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Abstract—Inertial data represent a rich source of clinically 
relevant information which can provide details on motor 
assessment in subjects involved in a rehabilitation process. Thus, 
a number of metrics in the spectral and time-frequency domain 
has been considered to be reliable for measuring and quantifying 
patient progress and has been applied on the 3D accelerometer 
and angular rate signals collected on one impaired subject with 
knee injury through a wearable wireless inertial sensing system 
developed at the Tyndall National Institute. The subject has 
performed different activities evaluated across several sessions 
over time. Data show that most of the studied features can 
provide a quantitative analysis of the improvement of the subject 
along rehabilitation, and differentiate between impaired and 
unimpaired limb motor performance. The work proves that the 
studied features can be taken into account by clinicians and sport 
scientists to study the overall patients’ condition and provide 
accurate clinical feedback as to their rehabilitative progress. The 
work is ongoing and additional clinical trials are currently being 
planned with an enhanced number of injured subjects to provide 
a more robust statistical analysis of the data in the study. 

Keywords—Inertial Sensors; Spectral Analysis, Time-
Frequency Domain Features; Rehabilitation Monitoring. 

I.  INTRODUCTION 
Biomechanics analysis is frequently used in both clinical 

and sporting practice by clinicians and plays a crucial role in 
athletes’ effective rehabilitation by tracking patient progress 
through the assessment of human motion during the 
performance of clinically defined tasks.  

Gold-standard technologies [1] (e.g., VICON, force 
platforms, etc.), can provide quantitative movement 
information during formal gait analysis achieving high 
performance, in terms of accuracy, at a trade-off of high cost. 
Therefore, those systems are only adopted in specialist motion 
labs. In fact, clinical observational forms [2] (e.g., WOMAC, 
IKDC, etc.) are typically considered in clinical practice. Their 
non-empirical assessments, however, may not be adequate or 
sensitive enough to detect subtle clinical pathological changes 
in movement following knee surgery even when utilised by 
experienced clinicians [3,4]. Thus, small-size low-cost 
wearable inertial sensors (e.g., accelerometers and gyroscopes) 
have been representing a more and more practical and viable 

alternative solution to biomechanical motion capture in sport 
and healthcare. This is confirmed by the steady growth of 
works in the area of inertial sensors applied to biomechanics 
and gait analysis, and more specifically to monitoring of lower-
limbs during rehabilitation. In the latter case, the aim of the 
research is the performance assessment in impaired subjects in 
a rehabilitation context, and the discrimination between correct 
and incorrect execution of recommended exercises [5-7].  

However, to date, only a limited number of studies have 
considered the quantitative assessment of patients’ lower-limb 
performance via body-worn sensors during the complete 
rehabilitation process. This task is indeed particularly 
challenging as it consists of isolating the gradual changes in 
movements due to recovery and improvement despite the 
presence of a multitude of sources of variability. 

For instance, Lin et al. [8] estimated the joint angles 
associated with 14 exercises performed by a cohort of elderly 
patients monitored from the first day of admission until 
discharge (averagely for 5.7 days). Field et al. [9] investigated 
the gradual changes of motion with new proposed metrics, by 
monitoring 14 subjects over repeated rehabilitation exercises 
in a period of 12 weeks, adopting a cumbersome motion 
capture suit consisting of 17 sensors. Finally, Houmanfar et al. 
in [10] showed how the continuous measurement of patient 
improvement can be obtained via a novel machine learning 
technique capable of handling a variety of rehabilitative 
exercises. The approach was tested by adopting two wearables 
sensors on thigh and shank on clinical data collected on 18 
elderly patients involved in rehabilitation following hip and 
knee replacements for 4-12 days.  

The main limitations of those studies are related to the 
short period for data collection which explores only the initial 
part of the rehabilitative process without considering the long-
term effects or the pre-surgery conditions. Another limitation 
is the need of a large and specific initial dataset on which the 
machine learning method has to be trained. Finally, the lack of 
definition of the impact of the single features on the final 
outcome was also noticed. 

In a previous work [11], the motor performance was 
evaluated during lower-limb rehabilitation through the 
considerations of well-known statistical, time-domain related, 
and kinematic features. Activities targeted considered the 

This publication has emanated from research supported by a research 
grant from Science Foundation Ireland (SFI) under grant number 
SFI/12/RC/2289, and the European Regional Development Fund under grant 
number 13/RC/2077-CONNECT.  

* Corresponding author. Email: salvatore.tedesco@tyndall.ie 
 



exercises normally assigned by clinicians for at-home 
rehabilitation, and the collection was performed via body-
worn kinematic sensors over a longitudinal study of nine 
months on a patient in pre/post-surgery conditions. The results 
obtained proved the potential of those features to inform 
qualitatively and quantitatively movement functions in a 
rehabilitative context. However, several studies [12-17] have 
already shown that spectral features and time-frequency 
domain features (such as informatics-theoretic, entropy, etc.), 
not addressed in [11], may also carry distinct information on 
the patient-related outcomes. Therefore, the present study will 
analyze the same data collected in [11] with the aim of 
establishing if the extracted spectral/time-frequency domain 
features can also be sensitive and helpful to determine changes 
in motor capacity and be correlated with rehabilitation 
progresses. The clinical aim will be to make them potentially 
beneficial for clinicians when monitoring patients in the 
course of lower-limb rehabilitation and develop better models 
for objective assessment. The present work is organized as 
follows. The description of the methodology adopted during 
the data collection is described in Section II. The features 
extracted are illustrated in Section III. The obtained results are 
shown in Section IV and exhaustively analyzed and discussed. 
Finally, conclusions are drawn in the last section.  

II. METHODOLOGY 
The biomechanical monitoring system consists of two 

Tyndall Wireless Inertial Measurement Units (WIMUs) per 
leg. Each WIMU [11, 18] is equipped with a high-performance 
low-power 168 MHz 32-bit microprocessor with 1 Mb of flash 
memory and 192 + 4 Kb of RAM, a communication module 
(BLE), rechargeable battery, 3D accelerometer and gyroscope. 
Inertial sensors are wired to the micro-controller through the 
I2C communication. The platform measures 44 × 30 × 8 mm 
without battery. Sensor data can be transmitted wirelessly, or 
logged to a removable Micro SD card with sampling rate of 
250 Hz. WIMUs have been attached to the anterior tibia, 10 cm 
below the tibial tuberosity, and to the lateral thigh, 15 cm 
above the tibial tuberosity using surgical adhesive tape. 

The rehabilitation exercises (or scenarios) considered are 
walking, and hamstring curl, defined by physiotherapists as 
good indicators of rehabilitation progress. In the walking 
scenario, the subject walks on a treadmill which is operated at 
defined speeds (3 and 4 km/h) for approximately one minute 
per test. In the hamstring curl scenario, the subject stands and 
bends the knee raising the heel toward the ceiling as far as 
possible without pain, relaxing the leg after each repetition. 
This is repeated on both legs.  

The system has been tested with an impaired subject. The 
impaired subject is a female athlete, age: 44, height: 161 cm, 
and weight: 52 kg, with good general health status, with a 
history of knee injuries and surgery (reconstructed anterior 
cruciate ligament in the left leg following a sporting injury). 
The tests were carried out during the course of the 
rehabilitation program, e.g., starting 1 month before surgery 
and finishing 7 months after surgery. Overall, the subject has 
been evaluated through three periods: once in pre-surgery 

conditions (e.g., 1 month before surgery), then 6 times in a 
range of 20 weeks starting one month after surgery (namely 
short-term post-surgery), and finally once 3 months after the 
last data capture (e.g., during long-term post-surgery period). 

A number of repetitions has been collected for each 
scenario, so as to provide an accurate picture of the overall 
conditions, and each scenario taken into account was 
evaluated during every data capture.  

III. FEATURES EXTRACTION 
The metrics taken into account for the patient’s assessment 

are divided into two main categories: spectral/energy metrics 
and information-theoretic/entropy features for indications on 
the signals complexity. The data analysis is implemented off-
line using Matlab.  

A. Spectral/Energy Features 
This category takes into account various well-known 

spectral and energy features obtained using the Fast Fourier 
Transform (FFT). These variables are applied on the raw 
inertial data collected for both legs on each session without 
segmenting the walking strides/exercise repetitions. The 
selected features are shown in Table I, and more details can be 
found in [12-17]. All these features are calculated for each of 
the 4 sensors used for data collection. 

B. Information-Theoretic/Entropy Features 
This category considers several entropy-related and 

information-theoretic metrics which are described in Table II-
III (more details can be found in [12-17]). These variables are 
applied on the raw inertial data collected for both legs on each 
session without segmenting the walking strides/exercise 
repetitions, expect for the Lempel-Ziv complexity which was 
calculated on the single repetitions/strides and then averaged 
over the different sessions. All these features are calculated for 
each of the 4 sensors used for data collection. 

TABLE I.  SPECTRAL/ENERGY FEATURES 

 Features 

Frequency-
Domain 

Dominant frequency and its width (FWHM), Spectral 
centroid, Power in 1.5-3 Hz (LFP), Power in 5-8 Hz (MFP), 
High frequency energy content (HFP), 25-50-75% Quartile 
frequency, Spectral Edge Frequency (SEF) at 95%, Harmonic 
ratio (HR), Index of harmonicity (IH), Area under the first 6 
harmonics divided by the remaining area (6H), Ratio between 
the first 4 harmonics and the magnitude of the first 6 
harmonics (4-6H), Ratio High-Low bands (RHL)   

TABLE II.  ENTROPY FEATURES 

 Features 

Entropy-
related 

Frequency-Domain Entropy (FER), Approximate Entropy 
(ApEn), Shannon Entropy (SE), Conditional Entropy 
(CondEn), Cross-Conditional Entropy (Cross-condEn) 

TABLE III.  INFORMATION-THEORETIC FEATURES 

Features Description 

Lempel-Ziv Complexity 
(LZC) 

Measures the complexity-predictability of the 
signal; higher values indicate a less predictable, 
more complex signal, and vice versa 

Lyapunov Exponents 
(short-term - ST, long-
term - LT) 

Quantifies local dynamic stability; the 
exponential rates of divergence based on 
naturally occurring local perturbations 



IV. RESULTS AND DISCUSSION 
In each session, each scenario was divided into two 

separate tests (both logged for 60 sec), and in each of the two 
tests, a series of repetitions have been carried out by the 
subject. The overall number of repetitions recorded for all the 
sessions was: 184 hamstring curls for left and right leg, 478 
strides for both legs when walking at 3 km/h, and similarly 544 
strides when walking at 4 km/h. Owing to malfunctioning 
issues during data recording, results from the right leg in the 
hamstring curl scenario on the first session are not available. 
For each test, the features described in Section III were 
extrapolated and compared among the different sessions. 
Results are summarized in Fig. 1-3, where each plot shows the 
mean difference (in percentage) between left and right leg 
(considering the right leg as reference) for some of the 
parameters throughout the test sessions. The mean difference is 
an important estimator of the dissimilarities between the two 
legs which, in an ideal case, should be close to zero in any case 
for a healthy unimpaired subject. Finally, in order to have the 
same reference system for the WIMUs worn on the same leg, a 
virtual rotation around an axis has been applied to the raw 
inertial data recorded on the shank. As a result, for all the 
WIMUs involved, the x-axis represents the medio-lateral axis, 
the y-axis is the anteroposterior one, while the z-axis is the 
vertical axis. Results for all the scenarios are discussed below. 

In the hamstring curl scenario (Fig. 1), most of the 
detected features are present on the y-, z-axis of the angular 
rate signals for both shank and thigh. Clear trends are shown 
by IH, HFP, MFP, spectral centroid, and SE. While most of 
them are well-defined for the shank data, SE is instead more 
helpful for data collected on the thigh. Similar results are 
observed when considering the acceleration signals, especially 
along the y-, z-axis, for both limbs. Again, HR, SEF, LFP, 
spectral centroid, FER, ApEn, and short-term Lyapunov 
exponent are the main parameters that show noticeable trends, 
in particular when considering shank data. However, the thigh 
is also characterized by other metrics (in particular, MFP and 
ApEn measures over the x-axis accelerometry). 

Gait tests have been analyzed by using those variables 
(Fig. 2-3). Generally, there is a certain similarity among the 
features considered at different speeds. For example, 
considering angular rate signals, most of the measures 
showing specific trends can be seen on the anteroposterior and 
vertical axis (for both shank and thigh) and include IH, 6H, 
SEF, HFP, LFP, spectral centroid, FER, CondEn, Cross-
condEn, short-term and long-term Lyapunov exponents. 
However, ApEn is an additional metric noticed, in particular, 
at lower speed also on the x-axis and, vice versa, MFP has a 
more evident tendency at higher speed.  

Likewise, regarding the acceleration signals, shank 
measures related to the medio-lateral axis are highly 
informative at every speed, especially if considering IH, SEF, 
MFP, CondEn, and Cross-condEn. Additional shank features 
can be more evident at lower speed, e.g., 4-6H, HFP, spectral 
centroid, and RHL, while, on the other side, FER provides a 
clearer trend at higher speed. In a restricted manner, also some 
of the shank measures over the y-axis can be helpful at 3-4 

km/h, in particular when considering IH and Lyapunov 
exponents, while results on the vertical axis are more spread.  

In summary, it is evident how most of the studied 
frequency-/entropy-/information-theoretic features are able to 
show a quantification of the progressive improvements of 
patients over rehabilitation. In particular, IH, SEF, HFP, MFP, 
LFP, spectral centroid, ApEn, CondEn, Cross-condEn, and 
Lyapunov exponents. Unfortunately, LZC did not show any 
clear trend in any of the selected scenarios, probably because 
of the number of adopted levels used for quantization (e.g., 
90). The improvement trends are highlighted in Fig. 1-3 via 
fitting curves (in dashed lines), which can show linear or cubic 
relations for the different parameters underlying that this trend 
can be monotonic or presenting a plateau in some occasions. 
The fitting curves indicate moderate-to-high agreement with 
the data, demonstrated by R2 value between 0.56 and 0.855. 

V. CONCLUSIONS 
The present study proved that spectral and time-frequency 

domain features extrapolated from inertial data collected on 
the lower-limbs can be used for a quantitative biomechanics 
monitoring and assessment over the course of a nine month 
rehabilitation program involving different exercises, also 
providing feedback on which of those features should be taken 
into account by clinicians during their analysis. Even though 
this paper reviewed a large number of features, there remain 
opportunities for further analysis, by considering other 
mathematical metrics. Fractal dimensions, wavelet transform, 
Hilbert-Huang transform, recurrence quantification analysis, 
multiscale entropy, are some of the examples which could be 
also evaluated in future studies to develop a complete 
framework for collecting data and monitoring patients’ 
progress over rehabilitation. An enhanced number of subjects, 
with homogeneous characteristics, will also be tested in future 
so as to have a more robust base for the study and further 
validate the developed model in statistical terms. Additional 
clinical trials are, thus, currently being planned.  
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Fig. 1. Hamstring curl scenario. Mean difference for two metrics. Gyro z-axis shank Index of Harmonicity (left); gyro z-axis thigh Shannon Entropy (right). 

  

 
Fig. 2. Gait scenario (3 km/h). Mean difference for two metrics. Gyro z-axis shank Long-term Lyapnunov exponent (left); gyro y-axis shank 6H (right). 

 

 
Fig. 3. Gait scenario (4 km/h). Mean difference for two metrics. Accelerometer x-axis shank Spectral Centroid (left); gyro z-axis thigh Conditional Cross-

Entropy (right). 


