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Estimation of a Stochastic Spatio-temporal Model of the
Flow-front Dynamics with Varying Parameters

Michael Nauheimer1,2, Rishi Relan2, Uffe Høgsbro Thygesen2 and Henrik Madsen2

1Siemens Gamesa Renewable Energy, 9220 Aalborg, Denmark
2DTU Compute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

Abstract. For control and monitoring purposes, knowledge of the current state of the flow-front in a vacuum assisted resin transfer
moulding (VARTM) process is essential. The permeability of the medium and viscosity of the epoxy can change during the infusion
process. Especially for online monitoring of the infusion process there is a need for a fast and fairly accurate, possibly virtual sensor
system which can handle such parameter variations. Stochastic-differential equations (SDEs) based estimation of the flow-front
dynamics can offer a good trade-off between physics and data-driven estimators. In this paper, we analyze the effect of parameter
variations on an SDE based spatio-temporal estimator of the flow-front dynamics in a VARTM process.

Keywords: Partial differential equations; Stochastic differential equations; Varying parameters; Parameter estimation
PACS: 47; 88

Introduction

Large scale composite shell structures like wind turbine blades are manufactured using a VARTM process. Some
blades manufactured at the Siemens Gamesa Renewable Energy factories are casted as one piece using the patented
IntegralBlades R© technology [1]. The main disadvantage of this technology is that, there is no possibility to visually
inspect the infusion process. Furthermore, variations in the material layup can cause an inhomogeneous flow of the
epoxy resin inside a blade mould. Inhomogeneities in the flow-front increases the risk of casting defects such as voids
or dry spots which may deteriorate the structural properties of the blade [2]. Hence, estimation of the flow-front during
the infusion process is essential for online monitoring of the process.

In addition, micro-structural properties, operating conditions such as temperature, change in pressure can affect
the permeability and viscosity of the epoxy during the infusion process. Estimating a good model for the change in
viscosity of the epoxy during the infusion process is not trivial. Similarly estimation of the permeability model through
numerical simulation or experimental characterization of the permeability is a cumbersome task [3, 4]. Previously, we
used the partial differential equations (PDE) (derived using the Darcy’s law) based flow-front model for our simulation
study [5] and proposed a parsimonious grey-box model of the flow-front dynamics using coupled SDEs [6]. However,
in our previous work we did not address the problem of parameter variation such as e.g. continuously increasing vis-
cosity and random perturbations of the permeability. In this paper, we analyze the effect of such parameters variation
on the performance of coupled SDEs based estimator of the flow-front.

Flow in a Porous Medium

To generate the flow patterns of the flow-front, the dynamics of the flow-front progression in a VARTM process is
simulated by considering the epoxy as a Newtonian fluid and applying the Darcy’s law in two spatial dimensions with
relevant boundary conditions. This flow-front pattern data is a good representative of the data which can be measured
experimentally using commercially available sensors and instrumentation [5]. By applying the Darcy’s law in two
spatial dimensions the pressure field as a function of space and time can be described as:

ḣ =
dh
dp

ṗ = ∇ ·

(
κH
µ
∇p

)
(1)
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where h = h(x, y, t) ≤ H is the thickness of the fluid layer and ḣ indicates time derivative of h, κ = κ(x, y, t) is the
permeability of the porous medium, H is a combined porosity and cross-sectional thickness measure, µ is the dynamic
viscosity of the fluid, p = p(x, y, t) is the pressure, and ∇ = (∂x, ∂y) is the spatial gradient. Using the relationship
h(p) = min(H, p/(ρg)), the PDE (1) governs the pressure p. The boundary conditions are a pressure of zero at the
outlet, a pressure of p0 = 1 bar at the inlet, and no flux along the sides. The PDE model simplifies the physics in the
flow-front itself; this is justified as the material transport is mainly governed by the flow behind the front, where the
PDE reduces to the Laplace equation in p. The PDE is solved by using the FEniCS software [7] for a 80 cm × 90 cm
rectangular casting. The numerical solution is obtained by time marching, using a semi-implicit Euler step where the
derivative dh

dp is evaluated at the previous time step, and the right hand side is evaluated at the next time step. Note that
dh
dp vanishes in those parts of the domain that have already been filled with the fluid, so the system can be viewed as
differential-algebraic. The numerically simulated data obtained is considered as the true data for this case study.

Simulating parameter variations
The manufacturing errors, less careful handling of the materials and the operating conditions may results in parameter
variations (e.g. change in permeability and viscosity etc.) in the flow-front progression during the infusion process. To
simulate the effect of these variations i.e. heterogeneity in the flow-front progression with respect to (w.r.t) time and
displacement, κ is kept constant w.r.t. time and µ is kept constant w.r.t displacement such that

κ = κ(xm, yn) =
c0(

1 − A · cos
(

2πxm
Lx

)) (
1 − A · cos

(
2πyn
Ly

))
︸                                             ︷︷                                             ︸

κ∗

+w(xm, yn) (2)

where κ(xm, yn) > 0 is the permeability, w(xm, yn) is a Gamma distributed perturbation i.e. w(xm, yn) ∼ Γ(α, β) at
spatial coordinate (xm, yn), α and β are shape and scale parameters of the distribution and m = 1, · · ·Mx ; n = 1, · · ·Ny
are number of spatial discretisation points. Therefore the simulated permeability includes a spatial deterministic term
κ∗, and a random perturbation w(xm, yn). Furthermore, we introduce linearly increasing viscosity w.r.t. time i.e. µ(t) =

µ0 + µ1t here µ0 is the initial viscosity and µ1 is the viscosity change rate. It is clear that the formulation of the
flow-front dynamics problem as a spatio-temporal modelling problem is very useful to simulate the propagation of
the flow-front inside the mould for different scenarios and operating conditions. However, for control and monitoring
purposes these high-dimensional PDEs based models are not well suited . Therefore in the section below, we propose
to use a lumped model described as a set of coupled SDEs [6, 8].

Stochastic Spatio-Temporal Estimator

The SDEs are the preferred choice to model stochastic, complex, and nonlinear systems where only a partial informa-
tion about the system dynamics is available. An SDE based state-space model can be written as [8, 9]:

dYt = f (Yt,Ut, t, θ)dt + σ(Ut, t, θ)dWt (3)
Zk = h(Yk,Uk, tk, θ) + ek (4)

The equations describing the dynamics of the states of the system, Yt, are formulated in continuous-time and are
separated in a drift term, f (Yt,Ut, t, θ), and a diffusion term, σ(Ut, t, θ).Here Wt is a Wiener process of dimension
d, with incremental covariance Qt. The observations, Zk, are linked to the states through the observation equation
(4), which are typically formulated in discrete-time and include the measurement error ek which is Gaussian white
noise with covariance Σt. Here Ut represents the inputs and θ the parameters of the model. A clear separation of the
residual error into diffusion and measurement noise results in a more correct description of the prediction error [8]. To
obtain a parsimonious model coupled SDEs are used to model the flow-front dynamics for a limited amount of spatial
discretisation points. The solution to the PDE in (1) in the homogeneous case, and for small H, can be written as:

p(x, y, t) = p0 ·max
(
0, 1 −

y
Yt

)
, (5)

where Yt is the position of the front, given by:
dYt

dt
=
κp0

µ

1
Yt
, (6)
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where the material is considered to be flowing in the direction of the y-axis throughout the domain. The spatial discreti-
sation in the x direction is performed using Mx grid points. Let Yn,t denote the position of the front at the corresponding
value of xm co-ordinate. Considering no coupling (interaction) between neighbouring grid points, results in N ordinary
differential equations. Furthermore, a constant diffusion term σ is introduced to capture the effect of the heterogeneity
due to loose coupling between the lines and any difference between the model and the true system:

dYn,t =

(
κp0

µ

1
Yn,t

+ D
Yn+1,t − 2Yn,t + Yn−1,t

(∆xm)2

)
dt + σn,tdw (7)

By defining c0,n =
κp0
µ

, and treating D
(∆xm)2 as a single global constant, D0, for all state equations, the resulting equation

is

dYn,t =

(
c0,n

Yn,t
+ D0 · (Yn+1,t − 2Yn,t + Yn−1,t)

)
dt + σn,tdw (8)

Except for the boundary cases where it is modelled as

dY1,t =

(
c0,1

Y1,t
+ D0 · (Y2,t − Y1,t)

)
dt + σ1,tdw (9)

This formulation, while a stretch from the original physics, has been shown to capture the essential dynamics of
flow-front propagation [6] and are in a form suitable for online flow-front estimation.

Parameter Estimation
The parameters, c0,n and D0, of the coupled SDEs are estimated from the data obtained by numerically simulating
the PDE in (1) as described earlier. A maximum likelihood method in combination with an extended Kalman filter
method described in [9] is used to estimate the parameters of the proposed estimator. The likelihood function L is
formulated using the one-step prediction errors, εk, and the associated variances, Rk|K−1:

L(θ;ZN ) = p(ZN |θ) (10)

=

( N∏
k=1

exp
(
− 1

2 ε
T
k R−1

k|k−1εk

)
√

det(Rk|k−1)(
√

2π)L

)
p(z0|θ) (11)

where θ is a set of parameters,ZN is the set of observations, L is the dimension of the observation space, and z0 is the
initial condition. For a given set of parameters and initial states, εk and Rk|k−1 are computed by a continuous-discrete
extended Kalman filter [9]. The estimation of the parameters is done by maximizing the log-likelihood:

θ̂ = argmax
{
log(L(θ;ZN )|z0)

}
. (12)

All computations were done using the free statistical software, R (version 3.3.2), and the CTSM-R-package (Continu-
ous Time Stochastic Modelling in R version 0.6.8-5, [10].

Results and Discussion

In previous sections we discussed the importance capturing the effect of variations in the permeability coefficient and
increasing viscosity in the coupled SDEs based model of the flow-front progression as described by (8) and (9). Here
we briefly describe the preliminary results. Figure 1(a) shows an example of a simulated and estimated flow-front
where random perturbations were added to the permeability term. As seen in the figure it is possible to estimate
the parameters of the model described by (8) and (9) such that variations in the flow-front are captured well by the
estimation model. Figure 1(b) shows the simulated and estimated flow-front where the viscosity is increasing w.r.t
time. It is seen that the time dependency of the viscosity in simulated flow is not captured properly in the estimated
SDE model with eight states. The way around this problem is to increase the number of states (possibly introducing
an extra state for changing viscosity explicitly) and through the noise term. Hence, further investigations are needed
in this case. In Figure 1(c), the result of the case with both random perturbations on the permeability and a linearly
increasing viscosity w.r.t. time is shown. It can be seen that coupled SDEs based model with eight states is able to
capture the effect of the random perturbations on the permeability and the linearly increasing viscosity to some extent.
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FIGURE 1: Figure 1(a), 1(b) and 1(c) show the result of estimated model with different parameter variations. The
color scale describes the initial (red) simulated/estimated flow-front and the flow-front at the end (green).

Conclusions and Future Research

To avoid incipient faults and potential failures, an accurate estimation of the flow-front dynamics is essential for
online monitoring of the production process of the wind turbine blades. In this paper, we have analyzed the effect of
parameters variations on the performance of coupled SDEs based estimator of the flow-front dynamics. It is shown that
SDE based estimator can handle insufficient knowledge of the system, noise characteristics and any variation in the
parameters using the diffusion term in SDEs. Even-though the results of the investigations were encouraging, further
investigations are required to fully establish the potential of using SDEs based estimator for modelling the flow-front
dynamics. In our future research we will investigate the validity of SDEs based estimator for real experimental data.
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