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Abstract—Numerical optimization is an essential part of the
design process when shaping a contoured beam reflector antenna
to produce a required coverage. The minimax formulation that
has been used for decades generally results in a nonconvex
problem, and since the evaluation of a design is costly, local
optimization is typically used in practice. An inherent challenge
with the minimax formulation is that it often leads to multiple
local minima. As a result, the quality of the final design obtained
via local optimization depends strongly on the initial design.

To address the sensitivity to the initial design, we investigate
the use of initialization based on a different problem formulation.
In particular, we first solve a one-sided nonlinear least-squares
problem to improve an initial design, and the resulting design
is then used as initialization of a minimax algorithm. We use
this strategy to shape a reflector antenna starting from different
initial shapes, and our results show that the initialization strategy
improves the coverage with five out of six initial guesses.

I. INTRODUCTION

For many modern communications satellites, the design
of contoured beam reflector antennas involves the use of
optimization to shape the reflector to produce a desired cov-
erage. The performance of a reflector system is simulated
using Physical Optics (PO) which is sometimes augmented
by Physical Theory of Diffraction (PTD) to account for the
effects from the reflector edges. Using these techniques, the
gain, cross-polar performance, and other relevant quantities
can be evaluated for a specific design.

To optimize the design, it is common to consider the
minimax problem where the objective is to maximize the
minimum gain in the coverage, or equivalently, maximizing
the guaranteed gain in the coverage. The minimax problem
has been studied extensively [1], and good local optimization
algorithms exist for solving the problem [2], [3]. However,
with local optimization algorithms, the solution depends on an
initial guess which is usually provided by the user. In practice,
the antenna designer comes up with an initial design which is
then improved by the optimization algorithm.

Unfortunately, the minimax formulation can have many
local minima, and hence local optimization algorithms can be
sensitive to the initial guess; if the antenna designer provides a
poor initial design, the final design after optimization may not
be improved much. Multi-start methods (doing multiple local
optimizations from various starting points) and global opti-
mization methods can improve this situation, but evaluating
the performance of a design, which is done in each iteration of

the optimization, can take hours in some applications, making
these approaches too computationally expensive. In practice,
the user often decides on a maximum number of function
evaluations and the optimization is terminated if this number
is exceeded even if the usual stopping criteria are not satisfied.

In this study, we present an alternative optimization prob-
lem to solve — the one-sided nonlinear least-squares (one-
sided LS) problem — and an algorithm for finding a (local)
minimum. Given a maximum number of function evaluations,
kmax, to be used in the optimization, we propose the following
strategy: (i) the initial design is first improved by optimizing
the one-sided LS formulation using at most kmax/2 iterations
(one iteration corresponds to one function evaluation), and
(ii) the resulting design is then optimized using the minimax
algorithm with a cap on the number of iterations such that the
total number of function evaluations is at most kmax.

II. METHOD

In the following, we will assume that x ∈ Rn is a vector
of n parameters that define the design of the reflector antenna
(e.g., the elements of x can represent spline coefficients of a
shaped surface, the position or excitation of feeds and arrays,
etc.). For each of the m points in the coverage we define a
residual function:

ri(x) = wi(gi − fi(x)), (1)

where fi(x) is a function that measures the performance of the
current design, gi is a performance goal, and wi is a weight
that determines the importance of meeting the performance
goal at the ith point. To ensure that a design can be realized,
it is often necessary to put constraints on x (e.g., restricting
the curvature of the reflector to avoid having to bend the metal
surface of the reflector too much, or restricting the position of
a feed such that it does not coincide with other components on
the structure). Here we consider linear constraints represented
by the set C = {x ∈ Rn | Cx+ d ≥ 0}, where C ∈ Rp×n,
d ∈ Rp, p is the number of constraints, and the inequality is
element-wise. The minimax problem can now be formulated
as:

minimize
x∈C

max
i

ri(x), (2)



and the one-sided LS problem is given by:

minimize
x∈C

m∑
i=1

max {0, ri(x)}2 , (3)

Notice that all positive residuals are penalized in the one-
sided LS formulation; this is sensible since a positive residual
implies that the goal is not attained at the given point. As
mentioned in the introduction, there are efficient algorithms
for optimizing (2) locally, and in the next section, we outline
a method for local optimization of (3).

III. ALGORITHM

To optimize (3), we consider the equivalent problem:

minimize
x∈C,u∈Rm

‖u‖2

subject to ui ≥ ri(x), ui ≥ 0, i = 1, . . . ,m,
(4)

where u is a vector of auxiliary variables. This problem has a
quadratic objective function, but due to the possibly nonconvex
constraints ui ≥ ri(x), it is still intractable to find a global
minimum. Thus, we use a trust-region method [4] to search
for a local minimum. At a current iterate, xk, we linearize
the residual functions in (4), and find a candidate for the
next iterate, xk+1 = xk + ∆x, by solving the trust-region
subproblem:

minimize
∆x∈Rn,u∈Rm

‖u‖2

subject to C∆x+ dk ≥ 0

u ≥ rk + Jk∆x

u ≥ 0, δk ≥ ‖∆x‖∞ ,

(5)

where δk > 0 is the trust-region radius, rk = r(xk), and:

dk = Cxk + d, Jk =
[
∇r1(xk) · · · ∇rm(xk)

]T
. (6)

The problem (5) is a convex quadratic problem with linear
constraints (since the∞-norm is linearly representable) which
we solve with an interior-point method [5].

IV. RESULTS

To illustrate the effect of the initialization strategy, we
consider a case where the objective is to shape a reflector for
illumination of the continental United States (the US excluding
Alaska and Hawaii). We have n = 783 variables (spline
coefficients of a reflector surface) and optimize the coverage
over m = 810 points starting from six different initial shapes.
The initial shapes were created by de-focusing the reflector
such that the initial guesses become progressively worse: guess
1 is expected to produce the best results and initial guess 6
is expected to produce the worst results. We did not impose
constraints on x (i.e., p = 0). An example of the coverage
obtained with the minimax algorithm initialized with initial
guess 2 is shown in Fig. 1.

In our experiments, we limited the number of function
evaluations (kmax) to 500, and for each of the six initial
guesses we did two experiments. In the first experiment, we

Fig. 1. Contours of coverage optimized using the minimax algorithm. The
peak gain of around 33 dB is at the cross in Florida. The Nadir direction of
the satellite is shown in the black circle.

TABLE I. VALUE OF MAXIMAL RESIDUAL IN DB AFTER 500 ITERATIONS.
THE 6 INITIAL GUESSES BECOME PROGRESSIVELY WORSE: 1 IS A GOOD

(GREEN) INITIAL GUESS AND 6 IS A POOR (RED) INITIAL GUESS.

Initial Guess 1 2 3 4 5 6
Minimax only -0.074 0.090 0.826 2.019 4.149 9.360
OLS+minimax -0.074 -0.004 0.417 1.952 4.103 7.690
Difference 0.000 0.094 0.409 0.067 0.046 1.67

applied the one-sided LS algorithm for 250 iterations (or until
a stopping criteria is met), followed by the minimax algorithm
for the remaining iterations. In the second experiment, we used
only the minimax algorithm for 500 iterations. Our results
are summarized in Table I; recall that smaller residuals are
better. The results clearly show that the initialization strategy
can improve the minimum gain in the coverage: the gain is
improved for initial guesses 2-6, and the result remains the
same for initial guess 1. Considering the maximal residual —
it measures how far we are from reaching the goal value — the
absolute improvement is largest for initial guess 6 (1.67 dB),
where there is much room for improvement, and the relative
improvement is largest for initial guess 3 (49.5%).

V. CONCLUSION

The use of one-sided least-squares for initializing the mini-
max algorithm can lead to improved results: in our numerical
experiments, the initialization strategy led to an improved
design with five out of six initial guesses.
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