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Abstract: System identification of biomolecular circuits is a challenging problem, including due
to the nonlinearities that are often present in them. The extent to which these nonlinearities
contribute to the overall behaviour of the biomolecular circuit is unclear. Here, we address this
issue for simple biomolecular circuit models by exploiting the properties of broadband random
phase multisine excitations. We analysed the classical models of a two-state signaling system,
an enzymatic signaling system, and of a transcriptional feedback circuit for the presence of
nonlinear distortions at certain parametric settings and studied their dependence on the input
parameters. These results should help the modeller in quantifying the effect of nonlinearities
and assessing the validity of the linear models at a particular operating condition.

© 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

The mathematical modeling of biological processes is usu-
ally done by ordinary differential equations which repre-
sent the evolution over time of a particular biomolecule.
The variables in these equations are often the concentra-
tion of species involved in the process. These equations
depend on several parameters like generation and decay
constants, reaction rates etc. Some of these parameters
can be measured experimentally but it is not possible
for many of them. Therefore it is required to determine
unknown parameters indirectly from the measurement of
other quantities. Besides, system identification plays an
important role in deriving the dynamical model of the
biomolecular systems directly from the input-output mea-
surements.

Many identification techniques like linear and nonlinear
least squares fitting (Mendes and Kell, 1998), Bayesian
method (Wilkinson, 2007), Kalman and Particle filters
(Liu and Niranjan, 2012) have been used to estimate the
parameters of biological circuits. All these techniques try
to approximate the system either by a linear or a nonlinear
model. Since biological systems exhibit inherent stochas-
ticity and are highly complex, therefore, linear models
might not always work for these systems at different pa-
rameter settings.

For example, due to a change in the operating conditions
such as temperature, humidity etc. or input signal ampli-
tude, the output may be disturbed by nonlinear distortions
(NL). One solution to this problem is to do nonlinear sys-
tem identification (Westwick and Kearney, 2003; Billings,
2013; Schetzen, 1980) but nonlinear identification is com-
putationally and resource expensive. So, it is wise to use
this method only when there is a sufficient return on the
additional resources. If an assessment about the nature
and level of nonlinearities present in the system can be
done beforehand, then an early decision about the use
of a particular identification methodology can be made.
Therefore, the goal is to first detect nature and level of
nonlinearities present in the biomolecular system and then
ascertain, whether it is still safe to use the linear system
identification approach, even in the presence of nonlinear
distortions. If not, then to approximate the system with
a best linear approximation plus a nonlinear noise source

(Schoukens et al., 2016).

Here, we concentrate on the first goal of identifying the
nature as well as the level of nonlinearities present in
the system. In this paper, we introduce a nonparametric
technique for the analysis of NL for simple biomolecular
systems by exploiting the properties of random phase
multisines signals. To make things more clear, first, static
nonlinear models are used to illustrate the technique. After
that, it is utilised to analyse three simple biomolecular

2405-8963 © 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2018.05.035



314 Atul Agarwal et al. / [FAC PapersOnLine 51-1 (2018) 313-318

models. Finally, the effect of certain parameters is studied
on the level of nonlinear distortions for these systems.

The paper is organized as follows. The basic principle,
details about the excitation signal and the illustration of
the method on simple static models is presented in Section
2. Section 3 discusses the nonparametric analysis of simple
biomolecular classical models such as two-state signaling,
covalent modification system and transcriptional feedback
system. Finally, Section 4 presents conclusion based on the
results obtained and future works.

2. METHOD

For detection of nonlinearities present in the system at
certain operating conditions or parameter settings, a non-
parametric analysis of the system’s output response is
performed as described in Schoukens et al. (2016). For
completeness, essential aspects of this method are sum-
marized in the following three sections.

2.1 Basic Idea

The basic idea is straightforward: a linear system cannot
transfer power from one frequency to another or, in other
words, output of a linear system contains power only at
the frequencies which are present in the input spectrum.
However, this is not necessarily true for a nonlinear system.
Hence, by exciting the system at selected frequencies in
a predefined frequency band of interest and utilising the
information present at the non-excited harmonics in the
output spectrum, a qualitative analysis of the kind and
levels of nonlinearities present in the system can be per-
formed. To quantify the behaviour of the biomolecular sys-
tem regarding the level as well as the kind of nonlinearities,
it is necessary to use a broadband excitation signal, so that
maximum information about the behaviour in the band of
excitation can be extracted (Schoukens et al., 2016).

2.2 Choice of the excitation signal

Gaussian excitations are widely used for this purpose. As
compared to Gaussian excitation signals, a multisine exci-
tation signal allows full control over the amplitude spec-
trum and power spectral density (PSD), while maintaining
noise-like properties in the time-domain (Schoukens et al.,
1998). A quick look at the output spectrum of system to a
multisine excitation indicates whether the system behaves
nonlinearly or not at a certain operating point. Further
advantages of periodic excitations and steady state mea-
surements compared to random excitations like Gaussian
noise, periodic noise etc. can be found in Schoukens et al.
(2006).

Here, our goal is to characterise a nonlinear system for the
Gaussian excitation signals, using random phase multisine
excitations. The amplitude spectrum of the multisine ex-
citation should be such that the equivalence between the
random phase multisine and the Gaussian random noise
with respect to the nonlinear behavior is always guaran-
teed (Schoukens et al., 2016). Hence, the equivalence class
Eg, is defined which contains all signals that are (asymp-
totically) Gaussian distributed, and have asymptotically,
for N — oo, where N is the number of excited harmonics,

the same power on each finite frequency interval. This is
defined precisely in the definition stated below.

Random-Odd Random-Phase multisine ‘U‘
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Fig. 1. Response PISPO: Total output is the sum of linear
contributions (at excited lines), even NL (at even
lines), odd NL (at odd lines) and noise (at all lines,
not displayed here). Figure courtesy: (Relan et al.,
2017)

Definition 1. Consider a signal u with a power spectrum
Sy (jw), which is piecewise continuous, with a finite num-
ber of discontinuities. A random signal belongs to the
Riemann equivalence class of Eg, if it obeys by any of
the following statements (Schoukens et al., 2016): (1) It is
a Gaussian noise excitation with power spectrum Sy (jw).
(2) It is a random multisine or random phase multisine
(Pintelon and Schoukens, 2012) such that:

ko @ha
1 ey 1 .
¥ D EWGP) = 5 [ Sulidr+ o, )
k=k: o,
where w, = kQTIF\}Cs,k € N0 < wg, < wg, < 7fs

and fs is the sample frequency. The frequency domain
representation of the multisine signal is the sum of the
Fourier transforms of the individual sines and is given by:

S(wy — wr, )e’?r, (2)

Ups(jw) = Z Ak
v Nk kE€+Keae

where §(e) is the Dirac delta function, K., is the set
of positive excited frequencies, N the number of excited
frequencies and ¢y ~ U[0, 27| are the phases. The ampli-
tudes of the multisine components A(k) > 0 can be cho-
sen arbitrarily, depending on the application. In addition,
some frequencies are not excited i.e. A(ky. exc) = 0. The
signal at these unexcited frequencies (detection lines) in
the output spectrum contains valuable information about
the presence of nonlinearities of the system.

2.8 Nonparametric data analysis

Assumption 1. The biomolecular system can be mod-
eled as a weakly nonlinear periodic-in-same-period-out
(PISPO) system described by a Volterra series (see Pin-
telon and Schoukens (2012) for more details).
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Fig. 2. Frequency Spectrum of output for y = - with
k = 25 and varying RMS of input. Black dots -
‘All’ represents all frequencies present in the output
spectrum of the full data, blue dots - ‘Excited’ are the
excited frequencies, green dots - ‘Even NL’ represents
the even harmonics in the frequency band of interest
and the magenta dots - ‘Odd NL’ are the non-excited

odd harmonics in the frequency band of interest.

Remark 1. A nonlinear system is called PISPO if the
steady state response to a periodic input is also a periodic
signal with the same period as the input (with preservation
of the period length), (Pintelon and Schoukens, 2012;
Schoukens et al., 2016) for a more formal definition.

Since the nonlinear system (here biomolecular system)
is operating in open-loop, the output Discrete Fourier
Transform (DFT) spectrum of each period p where p =
1,2,3,..., P, of the steady state response (with known
periodic input) to an odd random phase multisine with
random harmonic grid is given by:

YIPI(k) = Yo (k) + VIPL(E) + Y (k). (3)
The total response of the system (see Fig. 1) is the sum
of linear (Yp(k)), stochastic nonlinear (even & odd) con-
tributions Yg(k), and V! is the noise term (Pintelon and
Schoukens, 2012; Schoukens et al., 2016). The information
about the effect of NL and the need for differentiating
between odd and even frequencies during the nonpara-
metric test is essential in order to get an idea about the
contributions of NL to the frequency response function of
the biomolecular system under varying conditions.

2.4 Toy Examples: Static Systems

This method is illustrated with two simple static models.
Four periods of input-output data were acquired and the
first period was neglected to remove the effect of any
transients. In the examples discussed below, a small zero
mean Gaussian noise is added to the final output which
represents the measurement noise. Only odd frequencies
are excited in the frequency band of interest and one
out of every three consecutive odd frequencies is also
skipped randomly to check the effect of odd as well
even nonlinearities present in the system. The sampling
frequency is 500 Hz and maximum excited frequency is
200 Hz with frequency resolution of 2 Hz. For precise RMS
value of excitation, the signal is divided by its RMS value
and then multiplied by the desired RMS value.

(1) The system described by (4) is similar to a Hill
function with Hill coefficient = 1, which corresponds
to simple non-cooperative binding (Del Vecchio and
Murray, 2015).

x

k+a )
For a particular value of k, this system is excited
with = the odd random phase multisine input and
y as output. Fig. 2 shows the output for £ = 25 and
when the RMS value of the multisine excitation is
increased from 0.1 to 2. In this system, as RMS value
of the input approaches magnitude of parameter k,
the system will show more nonlinear behavior because
the operating region will be closer to steep region of
the input-output map. Fig. 2 supports the previous
statement as it can be seen that the level of magenta
nonlinear distortions increase with an increase in the
RMS value of multisine excitation.

(2) Now, to understand it more, a comparatively more
complex model described by (5) is studied

2

This is equivalent to cooperative binding involving
dimerization (Del Vecchio and Murray, 2015) though
it is a static model. A similar analysis is done for this
model also and compared with the previous model.
Here, a small DC bias is also added to the input
signal. Fig. 3 shows a comparison between the two
systems. Since the model in (5) has more nonlinear
characteristic (Hill coefficient = 2) than in (4), the
level of nonlinear distortions is higher for the same
RMS value of excitation signal.

y:

y:

As seen from the above analysis, this simple nonparametric
analysis directly gives a qualitative and quantitative in-
sight into the nonlinear distortions based on input-output
data without needing any user interaction. This informa-
tion can be used by the modeler to decide on the use of
identification methodology.

3. CASE STUDIES
8.1 Two-State Signaling System

One of the widely used models to represent simple kind
of nonlinearities present in biomolecular circuits is a two-
state system (Huang and Ferrell, 1996; Stock et al., 2000).
It is represented as a reversible reaction of the form

K
B == 4 (6)

< Al
i_| & Excited
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Fig. 3. Frequency Spectrum of output for (a) y = 747

and (b) y = ki% with dc bias of input = 1. Black,
blue, green and magenta dots represent the noise,
excited frequencies, even harmonic and odd harmonic
distortion respectively.
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Fig. 4. Frequency spectrum of output for two-state sig-
naling system for parameters Ar = 100nM, K_ =
100/hr and different values of RMS of multisine.
Black, blue, green and magenta dots represent the
noise, excited frequencies, even harmonic and odd
harmonic distortion respectively.

in which a protein B converts into protein A with forward
rate constant K, and A converts into B with backward
rate constant K_. The total number of molecules in the
system remain constant (Ar = (A 4+ B)). The dynamic
model of this system can be described as,

0= K, Ar —a(K, + K_), (7)
y = a, (8)

where a is molecular population of A and y is measured
population of A. Here, K, is taken as input and y as
output, due to which system becomes nonlinear as the
state is multiplied with the input. This is similar to
saturating input-output maps like (4), but with inherent
dynamics. We aim to do nonlinear distortion analysis of
this system using random phase multisine input (Appendix
A),

Ky =Ko+ —— Z Ak
keKemc

where Ko = 100 is the DC bias added to the random
phase multisine, rest all symbols have the same meaning
as defined before. The value of the parameter K_ is kept
constant, equal to the DC bias K. The RMS value of the

input excitation is increased from 1 to 50 to see its effect
on the nonlinear distortions.

) cos(wit + ),  (9)

For this system, the NL is less if the RMS value of multisine
input is lower and we operate in the linear region of input-
output map. However, if the RMS value of the signal is
comparable to the backward rate constant K_, then we
encounter the saturating region of the input-output map,
so the system will exhibit more nonlinear characteristics
and distortions will be higher. Similar behaviour can be
observed from Fig. 4, which shows frequency spectrum of
output y for different excitation levels. It can be clearly
observed that at low excitation levels (see Figs. 4a and 4b),
the distortions are ~ 80 dB below the linear contribution.
Therefore, in this case, linear estimation techniques can
be used with slight approximation. But in case of higher
excitations levels (Figs. 4c and 4d), the level of nonlinear
contributions is significantly higher ~ 30 dB and = 15 dB
respectively. Hence, a nonlinear model might be needed in
order to capture the effects of nonlinear distortions at this
level of input excitation.

3.2 Biomolecular covalent modification system: G-K Switch

Enzyme driven reversible covalent modification system
is another example of biomolecular signaling system,
analyzed by Goldbeter and Koshland (Goldbeter and
Koshland, 1981), which is present in different signaling
and metabolism pathways. This system can exhibit two
different input-output properties (Figs. 5a and 5b) de-
pending upon the parameter regime. One of them is more
similar to the two-state case, whereas the other shows
more switch-like response. In this system, a protein can
coexist in unmodified form A and in modified form A*.
The conversion between the two forms is catalyzed by two
converter enzymes, £ and Fy as shown below,

A+ By == AE1

1
A"+ B, ;“A*E

d2

A"+ By (10)

=2 A+ Es. (11)

Clearly, the total number of protein molecules of each type
is conserved as there is no production or degradation in the
model. Hence, the conservation equations are

Ar = [A] + [A*] + [AE1] + [AEs), (12)
Evr = [Er] + [AE4],
Eyr = [Es] + [A"Es),

where Ar is the total concentration of protein, Fir and
FEsr are the total concentration of catalyst of reaction 10
and 11 respectively. The kinetic equations described in
(Goldbeter and Koshland, 1981) which govern the system
model are modified using the above conservation equations
and are given as (Dey and Sen, 2015),

% = —a1[A|(Err — [AE4]) + di[AE;)]
+ha(Ar — [4] - [4] — [AB)),
W — a4} (B — Ar 4 1A+ (4] 4 [AB)
+do(Ap — [A] — [A"] — [AEA]) + k1 [AE4],
W) — A By~ [ABL) - (@ + ) AB)

(13)
The nonparametric analysis to detect the nonlinearities
present in this system is performed with A* as output
and k; as input. With k; as random phase multisine
(Eqn. 9), the system of equations (13), is solved with
initial condition of states calculated by solving a cubic
polynomial as in Goldbeter and Koshland (1981). The DC
value of kq is 100 and its RMS value is taken 1 and 30. The
choice of excited frequencies is same as taken in previous
examples.

The effect of change in parameters a; and as is shown in
Fig. 5. In the regime, where the input-output map is less
steep, nonlinear distortions increase with increase in the
excitation level (Figs. 5¢ and 5e) as expected. Interestingly,
in the regime where the response is more switch-like,
nonlinear distortions are high even for lower excitation
(Fig. 5d). Also, the distortions are very high at frequency
~ 150 Hz which is a very different characteristic from
other parameter setting. Therefore, linear identification
techniques cannot be used for this case. This happens
because even for lower excitation level, the operating
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Fig. 5. Nonlinear distortion analysis for G-K switch. Left
column is for parameter a; = as = 1/nM — hr and
right column for a; = ay = 100/nM — hr. (a) and
(b) show normalized input and normalized output
map. (c¢), (d) and (e), (f) are frequency spectrum of
A* for RMS = 1 and 30 respectively. The value of
other parameters is: Ar = 200nM, E1p = Eor =
20nM, d; = dy = 100/hr and ke = 100/hr. Black,
blue, green and magenta dots represent the noise,
excited frequencies, even harmonic and odd harmonic
distortion respectively.

region is around the steep input-output map (Fig. 5b).
It should be noted that all this can be deduced from a
simple nonparametric nonlinear analysis.

3.8 Transcriptional feedback system

Another example of biomolecular system which is of par-
ticular interest in signaling pathways is a transcriptional
feedback system. If a protein activates or represses the
rate of production of mRNA from DNA then it acts as
a transcription factor. Here, we take a system which is
similar to the two-state signaling system but with feed-
back from the output which activates its own production.
Similar dynamics has been observed in Xenopus oocytes
maturation (Ferrell and Xiong, 2001) leading to an all or
none behaviour. The dynamical equations are given as,

a=K (Ar —a)—~va—K_a, (14)

AT = f(a) - fYATa
where,
aa”
fla)=ao+ Kn +an’

This nonlinear feedback from output a may lead to
hysteretic response depending upon parameter regime de-
pending on the input amplitudes. We take K as a random
phase multisine input (Eqn. 9) and a as the output, with

T
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Fig. 6. Frequency spectrum plots of transcriptional feed-
back system. (a), (b) without hysteretic input-output
map (a = 1nM/hr) and (c), (d) with hysteretic input-
output map (o = 5nM/hr), at different excitation
levels (RMS = 30 for a,c; RMS = 60 for b,d). Other
parameters are : o9 = 1/15nM/hr, K = 1nM,
~v = 1/hr and n = 2. Black, blue, green and magenta
dots represent the noise, excited frequencies, even
harmonic and odd harmonic distortion respectively.

Ko = 200 and solve Eqn. 14 computationally. Here, eight
periods of input-output data were acquired, dropping the
first four periods to eliminate the effect of transients. The
RMS value of the signal is varied to check the level of
nonlinear distortions.

For lower RMS values (see Figs. 6a,c) the level of nonlin-
ear distortions are lower compared to linear contribution,
whereas for higher RMS values (see Figs. 6b,d) the differ-
ence becomes less than 30 dB. Interestingly, as the sys-
tem approaches the parameter values near the hysteretic
regime, the level of noise and NL at lower frequencies is
higher even for lower RMS value (Fig. 6¢), one thing to
note here is that the PISPO assumption is still valid at
this input amplitude, as the period length is preserved.

4. CONCLUSION

In this paper, we proposed a data-driven frequency do-
main nonparametric analysis technique to extract the in-
formation about the level and nature (odd or even) of
nonlinearities present in the representative biomolecular
circuits. Here, we have considered three such examples
which are important in different cellular context. First, we
have chosen a random phase multisine input and computed
the discrete Fourier transform of the output. Next, we
have studied the effect of change in RMS value of the
input as well as effect of change in system parameters.
Finally, we have quantified the level of nonlinear distor-
tion in all the cases. In all the examples considered, it is
observed that the level of nonlinear distortions increases
with an increase in the excitation level. In the case of
the Goldbeter-Koshland switch, the operating parameter
regime also have significant effect on choice of system iden-
tification method to use. Interestingly, in the regime where
the response is more switch-like, nonlinear distortions are
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found to be high even for lower excitation. Similar results
are also observed for transcriptional feedback system. The
nonlinearity information does not differ much if different
parameters in the models are used as input.

As this technique discussed in the paper only provides a
nonparametric representation of the system, the next step
is to find a parametric representation of the nonlinear
biomolecular systems by computing the best parametric
linear approximation and nonlinear noise source (Eqn.
3) because a parametric representation is very useful in
stability analysis of the dynamic systems. Another natural
task for future is to use this technique for analysing non-
linear distortions in more complex and larger biomolecular
systems. The application and design of the random-phase
multisine signals has already been proven in many of
the real life biological and electrochemical case studies
experimentally (Van Ingelgem et al., 2009; Sanchez and
Bragos, 2009; Olarte et al., 2014), hence designing these
signal in practice is not cumbersome and difficult at all
with all the modern as well as cheap instrumentation and
data acquisition equipment available.

It has been demonstrated that this technique can be used
to study directly from the input-output data, effect of any
parameter change and its effect on the system dynamics.
The proposed technique gives the modeller a quantitative
and qualitative insight of the nonlinear distortions present
in the biological systems. Hence, it gives a possibility to
decide at an early stage, on the feasibility of different
identification methodologies as well as on the suitability
of different class of models for biological systems, which
eventually can save time and resources.
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Appendix A. ALGORITHM

Algorithm 1 Algorithm for NL analysis in biomolecular
Systems

1: Choose sampling frequency fs and frequency band of
interest and number of periods.

2: Choose random phase multisine input (as in Eqn.
9) for biomolecular system with suitable bias, phase
uniformly distributed in [0,27[, exciting only the odd
frequency lines and leaving one odd frequency line
randomly in each three consecutive blocks of odd
frequency lines.

3: Compute output DFT ignoring first few periods for
steady-state analysis.

4: NL is the non-excited frequency components in output
DFT.




