for software analysis and design. It simplifies the
complex process of software design, making a "blueprint" 
for construction. Use Case is one example of UML that

define functionality of software in the last chapter. In 
this chapter other UML diagrams, such as class diagram, 

will be used in the following section. From the last

chapter (Figure 1.2), project product goals are to create 
sorting algorithm tutorials and complete interactive 
tutorial system in the .GTSS system. Therefore these two
product goals will be discussed.

The GTSS Project is an on-going project in the 

department of computer science, mathematics, physics, and 

chemistry at CSUSB. We used the GTSS tools and built new
ones to implement WISE.

36



2.1 Architecture Design

2.2.1 Sorting Algorithm Tutorials Design

The GTSS structure consists of 3 layers: core 

objects, engine objects and application objects [1]. For 
Sorting Algorithm GTSS applets, WISE still use the same

structure. Furthermore, new applets add more classes to 
the engine objects and application objects to make new

sorting algorithm applets run correctly. Figure 2.1 shows
structure of GTSS.

From Figure 2.1, Core Objects are used for creating
primitive graphics such as frames, text, canvases,

buttons, menus, etc. The Engine Objects are build on top

37



of the core objects and though inheritance and

polymorphism, this engine supports the generation of

windows and graphics for the specified subject. The
Application Objects are a set of objects that is used to
generate windows and graphics for a specific topic in a 
subj ect.

2.1.1.1 Core Objects. There are seven classes in the

Core Objects that are used to build new sorting algorithm 

applet. They are SGApplet, SGFrame, SGControlPanel,
SGMenu, SplashPanel, HsplitPanel, and Vspiltpanel. (See
Table 2.1)

Table 2.1. Core Objects

Class Name Function
SGApplet This is the superclass of all applet
SGFrame Defines a Frame.
SGControlPanel Specifies button on panel.
SGMenu Specifies menus on menus bar.
SplashPanel A panel used for demonstration.
HspiltPanel Defines a two horizontally split 

panels.
VspiltPanel Defines a two vertically split panels.

2.1.1.2 Computer Science Engine Objects. The Computer 

Science Engines that are used in creating new sorting 

algorithm tutorials contain six classes: ScatterPanel,

38



SortPanel, Scatterlnterface, Pseudocode, Sortlnterface,

and Sortnode. (See Table 2.2)

Table 2.2. Computer Science Engine Objects

Class Name Function
ScatterPanel Panel that displays the scatter 

graph.
Scatterlnterface Class interface to ScatterPanel.
SortPanel Defines the base panel for sort 

walkthroughs.
Pseudocode Defines the base panel to display 

algorithm.
Sortlnterface Class interface for SortPanel & 

Pseudocode.
Sortnode Defines graphical boxes for 

sorting animation.

The Computer Science Engine Objects are built using 
Core Objects. Computer Science Objects define basic 
graphics about animations such as sorting pseudocode and 
rectangular boxes for sorting animation. It rules also 
contains how to animate them such as swapping the boxes or
highlighting on lines in the pseudocode.

2.1.1.3 Application Objects. The current GTSS
structure supports four applications: Computer Science, 
Physics, Mathematics, and Statistics. We will continue our
discussion on computer science applets.

39



The five new applets added to GTSS foe computer

science are the following:
(a) Selection Sort is a Selection Sort walkthrough-

of the steps by steps execution of the
algorithm.

(b) Insertion Sort is an Insertion Sort walkthrough
of the steps by steps execution of the

algorithm.

(c) Quick Sort is a Quick Sort walkthrough of the

steps by steps execution of the algorithm.
(d) Heap Sort is a Heap Sort walkthrough of the

' steps by steps execution of the algorithm.
In Application Objects, We define the rule how the 

' algorithms associate with the pseudocode and rectangular
I
1 boxes by adding actionlistener. Every time the user clicks

on "forward" button. We define two more classes for every 
sorting applet to handle this situation. In insertion 
sort, for example, they are Iswalk.java and
ISControl.java. These two classes will tell the applet
what animation should it do. This method is applied to

every new sorting algorithm in GTSS. Table 2.3 shows new 

Application Objects built for new sorting tutorial 

algorithms.

40



Table 2.3. New Application Objects

Class name Function
Iswalk and ISControl Integrate all components objects 

and Control Insertion sort 
animation applet

SSWalk and SSControl Integrate all components objects 
and Control Selection Sort 
animation applet

Hswalk and HSControl Integrate all components objects 
and Control Heap sort animation 
applet

Qswalk and QSControl Integrate all components objects 
and Control Quick sort animation 
applet

Using GTSS to create new applet is quite easy since
there are preprogrammed classes available for instructors

to create a new applet. But one major drawback is that
instructors must know how to program in Java. Using Java
bean visual tools that help to eliminate the need of

programming in Java because Java bean allows the user to
create applet in a visual programming environment can
solve this problem.

Figure 2.2-2.5 shows the class diagrams of Insertion

sort, Selection Sort, Quick Sort and Heap Sort. All five
sorting algorithm applets have the same class diagram

structures. The class diagram shows all the Objects used
now integrated into one big picture showing the

41



relationships of all objects. This class diagram also
shows the detail of functions and variables for each class

that binds together to run this applet. This is also the

standard pattern of all future animation applets unless

this rule will be customized by instructors to fit future
0

applet requirements.

42



How to renew your books from Home

1. Access to Library Homepage. 
http://www.lib.csusb.edu

2. Select Renew Your Books 
bottom of page.

3. Click My Account Tab
4. Enter your barcode (on the 

back of your Coyote OneCard).
5. Click (Login)
6. Click Checkout Oiit Tab
7. Select item(s)for renewal by ' 

clicking in box next to each 
each title. Then click on bottom 
highlighted Renew box.

8. After renewing your item(s) 
make a print out for your receipt. 
The Library will make no fee 
adjustments unless you can show 
this proof of renewal.

If you have any questions 
concerning renewals please 
call Circulation Desk at 880-5090. .

Problems/questions with signing 
onto the Library’s web site or 
accessing the periodical indexes 
call Help Desk 880-5116 or 5107.

SGApplet

anent
jnent

---- >

>

g^menuLabel : String 
g^menuitemLabel: STring 
^menuitemlndex : int 
(^.sG Frame : SGFrame

<jmenuAction()
OcontrolPanelButtonActionO
<juseKeyBoard()

ISWalk
^cp : SGControlPanel
£^>sc : ISControl 
^>sp : SortPanel 
{^>pc : Psedocode 
^si: sortinterface 

<>init()
■^controlButtonO
<3appiyKBdata()
•4>applydata()

A

SortPanel
a : SortNode 
?: SortPointer

etdataO
aint()

1
V

INode

3 : String 
ne: String 
it
11
oolean

SGControlPanel

^applet: SGApplet 
^buttonLabel : String!]

SGMenu

^applet : SGApplet 
^MenuLabel : String 

gvjtem Label : String!] 
^radio : Boolean

<
HSplitPanel

^panell : Jcomponent
».panel2: Jcomponent 

fk,keepEqual : boolean

SGKeyboardFrame

SG Keyboardlnterface

❖applyKBDataO

SortPointer 
..Label : String

^,coordinate_x : int 
£?>>coordinate_y : int

't/ShowO

Figure 2.2. Insertion Sort Class Diagram

43

http://www.lib.csusb.edu


SGApplet
SGFrame

^tite : String
^Component! : Jcomponent 
is^,Component2 : Jcomponent 
^>ControlPaneI : JPanel

>

gV,menuLabel : String 
^.menuitemLabel : STring 
^menuitemlndex : int 
•J,sGFrame : SGFrame

SGControlPanel
^applet: SGApplet 
i^buttonLabel : String[]

<bmenuAction()
<5>controlPanelButtonAction()
^useKeyBoard()

SGMenu

SSControl
«sp : sortpanei
».pc : pseudocode

^SortForward()
^SortBackO
^SortReset()

SSWalk 

^.cp : SGControlPanel 
^sc : ISControl 
x,sp : SortPanel 
>,pc : Psedocode 
j,si : sortinterface

^init()
■\>controlButton()
<>applyKBdata()
^>applydata()

^.applet : SGApplet 
(^MenuLabel : String 
g^item Label : String[] 

fiferadio : Boolean

HSplitPanet
Impanel 1 : Jcomponent 
g^,panel2: Jcomponent 
tWkeepE qual: boolean

SGKeyboardFrame

SortPanel
Sortinterface^

<>Sortforward() -
^SortBack()
^SortReset()

g^sn : SortNode 
©jsp : SortPointer

SG Keyboardlnterface

<>applyKBData()

<>show()

^Setdata()
<>paint()

>

TV
SortNode

^.Value : String
gj->_Name: String 

t int 
: int
: boolean

SortPointer 
y,Label : String 
j,coordinate_x : int 
^coordinate_y : int

General Node

^General Node()

Figure 2.3. Selection Sort Class Diagram

44



SGApplet
SGFrame

^.tite : String
^.Componentl : Jcomponent 
^,Component2 : Jcomponent 
i^ControlPanel : JPanel

-------- >

^•jnenuLabel: String 
^menuitemLabel : STring 
^menuitemlndex : int 
^SGFrame : SGFrame

^menuActionQ
<>controlPanelButtonAction()
<>useKeyBoard()

/

HSControl HSWalk

SGControlPanel
(•^applet : SGApplet 
t^buttonLabel : String[]

SGMenu
^applet: SGApplet 
^.MenuLabel : String 
gyjtemLabel : String[] 
i^radio : Boolean

S^sp : sortpanel 
©/pc : pseudocode

■^SortForwardO
^SortBack()
^SortReset()
❖HSctrlO

~>

^cp : SGControlPanel 
g^sc : ISControl 
f^»sp : SortPanel 
^pc : Psedocode 
&>si : sortinterface <

HSplitPanel

Sortinterface

<>Sortforv/ard() — > 
<^SortBack() 
^SortResetO

<>controlButton()
^applyKBdata()
^applydataQ

SortPanel
(Sjsn : SortNode 
f&>sp : SortPointer

SG Keyboardlnterface

<>applyKBData()
<>Setdata()
<>paint()

~r
v

SortNode
S£,Value : String 
^._Name : String 
f^>X: int 
^>Y : int 
©>B : boolean

Jl

SortPointer

^Label : String 
^coordinate_x : int 
^>coordinafe_y : int

General Node

^GeneralNodeO
<>DrawNode()

impanel 1 : Jcomponent 
^pane!2: Jcomponent 
ftfkeepEqual : boolean

SGKeyboardFrame

->■ <>show()

Figure 2.4. Heap Sort Class Diagram

45



SGFrame 

^.tite : String'
^Component! : Jcompqnent 
gvComponent2 : Jcomponent 
^.Control Panel : JPanel

QS Control 

^.sp : sortpanel 
d/c : pseudocode

<>SortForward() 
^SortBack() 
^SortReset()

SGAppiet
^menuLabet: String 
^menuitemLabel : STring 
^menuitemlndex : int 
t^jsGFrame : SGFrame

<>menuAction()
^controlPanelButtonActionO
<>useKeyBoard()

QSWaik
^.cp : SGControlPanel 
?v,sc : ISControl 
d>sp : SortPanel 

- > • Psedocode
.^si: sortinterface

<>controlButton() 
^applyKBdata() 
^applydata()

<Zz

<

SGControlPanel

^applet SGAppiet 
^buttoriLabel: String[]

7^
/

SGMenu

^.applet : SGAppiet 
^.WlenuLabel : String 

g^itemLabel : String[] 
^radio : Boolean

HSplitPanel' 

impanel 1 : Jcomponent 
impanel 2: Jcomponent 
t&jkeepEqual : boolean

SGKeyboardFrame

Sortinterface
SortPanel

<>Sortforward() — 
^SortBack() 
^SortReset()

fd^sn : SortNode
^sp: SortPointer

•bSetdataO
^>paint()

SG Keyboardlnterface

^applyKBDataQ

<Jshow()

____ V
SortNode 

devalue : String 
di>_Name : String 
^X: int 
<%>Y : int 
^B : boolean

A
SortPointer 

^.Label : String 
d^,coordinate_x : int 
djcoordinate_y : int

t__________

General Node

❖GeneralNode()
<>DrawNode()

Figure 2.5 Quick Sort Class Diagram

46



2.1.2 Interactive Self-Evaluation System Design

As an extension project for GTSS, WISE is added. WISE 

system design is based on object-oriented design. WISE 

architecture consists of two object layers: core and
application.

The Core Object in WISE system consists of both main
classes that connect to database, and file and utility

classes that deploys superclasses to perform tasks that

help WISE run application object faster and with no error.

Table 2.4 shows all classes in Core Objects.

Table 2.4. Core Classes

Class Name Class Function
Connectsql A super class for all objects. To 

define database
Connectfile A Super class for file objects.
QueryBean Control query statement
InsDelUpdBean Control insert, delete or update in 

database.
Filebean Worked with connectfile, contain detail 

information to save to or read from 
identified filename.

Shuffle Shuffle all choices by random.
CreateChoice Base from correct answer, system will 

create almost the other four right 
answers before shuffle

RandomNumber Random number by specified ranges.
Scorebean Control and manage student's score.
ReadFileBean Reading information from file and send 

to display at screen

47



Application objects are classes that present all 
functionality provided by WISE system. Functionalities of 
WISE system was explained in chapter one using case
diagram. The main functionalities that show in the 

application objects can divided into five main groups: 

question manager, user manager, table of content manager, 
test taking and miscellaneous. The following tables show 
all Application Objects categorized by function.

Table 2.5. Question Manager Objects

Class Name Class Function
AddQuestionG Add new no-calculation question to the 

database
AddQuestionJ Add new calculate algorithm question to 

the database

Table 2.6. Test Taking Objects

Class Name Class Function
Qmanager Manage and create exercises to show on 

screen
QuestionG Retrieve non-calculation question to 

Qmanager
QuestionJ Retrieve calculation question to

Qmanager

48



Table 2.7. Table of Content Manager

Class Name Class Function
TOC check Check,add,modify and delete table of 

content

Table 2.8. Knowledge Base Manager

Class Name ■ Class Function
KbaseDelete Delete Knowledge base
KnowledgebaseCheck Check knowledge base parameter before 

saving to database

Table 2.9. User Manager

Class Name Class Function
UserlnfoBean Control and manage user login and 

signup

49



Table 2.10. Miscellaneous Objects

Class Name Class Function
Email Provide forget password mailing service
Sortgen Acquire calculation question with 

generated answers to QuestionJ

Figure 2.7 shows the WISE class diagram. The

connectsql class and connectfile are superclasses of all

classes in WISE system. Connectsql has the database
connection information. Connectfile also has filename
connection information, which is useful when the system
loads the student's exercise file.

After the student logs on to WISE system, the student 

can browse student menu, which includes GTSS, test taking, 
show score and personal information. Test taking
associates with Qmanager, which manages and creates tests 
for the student. Userupdate UI has dependency with
userinfoBean. Instructor can also browse the main menu,
which includes table of content manager, score manager, 
question manager and knowledge base manager. Table of
content manager has direct association with TOCadd,

TOCupdate and TOCdel. Question manager also associates

with addQuesitonG and EZ question manager. These two 
classes create new question to WISE system. Knowledge base 
manager associates with kbase_creator, kbase delete and

50



kbase_update. Knowledge base system is very important for 
questions that use Java program to create question. 

Question manager will use knowledge base information to 

create test. Every class associates with connectsql to 

access the database to update, insert, delete or query.

51



52



2.1.3 Database Design

Based on the class diagram, WISE database design uses 

relational database model. Relational database design
defines database as a series of related tables. WISE
database has been normalized for performance and logical 

error reduction. The following physical WISE database 

tables show the category detail entities for this project.

Table 2.11. User Information

Field Name Data Type Description
Userid Varchar(9) User login id
Password Varchar(20) Password for userlogin
Firstname Varchar(30) User's firstname
Lastname Varchar(30) User's lastname
Email Varchar(30) User's email for contact
Login type Enum type of "S" 

or "P"
Type of user login: "S" 
for student and "p" for 
professor

Table 2.12. Tutorial

Field Name Data Type Description
Tutorial ch Integer (2) Chapter to study
Exam ready Enum of"Y" and 

"N"
Status for examination 
creation

Exam selected Integer(2) Chapter for testing

53



Table 2.13. Table of Content

Field Name Data Type Description
Chapter id Integer(2) Assign chapter no
Section id Integer(2) Assign section no
Content Varchar(50) Name of that section
No of question Integer(3) Number of question in 

that section

Table 2.14. Exam Control

Field Name Data Type Description
Chapter id Integer(2) Chapter no
Total question Integer(3) Total question in that 

chapter
Percent pass Integer(3) Percent to pass exam in 

this chapter

54



Table 2.15. Knowledge Base

Field Name Data Type Description
Sample no Integer(9) Assign knowledge base 

number
Question sample Varchar(200) Knowledge base question
Paraml Varchar(50) Parameter nol that need 

for calculate result
Param2 Varchar(50) Parameter no2 that need 

for calculate result
Param3 Varchar(50) Parameter no3 that need 

for calculate result
Param4 Varchar(50) Parameter no4 that need 

for calculate result
Param5 Varchar(50) Parameter no5 that need 

for calculate result
Sample choicel Varchar(50)

1

Sample Choice A. An 
example for instructor 
understanding what kind 
of answer for this 
question

Sample choice2 Varchar(50) Sample Choice B. An 
example for instructor 
understanding what kind 
of answer for this 
question

Sample choice3 Varchar(50) Sample Choice C. An 
example for instructor 
understanding what kind 
of answer for this 
question

Sample choice4 Varchar(50) Sample Choipe D. An 
example for instructor 
understanding what kind 
of answer for this 
question

55



Field Name Data Type Description
Sample choice5 Varchar(50) Sample Choice E. An 

example for instructor 
understanding what kind 
of answer for this 
question

Function call Varchar(50) Name of function to 
calculate and create
answer

Question topic Varchar(30) What sorting topic this 
question belong to

Table 2.16. Question

Field Name Data Type Description
Chapter id Integer(2) Assign chapter number 

for this question
Section id Integer(2) Assign section number 

for this question
Question no Integer(5) Assign question number 

based on how many 
question in that chapter 
and section now

Question id Varchar(6) Combination of the 
chapter id plus 
section id plus 
question id as foreign 
key.

Question type Enum "G" or "J" Type of question "G" for 
general, which means no 
calculation question or 
"J" for java question 
which must calculate
answer

56



Table 2.17. Question General

Field Name Data Type Description
Question id Integer(3) Question id that assign 

in question table
Question Varchar(200) Question content
ChoiceA Varchar(100) The correct answer
ChoiceB Varchar(100) Multiple choice B
ChoiceC Varchar(100) Multiple choice C
ChoiceD Varchar (100) Multiple choice D
ChoiceE Varchar(100) Multiple choice E

Table 2.18. Question Java

Field Name Data Type Description
Question id Varchar(6) Question id that 

assigned in question 
table

Question Varchar(200) Question content
No of parameter Integer(1) Number of parameter 

used for calculate 
result

Function call Varchar(50) Function that use for 
calculate result which 
come from knowledge 
base table

Answer type Varchar(10) Show answer type of 
"auto" ,which let 
system autocalculate 
answer or "define", 
which let user define
answers.

57



Field Name Data Type Description
Choicel Varchar(100) If answer type is 

define, correct answer 
is defined here.

Choice2 Varchar(100) If answer type is 
define, second choice 
is defined here.

Choice3 Varchar(100) If answer type is 
define, third choice 
is defined here.

Choice4 Varchar(100) If answer type is 
define, forth choice 
is defined here.

Choice5 Varchar(100) If answer type is 
define, fifth choice 
is defined here.

Table 2.19. Parameter

Field Name Data Type Description
Question id Varchar (6) Question id that assigned 

in question table
Parameter id Varchar ( 6) Assigned parameter number
Param name Varchar (20) Parameter name
Param define Varchar(20) Assign either "auto 

ramdom" or "user define"
Param value Varchar(80) If param define set to 

"user define", user 
define value is stored 
here

Min number Varchar(5) If param define set to 
"autorandom", minimum 
number must be set to 
random number

58



Field Name Data Type Description
Max number Varchar(5) If param define set to 

"autorandom", minimum 
number must be set to 
random number

Show value Enum value "ON" 
or "OFF"

Choosing to show 
parameter value on screen 
and then used them for 
create answer(on) or not 
show on screen but use 
for create answer

Table 2.20. Score Table

Field Name Data Type Description
Score id Integer(9) Auto increment number
Userid Varchar(9) User id
Score Varchar(10) Score that user got
Status Enum type "pass" 

or "not pass"
Student pass or not pass 
based on percent pass of 
exam control table

Chapter test Integer(2) Chapter that student 
tested

Date test Varchar(30) Date and time stamp after 
taking test

2.2 Detailed Design

Detailed design shows the logical algorithms. In

other words, detailed design shows the program instruction

in plain English language. The developer gets benefit from

59



detailed design since it is easier to read and detect
error. As a result, the developer who wants to extend WISE

system can enhance it faster, saving time and saving 

budget. The next section shows the covering all the

classes that are listed in the class diagram on Figure
2.6.
2.2.1 Connect Database Class

Class name: connectsql
Purpose: Connect to physical database
Begin class
Mydriver=path of JDBC driver 
MyURL=path of physical database

Function Makeconnection: no return value 
/* connect physical database */
Begin

Activate driver
Establish connection to physical database

End

Function shutdown: no return value 
/* shutdown connection */
Begin

Close connection
End
End class

Figure 2.7. Connect Database Class

60



2.2.2 Query Bean Class

Class name: queryBean
Purpose: for query information from database

Class begin with extends connectsql class 
Resultset: myresultset=null 
Statement: stmt=null

Function setConnection: no return value 
/* link to connectsql to connect database */
Begin

Connectsql.makeConnection();
End
Function getNextRecord : return Boolean 
/* check next record in database */ 
begin

return if there is next record
end

function getColumnString :return string 
/* get string value from specific column */ 
parameter in: string:clmn ,
begin

return string value of that column.
End
function getColumnlnt :return string
/* get integer value from specific column */
parameter in: string:clmn
begin

return integer value of that column.
end

function isRecord: return Boolean 
/* query database */ 
parameter in: string :query 
begin

set myResultset=null 
prepare statement
check if that weather query get result
return weather query has result (not equal null)

end
function moveFirst: no return value 
/* move cursor to first record */

Figure 2.8. Query Bean Class

61



begin
return weather cursor already move to first record

end
function moveLast: no return value 
/* move cursor to last record */ 
begin

move cursor to the end of database
return if move cursor to last record(previous) is ok

end

function cleanup: no return value 
/* clear all statement values */ 
begin

close statement
end
function setShutDown: no return value 
/* shutdown this connection */ 
begin

activate close statement 
disconnect database

end

class end

Figure 2.8 Query Bean Class (continued)

62



2.2.3 Data Manipulation Class

Class name: InsDelUpdBean extends connectsql 
Purpose: to insert, delete and update data to database
Class begin 
Statement stmt=null 
Int rowaffect=0
Function InsDelUpd: a construction class
Function setConnection: no return value 
/* connect database */
Begin

Connectsql.makeConnection
End
Function setInsDelUpd: return int 
/* prepare statement for ins,del or upd */ 
parameter in: query
begin

set myquery=query
prepare statement before query
execute query statement, get number of row effect 
return number of row that effect from query statement

end

function setlnsert: return int 
/* prepare insertion */ 
parameter in: query 
begin

call setlnsDelUpd with query parameter 
return rowaffect

end
function setDelete: return int 
/* prepare deletion */ 
parameter in: query 
begin

call setlnsDelUpd with query parameter 
return rowaffect

end

Figure 2.9. Data Manipulation Class

63



function setUpdate: return int 
/* prepare update */ 
parameter in: query 
begin

call setlnsDelUpd with query parameter 
return rowaffect

end

function cleanup: no return value 
/* clear all statement values */ 
begin

close statement
end
function setShutDown: no return value 
/* shutdown this connection */ 
begin

activate close statement 
disconnect database

end

class end

Figure 2.9 Data Manipulation Class (continued)

64



2.2.4 Connect File Class

Class name: connectfile
Purpose: connect to read or write file
Class begin
Function connectfile a contruction class

Function openwritefile: no return value 
/* write html heading to file Q and file A */ 
Paramter in: String Q,A;
Begin

Connect filename(Q);
Connect filename(A);
Write html heading to file Q;
Write test answer to file A;

End;
Function closewritefile: no return value 
/* write html ending to file Q and file A */ 
Paramter in: String Q,A;
Begin

Write html ending to file Q;
Close file Q;
Write "0" to file A; // 0=end of file 
Close file A;

End;
Function openReadfile: no return value 
/* connect file A */
Paramter in: String A;
Begin

Connect filename(A);
End;

Function closeReadfile: no return value 
/* connect file A */
Paramter in: String A;
Begin

Close connect filename(A);
End;
End class

Figure 2.10. Connect File Class

65



2.2.5 File Bean Class

Class name: fileBean extends connectfile 
Purpose: write data to file
Function filebean: a construction class
Function getRadioForm: return string
/* return radio html button with choice content */
Parameter in: string choice

Int I
Begin

Return radio html button with value=choice
End

Function makeHTML: no return value 
Paramter in:
Int I
String q, a,b,c,d,e,ans 
Begin

Connectfile
Write test question and answer to file

End
End class '

Figure 2.11. File Bean Class

66



2.2.6 Read File Bean Class

Class name: readfileBean extends connectfile 
Purpose: read answer from file A
Function readfilebean: a construction class

Function readcorrectanswer: return vector of answer 
Begin

Prepare file to read
While not end of file (not equal to 6) do 

Read answer and put it to vector
End while

End

End class

Figure 2.12. Read File Bean Class

67



2.2.7 Score Bean Class

Class name: scoreBean
Purpose: check score after student take test
Begin class

Function scorebean: a construction class
Function setAnswer: no return value 
/* check answer */
Parameter in
Vector student_answer, correct_answer
Int percent_pass
Begin

Read student answers to vector student_answer 
Read correct answers to vector correct_answer 
For loop of size of vector

If (student answer= correct answer)
Count score 

End for loop
Find passing score

End

Function getScore: return int 
/* get score */
Begin

Return score
End
Function ispassChapter: return Boolean 
/* check student pass exam or not */ 
begin

check score with passing score 
return true if pass 
else return false

end
end class

Figure 2.13. Score Bean Class

68



2.2.8 Create Choice Class

Class name: createchoice 
Purpose: create multiple 
Begin class
Function createchoice: a

choice base on correct answer

construction class
Function makechoiceArray: no return value 
/* create choices from correct array answer */ 
Parameter in:
Int value[]
String choice[]
Begin

Int I,first half,second half

Get first half of array to first_half 
Get second half of array to second_half 
Create correct choice
Create second choice 
Create third choice 
Create forth choice 
Create fifth choice

End
End class

Figure 2.14. Create Choice Class

69



2.2.9 Shuffle Class

Class name: shuffle
Purpose: shuffle multiple choices

Begin class
Function shuffle: a construction class
Function makeShuffle: return string 
Parameter in: string choice[]
Begin

Int k, rand 
Int ans=0 
Boolean flag=true

For k=l to 5
While flag==true do

Random number with in 5 choices 
If random number never used then 

Flag=false 
Switch (random number)
If 1: a=choice[random-1] 

Clear choice[random-1]
If 2 : b=choice[random-1] ,

Clear choice[random-1]
If 3: c=choice[random-1] 

Clear choice[random-1]
If 4 : d=choice[random-1] 

Clear choice[random-1]
If 5 : e=choice[random-1] 1

Clear choice[random-1]
End while
If random=l // find correct answer after shuffle 
Ans=k

Switch(ans)
1: answer=choice a 
2: answer=choice b 
3: answer=choice c 
4: answer=choice d 
5: answer=choice e 
flag=true;

end for
random number between 1 to 3 
if random=3 set choice e=none of above 
return answer

end
end class

Figure 2.15. Shuffle Class

70



2.2.10 Random Number Class

Class name: randomnumber
Purpose: random number between given two numbers

Begin class
Function randomNumber: a construction class

Function getNumber: return int 
Parameter in 
Int min,max;
Begin

Return random number between these two given numbers
End

End class

Figure 2.16. Random Number Class

71



2.2.11 Add Question General Class

Class name: addquestionG
Purpose: add general question to database
Begin class
Function addquestionG: a construction class

Function checkVariable: return Boolean 
/* check variable from addQuestionG form */ 
paramter in:
string q, a,b, c, d ,e,topic
begin

if q has no value then error question found
if a has no value then error choice A found
if b has no value then error choice B found
if c has no value then error choice C found
if d has no value then error choice D found
if e has no value then error choice E found
if topic has no value then error topic found 
return error variable if error found

end

function setQuestionl:retirn Boolean 
/* add new question to database */ 
parameter in
String q,a,b,c,d,e,topic 
Begin

SetQuestion_no(topic)
Connect db
Set update to add 1 to question on that chapter
Update information and check row affect
Set insert of question number, question type info
Insert statement to table question
Set insert question, answer statement
Insert statement to table question_general
Disconnect db
Return true if success 
Else return false

End

Figure 2.17. Add Question General Class

72



Function setQuestion2: return Boolean 
/* delete question from database table */
Parameter in:
String q,a,b,c,d,e,topic,question_id 
Begin

Set delete statement 
SetQuestionl(q,a,b,c,d,e,topic)
Delete at row (questioned, "G")
If successful delete return true 
Else return false

End

Function setQuestion_no: no return value 
/* prepare question number for insert before 
insert into table */
parameter in: 
string topic 
begin

string query 
string name 
connect to db
select content , chapter_id and section_id from topic 

information.
Select total number of question in that chapter 
Set question number by concatenate 

chapter_id+section_id +(total question+1)
End
Function getError: return string 
Begin

Return error if any
End

End class

Figure 2.17. Add Question General 'Class (continued)

73



2.2.12 Add Question Java Class

Class name: addquestionJ
Purpose: add JAVA question to database

Begin class
Function addquestionJ: a construction class

Function setQuestionlnfo: no return value 
Parameter in:
String sortname 
Begin

SortQuery= new queryBean
Set select statement from tableofcontent table
Connect to db
If (query has record) the

Get chapter_id to chapter 
Get section_id to section 
Get number of question to total

End if
Disconnect db

End
Function setQuestion: return Boolean 
/* insert java question to db */ 
parameter in:
string question, paramno,function_call
string answer,p[][],sortname
begin

init value of roweffectl=0 
init value of roweffect2=0 
init value of roweffect3=0 
init value of roweffect4=0 
int number_of_question 
string question_id 
string addtoparametertable=""
setquestioninfo(sortname) 
number_of_question=total 
connect to db for add
set update number of question+1 to tableofcontent table 

set insert to question table 
(chapter,section,question id, "J") ;

Figure 2.18. Add Question Java Class

7 4



if error not true(=l) then
set insert to question_java table 
set insert to parameter table

disconnect database 
if no error return true 
else return false

end

function setQuestionEdit: return Boolean 
parameter in:
string answer,choice[],p[][],sortname,old_question_id 
begin

add new edit question record to database 
delete the old question record from database

end
end class

Figure 2.18. Add Question Java Class (continued)

75



2.2.13 Question Retrieval Manager Class

Class name: Qmanager
Purpose: this class manage and create question test for 
student
Begin class
Function Qmanager: a constructor class 

Function getQuestion: return string
/* random to get question either general question or 

java question */
Parameter in:
Int ch, sections 
String choicest]
Begin

Int randl
Int number_of_question=l 
String question_type=""
String question_number=""
String query_question_table=""
QueryBean db=new queryBean()
QuestionG qg=new questionG()
QuestionJ qj=new questionJ()
Db set connection
For(;;)
Query_number= select no_of_question 
If(db.isRecord(query_number))

Get no_of_question to number of_question 
If(number_of_question equal 0)

Random new section 
Else break

End for
Random number and put to randl 1
Set query to select question from question_id that get 
from chapter+section+randl 
Set query to select type of that question 
either "G" or "J"
If (type="G")

Question=qg.getQuestion(question_id, choices)
Else

Question=qj.getQuestion(question_id,choices)
Shuffle sl=new shuffle()
Answer=make shuffle answer(choices)
Return question

Figure 2.19. Question Retrieval Class

76



Function getAnswer: return String 
/* get answer */
Begin

Return answer
End
Function getdupinfo: return string
/* send question_id to check that this question is already 
in the test, yes question duplicate or no question will be in 
the test */
Begin

Return (questioned)
End

End class

Figure 2.19. Question Retrieval Class (continued)

77



2.2.14 Question General Class

Class name: questionG
Purpose: retrieve general question from database 

(no calculation question)
Begin class
Function questionG: a constructor class

Function getQuestion: string
/*function to get question and answer before shuffle */ 
begin

queryBean db=new queryBean() 
db sets database connection 
query= select question from question_id 
if (record found) then

get question to iquestion
get choice[0] to choiceA
get choice[1] to choiceB
get choice[2] to choiceC
get choice[3] to choiceD
get choice[4] to choiceE

end if
db set disconnection
return question

end
end class

Figure 2.20. Question General Class

78



2.2.15 Question Java Class

Class name: questionJ
Purpose: retrieve JAVA question from database 

( the calculation question type)

Begin class
Function questionJ: a constructor class

Function getQuestion: return string value 
Parameter in:
String Question_id,choice[]
Begin

QueryBean qj =qj.queryBean()
Qj set db connection 
Query=select * from question_java 
If (there is record)

Get question content to question variable 
Get no_of_param to no_of_param variable 
Get function_call to function_call variable 
Get answer_type to.answer_type variable 
If (answer_type not equal user define)

Choice[0]=get value from column choicel 
Choice[1]=get value from column choice2 
Choice[2]=get value from column choice3 
Choice[3]=get value from column choice4 
Choice[4]=get value from column choice5

End if
Query =select * from paramter by question 
If (there is record)

While (nextRecord)
Parameters[I][0]=get value from 
Parameters[I][l]=get value from 
Parameters[I][2]=get value from 
Parameters[I][3]=get value from 
Parameters[I][4]=get value from 
Parameters[I][5]=get value from 
Parameters[I][6]=get value from 
Increment I by 1

End if
Disconnect database 
If(answer_type=auto)

CreateAnswer(choices)
Return question

id

param_id 
param_name 
param_define 
param_value 
min_number 
max_number 
show value

Figure 2.21. Question Java Class

79



Function createQuestion:return String value
/* create full question */
begin

for(1=0 to no_of_parameter-l)
find position "[p" in question 
save postion in index2
tempq= cut all question up to index2 position 
then select parameter 
read if temp_v=[pl] then

param__value=get paraml 
read if temp_v=[p2] then

param_value=get param2 
read if temp_v=[p3] then

param_value=get param3 
read if temp_v=[p4] then

param__value=get param4 
read if temp_v=[p5] then

param_value=get param5 
question_set=concat temp_q and param_value 
index2=indexl 

end for
question_set=concat question set+ substring indexl 
return full question

end

function getParameter: return String 
/* prepare set parameter */ 
parameter in:
string temp_v 
begin

String value=""; 
if (temp_v equals("[pi]") ) 

value=setParameter("1") ; 
if (temp_v equals("[p2]")) *

value=setParameter("2"); 
if (temp_v equals("[p3]")) 

value=setParameter("3" ) ; 
if (temp_v equals("[p4]")) 

value=setParameter("5"); 
if (temp_v equals("[p5]")) 

value=setParameter("5"); 
return value;

end

Figure 2.21. Question Java Class (continued)

8 0



function setParameter: return string 
/* set parameter */ 
parameter in: 
string id
begin

for (i=0 to i<no_of_parameter) do
if(id equals(parameters[i][0])) then

if(parameters[i][2] equals("user define")) then 
if(parameters[i][1].equals("array")) then 
value=getArrayUserDefine(parameters[i][3]) 

end if else { temp=parameters[i][3]; 
p[i]=parselnt(temp); 
value=temp;

}
else if(parameters[i][2]equals("auto random")) 

if(parameters[i][1].equals("array")) 
size=parameters[i][3]
min=parameters[i][4]; 
max=parameters[i][5] 
value=getArrayRandom(size,min,max) 

else {
min=parameters[i][4] 
max=parameters[i][5] 
p[i]=getValueRandom(min,max) 
value=""+p[i]

}
}
if(parameters[i] [6] equals("OFF") ) value=""
}
return value;

end
function getarrayuserDefine: return string value 
/* get array that user define */ 
parameter in
string array_userdefine 
begin

add to array_userdefine to set end point
ch=array__userdef ine . charAt (i) ; 
hile (ch!='!'){

if(Character.isDigit(ch)) 
temp+=""+ch

else {

Figure 2.21. Question Java (continued)

81



if (!temp.equals(""))
v.addElement(temp) 

temp=""
}
i=i+l
ch=array_userdefine.charAt(i)

}
arrays=new int[v.size()] 
for(i=0;i<v.size();i++)

temp=v.elementAt(i).toString() 
arrays[i]=Integer.parselnt(temp) 
value+=temp+" "

}
return value

end

function getArrayRandom: reutn string 
/* get array random */ 
parameter in:
string size_str, min_str, max_str 
begin

randomnumber=rn.new randomnumber
min=parselnt(min_str)
max=parselnt(max_str)
try size=parselnt(size_str)
catch error if size=8
arrays= new array [size]
for (1=0 to size-1) do

array [I]=random number between min and max 
end for
return array_value

end
function getValueRandom: return int
/* get random value */
begin

min=parselnt(min_str) 
max=parselnt(max_str)
return (get random number between min and max)

end
function createAnswer:no return value 
parameter in:
String choicest]
Begin

Sortgen.sortmain(arrays,p,function_call,choices)
End
End class

Figure 2.21. Question Java (continued)

82



2.2.16 Table of Content Check Class

Class name: TOCcheck
Purpose: check, add, modify and delete table of content 
information.

Begin class
Function TOCcheck: a constructor class

Function setChapter: no return value 
Parameter in:
String chapter 
Begin

This.chapter = chapter
End
Function setSection: no return value 
Parameter in:
String section 
Begin

This.section = section
End

Function setContent: no return value 
Parameter in:
String content 
Begin

This.content = content
End
Function startCheck: return Boolean value 
Begin

Try {
Chapter_id=parselnt(chapter)

}catch (if number error found){
found=true;
error_message="chapter must1 be integer

}
Try {

section_id=parselnt(section)
}catch (if number error found){

found=true;
error_message="section must be integer

}
return found_error;

End

Figure 2.22. Table of Content Check Class

83



Function geterror: return string value 
Begin

Return error_message
End'
Function addContent: return boolean value 
Begin

Set query= insert to table-of-content table values 
(chapter_id,section_id,content)

InsDelUpd add=new InsDelUpdBean()
Add.setconnection()
Add.setlnsert(query)
Add.disconnect
If error of duplicate record

Error_message="duplicate"
Return true 

If insert ok then 
Return true

End

Function delContent:return Boolean value
Begin
try

Set delete statement to delete by content value 
InsDelUpdBean del=new InsDelUpdBean()
Del.setConnection()
Del.setDelete(delete)
Del.setshutdown()

Catch (error deletion){
Error_message="error deletion"
Return true

If deletion is ok then 
Return true

End

End class

Figure 2.22. Table of Content Check Class (continued)

84



2.2.17 Knowledge Base Check Class

Class name: KnowledgeBaseCheck
Purpose: check, add, modify for knowledge base 
Begin class
Function knowledgbaseCheck: a constructor class
Function setQuestion:no return value 
Parameter in: string question 
Begin

This.question=question
End

Function setChoiceA:no return value 
Parameter in: string choiceA 
Begin

This.choiceA=choiceA
End
Function setChoiceB:no return value 
Parameter in: string choiceB 
Begin

This.choiceB=choiceB
End

Function setChoiceC:no return value 
Parameter in: string choiceC 
Begin

This.choiceC=choiceC
End
Function setChoiceD:no return value 
Parameter in: string choiceD 
Begin

This.choiceD=choiceD
End

Function setChoiceE:no return value 
Parameter in: string choiceE 
Begin

This.choiceE=choiceE
End

Figure 2.23. Knowledge Base Check Class

85



Function setPl:no return value 
Parameter in: string Pl 
Begin

This.P1=P1
End

Function setP2:no return value 
Parameter in: string P2 
Begin

This.P2=P2
End
Function setP3:no return value 
Parameter in: string P3 
Begin

This.P3=P3
End

Function setP4:no return value 
Parameter in: string P4 
Begin

This.P4=P4
End
Function setP5:no return value 
Parameter in: string P5 
Begin

This.P5=P5
End

Function setfunction_call:no return value 
Parameter in: string function_call 
Begin

This.function_call=function_all
End
Function setTopic:no return value 
Parameter in: string topic 
Begin

This.topic=topic
End

Figure 2.23. Knowledge Base Check Class (continued)

86



Function checkKnowledgeBase: return boolean value 
Begin

if (question.length()==0){
found_error=true;
errors=Question field must have value 

}if (choiceA.length()==0){
found_error=true;
errors=choiceA field must have value 

}if (choiceB.length()==0){
found_error=true;
errors=choiceB field must have value 

}if (choiceC.length()==0){
found_error=true;
errors=choiceC field must have value 

}if (choiceD.length()==0){
found_error=true;
errors=choiceD field must have value 

}if (choiceE.length()==0){
found_error=true;
errors=choiceE field must have value 

}if (function_call.length()==0){
found_error=true;
errors=Function call field must have value 

}if (topic.length()==0){
found_error=true;
errors=Topic: Please choose topic

}
return found_error;

End

Function addSample: return Boolean 
/* add knowledgebase to database */ 
begin

InsDelUpdBean add=new InsDelUpdBean()
Query= insert into knowledgebase 

values(question,pi,p2,p3,p4,p5,choiceA,choiceB 
ChoiceC,choiceD,choiceE)
Add.setConnection()
Setinsert()
Add.shutdown()
If no error then 
Return true 
Else return false
Function getError: return string value 
Begin

Return errors
End
End class

Figure 2.23. Knowledge Base Check Class (continued)

87



2.2.18 Knowledge Base Deletion Class

Class name: Kbase_delete 
Purpose: delete for knowledge base

Begin class
Function kbase_delete: a constructor class
Function delete_row : return Boolean value
Parameter in: string question
Begin

QueryBean check=new queryBean()
This.question=question
Delete_query= delete from knowledgebase where 

question_sample=question;
Del.setConnection()
Setdelete(delete)
Del.shutdown()
If delete is ok then return true 
Else return false

End

End class

Figure 2.24. Knowledge Base Deletion Class

88



2.2.19 User Information Class

Class name: UserlnfoBean
Purpose: check, add, delete, update for users
Begin class
Function userinfobean: a constructor class
Function serUsername: no return value
Parameter in: string username
Begin

This.username=username
End

Function seroldpassword: no return value
Parameter in: string oldpassword
Begin

This.oldpassword=oldpassword
End
Function serpasswordl: no return value
Parameter in: string passwordl
Begin

This.passwordl=passwordl
End
Function serpassword2: no return value
Parameter in: string password2
Begin

This.password2=password2
End
Function serUser: no return value 
Parameter in: string user 
Begin

This.user=user
End
Function serlast: no return value
Parameter in: string last
Begin

This.last=last
End
Function serFirst: no return value 
Parameter in: string First 
Begin

This.first=first
End

Figure 2.25. User Information Class

89



Function serEmail: no return value
Parameter in: string email
Begin

This.email=email
End

Function startCheck: no return value
Parameter in: string check
Begin

if (!check.equals("upd"))
if (username.length()==0) 

error_found=true
error_message=Username field must have value 

endif
endif

if (check.equals("upd"))
if (oldpassword.length()==0) 

error_found=true
error_message=01dpassword field must have value 

endif 
endif
if (passwordl.length()==0) 1

error_found=true
error_me,ssage=Password field must have value

endif
if (password2.length()==0) then error_found=true; 

error_message=Password field must have value
endif
if (check.equals("")) 
if (user.length()==0) 

error_found=true
error_message+="<li>User field must have value 

endif 
endif
if (first.length()==0) 

error_found=true
error_messageFirstname field must have value 

endif
if (last.length()==0){ 

error_found=true
error_message=Lastname field must have value 

endif
if (email.length()==0){ 

error_found=true
error_message=Email field must have value 

else
index=email.indexOf("@"); 

if (index==-l)

Figure 2.25 User Information Class (continued)

90



error_message=Invalid Email
endif
if (error_found==false) 
if (check.equals("S")) 

checkValidl() ; 
status="S";

else if (user.equals("Student")) 
checkValidl(); 

status="S"; 
endif
else if (user.equals("Instructor")) 

checkValid2() 
status="P"

endif
endif
return error_message;

End

Function checkValidl: no return value 
/* validate student account */
Begin

Try
Ssn_bound=parselnt(username)
If((ssn is not between 1000000000-900000000) 

Error_message="invalid SSN"
Catch (numberformatexception nfe)

Error__message=SSN contain 9 digits
End
Function cehckvalid2: no return value 
/* validate professor account */
Begin

Try {
Ssn_bound=parselnt(username)
If((ssn contains number)

Error_message="professor account should not all
number"

}Catch{ (numberformatexception nfe)
If(username.length > 8)

Error=username contain 8 cahracter
}
passwordcheck()

End
Function passwordcheck: no return value

Figure 2.25 User Information Class (continued)

91



Begin
If(passwordl not equals password2) then 

Error=password are not the same
End
Function addUser: no return value 
Begin

Stmt=insert all information to userinfo table 
InsUpdDelBean add=new InsupdDelBean 
Try {

Add.setConnection()
Setinsert(stmt)
Add.setShutDown()

}catch{ (sqlexception sql){
error=username already taken 
error+=Please try again 
return false

}
if (add success) then return true 
else return false

End
Function delUser: no return value 
Begin

Stmt=delete from userinfo table by username 
InsupdDelBean del=new InsupdDelBean 
Try {

Add.setConnection()
Setdelete(stmt)
Add.setShutDown()

}catch{ (sqlexception sql) {
error=username does not exist 
error+=Please try again 
return false

}
if (del success) then return true 
else return false

End
Function userChange: return boolean value 
Begin

if (first.length()==0) {
error_found=true
error_message=Firstname field must have value

}
if (last.length()==0){

error_found=true
error message=Lastname field must have value

Figure 2.25. User Information Class (continued)

92



)
if (email.length()==0){ 

error_found=true
error_message=Email field must have value 

}else {
index=email.indexOf("@") 

if (index==-l){
error_found=true 
error_message=Invalid Email

}
}
return error_found;

End

Function passwordChange: return boolean value 
Begin

if (oldpassword.length()==0) { 
error_found=true
error_message=01dpassword field must have value 

}
if (passwordl.length()==0){ 

error_found=true
error_message=Password field must have value

}
if (password2.length()==0){ 

error_found=true 
error_message=
Confirm Password field must have value

}
if (error_found==false){ 

passwordCheck()
if (error_message.length()!=0) 

error_found=true
}
return error_found

End
Function updateUser: return boolean value 
Begin

if (user.equals("Instructor" ) ) 
status="P"

else status="S" 
stmtl="update userinfo set 

firstname='"+first+"',lastname='"+
last+"',email='"+email+"',login_type='"+status+"'" 

InsDelUpdBean upd=new InsDelUpdBean() 
try{

upd.setconnection()

Figure 2.25 User Information Class (continued)

93



upd. setDelete (stmtl)’ 
upd.setShutDown()

} catch (SQLException sql) {
error_message=Database Error 
return false

}
if (update success) return true 
else return false

End
Function updatepassword: return boolean value 
Begin

if (user.equals("Instructor")) 
status="P"

else status="S"
stmt2="update userinfo set password='"+passwordl+"'" 
InsDelUpdBean upd=new InsDelUpdBean(); 
try {

upd.setConnection() 
upd.setDelete(stmt2 ) 
upd.setShutDown()

} catch (SQLException sql){
error_message=Database Error 
return false

}
if (update success) return true 
else return false

End
Function geterror: return string value 
Begin

Return error
End

Figure 2.25. User Information Class (continued)

94



CHAPTER THREE

TESTING

Testing or software validation is the testing process
to ensure that the program as implemented meets the

expectation of the user [3]. The purpose of system

validation is to have assurance about the software quality 

and functionalities. This guarantees system performance 
and reliability also.

3.1 The Testing Process

There are three testing processes that are used in
testing WISE system: unit testing, subsystem testing, and
system testing.

Except for small computer programs, it is unrealistic
to attempt to test systems using only unit testing. Large
systems are built out of many small subsystems, which may 
themselves be built out of procedures. WISE system was
tested by all three testing methods.

3.2 Unit Testing

Unit testing is the basic level of testing where 

individual components are tested to ensure that they

operate correctly. These individual components can be
object, class, program and etc. The following test rules

95



are defined to check that each component meets

specification:

(a) Verify the handling of all valid input data type
(b) Verify the handling of error condition
(c) Check normal and abnormal program termination

(d) Check all buttons work as expected

Unit test offers the most effective way to detect

problems when comparing with the other testing methods. On

the other hand, this testing method cost more time and 
money to execute. The later testing methods will show an

effective way to save time, which will be discussed in
next two sections. The unit testing results of WISE system

are shown in Table 3.1.

Table 3.1. Unit Test Results

Forms Tests Performed Results
Tutorial Applet • Test all sorting algorithm 

applets that describe in 
last section

Pass

Authorization • Verify handling valid data 
input

• Ensure all buttons and 
links work as expected

Pass

Student Sign Up • Verify handling valid data 
input

• Ensure all buttons and 
links work as expected

Pass

96



Forms Tests Performed Results
Password • Verify handling valid data 

input
• Ensure all buttons and 

links work as expected

Pass

Student Main
Menu

• Check all submit buttons Pass

Testing
Selection

• Check combo box
• Check all buttons

Pass

Testing Page • Check all text appearance
• Verify handling mouse input
• Check submit button

Pass

Result Score
Page

• Verify content appearance
• Check submit button

Pass

User
Modification

• Verify handling data input
• Check button labels 

appearance
• Check buttons work as 

expected

Pass

Student feedback • Verify handling data input
• Check selection box 

appearance
• Check all buttons work as 

expected

Pass

Instructor Main 
Menu

• Check all contents
• Check all buttons and links 

work as expected

Pass

General Question 
Creator

• Verify handling data input
• Verify selection box area
• Check all submit button 

works as expected

Pass

97



Forms Tests Performed Results
EZ question 
creator Page 1

• Verify handling data 
selection

• Check all buttons work as 
expected

Pass

EZ question 
creator Page 2

• Verify handling data 
selection

• Check all buttons work as 
expected

Pass

EZ question 
creator Page 3

• Verify handling data input
• Verify handling data 

selection
• Check all buttons work as 

expected

Pass

EZ question 
creator Page 4

• Verify handling data input
• Verify handling data 

selection
• Check all buttons work as 

expected

Pass

EZ question 
management

• Check handling edit buttons
• Check handing delete 

buttons
• Check view content 

apperance

Pass

Knowledge Base 
creator

• Verify handling input data
• Check retrieval selection 

box information from 
database

• Check all buttons work as 
expected

Pass

98



Forms Tests Performed Results
Knowledge Base 
Management

• Check response edit button
• Check response delete 

button
• Check retrieval information 

from database
• Check confirm deletion

Pass

Score Management • Check score retrieval by 
specific id

• Check score retrieval by 
all id

• Check All buttons work as 
expected

Pass

Preference Page • Check instructor's 
information retrieval from 
database

• Verify handling data input
• Check all submit buttons 

work as expected

Pass

Content Creator • Verify handling data input
• Check all buttons work as 

expected

Pass

Content Manager • Verify table of content 
retrieval information from 
database

• Check edit content response
• Check delete content 

response

Pass

System
Administrator
Main Menu

• Verify all menu contents
• Check all links work as 

expected
• Check security feature

Pass

99



Forms Tests Performed Results
User Creator • Verify handling all data 

input
• Check all buttons work 

properly

Pass

User Manager • Verify user information 
retrieval from database

• Check edit content response
• Check delete content 

response

Pass

Log Off • Check logoff link work 
properly

Pass

3.3 Subsystem Testing

Subsystem testing is the next step up in the testing

process where all related units form a subsystem to do a

certain task. Thus, the subsystem test process is useful

for detecting interface errors and specific functions.
Table 3.2 shows subsystem test results in detail.

100



Table 3.2. Subsystem Test Results

Subsystem Test performed Results
GTSS tutorial 
system

• Test all tutorial and 
applet of O(n2) and
0 (nlogn)

Pass

Question
subsystem

• Test random guestion, 
create answer and link 
statistic

Pass

Knowledge Base 
subsystem

• Test create guestion, 
manage question database

Pass

User subsystem • Test user by create, 
manage, update user

• Test security on user 
account

Pass

Score subsystem • Check and test grade to 
pass chapter.

• Check score database and 
test score controller

Pass

3.4 System Testing
System testing is the testing' process that uses real 

data, which the system is intended to manipulate, to test
the system. First all subsystem will be integrated into
one system. Then test the system by using a variety of
data to see the overall result.

System testing WISE system begins with the following 
steps (Table 3.3):

101



Table 3.3. System Test Results

System Testing Results
1. Install WISE system into computer science 

server.
Pass

2. Start up all services such as JSP engine, 
MySQI database engine.

Pass

3. Running testing by using real data on all 
forms and reports.

Pass

3.5 Sample Session

The following section shows samples of how to use

WISE system in the demonstration of tutorials, knowledge

base, general question creator and EZ question creator.

3.5.1 Demonstration of Tutorial
- * Ej , m I« i«w'trvoi-t <IoJ> S'” — n- “<• — "gy aa

Oto of ths siinpiwst suiting algorithms is insertion suit. Inseiliun sort leads eminent el 
a time in array. Then it tries to rdort that elcrrent into its serted position of the reading array 
hy comparing (he prevail' element one hy nne until the right position found.

sequence of carts. when the hist card it deeit. there It nothing to de here tmae there is only 
one ceid ill the hand Second card is dealt, we liave to cunoaiu and decide to place it before 
or after the first card. For the third card, wo also have to dacido to^placa cord before first 
cant nr before second card or after secord card.

S 1 ►
HOME J HELP ..NEXT., i__ _ __ . _ Z “ Tl _ J

(1)
Flour© 21 intenionsortexomjlo

. 72")
fie from, t«b ,

Insertion Sort: Analysis or algorithm [average case)

InerderteeoabseLueitoneert skerthoj. I wffl ure KletBcntertiiC-i-t-re.-rionajfstkrtctd

XurO-lr tJ>0| « <»[J-l)>l<uvl i J~) I 
etdl-efi-Ur

e[J] eterrpf

! j gjtoedrttwet. , >

(3) (4)
Figure 3.1 Sorting Algorithms Tutorial

"""nL-tf
■=■> E3

102



The format of the tutorial consists of four Web pages 

per sorting algorithms (see Figure 3.5.1), which include
basic operation, sorting example, sorting animation

applets and analysis of sorting algorithm. Figure 3.5.1

(1) shows basic operation in plain text. Figure 3.5.1(2)

explains more details of the algorithm. Figure 3.5.1 (3)

shows the sorting animation. Students just click on

"forward" buttons to start animation. Figure 3.5.1 (4)
shows analysis of algorithm. Each analysis of algorithm

explains the average
3.5.2 General Questi

case only,

>n Creator

ffc iv Vwr'fjafs Ja* E2
Succosdul add to DB

Figure 3.2. General

__ .,i (a'-
:2)

luestion Creator

General question creator (see Figure 3.5.2) tools

help to create general questions. Figure 3.5.2 (1) shows 
the interface for creation of questions. After filling out
all the information, The system saves it to the database
and show the confirmation of the save operation.

103 ■



3.5.3 Knowledge Base Creator

hubSedass Buhb

public BiibhleflO

public void bubbleSortpnt cfl. Ini al_p)(

Int l.|:
Int le rap;

lerp«O;I<aJength;l»«][
lor(j=l:|<(a.lengtM]:j»«H

lemp’«|J-1J:■BWInrap;)
JH (I==al_p| I’aJengih; flelnp pmcasa

- ’ ».
fl HeCkolc tel-He

torp»0;l<NJength;l»<J(HMM
ll|n»..O] nt-NftC 
else H(n2==tl] »2=ti(l]; 
else tf(r»3**O| b3’N]I); 
else ll(i>4”0] a4=hqij- 
else U|n5«-0] o5«N[IJ;

Jdinl£es[H=“tIf” Begin Select Java Program™*/
D [luaotlao caU.equalsftubbleTH

Bubble h1 = new Bubble!); 
b1^ubbleSort(vsl«e.a1|:/Mlue«anayi nl 
oI.raakeCholcesArrayfvalae.chDlces);

Ielse II punrtlon can.cqnalar'eetedlon'1)[ 
Selection al* new SctcdioaQ: 
e1.aeIeclloflSnftMtlue.nl].- 
cl jaakeCbalcesAiraytvaloc.cbolces);I

else II [function ull.cqaaJsrioseRlen’lII 
losertlon II» new Inaertloog;
11 JnaertlonSoft(valse^ilp 
cl.nakeChflleesAnayfs'itlae.chnleeB):

a. ot pasting algorithm;

(1) (2)
Knowledge Base Creator

j f« I* r4«i« j k
Successful add to DB

flack To Main Monti

fffgsSS ‘ -
E3-

Knowledge Base Question
G.vsn you etisy [5X3Z1] tHai 5 pastes in Bubble sort elgontim?

Sample Choice A

Sample Choice B

Sample Choice C

Sample Choice D.

Sample Choice E

Parameter name 1:
3 .. i Ji-j . :

(3) ■ (4)
Figure 3.3. Testing Knowledge Base Creator

Figure 3.5.3 (1-2) shows fragments of the Java
program that the instructor has to1 do to find the answer. 
It also shows another program fragment to define how to 

create choices. Figure 3.5.3 (3-4)’ shows the input 
question information, which inform'other instructors that 
there is this question ready to create those exercises.

104



3.5.4 Easy Question Creator

><”*■» »rt> _ /
EZ Quottion Creator For Q1B3

[mizw tdaottypo of antwo^l pM7.'MPiggtTPlj

jj-ifr- tiU-x&H-tfstctolVi'** .’Betj?:;

EZ Quottion Creator lur CTS6
----------

5t*j>it (Miu*

£

1 fvO Kfiowledqe Bote BclBtt Bomplu - -i t-
1 lltlrven yon Array [S.4.3.?.!) after S pawt mbuhbto |
| j|tort algorithm? WNch of the fotowng choc* it true* 0 I Samoa i 1

H Hgyr» ji
CZ

___ ______ ~ __

b,e«W«!irMMJW
j C* t>£ Ff'Otu l'Mr

Question Creator

Stsp^.Answpr . ..4._ ------------—.—.—_

?P>Awte<5t»atoCt«Jia«rSt»awk;R8«i«»DWBl«Ks.*ss ■. t

1< id/ i I

□L. „ •T 1

□1 .. n: • i

□CZZZ...... ........... .........i J

ni................ 1

(4)
Ffa t« X— .frfHrtM lu* -n>t>

:t tmfc:|yBut5^5^ ,»j j

„ j

A>Moay-jnc.yuoDJAtfOEyu»
Pl .VarieBnorray Cetneet->OuMiandom West d64tts->NONE ArsySite->8 
Jtendomnw«nuan->10 Jtand3mi»«T»»i»>93 Sio«votoo->CN 

P2 .VaiitM»>pa»i Potroet-aautoiendon) liter defce-tHONE ArraySUe>HON£

r«g£q ri&q

b
-J fi

Hu
,*. ■ (■<»««>

(s:
Figure 3.4. Easy Question Creator

EZ question creator is shown in Figure 3.5.4 (1-5) .

In step one, the instructor has to choose which sorting
question and type of answer to create. Step, two shows the 
knowledge base question based on step one. After selecting

105



the type of question in step two, the instructor can 

modify the question in step three. This question will

later be used in the interactive exercise after students

finished their tutorial. In step four, the instructor

chooses between letting program create answers or having
the user defined them. Step five shows all the question

information that WISE collected from step 1-4. After
clicking "finish" button, WISE saves all question

information to the database.

106



CHAPTER FOUR

MAINTENANCE MANUAL

It is impossible to produce systems of any size,
which do not need to be maintained. System maintenance is

an important step to ensure that the system runs smoothly

and meets the customer's expectation. In WISE system,

there are five major maintenance issues: WISE's files and

directories, WISE installation, system migration, and
database maintenance and program modification.

4.1 Files and Directories

I have arranged related file and directories based on
the design in Chapter two. There are seven main

directories ,see Tables 4.1-4.7. All directories are under
/usr/local/tomcat/webapps/wise/web-inf/classes/

Table 4.1. Files in Main Directory

Java files under main classes directories
1. Connectsql.java
2 . Connectfile.j ava
3. QueryBean.j ava
4 . InsDelUpdBean.j ava
5. Shuffle.java
6. CreateChoice.java
7 . FileBean.j ava
8 . RandonNumber.j ava

107



9. ScoreBean.j ava
10 . ReadFileBean.j ava
11. AddQuestionG.j ava
12 . AddQuestionJ.j ava
13 . Qmanager.j ava
14 . QuestionG.java
15 . QuestionJ.j ava
16. TOC check.java
17 . KbaseDelete.j ava
18 . KnowledgebaseCheck.j ava
19 . UserlnfoBean.java
20 . Email.j ava
21. SortGen.j ava

4.2 Software Installation

This section shows how to install WISE to in the
Linux operating system. I assume that JSP Tomcat server
and mySQL are already installed in Linux system. The
following steps are needed for system migration.

1. Download "wise.tar.gz" file that is available at
gtss.ias.csusb.edu website.

2. Copy the file to /usr/local/tomcat/webapps.
3. extract the file by using this linux command

"tar -xzvf wise.tar.gz".

4. Edit file /usr/local/tomcat/conf/server.xml by 
adding the following line in the context manager 
section "<Context path="/wise"

108

gtss.ias.csusb.edu


docBase="webapps/wise" debug="0"

reloadable="true" > </Context>"

5 . Restart JSP tomcat server.

WISE

4.3 System Migration

system is designed to run across platforms but
if system administrator plans to move from one platform to

another there is nothing to do with WISE system except a

few check on configuration.

When system administrator plan to move system to

different platform, for example from Linux to windows. The

following steps are needed for system migration.

1. Make back up of the WISE system which is located

2 .

at /usr/local/tomcat/webapps/WISE.

Make another backup of WISE database which is

3 .
located at /usr/local/mysql/data/WISE
System Administrator must download, install and

4 .
configure JSP and MySQL windows version.
Download and install JDBC driver from

5 .

http://mmmysql.sourceforge.net/.

Copy back all backup files in Nol. to both JSP

and MySQL directories.

109

http://mmmysql.sourceforge.net/


4.4 Database Maintenance
The MySQL database locate at /usr/local/MySQL in

Linux platform. In order to perform maintanance process,

system administrator has to log on to MySQL server to do

maintanance job. Administrator can grants user to maintain

database by give permission in user table and db table of

mysql database. Mysql database is located at
/usr/local/mysql/data/mysql. In user table, there are a 

variety of permissions such as grant user to modify table,
or grant user to shut down server. Db table is a table

that limit user to access databases.

Example: To add a user, you must first logon to the
MySQL database as administrator and use the mysql
database. To do this, perform the following steps:

1. Change to mysql installation directory.
cd /usr/local/mysql

2. Ensure that the mysqld is up and running, 
bin/mysqladmin -p ping

3. You will be prompted for your root password.

After you have entered it correctly, you be able

to access mysql database by typing in the
following:

use mysql;

110



4. To create new user use the following command:

insert into user(host,user,password)
values

("gtss.ias.csusb.edu","scott",password("test"));
5. To add select privileges to scott, administrator

uses the following command:

.insert into db(host,user,db,select_priv)

values("gtss.ias.csusb.edu,"scott","WISE","Y");

4.5 Recompilation

Usually, Most of s.ixty-five percents of maintenance
task apply to modifying a program after it has been

delivered and is in use. These modifications may involve
simple changes to correct code errors, more extensive
changes to correct design errors or rewrite code to meet
new requirements.

JSP keeps all compiled java programs (filename.class)
in "/usr/local/tomcat/webapps/wise/web-inf/classes".
Modified java program must recompile by using "javac
filename.java" command at Linux prompt. After compiled,
Java will create "filename.class", which will be moved to

the directory mentioned above.

Alternative way is to create jar file. The jar is the
way to group all compiled Java program together as one

111



file. The advantage is portable and easy to manage. To

create jar file, system administrator must compile all 

Java program to get "dot class" files. The next step is to 
group those files together by using the following command 

"jar cvf wise.jar *.class". Then using "mv wise.jar 
/usr/local/tomcat/lib" to move the "dot jar" to the place

that Java program can link to.

112



CHAPTER FIVE
CONCLUSIONS AND FUTURE DIRECTIONS

5.1 Conclusion

WISE system shows another successful project in GTSS 

project, which includes complete sorting algorithm
tutorials system and interactive self-evaluation exercise
system. With Java object-oriented design and MYSQL

database design, WISE system delivers fast, reliable and

highly portable Web-based exercise management system.

By using this master project, students can evaluate

their understanding of Analysis of sorting algorithm
through on interactive online system. Also instructors are
able to create and manage questions to evaluate students'

performance via WISE self-evaluation tools. Tools for 
creating self-evaluation exercises include EZ question
creator for creating question database and automatic
exercises, and knowledge base creator for creating new
intelligent Java programs for creating automatic answer to
prevent cheating.

WISE can be accessed anywhere by any Web browser.
Java runtime environment software version 1.1 or later is
required to access the system. A user can download this

free software from Sun Website or automatically download

113



on Windows platform. By using session tracking technology, 

the user activity information can be kept securely on WISE
server. This ensures the user privacy.

Moreover, the experiences in implementing this

project consist of using various technologies: Java, JDBC,

MySQL, and Web server, which provided valuable knowledge
for myself.

5.2 Future Directions
WISE system shows a new way in implementing

interactive self-evaluation system on the Web. WISE's
features were declared earlier in Chapter One. Using these
as the starting point, WISE may have additional and

improved features:
5.2.1 Adaptive Test

By using artificial intelligence concept, new
adaptive test can be developed. Adaptive test is an 
intelligent tests that respond with the user's answer.
When the user answers a question correctly, the next
question will be harder otherwise easier question will be

asked. Test engine will calculate the score based on the

weighted of the correct answers.

114



5.2.2 Graphic Score Analyzer

With the current score representation, WISE system
still shows an individual score. This analyzer tool will 
include for all the registered users in WISE system. 

Graphic score analyzer will help students compare their 

score with others. With graphic color bar chart or pie

charts, the students can measure their abilities.

115



APPENDIX

GLOSSARY

116



Terminology Definition
Insertion Sort Sort by repeatedly taking the next 

.item and inserting it into the final 
data structure in its proper order 
with respect to items already 
inserted. Run time is 0 (n2) .

Heap Sort A sorting algorithm that works by 
first organizing the data to be 
sorted into a special type of binary 
tree called a heap. The heap itself 
has, by definition, the largest 
value at the top of the tree, so the 
heap sort algorithm must also 
reverse the order. It does this with 
the following steps:
1. Remove the topmost item (the 

largest) and replace it with the 
rightmost leaf. The topmost item 
is stored in an array.

2. Re-establish the heap.
Repeat steps 1 and 2 until there are 
no more items left in the heap.

Merge Sort A sorting algorithm, which splits 
the items to be sorted into two 
groups, recursively sorts each 
group, and merge them into a final, 
sorted sequence. Run time is 0(n log 
n) .

Bubble Sort Sorting by comparing each adjacent 
pair of items in a list in turn, 
swapping the items if necessary, and 
repeating the pass through the list 
until no swaps are done.

117



Terminology Definition
Quick Sort An in-place sort algorithm that uses 

the divide and conquer paradigm. It 
picks an element from the array (the 
pivot), partitions the remaining 
elements into those greater than and 
less than this pivot, and
recursively sorts the partitions. 
There are many variants of the basic 
scheme above: to select the pivot, 
to partition the array, to stop the 
recursion on small partitions, etc.

Java Applet Java Applet is a kind of 
mini-application, design to be run 
by a Java-enabled Web Browser such 
as Internet Explorer or Netscape 
Navigator, or in the context of some 
others "applet viewer"

Java 2 Development 
Kit

Java 2 SDK is Java development 
program from Sun Microsystems JSDK 
will be used to compile and run java 
program for this project.

Java Server Pages JSP is a Java-based technology that 
simplifies the process of developing 
dynamic web sites. JSP is also a 
type of server-side scripting 
language. Although there are many 
server-side scripting languages such 
as ASP, PHP, Java Script, JSP is the 
best choice for platform
independent.

JAKARTA-TOMCAT Jakarta Project is to provide 
commercial-quality server solutions 
based on the Java Platform that is 
developed in an open and cooperative 
fashion. Simply, Tomcat is JSP 
server. Tomcat will receive JSP 
file, execute JSP command and 
response back to client.
Jakarta-Tomcat is free and available
on the Internet at
http://jakarta.apache.org

118

http://jakarta.apache.org


Terminology Definition
Java Database 
Connectivity

JDBC technology is an Application 
Programming Interface that lets you 
access virtually any tabular data 
source from the Java programming 
language. In other words, It helps 
java program to communicate, query 
and update databases. JDBC needs
JDBC driver as a connector (pipe) 
between java program and database 
program. There are many vendors 
provide these drivers.

119



REFERENCES

1] Charles Standton, Javier Toner, Arturo Concepcion, 
"GTSS: Generic Tutorial System for Sciences,
Symposium at California State University, San 
Bernardino, 1998

[2] H.M. Deitel, P.J. Deitel, "Java how to program",
Prentice Hall, United States, 1999

[3] Ian Sommerville, "Software Engineering", Third
Edition, Addison Wesley, 1989

[4] Karl Avendal and Danny Ayers, "Professional JSP", Wrox
Press, United States, 2000

[5] Martin Hall, "Core servlets and JavaServer Pages",
Prentice Hall, United States, 2000

[6] Mark Maslakowski, Tony Butcher, "MySQL in 21 Days",
SAMS Press, United States, 2000

[7] Matthew Simple, "The complete Guild to Java Database
Programming", McGraw Hill, Unites States, 1998

[8] Mark Weiss, "Data Structures and Algorithm Analysis in
C", Addison Wesley, United States, 1997

[9] Robert Sedgewick, "Algorithms in C", Addison Wesley,
United States, 1998

[10] Software Engineering Standard Committee, "IEEE 
Recommended Practice for Software Requirements 
Specifications", The Institute of Electrical and 
Electronics Engineers, United States, 1994

120


	Web-based interactive self-evaluation system for computer science in generic tutorial system for the sciences project
	Recommended Citation

	Figure 1.4. Use Case Diagram

	will create and show on screen. If the student clicks on

	the "Back to Main", the student's main menu page will be brought back.

	-g

	-i

	Figure 1.9. Test Selection Page

	1.3.1..6 Testing Page. Shown in Figure 1.10 is the

	test page created by WISE system. The student can answer

	it at any time. After the student answers all the

	questions, they will click "submit Your Answer". WISE will

	check the answers and print the score report.

	Figure 1.10. Test Page

	1.3.1.11	Knowledge Base Creator. This screen will add

	knowledge base to the database (see Figure 1.15) .

	Knowledge base helps the instructor create questions in

	the future. After filling out all the information and

	clicking "submit", the system will write all information

	to the database.

	Simone

	..hl

	JB

	M

	A

	Figure 1.15. Knowledge Base Creator Page

	Figure 1.24. Tutorial Page

	1.3.1.21	Heap Sort Animation. This is an example page

	of Heap Sort. The time complexity of heap sort is

	0(nlogn).

	Figure 1.26

	Heap Sort Animation

	V

	Figure 2.3. Selection Sort Class Diagram

		V

	3.5	Sample Session

	The following section shows samples of how to use

	WISE system in the demonstration of tutorials, knowledge

	base, general question creator and EZ question creator.

	3.5.1	Demonstration of Tutorial

	, m I« i«w'trvoi-t <IoJ> S'”	— n-	“<•	—	"gy aa

		_	_		. 	 Z “ Tl	_ J

	(1)

	fie	from,	t«b ,

	(3)

	(4)

	Tutorial

	3.5.3	Knowledge Base Creator

	■BWInrap;

	- ’ ».

	fl

	tel-He

	HMM

	I

	I

	(1)

	(2)

	j f« I*	r4«i« j k

	fffgsSS

	-

	(3) ■	(4)

	Figure 3.5.3	(1-2) shows fragments of the Java

	3.5.4	Easy Question Creator

	H Hgyr» ji

	CZ

	(4)

	Ffa t« X— .frfHrtM lu* -n>t>

	A>Mo

	ay-jn

	c.yuo

	DJAtfO

	Eyu»

	,*. ■ (■<»««>

	(s:

	Figure 3.4. Easy Question Creator

	EZ question creator is shown in Figure 3.5.4 (1-5) .

	In step one, the instructor has to choose which sorting

	question and type of answer to create. Step, two shows the knowledge base question based on step one. After selecting


